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6.Ahstrml

This report focuses on the mitigation of multipath and/or incoherent (cochannel) interference on receiving an.
tenna arrays since these phenmne”o” represent a principal challenge to many existing ATC systems. The improved
signal processing techniques considered explicitly assume that interfering sigm+ls may be present and estimate the
interference parameters (e. g., power .md angle of arrival) m well as the desired signal parameters. By thus identify.
ing the nature of the interference, it is the” possible to reduce its effects on the desired signal angle of arrival esti-
mates.

The specific topics addressed include

(1)

(2)

(3)

(4)

analytical calculations of the theoretically achievable performance as a function of the number of
elements in the array, number of interfering sign.ls, and signal-to-noise ratio (SNR),

assessment of the comparative performance of reprem”t.ative techniques, including those suggested
by the Federal Republic of Germany for the DME.Bawd La”ding System (DLS) as well as represents.
tive US techniques (maximum Iikefihcmd, autoregrewive mod.elling(AR), eigenanalysis), via analyti.
cal studies, statistical decision theoretic computer simul.tiom, and experimental measurements,

hardware implementation features mch as equipment complexity, calibration, and monitoring, and

investigation of how promising techniques might be applied m the angle g“ida”ce processing for the
Microwave Landing System (MLS).

The principal cmmlu.ions can be swnmarized as follow%

(a) There seems little likelihood of significantly improved angle estimation accuracy for cases where
only the desired signal is present and signal to noise ratio is the principal limitation.
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(b) Conventional angle measurement techniques typically will give the desired performance only when
interfering signals have a“ tmguliar separation of at least 1 to 2 a“te”na beamwidths from the desired
signal. Several improved signal processing techniques can reduce this minimum amgular separation
against coherent interference (e.g., rn”ltipath) by . factor of 3 to 5 if there is s“fficie”t SNR (e. g.,
30 dB) and anappropriate array crmfigw-ation, Order of magnitude imprcwements i“ the minimum
angular separation are acbiev.able against incoherent interference (e.g., synchrcmcmm ~arble in
ATCRBS and BCAS) with a moderate SNR (e. g., 20 dB). With either type of i“terfere”ce, time aver.

aging Of received wave front data can significantly reduce the minimum SNR required Over that fOr a
small number of observations.

(c) The computations required for certain of the high performance algorithms seem readily implementable.

(d) Receiver calibmticm a“d monitoring will be a potentially sig”ifica”t factor i“ practical realization.
Further study is needed to determine the rerpired .mnplit”d. a“d phase accuracies.

(e) It is doubtful that these tech”iq”es can be easily applied to MLS angle procewsimg due to the MLS signal
format and the structure of the current MLS receivers.
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I, INTRODUCTION

A. Background

.,.;,

Historically, a principal method of improving the angle measurement

accuracy of air traffic control (ATc) navigation aida and/or surveillance

systems haa been to increaae the aperture of the ground antennas. The rapidly

increasing capability and Iower cost of digital signal processing hardware haa

msde it possible to consider sophisticated signal processing techniques as an

alternative method of improving system performance.

Some work in this area has already taken place. For example, all three

of the techniques considered by the International civil Aviation Organization

(ICAO) for adoption aa the international standard MicrOwave Landing SYstem

(MIS) used novel signal processing algorithms to achieve better performance

against multipath than would be possible with classical angle determination

algorithms (ace Table 1-1). More recently, it has been suggested that the DMS

based Azimuth System (DAS) cOuld utilize the D~ Based Landing SYstem (DLS)

array signal processing techniques to achieve the desired terminal area

navigation performance at clifficult sites with electrically small apertures.

Additional stimulus for considering performance improvement OPtiOns

ariaea from several current trenda in navigation and surveillance system

requirements:

(1) increased coverage to support noise abatement and/or fuel
saving paths

(2) increaaed accuracy to support better airspace and airport
utilization (e.g., closeIy spaced parallel runways and/or
metering and spacing)

(3) increased usage at sites (e.g., oil well platforms, STOL
sites, mountainous regions) where obstr’uctiO~ (i.e.,
multipath sources) may be much closer to the ground
antenna than was the case in operationa at major airport
runways for conventional aircraft.

It should be noted that the system siting to achieve goals (1) and (2)

frequently entails locating an antenna in a location (e.g., top of a building)

,,
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F=TECHNIQUE

DN.Ebased
Landing System
(DLS)

Doppler MLS
(Dins)

Time Reference
Scanning Beam
(TRSB)

TABLE 1-1

NOVEL SIGNAL PROCESSING TECHNIQUES USED BY
MIcRowAvE LANDING sysTEM (fiLs)PROPOSERS

NOM1NAL
ANGLE OF AiWIVAL

ESTIMATION TECHNIQUE

ground based
multiple baseline
interferometers

conwtated source
Doppler frequency
estimation by euml
difference cor-
relator

centroid estimation
of time between
passages of a
scanned beam

NOVEL SIGNAL PROCESSING
‘TECHNIQUES I

circular array interferometric
estimation algorithm

adaptive aubaperture beamsteering
to minimize multipath

spatial averaging or beamsteering
in the orthogonal plane to re-
duce off-axis multipath levels

randomized source comwtation in
the orthogonal plane to reduce
off-axis multipath levels

adaptive digital.filtering to
reduce flare multipath from the
terrain

estimation of beam passage on the
beam edge which ia least per-
turbed by terrain reflection
multipath

1-2



in which small physical size is very desirable. Achieving the requisite

performance improvement by changing to a new form of navigation aid or

surveillance system is incr-easingly difficult due to the economics Of

transition and the increasing demande on the frequency spectrum.

As noted in Table 1-1, there has been considerable work on advanced

signal processing in ttreMIS context. Additionally, there has been extremely

active recent work in related time series and array processing (e.g., sonar

and seismic) areas [1, 2, 3] focused on high resolution spectrum estimation

techniques. In the later approaches.:spectral“featurea which normally would be

obscuredby the available time window [2] are recoveredby imprOved signal

processing techniques. The well--knownduality between time.seri.asand line

arrays;i.e.,

time <----------> spatial location within array.
frequency <----------> sine (angle of arrival),

shows tP,aimuch of the time series high resolution spectrum estimation work is”

applicable::tothe problem of:estimating che direct signal angle..ofarrival in

the presence of competing signals.

Many of the high resolution spectr.,amanalysis studies have been ad hocin

nature and/or not considered..keyaspects oi..the ATC navigaC.ion/surveillance

interference environment (especially.multipatb.). ConsequentIy, there has been

an ongoing need for a more fundamental look at the possibilities offered by

advanced signal processing that considers the principal navigation aid and

surveillance system error sources from the outset.

B. Principal Error Sources

‘Toachieve improved performance, one rust reduce and/or better compensate

for the

are:

(1)

(’2)

(3)

principal error sources. The error sources considered in this study

receiver front end noise

signal waveform quantization (e.g., A/D errors)

coherent interference (multipath), and

1-3



(4) calibration/monitoring errors (e.g., between variOus
antenna elements in an interferometer array).

The four error sourcee above are not the only errors for a practical imple-

mentation (e.g., time quantization can be important for Time Reference

Scanning Beam (TKSB) angle measurement, frequency stabilty fOr DOppler

systems, computation round off errors for certain algorithms, etc.). However,

these other factors typically reflect instrumental effects specific to a

particular implementation as opposed to conmon major error snurcea. Some

discussion is

1.

Receiver

in order at this point regarding error sources (1) - (4).

Front End Noise Effects

front end noise* is a very important limitation both practically

and theoretically. The system power budget is a key first step in any practi-

cal system implementation. Theoretically, this noise must ultimately limit

the achievable accuracy with any processing sch.?memuch as the noise power

density limits tbe achievable capacity of a communication channel. An impor-

tant aspect of the current study has been to make a start toward achieving an

information theory type “channel capacity” for direction of arrival systems

which would yield bounde on the theoretically achievable performance, thus

yielding a “’yardstick”by which one could assess the performance of practical

signal processing techniques.

When the front end noise is the only error source, it can be shown [34,

4’2]that several common techniques (e.g., TKSB split gate trackers, the DAS

linear interferometric arrays wi’cha preponderance of elements at the array

end points, and monopulse) closely approach the theoretical limits.

Consequently, there is little to be gained in performance against frent end

noise by advanced signal processing techniques.

*
and (for very low noise front ends) antenna temperature noise
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2. Signal Waveform Quantization

Signal waveform quantization (e.g., A/Ii quantization errors) is often

similar to front end noise in terms of ita effects on the received waveform.

It may, however, aPPear in different forms depending on the variablea

quantized (e.g., A/D conversion of amplitude and phaae versus conversion of

in-phase and quadrature components). Of course, A/D noise ia an instrumental

factor which could be reduced to an insignificant factor as technology

progresses, however, the current atate of technology and the dynamic rangea

required in msny application

practically important factor.

the analysis.

is such that A/D quantization noise can be a

Consequently, we have chosen to include it in

3. Coherent Interference (Multipath)

Multipath has been found to be a major error source in moat navigation

and ATC surveillance systems - particularly when marginal or unaatisfactOry

performance occurs. Figure 1-1 ahowa the major multipath aourcea considered

in the MM aaaessment. In addition to those illustrated in Fig. 1-1, one must

also consider shadowing by fixed objects (e.g., buildings or terrain).

Some per.apectiveon the incidence of various phenomena at C band in the

vicinity of an airport runway can be obtained from table 1-2 which summarize

the TRSB field tests at varioua operational runwaya. Similarly, the likely

incidence of multipath phenomena at L band with 360” azimuth coverage can be

inferred from the reaulta of the Discrete Addreaa Beacon System (DABS)

Transportable Measurement Facility (TMP) teata at a variety of US eitea.

Severe reflection multipath conditions are tYpically manifested by false

target reports. Figure 1-2 shows the incidence of falae targeta at the

varioua TMF aitea. The high incidence of falae alarms at Waahington National

arose from building reflections whereas tbe falae targeta at Salt Lake City

are due to reflections from a nearby mountain ridge [4].

The TNF teats alao highlighted the problems in providing 360° azimutti

coverage from a ground baaed site. Figure 1-3 shows the region where the TMF

azimuth error exceeded the O.1° objective as a function of azimuth and
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Fig.1-l. MLS multipath phenomena.
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TARLE 1-2

MIS MULTIPATH DATA OBTAINED FROM OPERATIONAL AIRPORTS

D’lscerni”bleMultipath
Type of NIS Error Effects

Airport System tested Azimuth Elevation

Buenos Aires shadowing by ILS

Argentina Basic Narrow none monitor

Hondouras Smail Communiry small”:errors due.to rough terrain.

reflections .

Kristiansand:, Basic.Narrow small errora at low amgles due to

Norway rough terrain shadowirrgand

reflection ~

Brussels Basic Wide very .smalL. shadowing,by ~

C-130 aircraft

Charlerol, Belgium Small Community none or small errors due to

terrain reflectionldiffraction

Dakar,Senegal ,,

Nairobi, Kenya ,,

, .:,,,
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MLS MULTIPATH

TABLE 1-2 (continued)

DATA OBTAINED FROM OPERATIONAL AIRPORTS

Type of MLS Error Effects
Airport System tested Azimuth Elevation

Cape May, N.J. ,,

Crows Landing, Basic Narrow none shadowing by
California and Small Community monitor poles

J. F. Kennedy, N.Y. Basic Narrow none reflections
and Test Bed andlor shadowing

by buildings

.,
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elevation angles together with the local skyline at Logan Internati.onal

Airport (Boston). We see that the regions of unacceptable performance

correspond closaly to cliffraction by buildings, and other skyline objects.

Similar diffraction phenomena were encountered at many of the other TMF sites

[6-81.

The incidence of diffraction phenomana at low elevation angles is of

particular importance for navigation and surveillance systems which provide

enroute or terminsl area 360” azimuth coverage. Studies of the distribution

of aircraft as a function of elevation angle show that most of the aircraft

within 150 miles of a ground site are at elevation angles less than 2° [70].

Figure 1-4 chows one such computed distribution. We see that 25% of the

aircraf& are at an elevation angle leas than 1“.

One of the current ATC navigation deficiencies is the provision of high

quality navigation data in mountainous regions. In fact, the need for such

information has been an important stimulus for developing a 360” azimuth

capability in the MM system [41]. Sites with upeloping and irregnlar terrain

present a multipath challenge to azimuth, elevation and ranging systemv since

the multipath location parameters (e.g., relative azimuth, elevation, tires

delay) can have a far greater spread than is the case over flat terrain. It

had been thought that the small scale roughness associated with such terrain

would cause the multipath levele to be significantly lower than was the case

for nominally flat terrain. However, recent measurements over irregular

surfaces at Camp Edwards, Msss., (Figs. 1-5 and 1-6) have ahO~ (Fig. 1-7)

that such terrain can yield speculsr multipath with levels comparable to the

reflections which arise over flat terrain [5].

Recent work in multipath modeling [5, 6] has shown that both reflection

and diffraction phenomena can be represented by a aum of discrete rays (i.e.,

plane waves) which have essentially the sams characteristics* as the direct

signal ray from transmitter to receiver. Improved signal processing

*
e.g., the multipath signals have the same signal waveform as the direct path
signsl when the receiver is not moving.
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techniques must capitalize on the (often small) differences between multipath

rays and the direct signal ray in terms of

(1) azimuth and elevation angle as measured from the ground
antenna

(2) time difference

(3) amplitude

(4) carrier frequency, and

(5) relative rf phase

For angle (i.e., azimuth or elevation) measurement DavigatiOn or

surveillance systems, a key issue is whether the multipath signals are inbeam

or out of beam, i.e., whether the angular separation of the multipath signal

from the direct signal is greater than 1.5 A/D where D/k is the grOund antenm
*

aperture in the scan plane . Multipath which is out of beam typically can be

handled with by more or less standard signal processing methods (i.e., low

aidelobes and appropriate acquisition/validation algorithms [28, 29]). By

contrast, inbeam multipath generally presents a much more difficult problem

for standard signal processing approaches.

Angle errors due to diffraction generally are caused by 1 or 2 inbeam

multipath rays [28] as are certain terrain reflection error phenomena. By

centrast, building refiections are generally out of beam for azimuth measuring

systems, but may be inbeam for elevation [29] angle maasuring systems. As a

consequence of the above consi.derations, methods of

inbeam multipath has been a principal consideration

reducing the effects of

in the studies reported

here.

*
for ranging (e.g., DME) systems, the

with a time delay ~ l/signal bandwidth.
corresponding condition is multipath
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4. Calibration/MonitoringEffects

Many of the advanced signal processing methods of greatest iflter@St

tYPicallY attemPt to estimate additional features (e.g., error sources) of the

received signal environment and then utilize that information in estimating

the direct signal parameters. Others attempt to use certain details in the

received signal structure to favor the desired signal*. In either case,

system performance may become much more sensitive to certain system

imperfections such as signal path equalization and component operatiOn.

Consequently, the degree to which one must calibrate and monitor the various

signal paths is an important practical consideration in considering advanced

signal proceeding techniques.

5. Summary of Error Source Discussion

From the considerations above we concluded that improving multipath

performance should be a principal objective for advanced signal processing

techniques since the other error sources are typically 1) not the primary

limitation on achievable performance or 2) (as in the caae Of frOnt end nOise)

there is theoretical reaeon to believe that little improvement is possible

over current processing approaches.

c. Objectives of This Study

The overall objective of the study reported here has been the evaluation

of signal processing techniques for navigation applications utilizing data

processing as a means of improving system accuracy without increasing the

antenna size. Since most of the results are also applicable to ATC

surveillance systems, we have not tried to separately address the case of

surveillance systems. The principal focus in the work has been on methods

which accomplish wavefront analysis with a multiple element/multiple receiver

array (such as shown in Fig. 1-8) since:

*
e.g., F&s flare guidance “single edge’”processors, DME delay and cOmPare
circuits [28].
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(1)

(2)

(3)

(4)

this type of system preserves the wavefront information
(e.g., phase and amplitude) along the aperture

the bulk of recent algorithms and theory utilize such a
system as their starting point

most air derived navigation systems can be shown (by
reciprocity considerations) to be equivalent to such a
system, and

the DAS system under study as a means of providing 360°
terminal area azimuth coverage in an FAA/Federal Republic
of Germany (FRG) joint program utilizes such an array.

Each of the points [(1) - (4)] abnve will be detailed at variOus POints in the

subsequent chapters.

The array signal processing studies have emphasized methods for improving

multipath performance. Specifically, we have sought to:

(1)

(2)

(3)

(4)

analytically calculate the (theoretically) achievable
performance with particular emphasis on the effects nf
front end noise andlor equipment errors (e.g.,
calibration errors, and A/n quantization) in the presence
of multipatn,

assess the comparative performance of candidate advanced
array signal processing techniques including FRC
scheme(s) and representative US technology (e.g., maximu~~
likelihood methods and autoregreasive modelling) via
analytic studies, simulations and sampled aperture field
data,

understand hardware implications of practf.cal
implementation for the uore promising techniques (e.g.,
cost and complexity
capacity), and

investigate how the
might be applied
processing.

D. Report Outline

to achieve desired performance and

aperture sampling technique results
to TRSB angle guidance signal

The model for the received signal characteristics is a key step in the

development of improved signal processing techniques. Chapter II discusses

appropriate models for a single received wavefront and a time sequence of

1-18



wavefrents. These models include both deterministic signal waveforms (with

unknown parameters) and random process representations whereby the observed

data is tileoutput of a deterministic linear filter (with unknown parameters)

being driven by a random process.* Also discuesed in chapter II is the con-

cept of a spatial covariance function since the use of such covariances are a

key feature of many advanced signal processing techniques.

Chapter III discusses theoretical performance bounds on estimating the

direct signal parameters (especially, angle in the scan plane of the array)

when front end noise is present. These bounds provide benchmarks to compare

the performance of the varioue specific technique which are discussed in

chapter IV. The Chapter IV technique discussion includes msthoda suggested by

the FRG for use with DLS/DAS as well as a number of techniques under active

investigation in the U.S.

Section V quantifies the performance of a number of the most promising

techniques at mitigating the errors due to multipath (principally inbeam).

The comparison here utilizes both simulation results and the results of field

measurement with several experimental arrays. It is shown that when the

received wavefront complexity is low (i.e., a small number of received raya)

and reasonable signal to noise ratios (SNi?)exist, certain advanced signal

processing techniques can provide a substantial increase in performance over

classical approaches. Witil complicated wavefronta and/or low SNR, the ad-

vanced msthod performance typically ie comparable to that of classical meth-

ods.

