Testing Static Analysis Tools Using

Exploitable Buffer Overflows From Open Source Code

Misha Zitser
D. E. Shaw Group
New York, NY

zitserm@deshaw.com

ABSTRACT

Five modern static analysis tools (ARCHER, BOON, PolySpace

C Verifier, Splint, and UNO) were evaluated using source
code examples containing 14 exploitable buffer overflow vul-
nerabilities found in various versions of Sendmail, BIND,
and WU-FTPD. Each code example included a “BAD” case
with and a “PATCHED” case without buffer overflows. Buffer
overflows varied and included stack, heap, bss and data
buffers; access above and below buffer bounds; access us-
ing pointers, indices, and functions; and scope differences
between buffer creation and use. Detection rates for the
“BAD” examples were low except for Polyspace C Verifier
and Splint which had average detection rates of 87% and
57% respectively. However, average false alarm rates were
high and roughly 50% for these two tools. On safe patched
programs these two tools produce one false alarm for every
12 to 46 lines of source code and neither tool can accurately
distinguish between unsafe source code where buffer over-
flows can occur and safe patched code.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: [Software/Program Verifi-
cation]; D.2.5 [Software Engineering]: [Testing and De-
bugging]; K.4.4 [Computers and Society]: [Electronic
Commerce Security]

General Terms

Measurement, Performance, Security, Verification

Keywords

Security, buffer overflow, static analysis, evaluation, exploit,
test, detection, false alarm, source code

*This work was sponsored by the Advanced Research and
Development Activity under Force Contract F19628-00-C-
0002. Opinions, interpretations, conclusions, and recom-
mendations are those of the authors and are not necessarily
endorsed by the United States Government.

Richard Lippmann
MIT Lincoln Laboratory
Lexington, MA

rpl@Il.mit.edu

Tim Leek
MIT Lincoln Laboratory
Lexington, MA

tleek@Il.mit.edu

30

(2]
E L
3 "
o 20
=
5 J_,_,rr’
3
E 10 |- T
]
3]
0 L
Jan-96 Jan-98 Jan-00 Jan-02 Jan-04

Vulnerability Publication Date

Figure 1: Cumulative buffer overflow vulnerabilities
found in BIND, WU-FTPD, and Sendmail server
software since 1996

1. INTRODUCTION

The Internet is constantly under attack as witnessed by
recent Blaster and Slammer worms that infected more than
200,000 computers in a few hours [18, 24]. These, and many
past worms and attacks exploit buffer overflow vulnerabili-
ties in server software. The term buffer overflow is used in
this paper to describe all types of out-of-bound buffer ac-
cesses including accessing above the upper limit or below
the lower limit of a buffer.

Buffer overflow vulnerabilities often permit remote attack-
ers to run arbitrary code on a victim server or to crash
server software and perform a denial of service (DoS) at-
tack. They account for roughly 1/3 of all the severe re-
motely exploitable vulnerabilities listed in the NIST ICAT
vulnerability database [22]. The often-suggested approach of
patching software as quickly as possible after buffer overflow
vulnerabilities are announced is clearly not working given
the effectiveness of recent worms. Figure 1 illustrates why
this approach is impractical. This figure shows dates that
new remotely exploitable buffer overflow vulnerabilities were
announced in three popular Internet server software applica-

Permission to make digital or hard copies of all or part of this work for tions (BIND, WU-FTP, and Sendmail) and the cumulative
personal or classroom use is granted without fee provided that copies arenumber of these vulnerabilities. For just these three servers,
not made or distributed for profit or commercial advantage and that copies there have been from one to six remotely exploitable buffer-
bear this notice and the full citation on the first page. To copy otherwise, t0 gyerflow vulnerabilities announced each year, no reduction
republish, to post on servers or to redistribute to lists, requires prior specific ;, 11 1ate of new vulnerabilities, and a total of 24 vul-

permission and/or a fee. R . . I
Foundations of Software Engineering T2 Newport Beach, CA, USA nerabilities published since 1996. Verifying each patch and
installing it on every machine in an enterprise, within a few

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

days after these vulnerability announcements, is impractical
for most enterprise networks.

A detailed review of approaches that have been devel-
oped to counter buffer overflow exploits is available in [27].
These include static analysis to discover and eliminate buffer
overflows during software development, dynamic testing to
discover buffer overflows during software testing, dynamic
prevention to detect buffer overflows when they occur after
software has been deployed, and the use of new languages
designed to be less susceptible to buffer overflows. Static
analysis is the only approach that eliminates both buffer
overflows and their effects and that can be applied to the vast
amounts of open-source legacy C code in widely-used open-
source software. Dynamic testing is expensive and almost
always cannot exercise all code paths. Dynamic prevention
approaches such as stackguard, CCured, and CRED [12, 10,
23] detect some buffer overflows at run time, only to turn
them into DoS attacks because a program typically halts
after a buffer overflow is detected.

Many static analysis tools that detect buffer overflows
in source code have been recently developed, but we are
aware of no comprehensive evaluations. Most past evalua-
tions were performed by tool developers, use few examples,
and do not measure both detection and false alarm rates of
tools [14, 15, 25, 26]. Although some studies apply tools
to large amounts of source code and find many buffer over-
flows [26], the detection/miss rate for in-the-wild exploitable
buffer overflows is still not known and the false alarm rate
is also often difficult to assess.

We are aware of only three evaluations of tools that were
not performed by tool developers. A qualitative survey of
lexical analysis tools that detect use of functions often as-
sociated with buffer overflows is available in [19]. A single
tool for detecting buffer overruns is evaluated in [21], de-
scribed as “a tool created by David Wagner based upon the
BANE toolkit” that Presumably, this is BOON [25], evalu-
ated in this paper. While the authors comment about exces-
sive false positives and false negatives, they do not attempt
to quantify them. The study described in [16] is more ob-
jective. It compares Flawfinder, ITS4, RATS, Splint, and
BOON on a testbed of 44 vulnerable functions invoked both
safely and unsafely. They carefully count true positives
and false positives for examples of “20 vulnerable functions
chosen from ITS4’s vulnerability database ... Secure pro-
gramming for Linux and UNIX_HOWTO, and the whole
[fvsn]lprintf family”. These examples contain no complex
control structures, instances of inter-procedural scope, or
direct buffer accesses outside of string functions, and there-
fore cannot represent complex buffer access patterns found
in Internet servers. However, this study is useful for di-
agnostic purposes. It exposes weaknesses in particular im-
plementations (e.g. BOON cannot discriminate between a
good and a bad strcpy even in its simplest form). High de-
tection/false alarm rates are reported for the three purely
lexical tools, Flawfinder, ITS4, and RATS, and lower detec-
tion/false alarm rates for the more sophisticated Splint and
BOON. They also do not report the conditional probability
of no false alarm in a corrected program given a detection
in the vulnerable version. This conditional probability is
important because it measures the ability of a tool to dis-
criminate between safe and unsafe versions of the same code.
Developers would not use such a tool since it would continue
reporting an error even after a patch is applied.

Tools Analysis

ARCHER [26] | Symbolic, interprocedural,
flow-sensitive analysis

BOON [25] Integer ranges, interprocedural
flow-insensitive analysis
for string functions.

PolySpace Abstract interpretation,

C Verifier [1] interprocedural,
flow-sensitive.

SPLINT [14] | Lightweight static analysis,
intraprocedural,

UNO [15] Model checking, interprocedural,
flow-sensitive.

Table 1: Static Analysis tools used in the evaluation

The purpose of the research described in this paper was
to perform an unbiased evaluation of modern static analy-
sis tools that can detect buffer overflows. This evaluation
measures detection and false alarm rates using a retrospec-
tive collection of 14 remotely-exploitable buffer overflows se-
lected from open-source server software. A secondary goal of
this work was to characterize these in-the-wild buffer over-
flows in terms of type (e.g. stack, heap, static data) and
cause (e.g. improper signed/unsigned conversions, off-by-
one bounds check error, use of unsafe string function). A
final goal was to provide a common collection of realistic
examples that can be used to aid in the development of im-
proved static source code analysis.

2. STATIC ANALYSIS TOOLS

Table 1 provides a summary of the five static analysis
tools used in this evaluation. Four are open-source tools
(ARCHER, BOON, SPLINT, UNO) and one is a commer-
cial tool (Polyspace C Verifier). All perform in-depth sym-
bolic or abstract analysis of source code and all detect buffer
overflows. Simpler lexical analysis tools such as RATS [6]
were excluded from this study because they have high false
alarm rates and limited scope.

ARCHER (Array CHeckER) is a recently developed static
analysis tool that has found many memory access viola-
tions in LINUX kernel and other source code [26]. It uses
a bottom-up inter-procedural analysis. After parsing the
source code into abstract syntax trees, an approximate call
graph is created to determine an order for examining func-
tions. Starting at the bottom of the call graph, symbolic
triggers are calculated to determine ranges for function pa-
rameters that result in memory access violations. These
triggers are used to deduce new triggers for the callers, and
so on. Once the top-most caller is reached, if any of its
triggers are satisfied, a memory violation flag is raised. Er-
ror detection is conservative and overflows are reported only
with strong evidence. For example, no error is reported for
a buffer access unless at least one bounds check is observed
in the source code for that buffer, thus assuming that the
programmers correctly leave out unnecessary bounds checks.
The analysis is also limited because function pointers are not
modeled, heuristics are used to analyze loops, and only sim-
ple range constraints are considered. ARCHER was used to
analyze 2.6 million lines of open-source code and generated
215 warnings. Of these, 160 were true security violations

and 55 were false alarms [26].

BOON (Buffer Overrun detectiON) models only how string
buffers are manipulated by a subset of standard library func-
tions [25]. Every character string is modeled by a pair of in-
tegers - the number of bytes allocated for the storage buffer
and the actual number of bytes used. For each use of a
string function, an integer range constraint is generated.
Constraints are collected across a program, ignoring con-
trol flow and the order of statements, and used to detect
accesses outside string boundaries. This analysis is limited
because it only considers accesses through string functions
and is flow insensitive. BOON was applied to source code
from Sendmail 8.9.3 and generated 44 warnings [25]. Only
4 of these were actual buffer overflows.

PolySpace C Verifier is a commercial tool designed to de-
tect run-time errors in embedded software [1]. Few details
of the algorithm are provided other than the fact that ab-
stract interpretation is used, although company represena-
tives have informed us that the algorithms are based upon
the research of Patrick Cousot [11, 20]. In a white paper,
Polyspace describes their tool in this way:

Abstract Interpretation had to wait for the im-
plementation of very efficient and non-exponential
algorithms, and for the availability of increased
processing power on modestly equipped comput-
ers. When applied to runtime error detection,
Abstract Interpretation performs an exhaustive
analysis of all risky operations and automatically
provides a list of runtime errors contained in a
program before it is run, tested or shipped. [1]

We are aware of no prior evaluations of the PolySpace C
Verifier tool.

SPLINT (Secure Programming Lint) includes extensions
to LCLINT designed to detect buffer overflows and other
security violations [14]. It uses several lightweight static
analysis techniques. SPLINT requires source annotations
to perform inter-procedural analysis. Even without annota-
tions, SPLINT monitors creation of and accesses to buffers
and detects bounds violations. SPLINT uses heuristics to
model control flow and common loop constructs. SPLINT
was used to analyze WU-FTP source code without annota-
tions and generated 166 warnings [14]. Of these, 25 were
real and 141 were false alarms.