In view of the direct applicability of the advanced techniques to DAS

tYPe aPerture sampling systems, an investigation of unique hardware implemen-

tation issues for such a eystem was conducted. Section VI discusses a number

of these issues in the context of the Lincoln experience in using such a

system to analyze terrain reflection multipath and experimentally validate the

simulation reedts for multipath rejection by advanced signal processing

techniques.

.—

*This lat~er model is similar to that which is utilized in Kalman filtering
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\ ~~
Section VII considers the application of the advanced signal processing

, techniques to the MLs angle guidance OF subsystems. Although

reciprocitylduality considerationswould allow one to utilize such techniques,

at least in principal, there are practical problems associated with the loss

of phase information in envelope formation. Two avenues around this problem
j

sre considered: coherent demodulation (using, e.g., the TRSB DPSK

~,; transmission) and direct reconstruction of aperture information from the

envelope data.

The final section summarizes the results and makes several recommenda-
,

tions for future work.
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11. ALGEBRAIC DIRECTION FINDING PROPERTIES OF LINEAR ARRAY ANTENNAS

This chapter ia concerned with certain fundamental limitations on the

direction finding capability of a linear array. Our baaic assumption is that

the signal environment is specular; i.e., the array essentially seea only a

finite number of plane waves. Specifically, we consider ideal arrays of

uniformly spaced, iaotropfc elements. In principle, our basic model can be

extended to include more realiatic situations. For example, nonuniform arrays

and/or mutual coupling between elements [71] can be handled by specifying the

correct functional form for the direction (steering) vectors. However, the

reader ia adviaed to exercise a fair amount of prudence in applying our

results to non-ideal situations.

As will be scan in Chapter 111, the resolution capability of an array is

theoretically limited by the total available signal-to-noise ratio. In

practice, most ‘“super-resolution”algorithms (see Chapter IV) require many

time observationa of the array signals in order to perform well.

The treatment of “multiple look” algorithms is simplified by adopting a

suitable stochastic model for the rsceived signala. We use the standard

complex representation for the observed quadrature data, and the signal and

noise components of the data are aasumed to he uncorrelated circular (complex)

random proceaaes with zero mean.

“whita”; i.e., the noise covariance

of the identity matrix ~.

Since many fundamental reaulta

Unless otherwise stated, the noise is

matrix ~ is a (positive) scalar multiple

depend only upon second-order statistics,

a significant fraction of this chapter is devoted to a study of the algebraic

~roPerties of the signal covariance matrix ~. An attempt has also been made

to motivate certain covariance estimatea that have generally proven useful in

direction-finding applications. These estimates are described in terms of

formal matrix operations applied to sample covariance matrices.

A. Signal and Covariance Mode1s

In subsection 1, we prasent the baaic signal model and briefly review an

exact method, due to Prony [48], for extracting directional information from

2-1
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ideal data. Unfortunately, when a modest amount of noise is present, the
[

direction-finding performance of the (exact) Prony methOd and similar

~ approaches may be quite poor. After introducing appropriate statistical

models for signal and multiple time observations in subsection 2, we cOnsider

a leaat squares extension of Prony’s method in subsection 3. ‘l?hisapproach

leads naturally to the concept of a time-averaged and spatially smoothed

covariance estimate. Tima-averaged covariance estimates (i.e., sample

co,variancematrices) are frequently encountered in the contex of (digital)

adaptive arrays, but the role of spatial smoothing in direction-finding was

not (widely) recognized until relatively recently. The relationship between

the adaptive array theory and the covariance estimation techniques which arise

with the extended Prony and certain other methods is emphasized in subsection

4.

1. Ideal System Model

The postulated signal environment on a single observation, consists of I

narrowband plane waves arriving from distinct directions 9i. The complex

th signal at the array phase center is Pi, and the signalamplitude of the i

received at the 2‘h element is

(2.01)S1 - & Pi exp {jai[t-(L+l)/21}; !=l, . . . L .

The receivad signals depend on the directions of arrival only through the

(phase) anglea

where c is the element separation and A is the (common)

(2.02)

wavelength of the

signals in space. For arbitrary a, we introduce the L-dimensional direction

vector ~(a) with elements

Vg(a) = exp {.ja[~-(L+l)/2]];~=1, . . .L . (2.03)

2-2
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Except when needed to avoid confusion, the (length) subecript L

direction vector is usually omitted.

The basic linear relationship (2.01) between the signals received

elements and the complex

conveniently expressed in

S=vp— ——,

where ~ = ~ (~) iS easilY

signal amplitudes at the array phase center

standard matrix notation,

(2.

for a

by the

can be

04)

constructed from the true direction vectors, i.e.,

V(a)L [~(al) . . . ~(al)l.—

The L-dimensional vector &

confusion, we will refer to

An attractive way of

(2.05)

is called the received signal. TO avoid possible

the I-dimensional vector ~ as the signal-in-space.

estimating signal directions is to examine the

angular spectrum of the received signal. Conventional spectral

analysis suggests that we calculate the complex inner product

(periodogram)

(2.06)

where the subscript H denotes the complex conjugate (Hermitian) transPOs@.

Angle estimates are then extratted from the spectral peaks, i.e.,

mafiimaIS(a)I ‘> {~i} .

When only one signal-in-space exists, the angle spectrum is easily

computed. setting ~ = ~(al) in (2.06) gives

Sl(a) 4~H(a) ~ (al)

= w (a-al)

where

W(~, ~ sin aL/2
sin a/2
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I

is the familiar “gain” pattern characteriatic of a uniformly Illuminated

aperture. The first null of w(a) occurs at

aB
~ 2nIL (2.07)

which suggests that mB is the appropriate definition Of “angular” beamwidth”

The incremental relationship

Aa=2n:c0se Ae

between ~he * a and the directiOn e fOllOws @asilY frOm (2.02).

Rearranging this equation leads to

All= A8~:0se

‘B
h

which established the

AA——
‘B u Cos e

equivalence between aB and the directional beamwidth,

(2.08)

conventionally used for arrays with aperture length U. The cos 8 factor in

(2.08) is explained by the effective 10SS Of aperture exceeded by a

(broadaide) array when receiving a signal in any direction other than 6 = O.

When more than one signal in space exists, the angle spectrum baaed on a

single periodogram is specified by a sum of (sin Lx)/sin x functions

s(a) = t pi W(a - ai)
i

When all of the signals

the magnitude of S(a) wi11

the various signals in the

actual angles of arrival (ai

present are separated by two or mae beamwidths,

have separate peaks which can be associated with

sense that the peak locations are close to the

}. For angular separations between one and two

beamwidtha, separate peaks may or may not occur depending on the relative

amplitude and phases of the signals. When the dominant peak locations

2-4
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coincide with the actual angle of arrivals, we say that the signals are

resolved. Normally, two signals separated by less than a beamwidth cannot be

resolved with Fourier (i.e., periodogram) methods. In fact, there is no

single minimum separation for resolution applicable to all values Of the

signal-in-space (complex) amplitudes {Pi}. However, the conventional practice

is to uae the Rayleigh criterion* of one beamwidth separation as an indication

of resolution capability for conventional array processing. The periodogram

spectrum estimate is essentially identical to TRSB envelope observation. In

the TRSB context, lack of resolution ia typically associated with “inbeam”

multfpath. The TRSB rule of thumb haa baen to uae an angular separation of

1.5 teamwidths as the inbeam/out-of-beam boundary.

The desire for improved resolution has led to a number of adaptive

“super-resolution” algorithms based on the same ideas found in nonlinear

spectral estimation methods (e.g., see [19]). An algorithm theoretically

capable of “super-resolution” first appeared nearly two cemturies agO.

Generally known as Prony’s method [45], the algorithm has recently been

discussed in [46]. A description of Prony‘a algorithm is also available in

[47].

Prony’a Method

To apply the exact Prony algorithm, the signal data are assumed to

satisfy a linear, recursive relationship of the form

I
Sfl+ ~ a

~=1 i ‘H-i = o I= I,.... L-I. (2.09)

The complex resonances of the signal are the roots {zi] of the polynomial

A(z) ~l+alz+. ..+alzl (2.10)

= (1 - 2/21) . . . (1 - 2/21) .

*
The Rayleigh criterion is based on the spectrum obtained from averaging a

number of observations, as will ba discussed in the next section.
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One first solves an appropriate set of I equations obtained from (2.09) for

the unknown polynomial coefficients {al, . . . al} and then computes the

roots of the polynomial (2.IO) to determine the signal resonances.

To show that any signal of the form

,st=i~lciz; ; arbitrary t

can be repreaen,tedhy (2.09), first construct

(2.10) using the resonant “frequencies’”{.l}

polynomial. Consequently, A(zi) ia zero by

irmnediatelywrite

(2.11)

the polynomial coefficientsfrom

in (2.11) as the roots of the

construction, and hence we can

A simple rearrangement of the left-hand side leads to

Simplifying the bracketed terms with (2.11) yields the desired result (2.09).

Comparing (2.11) with (2.01), the

finding application considered here are

jai .

‘i=e

Consequently, the angles of arrival can

= arg z
ai i“

resonant frequencies in the direction

seen to lie on the unit circle, i.e.,

(2.12)

be easily obtained via

(2.13)

Once the correct frequencies are known, one solves an appropriate set of

equations from (2.11) for the remaining cOefficients (c1, . . . cI); tOgether

with the anglea {ail, these coefficients determine the cOmPlex amplitudes {Pi}

of the signsls-in-space. When the actual data samples do not satisfy (2.09)
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due to additive noise, etc., the estimates generated by the exact Prony

algorithm may ba significantly in error.

2. Received Signal Models

In practice, the observed signal is nearly always modeled by

superimposing a “noise‘“ vector on the signal actually received. The

discussion in this chapter is based on the premise that the dominant eources

of system error exhibit the same temporal characteristics as additive thermal

noise.

Assuming K independent observations are made, the data available fOr

processing are represented by

~(k) = a_(k)+ ~(k) k=l, . ..K. (2.14)
I
“,

i

I

Each vector of observed data is referred to as a “snapshot,” and the elements

of a snapshot are called its “samples.” Thus, the available data generally

consist of K snapshots, taken at more or less arbitrary instants of time.

Each snapshot contains L samples, taken simultaneously at the uniformly spaced

elements of the array. The noise component of the data, ~(k), iS assumed tO

be a white, ergodic random process with respect to the snapshot (time) index

k.

Over typical processing intervals, the directions of arrival will not

change significantly. In contrast, the signals-in-space typically vary with

time. Since the behavior of the signal source(s) is generally unpredictable,

a stochastic signal model is often appropriate. In this case, the statistics

of the eignal procees are usually assumed to be time invariant. In general,

we write the covariance (matrix) of an arbitrary complex random vector ~ as

(2.15)

where E{ } is the expected value or ‘“ensembleaverage” OperatOr fOr the

underlying probability space.
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When the signal and noise processes are essentially uncorrelated, the

covariance relationship

follows directly from (2.14). The relationship between the (received) signal

covariance ~ and the signal-in-space covariance ~ 4 E{R ~H] follows easily

from (2.04), i.e.,

~=v PvH ...— (2.17)

The diagonal elements of P represent the power levels of the signals-in-—

space. If the off-diagonal elements are identically zero, then the signals-

in-space are said to bs (jointly) uncorrelated and, fOr an ideal arrsy, the

signal covariance matrix & will exhibit the Toeplitz property, i.e., Smn = Cm_n.

Any signal 5 with a Toeplitz covarisnce mstrix is said to be spatially

stationary. We generally refer to a Toeplitz covariance matrix as a

correlation matrix.

The stationary case occurs most naturally when the signals-in-space

originate from (statistically) independent sources. Examples of uncorrelated

sources for ATC application include:

(1) overlapping DMIZinterrogations at a DAS ground station,

(2) synchronous and asynchronous garble at an ATCRBS or BCAS
angle-of-arrival sensor,

(3) specular and/or diffuse multipath which has a large
relative Doppler frequency (i.e., scalloping rate)
compared to the system measurement rate.

If significant specular reflection or diffraction multipath with a low

scalloping rate is present, the signals-in-space are no longer uncorrelated

since their relative phases and amplitudes are determined by geometry and the

physical environment (terrain features, buildings, etc.). When multipath is

inbeam, the signals-in-space are likely to maintain a fixed amplitude and

phase relationship over an entire processing interval. In this case, the

2-8
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signals-in-space are said to be perfectly correlated and ~ is a singular

matrix.

3. Estimation of Covariance Functions

When system errors are present, one can proceed by several different

avenues

(1)

(2)

(3)

to estimate the signal parameters.

estimate the plane-wave parameters on individual
snapshots using (2.01) and (2.14). his approach leads
one to methods such as the maximum likelihood estimation
procedure to be discussed in the next chapter.

utilize a procedure which is based on knowledge of the
ensemble signal and noise covariancea. The ensemble
covariance must be estimated from the sample data. A
variety of techniques exist based upon various covariance
estimates, and several of these will be discussed in
Chapter IV.

make a least-squares estimate of the parameters in a
signal model which encompasses the range of expected
eignal environments. This typically leada to an explicit
form of covariance estimation.

Here, we consider a least-squares extension to the exact Prony nssthod. This

app!:{1.:’, ?.<..?st,,~ roh”~t covariance estimation technique that has been

proven effective in a wide variety of situations and also leads naturally to

the concept of spatial averaging.

When random noise is present, the basic recursive relationship (2.09) is

only approximately true for the observed samples. A pragmatic approach that

leads to a very tractable

minimize the deviations

introducing the error at

i.e.,

algorithm is to choose polynomial

from the ideal Prony model.

the ~th element as a functlOn Of

coefficients that

For example, by

the time index k.

(2.18)
I

ei(k) ~ rl(k) + ~ a r~=1 i !,+i(k) ,

we can easily find the coefficients that yield the smallest errors over M = L-I

elements and K snapshots in the usual least-squares sense.



To solve this problem effectively, introduce

~H~(l ~
‘l’” ”” aI)

and

~(k) ~ {rm(k), rm+l(k), . . . rm+l(k)]T

where a superscript T denotes the usual transpose operation. Using these

definitions, we may write (2.18) ss

(2.19)

Thus, the minimum mean square error

(2.20)

is completely equivalent to

subject to the constraint

(2.21)

(2.22a)

‘1=1” (2.22b)

The problem in (2.22) is that of minimizing a quadratic form with a

(simple) linear constraint on the weights. The general solution appears later

in a slightly different context. For the present, our interest lies in the

operations to be performed on the data.

The data-dependent term appearing in (2.22a) can be expressed in terms Of

the usual “sample” covariance matrix

(2.23)

2-1o
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by introducing the rectangular sampling matrices of the form

g=(QII]g) (2.24)

where the subscript m denotes the first column in which s “one” sppears. The

sampling matrices are useful for expressing the data vectors introduced in

(2.20) in terms of the actual snapshot data, i.e.,

r (k) = & ~(k) .

Since ~(k) is separsble in m and k, it follows easily that

The “spatial smoothing” operation that remaina can be formally extended to any

square mstrix. As used previously, the sampling transformation~ extracts a

subcolumn of the elements

principsl submatrix of any

&A&@f

is an “internal” average

of (a vector) & It follows that & ~ & is a

(square) matrix H. Therefore,—

(2.25)

of the principal submatrices of ~; the subscript

specifies the number of submatrices to average, and the submatrices must all

have the same msxi!aaldimension consistent with M. Of course, & = ~ and the

aubacript may be omitted.

With the help of the spatial smoothing nperation, we IMY now express the

original least-squares problem as

(2.26a)

2-11



subject to

,

‘1
=1 . (2.26b)

Clearly, the fundamental operations of time-averaging and spatial-smoothing

are interchangeable. These operations always yield at least a POsitive

semidefinite Hermitian matrix when applied to arbitrary data.

The approach just described for estimating (Prony’s) polynomial

coefficients from noisy data is known as the covariance method [201. This

approach is intimately related to the ideas of linear prediction and

autoregressive analyaia. In fact, the covariance method may be viewed as an

extension of Prony’s ❑ethod in which “autoregressive” coefficients are chOsen

to minimize the “prediction” errors by the traditional methOd Of least

squares.

4. Relation to Theory of Adaptive Arrays

Adaptive array theory is usually presented in terms of a statistical

interpretation of the least-squares concept. In typical “nulling” problems,

one attempts to minimize the expected ““interference”power in a linear

combination of the array samples, subject to a “steering” constraint On the

element weights [49]. Thus, a fairly common adaptive array problem is to find

a set of weights ~ that achieves the minimum expected output power

u2 ~min E{lgH 112)
w

(2,27a)

=minw%w.——

subject to ~ linear constraint, say

~H
c=]—— (2.27b)

where & is the covariance of the observed vector ~. A condition such as

(2.27b), or some alternative“constraint,ia necessary to prevent ~ = ~.

2-12
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Several of the super-resolution techniques to be discussed in Chapter IV

differ principally by the type of steering constraint applied tO the

weights. In general, the solution to (2.27) is

(2.28)

and the optimum weights are given by

2 -1
y=ag~. (2.29)

In adaptive arrays configured for digital operation, the “true” covariance
,.

matrix ~ is often estimated from a sample covariance matrix, ~ (K), as defined

in (2.23). The ergodic assumption,

lint ~(K)=~ , (2.30)
K+=

ie (nearly) always valid, and hence essentially optimum nulling performance

can be anticipated as the number of snapehots becomes sufficiently large.

Most adaptive array application are primarily concerned with suppressing

interference in order to enhance a “’friendly”signal, usually assumed to be

absent when the adaptive weights for the array elements are calculated. Until

recently [501, the complementary problem of estimating the directions of the

interfering sources had received relatively little sttention in the adaptive

array literature. Tbe difficulties that arise with nulling in the coherent

caae were discussed by Gabriel [1], but the performance limitations imposed by

multipath were not addreased quantitatively.

B. Asymptotic Properties of Covariance Estimates

In the following sections, the asymptotic properties Of cOvariance

estimates are syatemetically examined. l%e results derived below demonstrate

that spatial smoothing is not needed in order to locate incoherent signals,

,,
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I but a certain minimal amount appears to be necessary for accurate direction

finding in a specular multipath environment.

Under the usual ergodic assumption, the asymptotic properties of certain

useful covsriance estimates can be determined from the theoretical results

presented in Section B.1 of this chapter. Uncler very general conditions, the

maximum number of incoherent signals that can be theoretically resolved

(withOut error) is one less than the number of array elements. We also show

that the usual adaptive array approach (t.e., time-averaging) performs no

better than standard beam scanning techniques when the received signals are

coherent (e.g., specular multipath)

Fortunately, the coherent case can often be reduced to a (partially)

incoherent case by appropriately processing the (original) covariance

estimate. In Section B.2, we examine the effects of certain spatial averaging

operations. In particular, we consider spatial smoothing and forward/backward

averaging. These operations are relatively easy to understand when considered

separately, but a definitive statement of their cnmbined effects remains

somewhat elusive.