UNO is named for the three software defects it was de-
signed to detect: the use of Uninitialized variables, derefer-
encing Nil-pointers, and Out-of-bound array indexing [15].
UNO uses a public-domain compiler extension named ctree
to generate a parse tree for each procedure in a program.
Parse trees are turned into a control flow graphs that are
analyzed using a model checker to find array indexing er-
rors. UNO does not check array indices that are general ex-
pressions or that involve function calls and it only performs
checks when a bound on the index can be determined and
the index is a constant or variable. Ranges for variables are
deduced from assignments and conditions and combined in
a conservative fashion. The analysis is not inter-procedural.
UNO was applied to two open-source software applications
(Sendmail and unravel) but detected no array indexing er-
rors [15]. Overall, it produced 58 warnings for variables that
were declared but not used or initialized. Only 5 of these
were false alarms.

3. OPEN SOURCE TEST CASES

Three widely-used open-source programs were chosen to
test the effectiveness of the static analysis tools: BIND,
WU-FTPD, and Sendmail. BIND [4] is the most popular
DNS server, WU-FTPD [8] is a popular FTP daemon, and
Sendmail [7] is the dominant mail transfer agent (MTA).
Figure 1 shows that many many serious buffer overflow vul-
nerabilities have surfaced in these programs over the past
few years. These three applications have been selected as
being responsible for some of the top 20 most critical In-
ternet security vulnerabilities [5]. The fourteen most recent
severe buffer overflow vulnerabilities for these servers were
selected for a retrospective analysis. Eleven of these allow
a remote attacker to gain full control of the system running
the vulnerable software and to execute arbitrary code. The
goal of the retrospective analysis is to determine if any static
analysis tool could have detected these vulnerabilities and
been able to prevent their exploitation if applied before the
vulnerability was discovered.

As a first step, we tried to gauge how easy it is to use
these tools on the sorts of programs we care about using a
vulnerable version of Sendmail (8.12.4), which is more than
145 thousand lines of code. Splint issued many parse errors
regarding type definitions like u_char and u_long. Even
though all of the types in question were defined either in
Sendmail include files or standard C include files, Splint was
not able to analyze all of Sendmail (David Evans, the cre-
ator of Splint, helped by supplying a page-long list of def-
initions necessary for processing sendmail). ARCHER was
able to parse the source, but it terminated with a divide by
zero exception during analysis. PolySpace’s C Verifier was
similarly difficult to apply, and even with assistance from
Polyspace technical support, we were not able to analyze all
of Sendmail.

This initial experience was disappointing since it suggested
we would not be able to to run the tools on large and com-
plex programs like Sendmail. As an alternative, smaller, we
created self-contained programs by extracting just as much
code as was required to reproduce the buffer overflow vulner-
abilities. Every attempt was made to preserve the general
structure of the vulnerable code when creating these smaller
model programs. For example, if the buffer was declared in
one function and overflowed in another, then this was pre-
served. By extracting as much code as possible, the relative
complexity of the model program remained close to that of
the real program, but the size of the model programs was
much smaller. Any complex code that obfuscated buffer
overflows in real programs remained in the model programs.

It was especially difficult to extract code when the vulner-
ability involved multiple procedure calls. On average, five to
seven hours were required to construct each model program.
In addition, we arranged for inputs to each model program
that demonstrated a buffer overflow.

For each of the fourteen analyzed vulnerabilities, two model
programs were constructed: a BAD version and an OK ver-
sion. The BAD version contained one or more buffer over-
flow vulnerabilities modeling those seen in the real program.
These vulnerabilities were patched in the OK version of the
model program. For instance, if the BAD program con-
tained code that accessed a buffer through an unchecked
index that could potentially be out-of-bounds, the patched
program included bounds checks on the index before ac-
cessing the buffer. Again, we created inputs for these OK

versions that demonstrated the absence of an overflow.
The following three sections describe vulnerabilities in
BIND, Sendmail, and WU-FTP used to create model pro-
grams. Further details on these vulnerabilities and model
programs, including descriptions, extracted source code, and
vulnerable version numbers, are available in [27].

3.1 Bind

Four serious buffer overflow vulnerabilities in BIND shown
in Table 2 were used to create model programs. These were
discovered between 1999 and 2001 and affect BIND Version
4 up to 4.9.8 and BIND Version 8 up to 8.2. In the table,
vulnerabilities are listed by a simple name (e.g. BIND-1), a
common name (e.g. NXT record), a CVE (or CAN) num-
ber when available [3] or a CERT Advisory number for older
vulnerabilities when no CVE number is available [2], a code
that indicates the type of vulnerability, and a short descrip-
tion of the reason for the overflow. The code RC stands for
Remote Compromise, the code RDOS stands for Remote
DoS, and the code LC stands for Local Compromise. These
codes indicate the location of the attacker and the result of
the exploit. An attack on a server can either be issued from
a remote machine or locally from the server and the attacker
either achieves a high level of privilege (usually root or the
privilege of the server) and can execute arbitrary code or
the attacker disables the server. The RC code indicates the
most critical vulnerabilities. For example, the BIND-1 RC
vulnerability (BIND-1) was responsible for the widespread
Lion Internet worm [17].

3.2 Sendmail

As noted above, Sendmail is currently the most widely
used mail transfer agent. The seven serious Sendmail buffer
overflow vulnerabilities shown in Table 2 were used to create
model programs. They were discovered between 1996 and
2003 and affect Sendmail versions up to 8.12. These include
five RC vulnerabilities that permit a remote attacker to ex-
ecute arbitrary code and two L.C vulnerabilities that allow a
local user to obtain root level privileges. Reasons for these
buffer overflows are complex and include many logic errors,
incorrect assumptions about the validity of input data, and
typographic errors where one variable name was mistakenly
used for another.

3.3 Wu-ftpd

The WU-FTPD FTP server is installed and enabled by
default on many Linux operating systems including RedHat
and Slackware. Three buffer overflow vulnerabilities in WU-
FTPD shown in Table 2 were selected for this study. They
were discovered between 1999 and 2003 and affect WU-FTP
versions up to 2.6.2. They were caused by missing checks on
array bounds for the strcpy() function and incorrect logic.
All three are RC vulnerabilities that were again used to cre-
ate model programs.

4. CHARACTERISTICS OF BUFFER OVER-
FLOWS

Buffer overflows in the fourteen model programs were char-
acterized to obtain statistics on the types of buffer overflows
that occur in real programs and are exploitable. It was found
that buffer overflows within each individual model program
were often similar and that they were sometimes repeated

Characteristic | Observed Values
Bound 93 % upper, 7% lower
Type 64% char, 36% u_char

Location 73% stack, 16% bss,

7% heap, 4% data
Scope 43% inter-procedural,

52% same function,

5% global buffer
Container 93% none, 7% union
Index or 64% none, 22% variable,

limit 7% linear exp,
7% contents of buffer

Access 56% C function,

26% pointer, 11% index,

7% double de-reference
Buffer 52% alias, 34% no alias,
alias 14% alias of an alias
Control 29% mnone, 49% if-statement,
flow 22% switch
Surrounding 46% none, 42% while,
loops 5% for, 7% nested
Input 64% packet, 22% dir
taint functions, 7% file

7% argc/argv

Table 3: Characteristics of buffer overflows

many times. For example, for the SM-1 model program,
there were 28 buffer overflows of the same buffer that were
identical with regard to the features used in Table 3. It is
likely that an actual static analysis tool would detect none
or all of these similar buffer overflows and that a program-
mer would also correct all or none. Results in Table 3 reflect
this assumption and do not count identical buffer overflows
in one model program individually. Instead, the relative
frequencies of the observed values in Table 3 were first cal-
culated separately for each model program weighting each
buffer overflow uniformly when computing relative frequen-
cies. Following this, overall relative frequencies were cal-
culated by weighting relative frequencies uniformly for all
model programs. The results, giving each model program
a weight of one, appear in Table 3 and indicate that there
is considerable variety in real buffer overflows. Most out-of-
bound accesses exceed the upper bound, but one is below
the lower bound. Most involve character arrays, but many
involve u_char arrays. The buffer is on the stack for roughly
3/4 of the overflows but on the heap, bss, or data segments
roughly 1/4 of the time. The difference in scope between
where the buffer is declared and where it is accessed is inter-
procedural roughly 40% of the time, intra-procedural half
the time, and otherwise global. Most buffers are accessed
directly, but a small percentage (7%) are in unions. 67% of
array accesses use a string manipulation function that in-
cludes a limit (e.g. strncpy) or access the array directly
with an index (e.g. array[i]) . For these, the index or
limit is a variable most of the time, but can also be a linear
expression or the contents of an integer array. Many (56%)
of the buffer overflows are caused by incorrect use of a string
manipulation function (e.g. strcpy, memcpy), and the rest
are caused by direct accesses using pointers or an index.
Buffers are accessed directly for only 1/3 of the overflows

Simple name [Common name [Ref

| Type [Reason

BIND-1 NXT record CA-1999-14 RC Size arg of memcpy not checked.

BIND-2 SIG record CA-1999-14 RDOS | negative arg to memcpy underflows to large positive int
BIND-3 iquery CVE-1999-0009 | RC Size arg of memcpy not checked

SM-1 crackaddr CA-2003-07 RC Upper bound increment for a > char but not decrement for <
SM-2 gecos CVE-1999-0131 | LC gecos field copied into fixed-size buffer without size check
SM-3 8.8.0/8.8.1 mime | CVE-1999-0206 | RC Pointer to buffer not reset to beginning after line read.
SM-4 8.8.3/8.8.4 mime | CVE-1999-0047 | RC Typo prevents a size check from being performed.

SM-5 prescan CA-2003-12 RC Input byte set to 0xff cast to minus one error code.

SM-6 tTfag CVE-2001-0653 | LC Negative index passes size check but causes underflow.
SM-7 TXT record CVE-2002-0906 | RC Size for strncpy read from packet header but not checked.
FTP-1 mapped chdir CVE-1999-0878 | RC Several strcpy calls without bounds checks.

FTP-2 off-by-one CAN-2003-0466 | RC Wrong size check inside if. > should really be >=.

FTP-3 realpath CVE-1999-0368 | RC Several unchecked strcpy and strcat calls.

Table 2: Vulnerabilities in bind, sendmail, and wu-ftpd

int main(int argc, char *argv[]) {

/* name is tainted and can be very long */
char *name;

name = argv[1];

call_realpath(name) ;

}

void call_realpath(char *name){
char path[MAXPATHLEN + 1];

my_realpath(name,path,chroot_path);
}

char *my_realpath (const char *pname, char *result,
char* chroot_path) {
char curpath[MAXPATHLEN] ;
/*BAD*/
strcpy(curpath, pname);

Figure 2: Source code fragment extracted from
FTP-3 containing one buffer overflow.

while 2/3 of the overflows use indirection caused by aliases.
The local surrounding control flow includes an if statement
or a switch statement for roughly 70% of the overflows and a
surrounding loop for roughly half of the overflows. Finally,
tainted input from users that can cause the buffer overflow
to occur comes from Internet packets for roughly 2/3 of the
overflows but also from directory functions (e.g. getcwd and
pwd), from file inputs, and from command line arguments.
Figures 2 and 3 contain model source fragments to illus-
trate their complexity. Figure 2 contains a code fragment
from FTP-3 in which a command-line argument is read in,
passed through two functions, and eventually copied into
a fixed size buffer with no length check. The comment
/* BAD */ has been inserted immediately before the line
with the buffer overflow. This example illustrates how a lo-

ADDRESS #*recipient(...) {
else {
/* buffer created */
char nbuf [MAXNAME + 1];

buildfname (pw->pw_gecos,
pw->pw_name, nbuf);

}
}

void buildfname(gecos, login, buf)
register char *gecos;
char *login;
char *buf; {

register char *bp = buf;
/* £ill in buffer */

for (p = gecos; *p != ’\0’ &&
*p 1= 7,0 &&
*p 1= ;0 &l
*xp 1= 2%, p++) {
if (#p == &) {
/* BAD */

(void) strcpy(bp, login);
*bp = toupper (*bp) ;

while (*bp != ’\0’)
bp++;
}
else
/* BAD */
*bp++ = *p;
}
/* BAD */
*bp = ’\0’;
}

Figure 3: Source code fragment extracted from SM-
2 containing three buffer overflows.

cal user can cause a buffer overflow. Using features from
Table 3, this buffer overflow is classified as: exceeds upper
bound, char variable, on stack, buffer declaration and use
in same scope, no container, no index computation, string
function, no alias, no local control flow, no loop, and tainted
input from the command line. This characterization, how-
ever, inadequately reflects the difficulty of analyzing the
code. First, a taint analysis must understand that the string
pointed to by name can be any length. Then, an inter-
procedural analysis must follow this pointer through two
functions to where it is used to copy the name string into a
fixed-length buffer. Our characterization does not measure
the complexity of following the tainted string through the
program or of identifying tainted input as it is read in.