1. Ensemble Averaging

In this sub-section, we first examine the properties Of the inverse

covarlance R‘1 in the asymptotic limit of extremely high signal-to-noise—

ratios. When the signal-in-space covariance ~ is non-singular, it ie shown

that ~ ‘1 asymptotically projects ~ vector into the (noise) space orthogonal

to the (signal) space spanned by the I (<

consequence is that Y-l asymptotically

vectors, i.e.,

~-’ -1exists => lim R ~ (a) = Q iff
SNR.xv-

L) columns of ~ (~). An immediate

“nulls’” only the true direction

ac~. (2.31)

This fundamental result.suggests that, for sufficiently large SNR, the

“null spectrum’”
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* ~H(dE-l: (a)
T(a) –

l~(a) I2
should reveal the true location of the signals

(2.31) is not applicable in the coherent case

(2.32)

by its zeroes. Of course,

because the signal-in-space

covariance ~ is singular. In fact, it ie easy to demonstrate that the null

epectrum idea doee not generally work for coherent Signals. Given any

coherent eignal ~ in epatially white noise, we may set & = ~ ~“ and ~ = ~.

The inverse covariance for this case Ie easy to compute, i.e.,

~-l . _(~+ N)-l

. (~+ s SH)-1——

~---J--- H.
~+ ,512 :5 “

Consequently, for the coherent case we get

(2.33)

A simple application of the

spectrum has no zeroee except

signal, i.e.,

Iim T(a) = O iff s’

lg]2-

Schwartz inequality reveals that thie null

in the (asymptotic) case of a single dominant

= ~’(u)

where s_’ and y-t(a) are the appropriately normalized versions of ~ and ~(a).

Even the minima of the null spectrum are no help, eince they always occur at

the maxims of the signal’s “conventional”power spectrum,

Y(a) A lx’”(a)g’12 .
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‘he relationship between T and Y follows easily from (2.33), i.e.,

lglz
T(a) =1 - P $(a) ; PA

1 + l~lz “

In light of the preceding discussion, the ergodic property Of SamPle

covariance matrices strongly suggests than a non-singular signal-in-space

covariance is the critical ingredient in any direction-finding recipe based on

standard adaptive array theory. On the other hand, the estimsts derived from

the ““empirical” least-squares covariance method converges to a spatially

smoothed version of the true covariance, i.e.,

lim&(K)=~ .
K-

This point is stressed because the following argument is presented in terms of

an unsoothed covariance. The beneficial effect of spatial smoothing is

explored in sub-section B.2 below.

Before proceeding with the proof of (2.31), we ~sh tO emphasize that

this result is valid in a far more general context than the special case of an

ideal linear array. In fact, the only property of direction vectors used in

the proof iS the linear independence of the columns if ~. Since we (must)

assume that ~ has at least as many rows as columns, the linear dependence

hypothesis guarantees that

always has an inverse. In turn, ~ will always have a (left) pseudo-inverse,

(2.34)

Clearly, V+V = ~ but V V+ # ~ unless ~ is square. In general, V V+ ie—— —- —-

‘“merely”a projection matrix. For example, (~ ~+)2 = ~ ~+ fOllOws eaetlY frOm

the fundamental property of a (left) pseudo-inverse, and ~ ~+ inherits its

Rermitian property from ~, i.e.,



.--, - _

= v W-l VH———

=Vv+ .——

Naturally, V V+x projects an arbitrary vector ~ into tbe space spanned by—..

the columns of V. Since this space “contains”—

(e.g., ~ ~+~ = ~ ~+~p = 2P = ~), we will refer

columns of ~ as the signal space. ObviouslY, any

sum of its “signal” component and an “orthogonal’”

~=vv+x+(~–~~+)x .-..

the received signal s = V P——

to the space spanned by the

vector can he written as the

component, e.g.,

(2.35)

‘I%Us, even a noise vector ~ has a “signal” component that, in effect, causes

the sigmls-in-space to “scintillate” but does not disturb the directional

information. Consequently, the complementary space orthogonal to the signal

space can justifiably be called the noise space. of course, the projection

matrix for the noise space is ~ - ~ ~+.

Assuming spatially white noise with a power

covsriance matrix of the observations (snapshots)

and (2.17)

R= VP VH+I.—— —

The inverse of & can be written as

-1
g =J-VOVH———

where the Hermitian matrix ~ satisfies

~- Q=Pw Q .———

level of unity, the ensemble

follows directly from (2.16)

(2.36)

(2.37)

(2.38)
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(2.39)

Since (~ + P W)-l always exists, the unique solution to (2.38) is—-

Q=(~+Pw)-1~ .——

When ~ is non-singular, we also have

Q=(E -1 + y)-1 (2.40)

If we take the signal-to-noise ratio (SNR) to te the smallest eigenvalu,e

of ~, it follows that

lim -1
g=!

SNR+=

Using this result in

lim R-1 s~_

SNR+. –

. (2.41)

2.37) gives

W-lVH

.&-vv+—-
-1Therefore, ~ asymptotically

and (2.31) follows trivially, e.g.,

. (2.42)

approaches the noise-space projection matrix,

conversely, suppose ~(a’ ) iS a direction vector such that

(2.43)

lim R
-1

V(a”) = Q
SNR+- – -

it then follows from (2.42) and the standard decomposition in (2.35) that

v(a’) = V V+v(a-)——-

2-18
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is a

then

linear combination of the columns of ~. If we assume

aM*ai, iE{l, . .. I<L} ,

V’ = [v(a-)IV) has linearly independent columns (by hypothesis), and an.— .—.

immediate contradiction arises. Therefore, we must have

a- ~{aili=l, ,.. ,I< L}.

Of course, the case I = L is totally uninteresting, since

V+=v -l=> L_vv+=g .
— ——

Although the orthogonality property (2.31) is an encouraging theoretical

result, a pragmatist might find the SNR requirement somewhat disconcerting’.

Evidently, this difficulty could he overcome by working directly with the

signal covariance except for the fact that & is singular in all cases of

interest. However, by proceeding along the same lines as above, it is easy to

show that

(2.44)

for any SNR, subject to the same conditions required fOr (2.31). Presumably,

this result is too optimistic since it suggests that perfect performance is

possible, even at an arbitrarily small SNR, provided enough snapshots (data)

are available. Nonetheless, (2.44) naturally leads one to investigate the

potential benefits of noise power cancellation (NPC).

Principal Component Anlaysis

In its simplest form, NPC is implemented by subtracting an estimate of

the noise level from the diagonal terms of the (estimated) snapshot covariance

[51]. Unfortunately, this rudimentary approach does not guarantee a positive-

definite matrix. To overcome this technical difficulty, it is suggested that

,,
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the noise level estimate for NYC be derived from the minimum eigenvalue of the

covariance estimate. This approach is closely relsted to the method of

Pisarenko discussed in section F of Chapter IV.

Finding the minimum ei,qenvalue

task, especially when other roots of

Re=Ae-..

of a covariance matrix ia a non-trivial

the characteristic equation

(2.45)

have nearly the same value. Algorithms are available that solve (2.45), but

the eigenvalue approach to N!?C may be ruled out by computational

costIcomplexity considerations. If not, several other super-resolution

techniques based on eigenalyais deserve at least as much attention.

It follows immediately from the characterisitc equation (2.45) that the

eigenvectors are unaffected by any “adjustment<’spplied (unifOrmlY) tO the

main diagonal of & Consequently, schemes based on the ei,qenvectorsshould be

insensitive to any uncertainty in the “correct” noise level.

Here, we use the term “principal components” to mean the orthOnOrmalized

eigenvectors of the positive eigenvalues of a covariance matrix. Any (eigen)

vector with an eigenvalue of zero is called a null vector. Let ~ denote a

matrix constructed (column fashiOn) frOm the princiPal cOmPOnents Of E. In

similar fashion, a matrix ~ can be constructed from any orthogonal baais fOr

the null space (subspace of null vectors) of ~. Since eigenvectors of a

Hermitian matrix with distinct eigenvalues are alwaya orthogonal, it follows

that

(2.46)

Taken together, the principal cOmpOnents Of ~ and the (OrthOnOr~l) null

vectors in ~ provide a convenient resolution Of the identity, i.e.,

(2.461)
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Theorem: The

space. When

space.

To prove

principal components of ~ always span a subspace of the signal

P-l exists, the principal components span the entire signal—

the preceding statement (theorem), we first write S in term:

the standard spectral (el.gen)decomposition for a Hermitian matrix, i.e.,

(2.47

of

where {:1 I 2=1, . . . , L} is a (complete) orthonor~l basis consisting Of

eigenvectots of ~. Combining (2.47) and (2.17), we may write

v P VH= %&———

where AS is the diagonal matrix of (positive)

to its principal components. Post-multiplying

it follows immediately that

~s=~~ ‘

where

~ = ~ “lIE*-1
— –––s-s “

(2.48)

eigenvalues of & corresponding

both sides of (2.48) by ~,&l,

(2.49)

‘rhisresult shows that every principal component of ~ can be written as a

linear combination of the true direction vectors. Thus, the principal

components of ~ always lie & the signal space.

Provided the signal-in-space covariance is non-singular, next PremUltiPIY

(2.48) by ~-1~+ to get

Taking the Hermitian transpose leads easily to

2-21
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(2.50)

Comparing (2.49) and (2.50), one concludes that the principal components and

the true direction vectors span the same space (since each principal component

is a linear combination of the true direction vectors and vice versa). In

fact, it follows from (2.49), (2.50) and

projection matrices derived from tbe

direction

v+ =—

.

where the

i.e., =

vectors are the same, e.g.,

H H+
~s~s=~<=>~s=%

therefore,

‘1 YHEHv v+ = g: (xHx) _ –s——

the definition (2.34)

principal components

of V+ that the—

and the true

from tbe orthonormality of principal components,

,

. (2.51)

Substituting (2.49) in (2.50) gives ~ = ~ ~ ~. Since ~ has a pseudo-inverse,

we,qet~=XY. Similarly, substituting (2.50) in (2.49) leads tO ~ = ~&——

Since ~ is both a left and a right inverse of Y, Y must be square and Z-l = ~——

exists. Consequently, (2.51) reduces to the desired result, i.e.,

v v+ = ~&H—— (2.52)

.@; .
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Since the null space is complementary to the space apanned by the principal

components of s_,it follows directly from (2.52) and (2.461) that

~-vv+= E&:—— (2.53)

+
‘%7 “

Therefore, under the fundamental assumption that E-l exists, the.results

in (2.42) and (2.53) may be combined to yield

lim R
-1

==+ ,
SNR+m–

(2.531)

Under the same conditions for (2.31), we also have the equivalent orthogonali-

ty property for the “null” space, i.e.,

P-’ exists => Q(c) = ~ iff a ~ g (2.532)

2. Spatial Averaging

In this section, we consider several operations designed tO “smOoth”

sample covsriance matrices. We first consider the spatial smoothing operation

introduced previously in Section A of this chapter. In the limiting case of

perfectly coherent signals, the spatial smoothing operation leads tO an

effective signal-in-space covariance matrix with rank determined by the number

of submatrices

is shown that

elements is no

We next

averaged and the number of signals present. Subsequently, it

the direction-finding capability of an (ideal) array with L

worse than [L/2] coherent signals.

introduce a convenient notational device called the

exchange for the purpose of exploiting array symmetry. Consequently, fOr-

ward/backward averaging emerges as a likely candidate for increasing the

coherent signal capability of an array. In favorable situations, the for-

ward/backward averaging operation can effectively increase the rank of the

signal-in-space matrix by as much as a factor of two. However, the combined

effect of spatial smoothing and forward/backward averaging cannot increase an



arrayts direction-finding capability beyond [2L/3] coherent signals. More-

over, pathological (e.g., in-phase) situations exist where forward/backward

averaging offera no improvement whatsoever.

Besidea spatial smoothing and forward/backward averaging, a clasa Of

operations exist that lead to Toeplitz covariance (i.e., lag) estimates.

Several such methods have been examined and found to perform very poorly in

coherent signal environments. In our opinion, the problem of estimating

(correlation) lags given a limited amount of data has not yet been satisfac-

torily+ solved. For the sake of completeness, the more common lag estimates

are briefly reviewed in ChaDter IV.

Spatial Smoothing

Since the spatial smoothing operation is linear, its effect on the signal

and noise components of the true covariance may be considered separately,

i.e.,

(2.54)

Here, we consider only tbe signal covariance for an ideal linear array. The

apprOach Is valid for any signal-in-space, but the results are moat important

in the coherent caae.

We begin by writing the signal received on the mth subaperture aa

=t&~ __=AVP
%

(2.55)

where & is a sampllng matrix of tbe form specified previously (2.24). Given

t For example, given independent observations of a (general) Gaussian vector
process, it is well known that the maximum likelihood (ML) covariance estimate
is the sample covariance matrix. In contraat, when the true covariance is
known to be Toeplitz, none of the standard lag estimation techniques yield the
true ML lag estimates.
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identical (i.e., ideal) subapertures, each containing N elements, we claim

that the subaperture signal(s) can be written as

% = am) (2.56)

where ~ denotes the matrix of true direction vectors for ~ of the sub-

apertures. Thus, tbe dependence of ~ on the subaperture index has been

completely absorbed by the vectOr IYm), which represents the signal-in-space

at the phase center of the mth subaperture.

NOW consider a hypothetical array with M ele~nts at the subaperture

phase centers, distributed symmetrically with respect to the center of the

actual array. The “received” signals at the subaperture phase centers are

specified by the M-dimensional column vector ~ . Since the signal received

at an element is simply the superposition (sum) of the signals-in-space ~

~~, ~m) must be the !ladamard(term-by-term) product of ~ with the
~th row of V&. Therefore, the desired signal-in-space vectors can be

conveniently represented in matrix form by

PI . 0

(l!(l). ..qM))=o “.pJ i (2.57)

The spatially-smoothed signal covariance “estiwte’$ Obtained frOm (2.56)

The term in brackets is

1
.
iM),

(2.58)



~ Ploo P; . 0
.—
M O“.

$.& .
PI 0“ . p:

The determinant of P<M) follows easily, i.e.,

where

1

(2.59)

(2.60)

From (2.55), (2.58) and the definition preceding (2.59), we have

(2.61)

& = E{&]

‘~i&M)~;; ‘= L+ l-M

where

M

‘)A ‘[+ ~~1 ~m)~(m)Z(M) –

= E@M)} .

In the incoherent (stationary) case, the

a (real) diagonal matrix, say ~. From (2.57),

~(m) = 2(,@

(2.62)

(2.63)

signal-in-space covariance ~ ia

we may write

“here am) IS a diagonal matrix constructed from the mth row of ~. Since the

elemants of an ideal direction vector all have unit magnitude, it follows that

Ek(m)E~m)} = 2(m)E{P PH}2& ; arbitrary m .

. Y—
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Therefore, nothing is “gained” by spatial smoothing in the incoherent case

except a “’loss’”of aperture, i.e.,

(incoherent case) .

On the other hand, a slightly inefficient use of the available aperture WY ~

well worth trading for multipath immunity.

In the coherent case, it suffices to establish conditions that guarantee
.

a ‘On-singular ~M) ‘n ‘2”59)“
From (2.60), we see that this condition is met

if AM) is non-singular (we assume that the signals-in-space dO nOt
,.

vanish!). It then follows from (2.61) that P
-(M)

is non-singular if and only

if ML I (since M is an MxI matrix of distinct direction vectors). The

maximal amount of spatial smoothing is constrained by M J L-I, and a non-
.

singular <M) cannot be achieved by spatial smoothing if I > L/2.

Assuming I < L/2, the minimum number of sub-apertures M needed tO

guarantee a non-singular signal-in-space covariance (after spatial smoothing)

iS [L/2]. Each subaperture must contain a minimum of 1+1 elements in order to

aPPIY the asymptotic results of the urevious section to the spatially-averaged

(subaperture) covariance. Thus, the number of subaperture elements

N = L + 1 - M must be larger than [L/2]. These conditions are just met for I

= L/2, by choosing M = L/2 and N = L/2 + 1.

We may conclude that perfect direction-finding in s specular multipath

environment is theoretically (i.e., asymptotically) possible with a sampled

aperture system, provided the number of signals present does not exceed half

the number of elements in the array. In the next section, another form of

spatial sveraging is examined in an.attempt to increase the maximum number Of

(coherent) signals that can be resolved,

Forward/Backward Averaging
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t that results from reversing and conjugating theConsider the vector ~

data samples from an array with L elements, i.e.,
tA*

‘t – ‘L+l-fl ;
E=l, ,.. ,L (2.64)

This relationship may be expressed in matrix form

t
r =Jr*—-

by introducing the (LxL) exchange matrix
..:.,*

o 1
J~

.

1“”0

In general, the exchange of ~ is defined here to be

*t ~ J **Jf
.——

where ~ and

every (real)

a matrix can

The

and

but

*tt = ~
—.

exchange

(2.65)

(2.66)

(2.67)

L’ are exchange matrices of the appropriate dimensions. Since

exchange matrix is bcfthsymmetric and orthogonal (i.e., ~z = ~),

only be exchanged once, i.e., for any ~,

(2.68)

operator distributes exactly like the complex conjugate, i.e.,

(A ~)t * *tBt
——— —

is quasi-linear,

(~ + B)+ =At+— —

(2.69)

i.e.,

Et , (2.70a)

(CQ’ = C*A+ (2.70b)
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since ~ . ~*= ~T = ~-1, it can be shown that the
for any (complex) scalar c. —— —

exchange operator commutes with all of the standard superscript operators used

here, including the pseudo-inverse.

Comparing (2.03) and (2.64), we deduce the following important property

of

In

the direction vectors

~+(a) = ~ (a) .

in an ideal array

(2.71)

fact, (2.71) holds for any linear array of isotropic (i.e., identical)

elements distributed symmetrically about the array phase center. In general,

any matrix (or vector) equal to its exchange will be called harmonic. It

follows from (2.69) that the (pseudo-) inverse Of any harmOnic ~trix ‘s alaO

harmonic.

In the remainder of this report, the arithmetic average of ~ and its

exchange ~+ is referred to as the forward/backward average of ~. In order to

avoid needlessly cumbersome expressions, let us agree to write the for-

wardIbackward average of ~ as

(2.72)

Of course, any forward/backwardaverage 2A ia harmonic.

In general, the covariance of an exchanged vector is the exchange of the

covariance of the original vector, i.e,

t=R. (2.73)

While it can bs shown that any Toeplitz Hermitian matrix (e.g., a correlation

mstrix) ie equal to its exchange, Hermitian matrices are nOt generally harmO-

nic. A harmonic Hermitian matrix is sometimes called a Hermitian persymmetric

matrix [52]. It can also be shown, but is not needed here, that every har-
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monfc Hermitian matrix has a (complete) orthonormal basis of harmonic eigen-

vectors.