Figure 3 contains a code fragment from SM-2. It contains
three lines with potential buffer overflows all preceded by the
comment line /* BAD */. The bottom two buffer overruns
occur when the real name from the gecos field in the passwd
file is copied into a fixed length buffer with no length check.
Using features from Table 3, these are both classified as: ex-
ceeds upper bound, char variable, on stack, inter-procedural
scope, no container, no index computation, pointer access,
alias, in if statement, in for loop, and tainted input from a
file. Both of these buffer overflows can be forced to occur by
a local user because it is relatively easy to change the real
name field in the password file to be a long string. The first
buffer overflow copies another field in the password file that
may be too long into a fixed length buffer. Characteristics
of this buffer overflow are identical to those of the second
two, except access to the buffer is through a string function
instead of through a pointer. Detecting these buffer over-
flows requires understanding that two fields of the password
structure (pw_gecos, pw_name) can point to long buffers, fol-
lowingpointers to these fields through multiple functions and
aliases, and analyzing the loop and local control flow where
these pointers are used to copy their contents into a fixed-
length buffer with no bounds checks.

These two examples demonstrate the need for static anal-
ysis approaches that perform in-depth analyses of source
code. For instance, a simple approach that is either not
interprocedural or not flow sensitive will miss over half of
vulnerabilities.

5. TEST PROCEDURES

Details of the test procedures are provided in [27] in-
cluding command line settings for tools and scripts. No
annotations were added to source code for any of the tools.
The only modifications made were for PolySpace because
buffer overflows were detected in library routines such as
strcpy and not mapped into the main program to the point
where the library routine was called. We corrected for this
by adding to the model program as many copies (e.g. str-
cpyl, strcpy2) of a library function as there were calls to
that function. This allowed us to map buffer overflow detec-
tions in these functions to call sites. Documentation, and
often advice from tool developers, was used to determine
appropriate flags and the environment for each tool.

The five tools were run on the fourteen pairs of BAD and
OK model programs. Each BAD program had one or more
lines in the code labeled BAD corresponding to the lines
that could overflow a buffer for some input. All of these
vulnerabilities were fixed in the OK version of the model
program and the BAD labels on these lines were changed to

System P(d) | P(f) | P(—=f|d)
PolySpace | 0.87 | 0.5 0.37

Splint 0.57 | 0.43 | 0.30
Boon 0.05 | 0.05 |-
Archer 0.01 |0 -
Uno 0 0 -

Table 4: Detection and flase alarm rates for all sys-
tems

OK.

The two tools that produced the most detections and false
alarms both provide a source code line number for each
warning and this could be used to match up warnings to
line numbers in the code. Warnings were only counted if
they were for the lines labeled BAD or OK in the model
source code. Some tools such as PolySpace detected buffer
overflows in library routines and the detection had to be
mapped to line numbers in the main routine as described
above. When a tool did not provide a line number (e.g.
BOON), the information printed out about the buffer that
was overflowed and the type of overflow was used to con-
firm that the correct buffer overflow or buffer access was
detected.

6. RESULTS

Three performance measures were computed for each tool.
For each run of a static analysis tool on a model program,
we counted the number of times a line labeled “BAD” was
correctly identified by inspecting the output of the tool. We
called this the number of detections for that tool on that
program, C(d). Similarly, we counted the number of times
a line labeled “OK” was incorrectly identified and called
this the number of false alarms for the tool on the program,
C(f). Finally, we counted the number of times a detection
was paired with a false alarm for a given BAD/OK pair
of programs and called this the number of confusions for
the tool on the program, C(df). In Table 4 these counts
are used to estimate probabilties of detection, P(d), false
alarm, P(f), and no false alarm given a detection, P(—f|d),
according to the following formulae

P(d) = C(d)/T(d) (1)
P(f)=C(H/T(f) (2)
P(=fld) =1 -C(df)/C(d) 3)

where T'(d) is the total number of detections possible for a
model program, and T'(f) the total number of possible false
alarms (note that T'(d) # T'(f) is possible since correcting a
vulnerability can change the number of buffer accesses).

Table 4 shows overall detection and false alarm rates for
all systems. PolySpace and Splint detected a substantial
fraction of buffer overflows while the other three tools gen-
erated almost no warnings for any model program. Boon
had two confusions (detections combined with false alarms),
one on each of SM-6 and FTP-1. Archer had one detection
on SM-4 and no false alarms. UNO generated no warnings
concerning buffer overflows but did issue some warnings on
unrelated programming issues. P(d) for PolySpace is quite
high at 0.87 and reasonable for Splint at 0.57. False alarm
probabilities are also high, both near 0.5.

ROC Curve

1
®POLYSPACE
0.75-
- SPLINTI
Z 0.5
o

0.5 0.75 1
P(f)

Figure 4: ROC-type plot for the five systems evalu-
ated in this study. Only Polyspace has performance
significantly better than the diagonal random guess-
ing line.

The information in Table 4 is also rendered graphically as
a kind of ROC (Receiver Operating Characteristic) curve in
Figure 4. Probability of detection and false alarm, P(d) and
P(f), make up the vertical and horizontal axes in this plot.
The bold diagonal line is the locus of points representing
a naive system following the strategy of random guessing.
By choosing different probabilities for labeling a line in a
program as having a buffer overrun, this random system can
achieve any performance for which P(d) = P(f). A useful
system must have an operating point that is substantially
above this diagonal. Only PolySpace where P(d) = 0.87 and
Splint where P(d) = 0.57 have points above the diagonal.

We further require that the vertical distance between an
operating point and the diagonal be statistically significant.
If a system randomly detects buffer overruns in the BAD/OK
lines by flipping a biased coin then we would expect it to
have an arbitrary P(f), with a per-model-program variance
given by 02 = p(1 — p)/N where p = P(f) and N is the
number of lines labeled BAD in the model program. The
overall P(d) is the average P(d) from the 14 per-program
averages as described above and the variances of these av-
erages is thus equal to sum of variances of the per-model
program variances divided by 142 = 196 . The error bars in
this figure are + two standard deviations for random guess-
ing systems with false alarm rates equal to those observed
for Splint and PolySpace. From this we see that the detec-
tion rate of Splint is not outside the two standard deviation
range, while that of PolySpace is substantially outside the
range. Splint is thus not statistically significantly different
at the 0.05 confidence level from a random guessing sys-
tem that labels 43% of all lines BAD. The detection rate of
PolySpace, however, is statistically greater than that of a

random guessing system that labels 50% of all lines BAD.

The above analysis is incomplete, however, since P(d) and
P(f) ignore how these tools might actually be used. We
need to measure not only the ability of a tool to detect vul-
nerabilities, but also its ability to discriminate between the
presence and minimal correction of vulnerabilities. If a sys-
tem correctly detects every line of source code containing
a buffer overflow, but is unable to notice that the overflow
has been corrected, then a user of the system will not be
able to determine whether a code modification designed to
correct a problem is effective. Without the ability to val-
idate patches that correct security weaknesses, a tool can
only suggest potential problems, and it may not be used
because its warnings are untrustworthy. We measured the
probabily of not false alarming on patched software as the
conditional probability of not generating a false alarm on
a corrected vulnerability, given a detection of the original
vulnerability. These values have been calculated for Splint
and PolySpace and are provided in Table 4 under the col-
umn labeled P(—f|d). Note that an ideal system would
have P(—f|d) = 1.0. For PolySpace, these conditional prob-
abilities are 0.37 and 0.3, respectively. This means that
more than half the time, these tools continue to hallucinate
a buffer overflow after it has been correctly guarded against
in software. This performance is not better than random
guessing.

The above analyses focused only on source code lines in
the model programs that were known to contain buffer over-
flows. Warnings caused by other lines of source code were
ignored. Unfortunately, there were many such warnings,
and we quantified these false alarms by counting the num-
ber of buffer-overrun related warnings generated by Splint
and PolySpace tools for each of the 14 OK versions of the
model programs. These programs were constructed care-
fully and are likely to be almost error-free. We used these
counts to estimate the number of false alarms to expect from
each tool per line of code. PolySpace produced one buffer
overflow false alarm for every 12 lines of code and Splint pro-
duced one false alarm for every 46 lines of code. These are
very high false alarm rates that concur with our qualitative
experience of the tools.

7. LIMITS OF ABSTRACT INTERPRETA-
TION

Polyspace gave the best performance, but even still it only
worked properly (meaning P(d) = 1 and P(f) = 0) on 4
out of 14 of the model programs. Only one of these did
SPLINT also get right: BIND-4. In this model program, the
overflow occurs in a sprintf statement that is not guarded
by any logic to protect against the case in which the strings
interpolated into the format specification are too big for the
buffer, i.e.

sprintf (buf, ¢‘Us:

The patch for this bug is just to use snprintf with a hard
constant limit,.i.e.

snprintf (buf, 999, Us:...

For the rest of the 10 model programs, Polyspace performs
less than perfectly, generating at least one false alarm each.
The reason appears to be simply that the model programs

int x[10]
int i,oob

{i<0 OR i>=10}} {i>=0 AND i<10}}

{{oob=1},
{i<0 OR i>=10}}

{{oob=0},
{i>=0 AND i<10}}

{{oob=0 OR oob=1},
{i is INTEGER}}

{{oob=1},
{iis INTEGER}}

{{oob=0},
{iis INTEGER}}

\4
printf ("oob") x[i]=0

OVERFLOW
POSSIBLE!

7 8

Figure 5: Flowchart for an example program ex-
hibiting the weakness of any meet-over-paths static
analysis.

involve complicated logic: not only functions, conditionals,
switches, and loops, but also the setting of flags that are
later used to guide program behaviour.

Consider the tiny flowchart program in Figure 5 which
also appears as a tiny C program in Figure 6. In this pro-
gram, a flag is set to indicate whether or not the index i
is within range for accessing the buffer x[1, and then later
this same flag is used to trigger that access. Notice that
this flag is being used to guard completely against a buffer
overflow. This type of construct, setting flags to capture
state, occurs frequently in real programs [13] and is cer-
tainly a common one in the model programs we created for
this study. Polyspace generates a false alarm for this pro-
gram, indicating a possible buffer overflow for the statement
x[i] = 0. It is not easy to know precisely why Polyspace has
this blind spot since it is a commerical product whose inner
workings are proprietary. We have been informed by Chris
Hote [20] of Polyspace that the tool employs abstract in-
terpretation algorithms inspired by the work of Patrick and
Radhia Cousot [11].

The algorithm of [11] operates on a flowchart graph of the
program. Nodes in the graph represent statements in a pro-
gram and edges specify control-flow. Associated with each
directed edge by the algorithm is a set of abstract values
(the “context” in the terminology of Cousot) for the vari-
ables in the program. As the algorithm runs, it is this edge
information that is updated, and the intent is that the set
always represent the range (possibly a disjoint set of ranges)
of values that could hold at this point in the program for
any possible input. The algorithm proceeds, manipulating
and propagating abstract values (integer ranges are just one

possibility) until for every node in the graph a fixed point
is reached. The parsimony of this representation is critical
to making the algorithm tractable, allowing it to track the
effect of all possible input, while not requiring the enumera-
tion of all possible paths through the program. However, at
each join in the program graph (a join is when two directed
edges both enter a node: for example after a test or at the
beginning of a loop), various operators must be employed to
union the sets of abstract values. In the sort of static analy-
sis done by compilers, this is known as the meet-over-paths
solution [9], and it necessarily introduces imprecision by con-
flating constellations of possibly correlated values. For com-
pilers, this is fine; it merely means that optimization misses
some opportunities to speed up code. For detecting buffer
overflows, it turns out to be a fatal flaw, as the lost pre-
cision makes it impossible to properly analyze the sort of
code programmers typically insert to guard against buffer
overflows.