Covariance estimates are often forward/backward averaged in order to

ensure Hermitian persymmetry. In fact, the forward/backward average of the

sample CoVariance matrix is a sufficient statistic for any stationary Gaussian

process with zero mean. Although this statement does not apply in the non-

stationary (coherent) case, it has been observed that the performance of the

covariance method discussed in Section A.2 generally improves when for-

ward/backward averaging is employed. Heuristically, this behavior is ex-

plained by the fact that the covariance method is equally applicable to ~

changed array data (becausa direction vectors are harmonic). An otherwise

embarrassingdilemma is avoided by simply agreeing to accept the autoregressive

coefficients that minimize the average of the prediction errors obtained in

both cases. Mathematically, this ia easily accmplishe~ by fOward/backward

averaging the (spatially smoothed) covariance estimate before solving for the

autoregressive coefficients. This refinement is referred to hers as the

modified covariance method, and has previously been studied by several authors

[651, [661, [341, [32].

At this point, we wish to demonstrate that forward/backward averaging and

spatial smoothing are interchangeable operations (i.e., the Order Of these

operations is immaterial). Becsuse the spatial smoothing operation is linear,

it suffices to prove

(2.74)

since it will then follow immediately that
1

I

,!

1

(*E)M“ + (3 +l+)M
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To establish (2.74), we first write

(2.75)

by invoking the definition of the spatial smoothing operation (2.25) and the

distributive properties of the exchange operator discussed above. Since the

(real) sampling matrices that appear in (2.75) all have dimension Nxl where

N = L + 1 - M, it is not difficult to show that

d =%+1-M

Substituting (2.76)

m=l, . ..M. (2.76)

into (2.75) and reversing the order of summation yields

(2J=*~~1fy+g
=(Et)M

as desired.

Our final objective in this section is to determine the effect Of

forward/backward averaging on any signal covariance matrix of the (general)

fOrm S= VPVH. Firat, wc find— ———

~+= J(y : yH)*J

(J V*)P*(J V*)H——— ——

*H
=VPV———

,
!

(2.77)
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where the last step follows from the harmonic property (2.71) Of the cOlumns

(direction vectors) of ~. Consequently, forward/backward averaging affects

only the signal-in-space covariance, i.e.,
●

= V(Re P)VH— —.

where, aa usual, Re ~

argument may be applied

(2.62) to yield

(2.78)

represents the real Part of ~. Of course, the same

to the spatially smoothed signal covariance matrix in

(2.79)

The utility of (2.79) lies in the fact that all of the covariance operations

considered here are linear and interchangeable, e.g.,

lim *;(K) = E{2~(K))
K-XO

‘2%

when the noise is “spatially white.”

(2.80)
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III. THEORETICALLY OPTIMUM PROCESSORS AND PERFORMANCE

In this chapter, statistical decision theory is applied to the direction-

finding problem. In particular, maximum likelihood (ML) angle estimates are

discussed in section A, since theee eetimates are generally asymptotically

unbiased and efficient. The Cramer-Rao (CR) bound for unbiased angle esti-

mates is derived in section B for the important epecial case of a single

observation. The multiple-snspshot case has also been considered but specific

results are not yet available.

Unless otherwise stated, the noise component of the data is aesumed here

to be a zero-mean, complex Gaussian random vector with uncorrelated, unit

variance elements. When necessary, the results are easily extended to the

correlated caee via the usual “whitening” approach. Two distinct signal

models for the received signal have been considered. The easieet way to

proceed is to treat the signal deterministically. In this case, all of the

uncertainty in the received signal is put in the form of unknown parameters,

and as it turns out, the msximum likelihood estimates are relatively easy to

specify. Unfortunately, the behavior of the CR bound as the number of snap-

shots increases is far from transparent. On the other hand, a random

(Gaussian) signal model generally contains fewer unknown parameters and leade

to CR bounds with a simple inverse (i.e., l/K) dependence on the number of

enapshots K. The chief drawback of the Gaussian signal model is that the ML

estimates and the CR bounds are much more difficult to derive.

A. Maximum Likelihood Estimates

In Section A,l, we first consider the NL estimstea of the angles of

arrival g and the complex signal-in-space amplitudes L for the important

special case of a single observation of the array elemanta. Unfortunately, we

are unable to obtain a complete solution and must sattle for a geometric

interpretation of the ML estimate. A gradient projection technique for com-

puting the NL estimate recursively is briefly examined. This particular

approach depends on the same information mstrix used to compute the Cramer-Rso

angle estimation bounde in Section B.
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In section A.2 we seek the ML estimate derived from multiple observa-

tions, assuming perfectly correlated signals and statistically independent

noise. This mode1 is appropriate for coherent specular multipath.

Deterministic but unknown amplitude and phase fluctuations for the (common)

signal source are postulated. As in the case of a single look, exact formulas

are not forthcoming. However, the asymptotic form of the multiple-look ML

estimate can be interpreted as a single-look ML estimate derived from the

‘principal component’ of the observed data. This observation will eventually

lead us to introduce an interesting

1. Deterministic Signal:

sub-optimal algorithm (EAR) in Chapter IV.

One Observation

In the case of a deterministic signal & = ~(~)~, the probability density

function (pdf) of an arbitrary snapshot ~ is

+r=~exp {-Iz- V(C.)P12) .
– (2W)

——— (3.01)

The (log) likelihood function is obtained by writing the natural logarithm of

the pdf aa a function of the unknown parameters. The maximum likelihood

estimates are the parameter values that maximize the likelihood function.

Thus, the likelihood

ir(g, p) = -Iz

function obtained from (3.01) may be written as

- y(g)pl2 . (3.02)

Maximizing (3.02) with respect to p is simply another version of the leaat-—

squares problem. As usual, the solution is conveniently expressed in terms of

the pseudo-inverse operator. Thus, the signal-in-space estimate

i(g) ~ ~+(:) : (3.03)

maximizes (3.02) for any given a. The corresponding estimate of the received—

signal,

~(a) A V(a) ~ (g)——— —

= V(a) V+(a) ~-———

(3.04)
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,,,,

is the projection of the observed data, ~, into the space spanned by the

(column) direction vectors Of ~ (s).
A .

It naturally follows that s and ~-~ are

orthogonal, i.e.,

~H(~-;)=o . (3.05)

Consequently, the reduced likelihood function takes the following forms:

.
t= (g) ~m~ L, (s, I) + l~lz

= 1312- 11-; (s)12

= IE12-EH(L

A
= rH s (a)_——

Of course, (3.05) alao allows

;r(g) = 1: (a)12——

Substituting (3.04) now yields

us to write

;=(Q) = [y (’q)y+(g)Al2 .

Using the easily verified

reduced likelihood function

space estimate, i,e.,

=H ~
= r% V+r—. -———

. rHv+\ V+r
-——— —

(3.06)

(3.061)

(3.062)

fact that V V+ = v+% v+ (recall Eq. 2.34), the—— —— —

may also be interpreted in terms of the signal-in-

(3.07)
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exact maximum likelihood solution is conceptually simple, e.g.,

<= m~x ~H ~ (g) , (3.08)

but clifficult to implement. Even in the special case of one signal, the inner

product rHv (a) ❑ust be calculated for all possible anglea u of interest. In. .

the case of uniformly spaced elements, a one-dimensional search can be con-

ducted with reasonable efficiency using the faat Fourier tranaform (FFT).
.

However, a numerical search of rHs (a) in the multi-dimensional (vector) caae.——

would be prohibitively expensive for most real-time applications. Thus, one

naturally looks for recuralve algorithms that till (hopet,ully)converge to a

(global) maximum of the likelihood function. One such scheme is the projec-

tion method described below.

Gradient Projection Method

Given any differentiable complex signal s_(l), let ~ denote the matrix

derivative of ~ with respect to the parameters1, i.e.,

~ asm
G ——.
mn aYn

(3.09)

.
Given an initial estimate ~ , the new value of the likelihood function cauaed

. - lk -i-&12

. .
where ~ and ~ denote the signal and its partial

A
at~. Evidently, the likelihood function is

choosing

directive (matrix) evaluated

incrementally maximized by

3-4



/
.

The formal “solution” fi~~ ~+(~ - s_)is usually complex and hence cannot be

correct when y is a vector of real parameters. In the real caee, the correct

solution is obtained by constraining the imaginary part of ~ to be zero. This

results in

Of course, Re~H~] must be non-singular to guarantee a (unique) solution.

When this condition is not met, the estimation problem ia fundamentally un-

sound, as demonstrated in the next section.

Fisher Information Matrix

The problems of finding the ML estimate and its performance are very

closely linked. The crucial step is evaluating and inverting tbe (Fisher)

information matrix. In general, the information matrix ~ is obtained from the

likelihood function via

(3.10)

where the expectation ie with respect to the pdf of the observed vector ~.
2

Substituting Qr(l) = -IL - a_(y)I in (3.10) and using the fact that Es = s_,it

follows that –

2
r = -E {*nmn 1~-A(y)12}

(3.11)
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,
Consequently, the information matrix is given by

, !

.
The Cramer-Rao bound on the covariance of any unbiased estimate y ia—

(3.12)

(3.13)

Thus, a nearly singular information mstrix corresponds to very poor estimstes

of at least some of the parameters. _If r is singular, an unbiased estimate of

Y doesn’t exist. The Cramer-Rao bound on direction-finding accuracy for a

single observation (snapahot) of a deterministic signal in Gaussian noise is

derived in Section B of this chapter.

2. Deterministic Signal: Multiple Observations

When multiple anapshota of array data are available, the exact ML receiv-

er becomes even more difficult to implement. However, the form of the esti-

mste auggeats an approximation that leads to practical suboptimnl processors.

The coherent case is of primary interest here. Unknown fluctuatione in

the amplitude and phaae of the signal vector are represented by the unknown

complex parameter x(k), i.e.,

~(k) = x(k)~(g)~ + ~(k) , k=l, . . ..K. (3.14)

Assuming statistically independent observations in (3.14), the likelihood

function is obtained by simply adding the individual likelihood functions,

i.e.,

where ~ ia a vector of the

maximum of (3.15) over the

terms of the pseudo-inverse

- x(k)~(@ 2 (3.15)

unknown complex amplitudes, i.e., xk ~ x(k). The

individual components of ~ is easily obtained in

of the signal ~ = V p, i.e.—.
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A
x(k) = s+r (k) .——

Consequently,

and over y. Therefore,

(3.16)
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with equality iff L = V V+z. Maximizing the expression on the-.

(3.18)

right-hand side

of (3.18) ia a standard problem in quadratic forms. In general, if ~ is any

Hermitian matrix, then

i.e.,

value

one finds the largest eigenvalue kmax of ~. Of course, the maximizing

of z ia the eigenvector associated with ~max~] .

Theorem:

If ~ ia an eigenvector of P H P, where ~ ia any idempotent———

also an eigenvector of & and has the same eigenvalue as ~.

Proof:

(a) PHPe=k~ ; hypothesis————

matrix, then P e ia——

(b) P2HPe=lPe ; premultiplyin,q(a) by 3————

(c) P H P2e = A~= “ ‘= Pin(b)using P _———— ——~ —

(d) P H P (P e) = ~(~s) ;————— arranging terms in (c), QED.

Consequently, the reduced likelihood function in (3.18) is given by

@ v+; v ~+}$(IJ = Amax _ _ _ (3.19)

Thus, the ML receiver for coherent signals finds the prOjectiOn y Y+(a) that

maximizes the largest eigenvalue of the sample covariance (matrix) Of the

projected data; i.e., using ~ = V V+r as defined previously (3.04), it follows———

that

:(a) ~ ; ~ ~(k) jH(k)
k=1
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V V+r(k)~H(k)~ ~+.-.

=Vv+ivv+_.-— —

Aa usual, the exact ML estimate ia cumbersome to implement. However, in

the (coherent case) under consideration, the behavior of the sample covariance
,.

matrix ~ la governed by a
,.

ei.genvector~, referred to

asymptotic approximation

. . . ‘HR.iee— -—

in (3.19) leads to

single large eigenvalue, say ~, and its associated

here as the principal component of & Using the

!(g) = i . IV V%12———

In turn, this approximation suggests that an asymptotically efficient estimate

can be obtained by treating the principal component of the sample covarlance

matrix as if it were a single observation of the array data.

B. Cramer-Rao Resolution Bound

Gne of the principal difficulties in investigating improved methods for

angle determination is the lack of quantitative limits on the achievable

performance analogous

terns. Thie bounding

because the processor

number of plane waves

to the role of channel capacity for communication ays-

problem is difficult in the angle determination case

cannot be assumed to have a priori knowledge as to the

which arise. A preliminary study of the system identi-

fication issue was made with the results reported in Appendix E. However, the

most useful results to date have been obtained for the case where the number

of plane waves is known a priori and we are concerned only with the accuracy

in estimating the anglea of arrivals.



In this section, we derive the Cramer-Rao (CR) bound for any unbiased

angle estimate scheme under the following conditions. The received signals

are observed in the presence of (spatially) white noise. Only one observation

is available. The complex signal amplitudes (in ~) are considered tO be

unknown parameters.

We first obtain the Fisher information matrix for a single observation of

the array signals in white noise. We then calculate the “reduced” infOrmatiOn

matrix for the angles-of-arrival assuming unknown complex signal amplitudes.

Inverting the reduced information matrix yields the CR bound on angular accur-

acy under very general conditions. Certain algebraic .simplificationaare then

introduced for isotropic arraya.

The general theory is illustrated by two simple examples. In the caae of

only one signal, we obtain a alight generalization of the angular accuracy

formula for an ideal array, derived previously by Manaase [54] and perhapa

others, Explicit results for the more interesting case of two aignala are

presented in the form of an effective degradation (leas) in the available

signal-to-noise ratio.

Returning to the problem originally considered in Section III.A, let us

agree to write the received signal totally in terms of real parameters, e.g.,

where ~ and ~ are the (real) in-phase and quadrature components of ~, i.e.,

(3.21)

The only additional aaaumption required for the fundamental result in

(3.4o) is that the vector ~(a) have a derivative with respect tO a, denOted

by ~(a) . Thus, a small change 8S in the true anglea ~ leads to a perturba-

tion in ~ given by



. . . lf(L31)6~)

where $ = $(a) denotes the matrix of differentisted cOlumn vectOrs~ evaluated——

at the true angles, i.e,

(3.22)

and the notation [~] is used here to represent the diagonal matrix constructed

from the elements of an arbitrary vector ~, i.e.,

[1‘1
o

[~1~ “. (3.23)

o“
‘N

Thus, small changes in all the parameters lead to a signal increment of

the form

The partial derivatives of ~ with respect to the signal parameters follow by

inspection, i.e.,

III

a~ a: a~
~=

Zj ~ ~ 1
(3.24)
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The Fisher information r@trix (3.12) fOllows directly, e.g,

where, primarily for convenience, we have introduced

; L~Hj ,

j~y~j,

(3.25)

(3.26a)

(3.26b)

and, as usual,

~ = ~Hy

Arranging the signal-in-space components in a (nuisance) vector ~,

XT A (AT I ET) $
(3.27)

the information matrix may be partitioned according to

~

and ita

[

r r
-au -aV_—.
r r
—vu —Vv 1

inverse according tO

(3.28)
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r ,- .[- +] (3.29)
—

me ~ubmatrices (in 3.28) and (3.29) are related by the Schur’s identity

[55], For our purposes here, we need only the fact that

Comparing (3.25) and (3.28), we MSY identify

r=
-vu

and

r .
—vu

expedient to use

[p]

temporarily. of course, we alsO have

H _
r= 2 (Re ~ lm 311)

—au

. 2 (Re ~T Im ET)

Due to its special structure,

Re W
-1 -Imw

r
-1=1

~ (- -::)
—Vv Re ~

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

~v is easily inverted, i.e.,

(3.35)
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It follows from (3.32) - (3.35) that

~r
-1 Re{z%-1~}

2-avlvvlva= ––

. Re{[~*] ~~-l~[Ll }

It then follows that the ‘reduced’ information matrix for s iS

~(-)A -1
–La-r r r

-au -w —vv -vu

= 2 Re{[~*] (~- ~H~-l ~) [PI}

(3.36)

(3.37)

The array factor

.v(~-vw -1 f) ~— ——

..f(l-yy+)y (3.38)

depends only on the angle ~ through ~ and its ‘derivative’ (~). If the Pro-

jection of ~ into the (noise) space orthogonal to the (signal) space spanned

by the columns of ~ is writ?en as

It follows easily that

3-14



,

..
is at least positive semi-clefinite. Moreover, El is non-singular if and only

if the columns of (fIV) are linearly independent. In turn, the reduced infOr-

mation matrix j&)-i~ guaranteed to have an inverse whenever the array
..

factor El is non-singular. To see this, first express & in terms of its

amplitude & and phase ~ as the Hsdamsrd product

~=~xej~ (3.39)—

“here ej~ is an Obvious notation for the vectOr with e~ements ej$io Substi-

tuting (3.39) and the array factor (3.38) in (3.37), the reduced information

matrix can be put in a very convenient form, i.e.,

~(-) = 2[~] Rs{[e‘j~l ~1 (~)[ej~l} [~1
—au

(3.40)

Thus, a non-singular array factor guarantees the existence Of a finite CR

(angle) resolution bound. It can be easily shown (see Chapter II) that the

array factor is real for uniform arrays with ideal (isotropic) elements.

Consequently, when the signals-in-space are all in-phase at the (phase) center

of an ideal array, the reduced information mstrix

r(-) = 2[L1 ~L [~1 (worst case)
—au

will not have an inverse if the array factor is singular. The implication is

that extremely poor performance can be anticipated when more than L/2 (in-

phase) signals are present.

Isotropic Arrays

In general, the elements of the array factor are obtained from the (Her-

mitian) array function

w(a,a’) 4~H(a’) ~(a) (3.41)

*
=W(ct’, a)
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For arrays with identical

w(a,cx’): w(a-a’,0)

elements, we have

In this case, it ie convenient

w(Aa) ~ w(Aa,O)

Several general properties of

e.g.,

w*(Aa) = w*(Au,O)

(isotropic assumption)

to introduce the isotropic array function

(3.42)

isotropic array functions follow immediately,

= w (O,Aa)

= w (-Aa,O)

= w (-Au)

Since

~ (a, ci’)= ylci’) ~(a) ,

the elements of ~ in the isotropic case are found by evaluating

.
w(Aa) = -& W(a,a’) I

at the

= & w’(a’-a,o)

= x*(-As)

(3.44)

(..45)

a-a’ = Aa

I a-a’ = Au

(3.46)

..

appropriate separation angles. Similarly, the elements of W are gener-

ally obtained from

a2w (a,a’) = -H~ (a’) ~(a) , (3.47)
m’
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but in the isotropic case we may evaluate

.. azw
-w(Aa) = ~ (rx,a’) ] ~_a, = Aa

= - (ri’-ct,o)I ~_at = Aa

= 4*(-Au)

instead. In the isotropic case,

(3.48)

one may also assume the following:

(normalized array gain)

(defines the array phase

(rms array “length”) .

center)

For an ideal array (2.03), the phase center is at the geometric center of the

array, and the mean square length of the array in terms of the number Of

antenna elements is

= (L2-1)/12 (ideal array) .

Example: One signs1

In this rather trivial case, the array factor reduces tO a scalar, i.e.,

and the CR bound, obtained by inverting (3.40), becomes
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This result may be expressed in terms of the beamwidth aB (2.07) and the ~

SNRA P2, i.e. ,

Example: TWO Signals

In the more interesting case of two signals, let us agree tO write

Aa4a2-cal

w A w(Aa)

The matrices needed to calculate the array factor are

-[ 1
lW

~= *
w 1

-[ 1

o;
fi= .*

-w o

and

-[ 1
..

C2 -ww= ..*
-w E2

Consequently, the array factor msY be written as
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1

,.

as

2
a>
a

where AB 4

,,, ,
211.sNR.# 1

A$ + arg f(Aa).

The effective loss of SNR

the efficiency factor

n(Aa,AB) L n(Aa) (1 -

Thus, the most favorable

phase, i.e.

n(Aa, * 90°) = n(b.)

The worst cases are the

i.e.,

- ]fI‘COS-AB

compared to the single signal case is described by

lf(Aa)12 COS2A6)

situation is for signals effectively 90° Out-Of-

(effectively) in-phase or out-of-phase situations,

n(Aa,OO) = n(Aa,180°) = n(Aa) (1 - lf(Aa)12)

where the array efficiency factor n(Aa.)is given by

and the array coherency factor f(Aa) is conveniently defined in terms of

n, i.e.,
.

The CR bnund on the absolute accuracy of the angle estimates may be expressed
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The SNR efficiency factor n(Aa,AB) has been plotted in Fig. 3-1 as a function

of Aa for three different values of A6. An ideal uniform linear array with

nine elements was aaaumed for the calculations.

The bound on the relative accuracy of the angle estimates does not behave

in exactly the same manner as the absolute bound, especially when the signals

have nearly the same power, i.e.,

2 1 . 1 + 2plflC0S A13+ p2
‘Aci=

2T@NR.~2 1 - IfI2COS2A$

In this result, the signal-to-noise ratio (SNR) is for the weaker of the

targets, and p is used to represent the relative amplitude of the two targets,

i.e.,

P A P21P1 (assume p2< PI)

Several comments are in order regarding the efficiency factor:

(1) the efficiency factor depends only on the relative
angular separation and relative phase, but not on the
relative signal amplitudes. ‘his suggests that the
presence of a second signal which is very much smaller
than the larger signal can cause a significant
degradation in larger signal angle accuracy if one
attempta to estimate the angle of arrival of both
signals.

(2) the efficiency a~ small reparation angles varies
approximately as f3 where n = 4 for inphase conditions
and n = 2 for these&adrature phase condition. This in
turn suggests the minimum separation angle for “useful”
angle estimation accuracy will be weakly dependent on the
sm.

(3) the restriction to an unbiased estimstor IMY have
significantly affected the bounds. Alternative bounding
procedures [82, 83] which do not make this assumption are
quite difficult to compute numerically. On the other
hand, some of the numerical studies accomplished to date
have indicated that the absolute angle accuracy bounds
are “reasonable” at high SNR [36, 37, 59].

Issues (1) and (3) above should be the subject Of detailed investigation in

any follow-on studies.
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IV. CANDIDATE SIGNAL I?ROCESSINGTECHNIQUES

In this chapter, we outline the signal processing techniques investigated

during the course of this study. These techniques tan be divided into several

groups:

(1)

(2)

(3)

(4)

approaches discussed by the FRG fn the context of DLS and
DAS [9,10].

maximum likelihood (ML) parameter estimation methOds
where one seeks to maximize a probability density
function over a spe.ci.fied set of possible ~signal ~~~
parameters.

spectral estimation techniques where one first estimatea
the angular power spectrum and then associates the angle
of arrival with the spectrum peaks. The MLS processor
forTfme -Reference Scanning Beam (TRsB)..can be viewed as
accomplishing this function by” more or lese Standard
Fourier methods (ace Fig. 4-1). The fecus in our sttidies
has been on ..’”highresolution” methods””that attempt to
distinguish spectral featureswhich cannot.be resolved by
the standard Fourier techniques...

algebraic””methods using eige.nexpansions Of the Observed
covariance matrix. For a spatially stationary process,
the spatial,correlationfunction is the Fourier trsnsform
of the angular pewer spectrum. Consequently, one can
analyze.the.received signal environmentin terms of the
correlation (or covariance) fcnctfon.

Section A diacuases several of the echemes suggested by the FRG, includ-

ing interferometer arrays (with and without adaptive element steering), beam

multiplexed arraya and noise free multiple signal parameter estimation ap-

proaches.

Section B considers the maximum likelihood parameter estimation approach

discussed in the preceding chapter. Our investigation consisted primarily of

reviewing the previous work in this area in order to aasess the feasibility of

such an approach for real-time operation.

Adaptive nulling antenna algorithms used in radar systems to mitigate the

effects of jammera alao have received considerable attention recently. UnfOr-

tunately, in the cases of greatest intereat here, the standard adaptive
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nulling algorithms are not applicable because tbe interference (especially,

multipath) cannot be observed in the absence of the desired signal. However,

the so-called “maximum Iiklihood method” (NLM) of spectrum estimation, first

proposed by Capon [12], can be applied in these cases and is discuesed in

Section C.

Maximum entropy (ME)/autoregressive (AR)

Section D. Theee techniques have considerable

technique are considered in

practical interest becauae of

their.ability to achieve angular accuracies approaching that of the Cramer-Rao

bound. Moreover, the mathematical equations ..usedare compara.titielyeasy to

implement.* Tha relationship between varioua ME/AR interpretations.is dfs-

cussed and the..most robust approaches are examined in greater detail.

One interpretation of the ME/AR technique is that received data aamplee

are represented as theoutput of an all-pole systemdriven .bywhite noise.

The fn”clusfonof receiver (output) neise leads to a system model with zeros as

well as poles. The resulting autoregressive moving average (ARMA) model ia

considered in section E. The,,results in this case are less complete:than

thoee in: the preceding sectlone since the inclus.ionof zeros: significantly

complicates tha estimation problem.:

The:final section censiders :covarianceetgenanalysismethods. Ar””under-

lying motivation for these methods is the notion of noise power cancellation,

i.e., attempting to remove bias due to the noise along the diagonal of the

covariance matrix. Two new approaches are considered. The multiple signal

classification (MUSIC) algorithm suggested by R. Schmidt [30] attempte to uti-

lize orthogonality betwaen “signal” and “-noise”efgenvectors to identify the

various signal directions. However, this procedure was found to encounter

significant difficulties when correlated signals (e.g., multipath) are pre-

sent. Consequently, an alternative procedure is proposed that uses ME/AR

techniques to analyze the principal “signal” eigenvectors.

*The MR/AR algorithms are closely related to the speech linear predictive
coding (LPC) algorithm which are recefvfng increased use in speech vocoders.
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A. Advanced Signal Processing Techniques Suggested in the DLS/DAS

Context

During the DLS/DAS development program, a number of advanced signal

processing methods were suggested as methods of achieving improved perfor-

mance. In this section, we summarize the various approaches and Indicate the

expected improvement against multipath.

1. Interferometric Processing

Tbe bulk of the DLS/DAS processing approaches have involved the use of

multiple baseline interferometers. The theory of such interferometers is well

known [27] and many of the DLS schemes were examined in other Lincoln reports

[28, 29]. Provided that the ambiguities are correctly resolved, the DLS/DAS

linear interferometric arrays will typically yield performance which is very

close to that of a beam steering or monopulse processor using the same element

spacing when the received signal is

a) a single plane wave in additive white noise, or

b) two inbeam plane waves plus additive white noise.

The principal performance loss relative to standard processing techniques

(e.g., monopulse) ariaes from the fact that the inbeam region corresponds to

the beam pattern of the elements used to produce the final interferometer

baaeline. The recent DAS proposals (Figs. 4-2 and 4-3) suggest the use of Six

(software) phase-steered elements to form a “synthetic element” [331 at each

end of the array. The “inbeam”* region for this particular scheme is roughly

plus or minus one effective beamwidth of the synthetic element about the

direct signal. Since the synthetic element beamwidth is substantially larger

than the classical array beamwidth, the inbeam region for such an array

processor is several times larger than that of the corresponding monopulse

processor. Evidently, the function of the steered elements in Fig. 4-3 is to

*
Inbeam means the separation between the two plane-wave signals in less than

A/6 (radians) where 6/1 ia the interferometer baseline in wavelengths.
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,

mitigate the effects of multipath with a separation angle greater than 10°

(rather than provide an improvement in system accuracy againet inbeam

multlpath).

In cases where tha multipath angle is always on one side of the direct

signal angle, (e.g., in most systems that measure elevation angle, the multi-

path’angle of arrival is typically less than that of the desired signal), the

“synthetic eIement” pattern can be offset to favor the direct signal. Methoda

of this sort were investigated extensively in the context of the MLS assess-

ment and hence were not considered in the current study.

2. Signal Parameter Estimation

At varloua points in the DLS/DAS development process, suggestiona were

made that one could utilize the emplitude and phaae information received at N

antennas in a linear array to determine the parameters (complex amplitude and

angle of arrival) of 2N/3 arriving plane waves. One such scheme applicable to

the case of three antennas and two plane waves was discussed by Bohm [10].

The general case of N antennas has been examined in some detail by Kupiec

[38]. He auggeats that the solution for the case where M=2N/3 plane wave

signals are present can be efficiently obtained from the aet of equationa:

M
s = ~ pmz: ; n.=l,. . ..N
n

m=l

M
z~ ~~am= O ; n=l, ..., M12 = W13
~=o

M
z S:aam = o; n= Mtl, . . ..N
m=O

(4-I)

(4-2a)

(4-2b)
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where

pm is the complex amplitude of a plane wave at angle em

Zm =
E=

‘n =

S-O=

exp(j2nE sin @m)

element spacing in wavelength

signal at n‘h element

1

and the remaining {ail determine the coefficients of an Mth order polynomial

A(z) whose roots are the {z=}. One first solves (4-2) for the unknown

polynomial coeffic.tentsand computes the corresponding roots. The roots can

then be substituted into Eq. (4-1) to determfne the /pmf . The system of

equations in (4-2) may be interpreted as a forward/backward extension of

Prony’s method (see Chapter II).

TWO problems exist with the aIgorithm described above:

(1) The existence of addftive noise is ignored, and

(2) NO procedure is specified for determining the proper
number of plane waves directly from the array data.

The effects of noise on the above algorithm were simulated by Kupfec [381

for the caae of two plane waves and a three-element srray (this is the case

considered by Bohm [10]). It was found that that the algorithm worked reason-

sbly well at most separation angles (rms error < 0.15 beamwidth) except when

the plane waves are nearly in (or out of) phase at the middle element of the

array. Nhen the inphase condition occurs, the system of equations represented

by (4-2) becomes singular with the result that small amounts of noise can

cause large errors (e.g., > 0.5 beamwidth).

Kupiec [38] suggests some methods for distanguishing when the received

data lie near these singular points so that an alternative algorithm might be

used. However, the reaulta in Chapter III of this report suggest that tbe

problem encountered by Kupiec is fundamental (i.e., no algorithm will work in

an inphase condition if M > N/2).

4-8



Including noise in the problem formulation at the outset leads one to the

notion that rather than assuming the received signals are exactly given by

(4-1), one should attempt to seek a best approximateion & to the observed

data ~ by functions of the form of (4-l). Choosing a least-square

aPPrOxfmation that minimizes

(4-3)

leads to the maximum likelihood estimate discussed in Chapter III. It is

worth noting that Kupiec [38] concluded that the use of (4-3) gave signifi-

cantly better performance than (4-2) in the cases he simulated.

,.
B. Maximum Likelihood Parameter Estimate

I

In the preceding chapter, wa found that the maximum likelihood (ML) para-

meter estimate involved maximizing a rather complicated function of the L

signal directions. This result was practically important since a direct ML

approach using Eq. (3-1) involves maximizing a function in 3L variables as

OpPos@d to L variables, AIthough theoretically interesting, we have not

assesaed this approach numerically in the present study due to uncertainty in

(1) the extent to which the gradient search would converge to
the ML estimates when a large model order is required,
and

(2) difficulties in determining what model order would be

I appropriate for a given situation if no side information
was available.

Appendix E describes a preliminary assessment of the model order issue

conducted by S. Dolinar in the early portion of the present study. Numerical

evaluations of the ML estimate for the case of two or more plane-wave signals

have been published by Birgenheier [36], Kupiec [37], Howard et al.—— [391~

Nickel [35], Cantrell et al. [56], Trunk et al. [59], and Howard [57]. Table—— ——
4-1 aunsmarizes the results of these various numerical investigations.

Birgenheier alao considers the problem of determining the proper model order

given only the observation data.

}::



TABLE 4-1

Researcher

Kupiec [38]

NUMERICAL DETERMINATION OF NL ANGLE OF ARRIVAL ESTIMATES

Kupiec [37]

Birgenheier [36]*

Howard [571

Nickel [38]

Cantrell, et al.
[56]

# Plane # Array
Waves Elements

2
3

3
6

Comments

Considerad exact Prony as
well as MR.

11 6 10 small signals near
horizon to simulate
diffuse multipath.

2,3 5 L band field measurements
of reflection from flat
terrain

2 3 Three element results were
significantly poorer than
five element results.
Three elements Config.
yielding errors ~ .05 BW
down to O.4 BW separation
angle.

Shows rate of convergence
for a number of cases.
Converged for some, but no
all signals.
Did not converge.

2,3

4

5

4

2
3

8

8

8

2

3,5,9
?

2

Trunk, et al. [59] 2

3,21

20

Shows log likelihood
function contours and
detectj.onprobability
curves.

ME eatimatea compared
with CR bounds. In some

cases, ME runs errOr was
better than unbiased CR
bound.

shows prob. density
function for cases where
it is known that the two
aignala are symmetrical
about array boresight.
Bimodel densities ariae at
small separation angles
(ace Fig. 4-4).

*
Considers order selection problem.

All above consider case of a single observation with a uniform spaced
array.
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The numerical results of Trunk, Cantrell, and Gordon [59] provide inter-

esting insight into the problems likely to be encountered in estimating t,he

arrival angle of individual plane wavea. They consider the special case of

two signals which are known to be symmetrical about the array boresight, but

with unknown amplitudes and relative phases. In this special case, one is

interested primarily in estimating the relative angle-of-arrival of the two

plane waves.

Figure 4-4 shows computed probability density functions (pdfs) of the ML

angle estimate for several angular wave separations and relative phases. In

all cases, the relative amplitude of the reflected (i.e., lower) plane wave

was -1 dB. At high SNR, the pdf of the ML estimate is roughly Gaussian* and

centered about the true angle, corresponding to a region where Cramer-Rao

bounds give a good estimate of estimation performance. At lower SNR, the pdf

develops an additional impulse function near the horizon, corresponding to

failure to resolve the two plane waves.

The impulse function which arises in Fig. 4-4 is of particular interest

since our experience to date with most practical high-resolution schemes (see

Chapter V) is that performance degradation at low SNR is primarily caused by

an inability to resolve the plane waves. This phenomenon is manifested as a

single angle estimate near the centroid of the two angles of arrival.

c. Maximum Likelihood Method (NLM)

The MLM estimation technique had its genesis in seismic array beamforming

under conditions of directional interference [121. The underlying prOblem is

to determine the minimum variance unbiased estimate of the complex signal from

a given angle e subject to (complex) interference with a known coveriance

matrix ~. The signal is estimated by weighting

element and summing (see Fig. 4-5) such that the

*
Although the pdf does not appear to be Gaussian,

tbe received signal at each “’;,,

voltage gain in direction 0

especially at lower SNR, it
iS shofi in [59] that the corresponding distribution functiOn matches that Of
a Gauaaian function fairly well.
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is held fixed at unity and the weight factora yield the minimum expected

output power.

When the interference is Gaussian, the maximum likelihood estimate of the

average power in a plane wave from angle 8 ia given by

(4-4)

%L(e) “ <lw~l*> = w% w---

- vHQ-% Q-lv/(vHo-h)---— ————

where ~ - ~ (8) is the received signal vector corresponding to a unit plane

wave from angle O, ~ is

element wefghting vector

the sample covariance matrix, and ~ = ~ (9) ia the

gfven by

-1
WSEQ ~/(vHQ-lv)--- -—

If the desired signal ia abaent, the expected value of the sample co-

variance matrix ia Q, and the expected value of the ML power estimate becomes

[f(e)(?-ke)rl .E/&(6)] = _ _ (4-5)

The right-hand aide of (4-5) ia also the variance of the ML estimate of the

complex signal.

When the interfering signals are multipath, ~ cannot be meaaured indepen-

dently of the desired signal. This auggesta substituting the sample covar-
.

iance.metrix ~ for ~. The resulting MLM angular power spectrum estimate ia

(4-6)

The resolution performance of the MLM technique was first considered by

cox [3] for the caae where the receiver haa an accurate eatfmate Of the en-

semble covariance for uncorrelated signal proceaaes. Cox shows that in such a

caae, the MLM technique can resolve aignala (in the sense of yielding separate

spectral peaks) which are leaa than a beamwidth apart provided that adequate

4-14
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signal to noise ratio (SNR) is available. Figure 4-6 shows the minimum

required SNR for two equal amplitude signals as a function of the angular

separation in beamwidths. An interesting feature of these results is that

resolution of signals with very different amplitudes (e.g., 30 dB) requires

only slightly greater power as indicated by the second curve in Fig. 4-6. The

depth of the dip between the peaks at which one declares resolution to be

achieved plays a secondary role in generating the curve of Fig. 4-6 as is

shown in Fig. 4-7.