The flowchart in Figure 5 has been annotated to indi-
cate the analysis that would be performed by the simple
abstract interpretation algorithm described in [11]. Ab-
stract interpretation dutifully separates the two cases, so
that the directed edge connecting nodes 3 and 5 is associ-
ated with the set {{oob = 1},{i < 0V ¢ > 10}}, whereas
the directed edge connecting nodes 4 and 5 has the set
{{oob = 0},{i > 0 A¢ < 10}}. Unfortunately, the join that
happens in node 5 can only propagate the union of these
sets to the edge connecting node 5 to node 6, thus the set
expands to {{oob = 0V oob = 1},{i € INTEGER}}. The
correlation between oob and i which it is the main business
of the program to capture is lost and unrecoverable. Thus
abstract interpretation will assign to the edge from node 6
to node 8 the set {{oob = 0},{i € INTEGER}} and hy-
pothesize that the statement x[1]=0 can overflow the buffer.

This is a false alarm that is fundamental to the algorithm
and thus unredeemable. Further, while this is an very simple
program, it is representative of much of what real programs
do. This is a major and important idiom in imperative
programming: setting flags to capture complicated relation-
ships between state variables and later using these flags to
direct action. If static analysis fundamentally cannot cope
with this construct, it cannot be useful in detecting buffer
overflows. Of course, it is unknowable precisely what al-
gorithms Polyspace makes use of internally, but it is worth
noting that Polyspace does indeed false alarm on the tiny
program in Figure 6 and in an manner entirely consistent
with the hypothesis that it is using a form of the abstract
interpretation algorithm described in [11].

8. DISCUSSION

The performance of five modern static analysis tools was
analyzed using 14 model programs to determine both detec-
tion rates for known buffer overflows and false alarm rates for
patched source code after these buffer overflows have been
eliminated. The model programs were generated by ana-
lyzing 14 serious buffer overflow vulnerabilities in BIND,
WU-FTP, and Sendmail and then hand extracting source
code required to reproduce these vulnerabilities. It was nec-
essary to excerpt in this way because the majority of the
tools could not operate upon full programs.

These experiments are the first we are aware of that care-
fully measure detection, false alarm, and discrimination rates
for in-the-wild buffer overflows and that analyze character-

int main () {
int i,oob,x[10];

i=rand();
if (i<0 || i>=10)
oob=1;
else
oob=0;
if (oob)
printf ("oob\n");
else
x[i] = 0;

Figure 6: C program matching flowchart in Figure 5

istics of such overflows. The results demonstrate that sim-
ple types of static analysis techniques do not detect buffer
overflows that occur in Internet server software. The detec-
tion rates of three of the five systems tested were below 5%
when tested on C source code modeled after those sections of
open-source C WU-FTP, Sendmail, and BIND server soft-
ware that contain known and exploitable buffer overflows.
These poor detection rates may be due to the complexity of
analyzing real buffer overflows. An analysis of the overflows
in this server software indicates that they differ in many
characteristics. Only roughly half of them involve string ma-
nipulation routines, only roughly 2/3 involve buffers on the
stack, half involve inter-procedural scope difference between
locations where buffers are created and used, and about half
involve pointers that are aliases of the original buffer. Fi-
nally, one vulnerability was a buffer underflow, many were
inside loops, and some buffers were in unions. These re-
sults suggest that static analysis tools designed to detect
buffer overflows must correctly analyze complex buffer ac-
cesses that occur in actual code. They should also determine
when a buffer access is tainted and can be forced to occur
by external inputs. All of the in-the-wild buffer overflows
were tainted because otherwise a remote attacker could not
force them to occur.

Even though two static analysis tools had high detection
rates of 87% and 57%, they are unlikely to be useable. These
tools would have detected some in-the-wild buffer overflows,
but warnings generated by them might have been ignored
by developers annoyed by high false alarm rates. The false
alarm rate measured just on the known errors in the model
programs was 43% and 50%. More concerning, perhaps, is
the rate of false alarms per line of code, which for these
tools is unacceptably high at 1 in 12 and 1 in 46. Finally,
these tools cannot discriminate between vulnerable source
code and patched software that is safe, making them useless
in an iterative debugging loop. These do not appear to be
useful tools.

The results are promising because some static analysis
tools would have detected in-the-wild buffer overflows. They
are disappointing because false alarm rates are high and dis-
crimination is poor. These results suggest that further work
developing static analysis tools to detect buffer overflows
should include testing on complex buffer overflows found in
actual software and the careful measurement of detection,
false alarm, and discrimination rates. To this end, we plan
to release the 14 model programs used in this study for use

by developers and evaluators. In addition, we are develop-
ing a library of much simpler test cases that explore buffer
overflows differing along the dimensions used to create Ta-
ble 3. When developed, such test cases can be used to better
diagnose the capabilities and limitations of existing and new
static analysis tools.

Our analyses also suggest that static analysis tools should
perform a taint analysis that tracks external inputs to a
program from packets, files, command-line arguments, and
system calls. Any buffer overflow that is affected by these
inputs, especially inputs that can be affected by remote at-
tackers, is more critical than others. Further, static analy-
sis tools should be designed to accommodate large complex
programs such as Sendmail, WU-FTP, and BIND without
extensive tuning, modification, or changes to the build envi-
ronment. None of the best tools could analyze a program as
big and complicated as Sendmail. And only ARCHER was
able to impersonate gcc in makefiles (it uses the front-end
of gce to generate its abstract syntax trees), requiring no
changes in the build environment.