The low sidelobes of the MLM spectrum in the incoherent case are achieved

by virtue of tbe element weighting vector E(9) which places nulls at the

angles of all emitters. Nhen o coincides with a plane wave arrival direction,

the unity gain constraint prevents a null from being formed at O. The resolu-

tion of the MLM spectrum is ultimately limited by the fact that two nulls can

be placed very close together (on either side of 0) only at the expense of a

beam pattern with a very large gain at other angles (see Fig. 4-8), a situa-

tiun which requires large element weights. Since the output power due to

receiver noise is proportional to l~(tl)I2 , a finite SNR will ultimately

prevent nul1s from being formed at the “nearby” plane wave directions.

In the case of coherent signals (e.g., multipath), the problems with MLM

spectrum estimates become more severe since the array output power is no

longer minimized by steering nulls to the signal angles other than 0. Rather,

it turns out (see App. F) that minimum array output power is achieved by

choosing a weighting vector w(~) that causes the desired and undesired eignals

to be cancelled at the array output. The resulting MLM spectrum (see Fig. 4-

9) ia similar to the classical Fourier (beamaum) spectrum except that it has a

much higher noise level. Uhen only a small number of observations are

available, statistical fluctuations in the background noiee level can lead to

erroneous NLM estimates at a SNR which is much higher than those which would

yield problems with classical spectrum analyais methods.

When correlated signals (e.g., raultipath)are present, the signal cross

terms contribute to the sample covariance R in a way that depends on the

relative rf phases between the signal paths. In contrast, the signal cross
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terms are zero in the uncorrelated signal ensemble covariance. One way of

reducing the effect of the signal cross terms is to spatially average the raw

covariance samples to yield a smoothed covariance estimate. Averaging the
.

entries of ~ that correspond to any given separation between array elements

yields a Toeplitz covariance estimate (i.e., one in which all terms along a

diagonal are equal). Although such estimates have been widely used in maximum

entropy/autoregressive modeling (ace section D of this chapter), they have

been found to behave very erratically in coherent signal environments.

The success of the ““modifiedcovariance””estimate in the case of the

extended Prony/maximum entropy techniques suggested tttatit might also improve

the performance of the” MLM technique. In particular we considered the

estimate

(4-7)

where & is the “’modifiedcovariance’”estimate of the uncorrelated signal

ensemble covariance. Equation (4-7) can be interpreted as follows:

1.

2.

3.

D.

The estimate of the. ensemble covari.sncefor an N-M+I
element array, I& is obtained by ..averagingthe raw
covariance estimates from M overlapping eubarraya.

The estimated power at angle @ for the ith subarray is
obtained by weighting the raw received data by

so as to give

The final estimate
averaging the subarray power estimates, i.@.,
A , M.

~lQ /( ~“ Q y)z .
of power at angIe 6 is obtained by

‘NLM((3)=* z Pi(e) .
il

Maximum Entropy/Autoregressive Spectral Estimation

(4-8)

(4-9)

(4-lo)

The use of maximum entropy (ME)/autoregressive (AR) methods for achieving

higher resolution spectral estimates can be motivated by a variety of argu-



ments (for example, see Appendix D). The most direct approach

that the observed signals have been generated by the equation

M
r . E ar+cn m n-m n~=1

is to assume

(4-11)

.
where ‘n is a zero maan, uncorrelated sequence with variance a;. The

objective of the ME/AR techniques ia to estimate the (am~ and the o
2
~ given the

measured data. This is accomplished as follows:

(i) choose the weights {am} so as to make the residual
sequence

. M
u =r -~.~ - E amrn_m
nn nn m=1

spectrally white and of minimum variance.

(fi) then

where

(iii)

u(z) = X unz-n= Zlrn - Z amrn_mlz
-$,

= W(z) R(z)

W (z) represents the z-transform of the filter weights

WT= 11, -al, -a, . ..-a
2 Ml “

if the sequence {Un} is indeed white, then

IU(Z)12 = I)M

and we have the spectrum estimate

PM
IR(z)12= ,W(Z),2 .

(4-12)

(4-13)

(4-14)
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Another interpretation of MR/AR estimation is in terme of adaptive null-

ing beam patterns [1]. The ME/AR minimization procedure applied to the case

M=L can be viewed as determining an array pattern* which minimizes the array

output subject to the constraint that one of coefficients must be unity. This

is achieved by having nulls at the anglee corresponding to plsne wave arri-

vals, as illustrated in Fig. 4-10. Also shown in Fig. 4-10 is the

corresponding -30 dB sidelobe Dolph-Chebyshev array pattern as well as the MLM

pattern for estimating the power at an angle midway between the plane wave

srrival angles. The patterns in Fig. 4-19 have not been normalized so that

one can aee that although the MKM and MLM patterns both have nul1s at the

plane wave arrival angles, the MLM pattern gain ie much higher at wide angles

due to the unity gain constraint at the steering angle.

The various MK/AR techniques differ principally in the method by which

the weights are to be determined. If the various plane-wave signals are

uncorrelated and the ensemble covariance R is given, it can be shown (see

Appendix D) that the weights ~ and the prediction error PM can be dete~fned

from the Weiner equation

Rw= [PM OO. ..O]T .—— (4-15)

where R contains the first L lags of the correlation function along the main—

diagonals. In practice, the available information usually consists of K data

records, ~(k), k=l, . . . K. When K > 1, a standard practice is to construct
.

the sample covariance matrix X(K) as discussed in Chapter II. When the number

of records K is leas than the record length L, (i.e., each record r(k) ia
A—

assumed to be an L-dimensional vector) the (LxL) covariance estfmate S(K) iS

singular. In the singular case, either or both of the spatial averaging

operatinna discussed in Chapter II may be employed with good prospects for

*
If the signals are uncorrelated and a large number of time observations are

available, one can set M = L = 1 in which caae the nulling array coincides
with the physical array. If coherent signals are encountered, then the
nulling array corresponds to the ‘“averaged”subaperture discussed previously.

i
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I
i

arriving at a non-singular covariance estimate. However, the spatial averag-

ing operations discussed there do not usually yield a Toeplitz matrix.

The Toeplitz requirement may be imposed for one of two reasons. The

first argument centers on the computational costs fncurred in solving the
.

Wiener equation (4-15) with R used in place of R for the (estimated) error—

filter weights ~ Usually, the first element of ~ is constrained to be unity,

and the prediction error (variance) PM constitutes the remaining unknown. The

so-called “modern’”Levinson recursion [62] solves (4-11) extremely efficient-
.

ly, provided ~ is a Toeplitz (i.e., a correlation) matrix. The second argu-

ment binges on the minimum-phaae-property of the filter derived from the
,.

weights. In particular, if ~ is a positive-clefinite correlation matrix and ~

ie the (unique) solution of (4-15), then the poles and zeroes Of the z-trane-

form of the elements of w all lie inside the unit circle. A filter with this

property is said to be minimum-phaee [60]. Obviously, a minimum-phase filter

has a minimum-phase (and hence stable) inverse.

In e few specialized applications, the stability of the inverse filter ia

crucial (e.g., speech synthesis). However, many potential applications do not

involve sample function generation, and the stability issue becomes relatively

unimportant. Of course, computational costs are nearly always germane and due

consideration should be given to especially efficient procedures. Thus it iS

unfortunate, but hardly surpriafng, that the standard procedures for obtaining

correlation estimates do not work particularly well in a coherent eignal

environment. In

1 methods generally

prejudice towards
I

I yet untested).

fact, our simulation experience indicatea that correlation

perform worse than covariance methods. We aay this without

the “modified correlation” method described below (and as

Correlation Estimates

A popular method for generating correlation (lag) estimatea from an
,.

sample covariance matrix ~ is to first sum the entries on each diagonal

then divide the sums by L, i.e.,

LxL

4-24



: ~~L-~ ~)9. L ~=1
;2= 0,1,...,1-1

m-h?,m
(4-16)

It is a well-known fact that these estimates are always biased. Even when

E{;mn] = C
.

~-n , we find that the expected value of c is
!2

E{:l} = (1 - !/L)ct ; l~o

~,

Kvidently, the bias can be removed by a simple modification, i.e., the un-

biased estimatea

(4-17)

are generated by computing the average value along each diagonal. UnfOrtunat-
1

ely, the (Hermitian) Toeplitz matrix constructed from the lag estimates in (4-

17) may not be positive semi-definite. Since (4-16) is biased, neither Of

these estimates is recommended.

An alternative method for generating correlation estimates was suggested

recently by Ulrych and Ooe [40]. In terms of a spatially-averaged sample co-
.

variance matrix of the general form *&(K) with M < L (see Chapter II), sPa-
. . .

tially averaged lag estimatea ~ ~ (c., c1, . . ., CL-M)T are extracted frOm
.

the first column of Since spatial averaging only “shrinks” Toeplitz*%(K) . -

matrices, it follows that the spatially averaged lag estimates are unbiased.

Ulrych and Ooe also claim that the lag matrix constructed from these estimates

is non-negative definite.

The Burg Algorithm [61]

The popular Burg algorithm does not require lag estimates. In fact, it

is usually said that Burg derives the error filter weights directly from the

““data’”.As we shall see, the “data” generally takes the form of a covariance

estimate.

The Burg error filter weights are computed from an iterative relationship

of the form
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The

and,

%+1 = 3+ - in (%+)+

(“Levinson”) recursion (4-18) starts with

I

Al-
%– -0
in general,-

A-x-
%–

___

(4-18)

1s the ‘“zero-extension”of an arbitrary vector & The auperecript “t” in (4-

18) is the exchange operator (see Chapter II), and the nth reflection coef-

ficient in is estimated by minimizing the empirical nth order prediction

error. Since Burg treats the “original” data and the “exchanged””(i.e.,

reversed and conjugated) data on an equal baaia, the nth reflection cOef-

ficient kn may be obtained by solving*

.
k= <= min WH

~ -n+l Z-%-n 3+1
n

.

‘here2%-n
ia the appropriate spatially-averaged (sample)

and 3+1 ia given by (4-18) with in replaced by kn.

(4-19)

covariance matrix,

The key to the Burg algorithm ia that forward/backward averaging is

always employed. Under this assumption, the reflection coefficienta satisfy

Iin[ <1 (4-20)

provided the covariance estimates *&~ are positive-definite at each stage of

the recursion. Conaequently, Burg filters always have the minimum-phase

property.

*The procedure in (4-19) is applicable fOr any aamele cOvariance matrix R(K)
or, as auggeated by Burg [62], one may alao consider generalized covariance
estimatea where some of the data (records) are given more weight than otbera.
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Without going through

as

the detaila, the solution to (4-19) may be written

(4-21)

(4-22)

induced by the covariance estinate 2&-n , and

1
T

Z)*I (4-23)

is the (usual) norm associated with the inner product in (4-23). For-

ward/backward averaging guarantees

for any (n+l)-dimensional vector

Schwartz’s inequality establishes

found in Appendix D.

If only one data record is

(4-24)

x. Consequently, an easy application of

(i-20). The details of the argument may be

processed, the etandard form of the Burg

algorithm [63] calculates the reflection coefficient much more efficiently

than (4-21). However, the standard “one-1ook” algorithm cannot be used to

simultaneously “batch”’process more than one record. In direction-finding

applicationa, the number of observations (looks) may greatly exceed the length

of an individual record. In this case, the “multiple-look” versiOn Of Burg’s

algorithm becomes computational y attractive. However, when the minimum-phase

property fs unimportant, the multiple-look Burg algorithm haa no particular

advantage over the “modiffed covariance” method.
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Modified Covariante Method

The modified covariance method minimizes the quadratic form in (4-19)

subject only to the constraint that the leading (first) element of ~ be

unity. The only difference between this approach and the covariance method

diacuased in Chapter II is that the spatially-smoothed sample covariance

matrix is also forward/backward averaged. Ulrych and Clayton [65] refer to

this technique as a least aquarea method. The method has also been credited

to Nuttal [66].

Loosely apeaking, any of the methods discussed in this section for “solv-

ing” (4-15) are called “maximum entropy’”methods. These techniques could just

as well be called “autoregreesive’”methods or “linear prediction” methods.

Given a “’solution”~ derived via any of these methods, two standard procedures

for extracting the desired angle (frequency) eatImates are often employed.

Angle Estimates

In the usual power spectral density approach, the discrete Fourier trans-

form of the error filter weights (i.e., tbe elements of w) is computed on a

very fine grid. In adaptive array terminology, the magnitude of this function

is referred to as the “’adaptedpattern””. Local minima or “nulls” in the

adapted pattern correspond to potential angle estimates. The “maximum entrO-

PY” eetimate of the power spectral density ia generated by squaring and in-

verting the adapted pattern, and the “nulls’”in the latter correspond to the

“peaks” of the power spectral density estimate as is illustrated in Fig.

4-9. This approach is referred to here as the maximum entropy method (MEM).

An alternative ‘“line spectrum” approach calculates the roots of the

polynomial with coefficienta given by the error filter weighta (~). Taking tbe

argument of these complex roots provides M potential angle (frequency) esti-

mates. This technique is called the Autoregreasive Root Method (ARM). SPUr-

ious ARN estimatea are rejected by computing a power estimate for each poten-

tial angle estimate and comparing the power estimates to an appropriate

(noise) threshold. An effective technique for computing the power estimates

is discussed in the next chapter.
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E. Auto Regressive-MovingAverage (ARMA) Spectrum Modeling

It can be shown [87] that the sum of one or more plane wave signals in

the presence of additive white noise can be modeled by an ARMA process of the

form:

L M
rm- - z bicn-i

i=l
ai ‘m-i = ‘n ~=1

(4-25)

where c t is a zero-mean uncorrelated sequence with variance U: . Moreover,

the model of (4-25) can be shO~ tO alsO remain aPPrOPrfate when d~ffuae

mu]tlpath is present. Since pure autoregressive (AR) models [i.e., M-O in (4-

25)] only approximate the spectrum of these processes aa the number of poles

(L) approaches infinity, it seems reasonable that one could achieve better

resuIts by using an ARM model. In this section, we outline two AHMA modeling

approaches which were investigated in the course of the current study.

1. Unconditional Least Squares Estimation

The determination of least squarea estimates for the ARMA parameters ~ail

and {bi} when all variables are real has been described by Box and Jenkins

[22]. However, the case of complex (ai), {bf}, (rn~ and {et~ had nOt been

previously accomplished when our work was carried out. The basic idea is to

choose tbe {ai} and {bi} tO minimize the residuals

I= t:i lut12

L M
where ‘t = ‘t - i:l ai ‘t-i + & bi ‘t-i

{rn} are the complex received data

This is accomplished in several steps:

(1) estimate an initial set of values
some appropriate algorithm. The
adorited in our case was the

n=lto N.

for {ai} and {bil by
particular algorithm
modified Yule-Walker

(4-26)

(4-27)

pro&dure due to Kaveh [21] which will be diacuased
subsequently.
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(2) Minimize the objective function with respect to the ARM
parameters using a gradient descent method. This ie done
by computing the gradient of the objective function (4-
26) by finite differences, e.g.,

~1
~* I(al+8, a2, . ..)- I(al, a2, . . .b)/~

1
Several algorithms for minimizing I given the current ~
and b values and gradient were investigated. The most
atabl—eresults were found by ueing the Int. Math and Sci.
Library (IMSL) [241 conjugate gradient aubrOutine. ThiS
routine operatea on real variables only. Therefore, all
variables and data were broken down into real and
imaginary parts and the* optimization then proceeded
forward aa with real data.

One of the significant problems in accomplishing step 2 ariaes from the

need to avoid end effects on the generation of the reeiduals and therefore on

the accuracy of the estimates. We note from (4-13) that the M previous reeid-

uala and L previous values nf Xt are used tO generate ut. If we consider only

t>L (aa is the caae wfth the MS/AR ‘“modifiedcOvariance”’algOrithm), then

there are enough values Of Xt tO use in (4-13). However, the {Ui} fOr i<t dO

not represent measured quantities.— Rather, one must estimate them from the

data. Unfortunately, when applying (4-I3) repeatedly tO generate the Jut-i)~

we find that values of Xt for t<O are required to generate the ui when i < L.

The method used to alleviate (but not eliminate) this difficulty is to

use backforcaating of the data before the first observation by using (4-13)

and the backward residual equation

L* M
w =r-z - X b; Wn+i
n n

i=l
ai ‘n+i ~=1

Eq. (4.28) is used to generate Wn starting at n=N for

t=N, N-1, . . . 1 with Wn = O n~O

*As an outgrowth of his
Y.L. Chu is considering
pole-zero magnitudes and

(4-28)

work on the least equarea algorithm deecribed here,
the use of a constrained search algorithm based on
anglea aa a part of his S.B. thesis at M.I.T. [53].
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Furthermore, we assume that

‘n”xn= o fort>N (4-29)

The backforcasting procedure above was necessitated by the existance of

the zeros in the aasumed data transfer function whereaa with the MR/AR model-

ing these problems did not arise. Figure 4-11 illustrates the differences be-

tween these two approaches in terms of determining a whitening filter for the

received data.

Because of the backforcasting problem and the need for a computationally

demanding numerical search procedure, the least squares algorithm described

above ia not viewed aa currently practical for improved real time system

accuracy. Rather, we view it as furnishing a benchmark which one can use to

assess the performance loss with other more practical ARM.Atechniques

and obtain inafght fnto the potential available with an ARMA modeling approach

vis a via otlierapproaches.

2. Modified Yule-Walker (MYW) AMA Estimator

The diffiCUIt numerfcd problems associated with the general least

aquaree estimation procedure motivated the investigation with suboptimal

methods for estimating the ARMA parameters. There have been a nu~ber of

auboptimal estimators described recently in the literature [25-26]. We chOse

to focus on the ~ estimator considered by Raveh* [211 since that method had

been shown to be superior to some of the other approaches and comparable to

the Box-Jenkins in some limited cases [23].

The baaic idea is that Xt IS assumed to have an autocorrelation function

rt with power spectrum

~ (z) = B(z) B*I(z*)-lJ
x

D(z) D*I(Z*)-l\

*Prof. M. Kaveh of the Univ.
the course of these studfes.

(4-30)

of Minnesots was a consultant to Lincoln during
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,

H(oJ) y(mT)
WHITENING

TAPPED DELAY FILTER y WHITE WITH

LINE <yz>. p

P (O) = PIH(w)I-2 u = kt$sinQ/T

ME/AR
M

H(z) = 1 - ~ ake
-k

has only zeros
k=l

h(kT) input transient is M samples long

ARMA

H(z) = Ebkz-k/Xakz
-k

has poles and zeros

h(kT) input transient may last for all

Fig. 4-11. Digital whitening
of AR/ME and ARM estimation.

L samples

filter interpretation



where do = 1 and di = -ai for i > 1. Since only quadratic functions of the

{bi~ are required, Kaveh suggests ~nstead determining the fCi] such that

M
f Ckzk= B(z) B*I(2*)-1] . (4-31)
k--M

Eq. (4-31) can be interpreted as the spectrum of the residual prOcess {UtI

with the {$} the estimated autocorrelatfOn functiOn Of {ut}.

The AR coefficients are determined from the extended Yule-Walker equation

&~=fM

where

2 is the vector of the {ail

[

CM CM-1
~= CM+l CM

C2M-1 C2M-2

‘M =

[

CM-+l
.

.

C2M

. . .

. . .

. . .

We observe that when M=O (corresponding to

in (4-31) to (4-34) reduce to the classical

Following the calculation of the ~ by

that the {~k] can be found as

-*
MM

Ck=c-k=z Zi=o j-o ai a; Cli-j-kl

4-33

c1
C2

CM1

(4-32)

(4-33)

(4-34)

a Pure ME/M model), the equations

YU1e-Walker equations.

inverting &, Kaveh has shown [211
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It should be noted that the algorithm above is non recursive in that the

resulting ~ (or, ~) estimates are not used to improve on the & estimates.

This is because the effects of the zeros on the observed data were presumably

taken into effect by using the higher Order lags Of Ck in estimating ‘he &

A significant problem in”using this technique is the method by whfch ck

is estimated. Kavehts original paper [21] suggested the biased estimator of

eq. (4-16). Problems were encountered initially with negative power estimates

using this estimator, and some simulations were also carried out using the

unbiased estimate without any significant improvement. More recently,

Bruzzone and Kaveh [23] have suggested that the {ck~ should be linearly ta-

pered, e.g., by

Tk= l-k/K

to eliminate the negative power

slight) loss in resolution.

3. Order Determination

One of the important issues

order for the estimated spectrum.

K>M (4-36)

estimates at the expense of a (hopefully

in AMA estimation is the choice of model

This is complicated by the fact that in

genersl, one could choose L and M independently. However, the received signal

in most ATC applications should be adequately modeled as a sum of AR processes

and white noise where:

(a)

(b)

the plane waves corresponds to a first order AK process
with a pole on the unit circle, and

diffuse signals correspond to a first order process with
a pole inside the unit circle.

●

If the sum process spectrum has L poles, then it also will in general have M=L

zeros. Consequently, our studiee have focused cm the case M=L.

Several quantitative criteria have been suggested for determining the

optimum ARMA order for a given data set:
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1. the Akaike generalized AIC test [17]

AIC(L) = N In U* + 2a (M+L) (4-37)

where O* is the Lth order residual power and
l<a<3 (a = 1 is normally used), and

2. the Akaike final prediction error FPE criteria which
seeks to minimize a weighted residual sum of squares.

One problem with both of these criteria is that the whitening filter “memory”

corresponding to the {bi] parameters extends to times before the data has

2 ~or shOr~ data sets (i.e., a small number ‘farrived. Thus, the measured o

antenna elements) may heavily reflect the whitening filter transient response

as opposed to the steady state response.

It was not possible to carry out a detailed study of these order determi-

nation criteria within the time frame of the present study. Rather, our

studies considered simulation results with the correct choice for the given

simulation data and with values of L which were too large or too small so as

to gain some feeling for the model sensitivity to the choice of L.

F. Eigenvector Methods

Much of the current interest in eigenvector methods can be traced to the

work of Pisarenko. In [67], he re-examined Caratheodory’s trigonometric

moment problem, as extended by Szego [68]. This classic problem appliea

directly to the incoherent signal case when direction-finding with an ideal

array. Reddi [69] considered a general signal-in-space covariance matrix (see

Chapter II), hut his treatment of the coherent (singular) case was rather

incomplete. Schmidt [30] approached the direction-finding problem in a gener-

al manner and obtained the fundamental orthogonality result in Chapter II.

However, Schmidt did not discuss the important singular case that arises in

specular multipath environments.

Pisarenko’s Method

The underlying trigonometric moment problem (theorem) permits the follow-

ing assertion: Given a starting sequence Ice, c1, . . . , CN} of any (dis-

crete) correlation function, a consistent spectral representation can be
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constructed from M “line” spectral components (i.e., frequencyfpower pairs)

and a real constant (i.e., a ‘“white”noise power level). Moreover, M 6 N and

the parameters of the representation, including M, are uniquely determined by

the given correlation lags.

In order to calculate the frequencies and the power levels from the lags,

Pisarenko arranges the latter in a correlation matrix C. In terms of the—
“direction matrix” notation developed in Chapter 11, the Pisarenko decomposi-

tion may be written as

~ = V(a) Y VH(a) + v~-—-— - (4-38)

where a represents the (angular) frequencies, Y is a (real) positive-definite—

diagonal matrix containing the powers for the frequency components, and v is

the white noise level. It follows that v is the minimum eigenvalue of $_.

Nhen v is a multiple root (eigenvalue) of the characteristic equation, Pisa-

renko suggests taking successively smaller (principal) submatrices of & until

v becomes an isolated root (i.e., an eigenvalue with multiplicity one). As

soon as v is isolated, the eigenvector corresponding to v is determined and

the (complex) roots {z,~ of the “nul1 eigenvector polynomial” are computed.
J

These roots are distinct and always lie on the unit circle (in the complex—

plane). As usual, the angular frequencies {a+} are easily extracted frOm the

roots (i.e., ctj= arg zj). An equivalent, andJprobably more efficient, proce-

dure is obtained by applying the “modern” Levinson recursion to the signal

covarfance matrix C - v I. Note that the singular signal matrix is obtained——
from C by applying the (eigenvalue) noise power cancellation idea discussed in

Chapter II. At some point in the recursion, the computed prediction error

will be zero and, at this point, the error filter weights provide the coeffi-

cients for the null eigenvector polynomial.

The representation in (4-38) for a correlation matrix suggests that the

Pisaranko model is a special case of the general problem considered in Chapter

11. In a direction finding context, the Pisarenko model is only valid when an

ideal linear array receives incoherent signals. In this case, the sample
,.

covariance matrix R(K) approached the true correlation matrix C in (4-38) for—
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I

sufficiently large K. However, the remarkable feature of the Pisarenko decom-

position is that it remains valid, in an algebraic sense, for any correlation

estimate. Thus, for finite K one first constructs a correlation

estimate ~ from ~(K) using one of the techniques discussed in Chapter 4,
. . .

Section D. The Piaarenko method then generates estimates ~, v_,and

(diagonal) ~ such that

A

: = y(;) ~ f(;) + v J (4-39)

Given ~, Piearanko’s procedure or the modified Levinaon recursion discussed
. .

above may be used to determine v and a. Given these estimates, the remaining

power estimates follow easily, i.e.,

~ = ;+(; - ; I) ;+H (4-40)——— —

where ~ represents the pseudo-inverse of ~(a).

Interesting y, a generalized versinn of the Pisarenko method surfaces

from adaptive array theory if the usual linear constraint ia replaced by a

(quadratic) constraint on the norm of the array weights. Thus, the problem

02=minwHRw---
w

subject to lX12 = 1 leads

smallest eigenvalue of R.

to array weights given by the eigenvector(s) of the

Multiple Signal Classification (MuSIC) Algorithm

In [30], Schmidt proposed the MUSIC algorithm. In terms of our notation

(Chapter II), Schmidt’s direction-finding algorithm is

(4-41)
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for any linear array. Of course, the idea behind MUSIC is that the denomina-

tor of (4-41) (theoretical y) approached zero for a sufficiently near any true

angle rri. Given exact covariance information, the MUSIC algorithm does indeed

produce (very) Iarge peaks. However, when the “null” eigenvectors are eeti-

mated from a reasonable finite number of snapshots, the MUSIC

are not particularly sharp. The accuracy of the MUSIC angle

appreciably better than other more computationally efficient

algorithms; moreover, its resolution (detection) capability

cantly worse (see section V.B.2).

“epectral” peaks

estimates is not

super-resolution

may be signifi-

If no spatial averaging mare employed, MUSIC would fail completely in the

coherent case. Of course, the same is true for FILM,MEM, etc. In the simula-

tion results presented subsequently, the minimal amount of spatial smoothing

needed to guarantee perfect asymptotic performance was used in all caaes.

Eigen Asaiated Autoregressive Analysis (EAH)

In Chapter III, it was shown that the mu]tiple snapshot maximum likeli-

hood (ML) angIe processor behaves asymptotically like a single snapshot pro-

cessor operating on an eigenvector of the sample covariance matrix. Since the

exact ML processor is difficult to implement, even in the single snapshot

case, an approximation based on a more practical processor is proposed. The

increased sensitivity of the AR rooting method discussed in section D suggests

that ARM be applied to the principal components of the sample cOvariance

matrix (i.e., the eigenvectora with lsrge eigenvaluea). Thus, one employs

the modified covariance algorithm to first smooth the signal space projection

matrix ~.ES+ where ~ is a matrix constructed frOm the PrinciPal cOmPOnents Of

the sample covariance mxtrix*. This procedure is similar in spirit to noise

cancellation approaches which attempt to remove the noise power term along the

main diagonal of the covariance matrix. The angle estimatea are then extract-

ed from the smoothed covariance “estimste’”exactly as in the MM algorithm

*We may
contains

interpret ~+ as a processed covariance matrix (estimate) which
only the signal directional informatfon (see Chapter II).
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described previously. me resulting algorithm iS called the gigenvector

~utoregressive~oot method (EAR).
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v. PERFORMANCE ASSESSMENT

A. Assessment Approach

In Chapter 111, we obtained fundamental theoretical limits on angular

accuracy using the Cramer-Rao (CR) bound. Maximum likelihood (ML) angle

estimates which asymptotically approach the CR bound were investigated, but

algorithms for actually generating the ML estimates were (later) found to be

computationally unattractive. Subsequently, a number of more practical

approaches to the angle estimation problem were described in Chapter IV,

In this chapter, we present performance results obtained via Monte Carlo

and deterministic simulations for several promising super-resolution

schemes. At high SNR, the angular accuracy of these methods has been found to

be in reasonably good agreement with predicted values derived from the Cramer-

Rao theory.

One of the important issues considered is the performance improvement

which ❑ay be obtained by time averaging intermediate statistics (especially,

the covariance) and making an angle estimate on the averaged statistic as

opposed to averaging angle estimatea. One naturally expects an improvement in

performance as the number of snapshots available for averaging increases. Our

simulation results confirm this conjecture, although in some cases the im-

provement may be more or less pronounced than is predicted by the usual l/~

rule-of-thumb, where K is the number of independent observations.

One might well question the motivation for multiple-snapshot processors,

if averaging the output of a single-snapshot processor works just as well. In

the first place, a multiple-snapshot processor is probably more efficient and

will invariably have a lower detection threshold. Noreover, the angle estima-

tion performance immediately above the threshold may lie closer to the CR

bound.

While the preceding remarks are quite general and hence somewhat impre-

cise, they serve to emphasize the point that angular accuracy at very high SNR

is not necessarily the best criterion for asaessing the “resolution” Perfor-

mance of direction-finding algorithm. In fact, the ability of a processor to
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identify the correct number of signals present, especially at low SNR, may be

a much more fundamental issue than angular accuracy. Power estimates are

frequently required and, in some cases (e,g. multipath environment

characterization), estimates of relative signal phase may be desired.

Finally, one hae hopes that the problems of target splitting and spurio,ua

peaks that have recently received so much attention in the spectral estimation

cOmuni tY [2] will not degrade system performance at high SNR. Taken

collectively, the characteristic just described constitute a multi-faceted

but somewhat nebulous definition of resolution. In this chapter, these

criterion are refined and atatiatically quantified in a manner that will

support an objective assessment of the capability of any high-resolution,

direction-finding technique.

1. Decision Theoretic Assessment

The perfomsance assas sment approach developed for aasessing high-

resolution, direction-finding algorithms is illustrated in Fig. 5-1. The

algorithm under teat supplies data to the performance aaseasment (sub) program

in the form of signal reports. Each such raport consists of a list of paired

direction-of-arrival (DOA) and signal-to-noise ratio (SNR) estimatea. This

list is coniparedto the true DOA/SNR values. A suitable measure of error is

achieved with the help of an assignment algorithm which first associates the

signal estimatea witn the signals actually present. The assignment strategy

minimizes the sum of the angular miss distances subject to the provision that

no assignment will be made that results in an angle error greater than a beam-

width or a power error greater than 10 dB. In the event that mora signala are

reported than can be asaigned, an appropriate number of falae alarma is

recorded. Similarly, a miss counter is incremented for each true signal that

cannot be associated with any of the signal reporta. Of course, the angle and

power errors for each successful match are recorded. After a pre-determined

number of independent trials, statistical estimates of the false alarm rate,

miss probabilities, angle and power bias, and angle standard deviation are

computed from the Monte Carlo results. The Monte Carlo statistics msy be

piotted and/or compared to pre-determined limits that effectively constitute a
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statistical definition of resolution. Naturally, the resolution quantifiers

are somewhat subjective and may be modified to fit the requirements for a

specific application.

In order to illustrate our approach, the criteria shown in Fig. 5-1 will

be used to assess the performance of four of the algorithms discussed in the

previous chapter. The details of the simulation are discussed in Section B-1,

and results are presented in Section B-2.

2. Asymptotic Performance

The Monte Carlo decision theoretic approach discussed above is quite

comprehensive, but requires significant amounts of computer time to determine

pe.rf0rmance trade-offs. Consequently, we augmented this Monte Carlo

simulation with an alternative simulation model in which the observable is the

ensemble overage covariance matrix discussed in Chapter II. This particular

observable yields meaningful results only for the estimators (e.g., MSM, MLN,

ARM) which do not take advantage of the asymptotic covariance properties.

3. Assessment of Array Errors

The 140nteCarlo and deterministic simulations outlined above examine the

impact of additive noise (typically, from the receiver front ends) on the

various algorithms. Since this error source is analogous to the additive

white Gaussian noise typically encountered in time-series spectrum estimation,

there has been considerable attention to its effects on high-resolution tech-

niques [2]. However, there are several other error components which also

degrade performance that are not easily incorporated into the additive noise

representation. Principal among these are:

(1) AID conversion noise

(2) channel gain and phase errors

(3) antenna element pattern differences

Below we discuss each of these and indicate how they have been addressed in

the context of the present study.



i

The effects of round-off errors in the signal A/D conversion process will

depend on the quantity converted. Conversion of in-phase (I) and quadrature

(Q) components gives rise to an additive error which in most cases can be

regarded as analogous to front-end noise. The resulting noise is small when

the input signal levels are high, but can be aignificant at low signal levels

if there is a wide dynamic range of received signal strengths. Consequently,

a number of practical systems (including that used for tbe experiments dis-

cussed in Section D) digitize log amplitude and phase so as to obtain a rough-

ly constant quantization error characteristic over the full range of signal

levels. No general theory of the relative effects of amplitude versus phase

errors has been achieved for the angle estimators of greatest interest.
*

Consequently, the amplitudejphaae quantization effects have been examined both

by computer simulations and (implicitly) in the field tests.

Careful channel matching in both amplitude and phase is essential since

errors in the digitized wavefront may be interpreted by the adaptive algo-

rithms as corresponding to additional signal sources and/or cause errors in

the estimated position of the direct signal. Similar effects ariae with

conventional systems; however, the high resolution algorithms all employ

highly nonlinear operations on the received data. Thus, the effects of chan-

nel mismatch may be far more pronounced with the high-resolution algorithms.

As is the,case of quantization errors, no analytical theory has been

developed to date to predict the degradation as a function of the amplitude

and phase errors. Simulation studies were carried out and considerable atten-

tion was paid to reducing and quantifying the degree of channel mismatch tn

the field experiments (see Chapter VI).

Differences in the various antexma element patterns (due to element

differences and/or mutual coupling) produce angle-dependent amplitude and

phase errors similar to those due to poor channel equalization. In the exper-

imental data, particular care was taken to minimize these effects by:

*It was shown in the Doppler MM studies that amplitude errors will not, to
first order, affect the null position for a real
[29].
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(1) using elemente which
possible,

(2) using relatively large

(3) adjusting of the array
coupling effects.

were as physically identical aa

element spacinga,

physical configuration to minimize

The detaila of the minimization process are presented in Chapter VI and

Appendix A.

To summarize, conventional antenna array and receiving techniques result

in measurement amplitude and/or phase errors which cannot easilY be incorpo-

rated into the additive noise modelling discussed in the preceding sections.

Certain of these errors (in particular, A/D conversion round-off errors) could

be reduced by time averaging. However, msny of the other errors represent

unknown biases which must be minimized by careful system design. In the

absence of analytical theory to predict the effects of these errors on the

various algorithms, we have been forced tn examine the effects via computer

simulations and field experiments.

Appendix C describes simulations designed to provide insight into the

tolerable amplitude and phase errors for the more promising algorithms. The

epecific model adopted waa to assume independent log amplitude and phase

errora which were each uniformly distributed over an interval centered at zero

error. This particular model is viewed as quite appropriate for A/D quantiza-

tion and reasonable for channel equalization or element gain errors (since the

system calibration process should remove any taile of the equalization

process). Element pattern differences aa a function of azimuth and/or

elevation may have somewhat larger tails, but should at least be independent

from element to element. Mutual coupling effects between the elements can

yield correlated phase and amplitude errors (see Chapter VI), but development

of a detailed model was not possible in the context of the present study.

5-6
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B. Decision Theoretic (Monte Carlo) Simulations

1. Simulation Description

Figure 5-2 is a conceptual flow diagram of the (sub) program that gene-

rates simulation data for the performance assessment algorithm of Fig. S-l.

This particular direction-finding simulation has five essentially distinct

parts:

(1) signal/array model

(2) sample covariance generation

(3) covariance (data) processing options

(4) angle estimation options

(5) power estimation/threshold test

In addition, three nested loops are provided in order to conduct Monte Carlo

and/or parameter variation studies. The basic output of this program is a

collection of target (i.e., signal) reports. Each target report is a list of

paired angle/power estimates.

Currently, the simulation prograu handles the special case of two signals

received by an ideal linear array (i.e., a linear array with uniformly spaced,

isotropic elements). Up to 32 array elements may be specified. The relative

amplitude and phase of the signals and/or the array signal-to-noise ratio may

be varied. The signals aay be coherent, incoherent, or partially coherent.

Mutual coupling effects have not been included, and the possibility of

ambiguous direction estimates is ignored.