The above results and conclusions should be interpreted
only in the context of these experiments. They are based on
model programs that contain already discovered buffer over-
flows that occur in Internet server source code. The model
programs extract only the part of the Internet server source
code essential to replicate the out-of-bounds buffer accesses.
The false alarm rate per lines of code analysis may thus be
unrepresentative of that for the remainder of server source
code. In addition, this study focuses on BIND, Sendmail,
and WU-FTP Internet server software. The results may not
generalize to other types of server software (e.g. database
servers, web servers) or to other types of software (e.g. oper-
ating system kernel, word processing, numerical simulation,
or graphics).

Finally, it is not entirely clear that static analysis tech-
niques can reliably find buffer overflows in real programs.
This is particularly true if its practical application hinges
upon a path-insensitve solution. Possibly a strategy that
selectively enumerates some paths that involve suspect ac-
cesses to buffers would be precise enough and at the same
time tractable. One paper [13] proposes an approach like
this for monitoring file I/O. It may even be possible to re-
duce the computation further by limiting the scope of the
analysis to tainted buffers. But clearly this sort of search is
hard to manage correctly. For example, ARCHER is path-
sensitive, which would imply that it can analyze a program
such as 6 (in fact it does). Yet ARCHER detects almost none
of the buffer overflows in the 14 model programs, indicating
that something has gone wrong in the set of compromises
those developers made in order to render a path-sensitive
analysis tractable. We want more than an analysis that can
cope with big programs and respects common programming
idioms, we also want it to find vulnerabilities we know are
there.

9. ACKNOWLEDGEMENTS

We would like to thank Robert Cunnigham, Roger Khazan,
Kendra Kratkiewicz, and Jesse Rabek for discussions on
static analysis. We would also like to thank David Evans
for his help with Splint, David Wagner for answering ques-
tions about BOON, Yichen Xie and Dawson Engler for their
help with ARCHER, and Chris Hote and Vince Hopson for
all their help on answering questions about C-Verifier.

10.

[1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

Abstract interpretation.
http://www.polyspace.com/downloads.htm,
September 2001.

Cert coordination center.
http://www.cert.org/advisories, October 2003.
Common vulnerabilities and exposures.
http://www.cve.mitre.org, October 2003.

Internet software consortium — bind.
http://www.isc.org/products/BIND, October 2003.
Sans institute — the twenty most critical internet
security vulnerabilities.
http://www.sans.org/top20/oct02.php, October 2003.
Secure software, rough auditing tool for security
(rats). http://www.securesoftware.com, October 2003.
Sendmail consortium. http://www.sendmail.org,
October 2003.

Wu-ftp development group. http://www.wu-ftpd.org,
October 2003.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley,
Reading, Mass., 1986.

J. Condit, M. Harren, S. McPeak, G. C. Necula, and
W. Weimer. Ccured in the real world. In Proceedings
of the ACM SIGPLAN 2003 conference on
Programming language design and implementation,
pages 232—244. ACM Press, 2003.

P. Cousot and R. Cousot. Static determination of
dynamic properties of programs. In Proceedings of the
Second International Symposium on Programming,
pages 106-130. Dunod, Paris, France, 1976.

C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke,

S. Beattie, A. Grier, P. Wagle, Q. Zhang, and

H. Hinton. Stackguard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In
Proceedings of the Tth USENIX Security Conference,
pages 63—78, San Antonio, Texas, January 1998.

M. Das, S. Lerner, and M. Seigle. Esp: path-sensitive
program verification in polynomial time. In
Proceedings of the ACM SIGPLAN 2002 Conference
on Programming language design and implementation,
pages 57-68. ACM Press, 2002.

D. Evans and D. Larochelle. Improving security using
extensible lightweight static analysis. IEEE Softw.,
19(1):42-51, 2002.

G. Holzmann. Static source code checking for
user-defined properties. Pasadena, CA, USA, June
2002.

M. K. J. Wilander. A comparison of publicly available
tools for static intrusion prevention. In Proceedings of
the 7th Nordic Workshop of Secure IT Systems, 2002.
W. S. M. Fearnow. Sans institute — lion worm.
http://www.sans.org/y2k/lion.htm, April 2001.

D. Moore, V. Paxson, S. Savage, C. Shannon,

S. Staniford, and N. Weaver. The spread of the
sapphire/slammer worm. Technical report, CAIDA,
ICSI, Silicon Defense, UC Berkeley EECS and UC San
Diego CSE, 2003.

J. Nazario. Source code scanners for better code.
Linuz Journal, 2002.

C. H. of Polyspace Inc. personal communication, 2003.

(21]

(22]

23]

27]

E. O. P. Broadwell. A comparison of static analysis
and fault injection techniques for developing robust
system services. Technical report, University of
California, Berkeley, May 2002.

T. G. P. Mell, V. Hu. Nist icat metabase.
http://icat.nist.gov, October 2003.

O. Ruwase and M. Lam. A practical dynamic buffer
overflow detector. In Proceedings of the 11th Annual
Network and Distributed System Security Symposium
(NDSS 2004), February 2003.

J. Ullrich. Sans institute — blaster, power outage,
sobig: Two weeks in august and the internet storm
center.
http://isc.incidents.org/presentations/sansne2003.pdf,
2003.

D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken.
A first step towards automated detection of buffer
overrun vulnerabilities. In Network and Distributed
System Security Symposium, pages 3-17, San Diego,
CA, February 2000.

Y. Xie, A. Chou, and D. Engler. Archer: using
symbolic, path-sensitive analysis to detect memory
access errors. In Proceedings of the 9th European
software engineering conference held jointly with 10th
ACM SIGSOFT international symposium on
Foundations of software engineering, pages 327-336.
ACM Press, 2003.

M. Zitser. Securing software: An evaluation of static
source code analyzers. Master’s thesis, Massachusetts
Institute of Technology, 2003.