Sample covariance matricea consistent with the selected signal parameters

are generated in accordance with a complex Gaussian model for the observed

data. The (receiver) noise components contributed by the individual array

elements are assumed to be statistically independent and identically

distributed random variables. The signal-in-space is modelled aa a two-

dimensional, zero-mean complex Gaussian vector with a (2x2) covariance matrix

consistent with the specified level of signal coherence.
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The number of snapshots (observations) used to construct each sample

covariance matrix is a simulation parameter. In order to avoid excessively

high computation costs when the number of snapshots is large, an efficient

simulation technique based on the complex Wiahart distribution [721 has been

developed. In this technique, the array data ~(k) are described statistically

by

r(k) = L w(k)—— (5-1)

where ~(k) is a white “innovations” process normalized to unit variance. Note

that ~ is the lower triangular matrix obtained from the standard Cholesky

decomposition of the covariance& of the observed data, i.e.,

&=LLH . (5-2)——

.
clearly, any sample covariance matrix R(K) may be written aa

&K) = L ;(K)~H—. (5-3)

,.
where E(K) is an equivalent “sample” covariance for the innovations process.

The power of the representation in (5-3) stems frOm the fact that a
A

Cholesky-type representation for Y(K) can be generated very efficiently.

Following Goodman [72], we write

(5-4)

.
where T(K) is an upper triangular matrix. From the probability density func-

tion for i ([72], Eq. (1.9)), it can be shown that the (non-zero) elements Of

~ are zero-mean, (circular) complex Gaussian variates; a number Of well known

techniques (e.g., Box-Mullen) are available that generate Gaussion variates
.

efficiently. The T are jointly statistically independent in the special—

case E{~] = v~ (where v is any positive real number). In this case, the
.

diagonal elements of ~ can be conveniently constructed by taking square roots
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of statistically independent gamma variates. The IMSL (Fortran) routine GGMAR

[241 generatee gamma variates very efficiently using the (exact) method of

acceptance/ rejection testing [811.

The covariance processing options included in the simulation break down

into three general categories. The fundamental covariance spatial averaging

techniques were analyzed in some detail in Chapter II. Correlation (lag)

estimates were briefly reviewed in Chapter IV, Section D. Eigenvector methods

are discussed in Chapter IV, Section F. Loosely speaking, the results of

covariance proceaaing may be viewed as a “modified” covariance estimate. In

the case of correlation estimates, the “modified” covariance estimate is a

Toeplitz matrix. When eigenvector methods are employed, the result may

generally be viewed as a projection mstrix which ~ be “smoothed” via any Of

the aforementioned techniques.

Angle estimates may be extracted from an arbitrary covariance matrix ~-

by one of three baeic techniques. The beam scanning (BS) method is analOgOus

to conventional spectral analysia and amounts to computing the quadratic form

A .

YBJa) = f(dg x(a) (5-5)

where x(a) is the vector of (complex) array weights that “eteers”’the array

(beam) to the angle a. In the special caae of an ideal linear array,

lZq.(5-5) may be implemented by incoherently averaging FFT(s) of vectors

derived from any convenient “square root”’Of ~ (e.g., Cholesky, Herndtian,

etc.). This approach is used in the simulation to compute a apatially-

averaged “NuZAK” spectrum

(5-6)

.
where As ia tbe matrix of principal components (ace Chapter IV, Section F) of

the spatially averaged covariance estimate 21&(K) . Note that the MDZAK

spectrum can be interpreted as a modified scanning beam spectrum.
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When the data from an isotropic array are not spatially averaged, the—

MUZAR spectrum Eq. (5-6) is, for all intents and purposes, equivalent to the

MUSIC spectrum Eq. (4-4). The equivalence follows by invoking the resolution

of the identity (2.461) and the fact that Iv(a)12~ 1 for a (normalized) iso-—

tropic array.

The maximum likelihood method for computing spectral estimates was dis-

cussed in Chapter IV, Section C. The MLM spectral estimate

i_(a) = (&)IJ--ly( a))-1

is not currently an option in the Monte Carlo performance

tion, but is used in the deterministic simulations.

In the msximum entropy method(s), the Wiener equation

R’w= (~O. ,.O)T——

(5-2)

asaessment simula-

“solved”’for the ‘;optimum”
.

is error filter weights w , and the MEM spectral—

estimate is computed via

The three fundamental techniques discussed above

power spectral density estimates. In contrast, the

(5-8)

generate (centinuous)

sigml spectrum that

arises in the direction-finding problem posed in Chapter II consiste of a

finite number of spectral ‘“lines’”(impulses). The standard way to proceed in

these ci.rcumstanceeis to identify the spectral “line” frequencies from the

local maxima of the power spectral density function. In the case of an array

with identical and uniformly spaced elements, the “line” estimates may be
.

derived directly from w via the autoregressive root method (ARM) discussed in

Chapter IV, Section D.

A
Given any set (vector) of angle estimates Q , the signal-in-epace cOvar-

iance matrix P_,introduced in Chapter 11, may be estimated in a manner analo-
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gous to the technique incorporated in Pisarenkots method (see Chapter IV,

Section F), i.e.,

~ = ~lj-vo;+.— (5-9)

. .
where ~ is the pseudo-invarse of ~(~), & is the original covariance esti-

mate, and u is the true noise power level (assumed to be measurable and hence
.

known). The diagonal elements of P provide eatimatea of the power received—

from the varioua signal directions. In order to reduce the number of

spurious angle estimates, each power estimate is compared to a threshold

(u8ually related to the noise level). When a power estimate is below the

(signal) threshold, that power estimate and the corresponding angle estimate

are discarded. After the threshold test, the remaintng angle/power estimates

constitute a target report.

2. Monts Carlo Simulation Results

The relative performance of MSM, ARM, MUSIC, and EAR has been studied in

a simulated specular multipath environment using the decision theoretic Monte

Carlo package discussed above. Preliminary work nad suggested that the

performance of these (in fact, most) methods is poorest when the relative

phase between the direct and indirect signal is 0° and is beat at 90” relative

phase. In the simulation runs reported here, only these twO extreme caaes are

considered. The angular separation between the two signala waa systematically

varied between 0.1 and 0.8 beamwidth in 3-dB steps. An ideal array with nine

uniformly spaced elements was postulated. The relative amplitude of the two

signals was 1 dB and the relative phase is defined with respect to the center

element.

In most casea, the srray signal-to-noise ratio (per snapshot) was varied

between 10 and 50 dB in 5-dB increments. The benefits of time-averaging were

examined by considering sample sizes of 1, 10, and 100 anapahota. In order to

deterudne performance thresholds with reasonable granularity, and without

undue expense, all of the simulation statistics generated aa a functiOn Of SNR

were linearly interpolated. A study of the simulation statistics presented in

Figs. 5-3 through 5-6 indicate that no aignificant errors are introduced by

this simple interpolating stratagem.
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Using the decision theoretic criteria in Fig. 5-1, the resolution

capabilities og t.iEM,ARM, MUSIC, and EAR have been evaluated while varying the

number of snapshots as diecussed above. The reeults for the fa-vorable90°

relative phase caee are presented in Figs. 5-7 through 5-9. The minimum array

SNR required to satisfy all of our resolution criteria has been tabulated in

Table 5-1. These data are taken directly from the bar graphs in Figs. 5-7

through 5-9. A similar tabulation is provided in ‘Table5-2 for the worst case

relative phase (0°).

The emulation results euggest chat EAR prOvides th= best angular

resolution when a large number of snapsbozs are available. If only one

snapshot is proceseed, angular resolution ie rather severely limited by che

array,SNR and all””of “the methods.perf.Grm..aboutthe same. .Givena moderate~~~

number of ..s.napshots(i.e., approximately the same as the number .of antenna~~~

elements),the eignal processing performance,improves s~bstamtially and, .!?si~

the.e.imgle-lookcase> all of .Lhemethodsf are equally well.

c. SimulationResults with Deterministic Observation Models

The asymptotic performance of various estimators as the number of time

observation (K) approaches infinity is of interest in t“hattheperformance of ~~

many eetimator.sclosely approximates their asymptotic performance for rela-

tively small numbers of time samples.

vialingperformance parametric studies

ture.

This approach is also useful for pro-

with a smaller computer time expendi-

The eigenanalysis techniques (i.e., MUSIC and EAR) will generally work

perfectly in the asymptotic limit provided that sufficient (i.e., some) spa-

tial averaging is accomplished and the number of signals to be resolved is

sufficiently less than the number of array elements (as indicated in Chapter

II). Thus, tbe

ARM, MLM) which

observations.

attention here was focused on the other estimators (e.g., MRM,

do not explicitly take advantage of an infinite number of time
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TABLE 5-1

MINIMUN ARRAY SNR TO RI,SOLVE TWO SIGNALS 90° OUT-OF-PHASE
(RELATIVE AkfPLITUDE= I DB)

MUSIC
MEM
EAR
AEM

T
49 dB 40 dB
~6.dB ,..

43 dB
.48 dB 43 dB
~48 dB 44 dB ~~~

a) 1 Look

0.8 BW

34 dB
38 dB
37 dB
37 dB.:

.SEPARATION’ O.l BW 0.2 BW 0.4BW
METHOD”

0..8.Bw

ABM 35 dB 29 dR ... 24 dE 17 dB
EAR ~ 36dB 31 dB 24 dB 19 dB
MEM 43dB 30 dB ... ...23dB 17.dB..

MUSIC 44 dB 3odB ~~~ ““”24.dB 17 dB

b) 10 Looks

SEPARATION 0.1 BW 0.2 BW 0.4 BW 0.8 BW
METHOD

I

EAR 25 dB 20 dB 14 dB 12 dB
MUSIC 34 dB 22 dB 14 dB
ABM 34 dB

<10 dB
24 dB 15 dB 13 dB

MEM 35 dB 25 dB 16 dB 13 dB

c) 100 Looks
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TABLE 5-2

MINIMUM ARRAY SNR TO RESOLVE TWO
(RELATIVE AMPLITUDE =

IN-PHASE SIGNALS
1 DB)

MEM
MUSIC
ARM
EAR II

58 dB 43 dB
59 dB 44 dB
58 dB 47 dB
58 dB 47 dB

a) 1 LooK

,:

NETHOD

EAR 39 dB 26 dB

MUSIC 40 dB 25 dB

MBM 42 dB 29 dB

ARM 43 dB 29 dB

b) 10 Looks

MRTHOD

EAR 39 dB 27 dB 16 dB

MUSIC 48 dB 30 dB 17 dB

MEM >50 dB 33 dB 14 dB

ARM 49 dB 35 dB 24 dB

c) 100 LOOKS
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The observation model here is the ensemble average covarianceF&=~P V_+

~ which was introduced in Chapter

for g, name1y:

II. We considered the two limiting casea

(i)

(ii)

The

a singular ~ whereby Pnm = P: pmne’~mn where pm is the
relative amplitude of signal m to signal n and Omn is the
relative rf phase at the array center (this woui~ corre-
spond to multipath with low scalloping rates), and

a diagonal~ whereby Pmn = pm26m corresponding to uncor-
related signal sources or multipath with high scalloping
rates. The diagonal ~ (i.e., incoherent) case is ba-
lieved to provide a lower bound on the coherent perfor-
mance as well as being a benchmark by which our nugei:kbal
results can be compared with those of other researchei”s.

degree of covariance spatial smoothing used to obtain numerical

results in these two casea was smsll. In the case of incoherent signals, all

diagonals of R are equal (i.e., the covariance matrix is Toeplitz) and the

best performance is typically obtained by using the largest possible order for

a given estimator. With a singular P, we have found that only pairwise

smoothing (i.e., a model order which is one less than that used for the inco-

herent case or, two subapertures) yielded the beat results.

1. ‘twoPlane Wave Cases

Figures 5-10 and 5-11 show the MEM, MLM and conventional beamsum spectra

at fixed separation for incoherent signals. For those cases, the spectrum

peaks ganerally fell within 0.05 beamwidth of the true angle provided that

there was at least a l-dLldip between adjacent peaka.

(a) proper number of peaks which are at least 3
noise level, and

(b) at least 1 dB dip between peaks

Thue, the criteria

dB above the

were used to define successful operation. By repeating such simulations at a

variety of separation angles and SNR values, it was possible to define thres-

holds for successful performance as shown in Fig. 5-12. Also aho~ in Fig. 5-

12 ia the MLM tradeoff curve of Cox [3] which wae shown earlier in Fig. 4-5.

The good agreement between Cox’s results and ours is viewed as confirming the
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accuracy of our numerical computations. The MEM results showed similar good

agreement with the resolution curves obtained by Gabriel [1] using the

Applebaum-llowellsadaptive nulling array algorithm.

Baaed on Cox!s result that the MLM resolution performance is very weakly

dependent cm relative signal levels provided that the SNK is that of the

weaker signal, simulations were made for incoherent signals with relative

power levels of 10 and 20 dB. The spectra in these case (Figs. 5-13 and 5-14)
*

show the large power estimate biasea which can arise with the raw NEM spectra

if. an alternative power estimation technique.:such ..asEq. (5-9) is not .

utilized. Figures 5-15 and 5-lf..ahowthe corresponding separation angle”:-SNR

trade-offs for successful resolution angle estimation. We see that both the.

MLM and NEM performance is largelyifldependent of relative.power levels,

wh.ereasrhe beamsum resolution is significantly greater (i.e., a factor of 2): ‘

than the Rayl.eighlimit at .largedifferences in relative power level.

Figure 5-I7 compares the ARN technique with the other three techniques

for incoherent sigiials:which differ by..1dB and 10 dB.. We see Ehat ~the ARM

performance is substantially better at small separation angles. The

performance improvement in this caae with ARM can be explained in terms of the

respective error filterzero locations as shown..in Fig. 5-18. When theSNtl is

high, the principal zeros (i.e., those with largest modulus) lie on the unit

circle at z values corresponding to the plane-wave arrival angles. As the SNR

decreases, the zero corresponding to the weaker plane wave moves inside the

unit circle. When the zero has moved inside the unit circle by an amount

comparable to tha z-plane displacement between the infinite SNR zero

locationa, the spectrum will typically show a single peak near the angle of

the larger plane wave. However, the zero locations in the z plane still

indicate the location of the infinite SNR zeros and hence can be used.

Figures 5-19 to 5-22 show the corresponding resolution thresholds of a 9-

element array for two coherent plane waves differing in power by 4 dB with the

largest possible model orders. Figures 5-23 to 5-25 are the corresponding

*
Approximately a square-law suppression of the weaker signal.
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results for the same signal environment, but lower model ordars. Forward-

backward smoothing was used in all cases. The lower model order (i.e.,

greater degree of spatial averaging) is seen to be beneficial in both cases.

The resolution criteria used here were similar to those used for tbe

incoherent case:

(a) a proper *umber of peaks (or root locations) which are at
least 3 dB above the nominal noise level,

(b) angular error < the lesser of (1/30 BW,...1/3 angular
separation)...

The fra.ctionai.angular separation criterion is primarily::needed

separation angles(i.e., < 0.1 BW)..witha 90”..phasedifference..

.at..small

The resolution thresholds”for 0° and 180° relative phase are seen to be

quite similar. However, the failure mechanism is..quite different aa Sbo-wnin

Figs. 5-25 aud 5-26. Thesp.ectra for the inphasecondi”t”iontypically show .a

single.peak located “betweenthe two plane-wave..arrivalangles. By cofitrast,

separate peaks occur in the out-nf-phase condition, but the peak locations are

typically much further apart than the actual plane waves.

The rather odd “’S””shaped threshold curve for a 900””phase condition ia

due to the angle error criteria. ..Insome SNR.regimesj the error.changea sign

as one decreaaes the separation angle at fixed SNR. This causes the

resolution threshold to decrease in some cases as the eeparatiori angle

decreases. By contrast, when the angle error near threshold is always of a

given sign (as in the 0“ or 180° cases), the resolution threshold increases

monotonically as angular spectrum decreases.

2. Three Plane-Wave Caaes

With conventional Fourier techniques (using low sidelobe spectrum anal-

ysis windows), one can define a resolution cell which characterize the min-

imum angular separation for resolving a number of plane waves. Since the

various “high resolution” techniques utilize nonlinear operations on the

received data, one cannot aasume a priori that the resolution thresholds for

three (or more) plane waves will be similar to those for two plane waves.
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Thus, a limited number of simulations <wereconducted to

to which three signals could be successfully resolved

high-resolution techniques.

The large numbar of possible amplitude/arrival t

determine the extent

using representative

angle/relative phase

relationships for three plane waves made it impossible to accomplish a com-

plete assessment. Rather, we have attempted to investigate two “canonical”

cases and two cases which relate to typical MLS/ATC surveillance multipath

problems. Figure 5-27 shows the .pLane wave amplitude and a@e-Of-arrival

relationships for the four cases considered.. h all cases, the separation

angle parameter e..wasthe independent.var.iable.withche array SNR required to

reach threshold acting as the dependent variable. For the two canoniCal

cases; the threehold”crit”eria.were identical..to those used in the two plane ~~~

wavecases; namely an angular error less than the Iuinirntim.of (1/30 BW, 1/3

8). For the two multipath-related problems, the looser criteria of 0.”1“BW

angular error..wasused ‘“onthe grounds that the current system performance in

such :cases...isso poor. that 0.1BW errors would represent a substantial““”

improvement.

Figures 5-28 :and 5-29 compare the uncorrelated and correle?tedinphase

signal performance for canonical case...1. In both cases, thepresence of a

third signal causes the resolution threeholda to rise substantially over that

for two signals with the same separation. For both the correlated and

uncorrelated signals, thresholds for three equally spaced plane waves are

tYPicallY about twice those for two plane waves with the same spacing. The

MLM performance degradation is approximately the same in dB as that for MRM at

the same angular separation.

Figure 5-30 compares the performance with correlated and uncorrelated

signals for canonical case 2. Here, we are interested in determining whether

a third plana wave, which ia quite resolvable by classical criteria, will

unduly effeet the ability to resolve two closely spaced plane waves. COmpar-

ing Fig. 5-30 with the corresponding two plane wave results (Figs. 5-12

19), wa see that the existence of the third plane wave had relatively

effect on the MEM and MLM thresholds, but does cause some degradation

performance against uncorrelated signals.
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Figures 5-31 and 5-32 compare the correlated and uncorrelated signal

resolution performance for multipath case No. 1. This case was intended to

correspond to the occurrence of elevation multipath consisting of specular

reflections at the image angle and from near the horizon as well as the direct

signal at a positive elevation angle. The plane wave near the horizon ceuld

be viewed aa a (very) crude appr.ximatinn to diffuee multipath from an

extended region near the horizon [14]. The principal problem here is

identification of the center plane wave, since there are larger plane waves to

either side.

At 1 BW: separation, the uncorrelated resohitiotrthresholds are fairly”

similar to those for two-signalresolution. However~...atO.5 BW.separation

angle; the SNR required fort!LM and MF.Mare some 10dB higher for the three-

aignal case, but ABM ia similar. At smalIer““separationangles, the differ-

ences are quite large.. Straight-line fits to the curves yielded the following.

slopes:

dB/decadeof separation angle
two plane waves three plane waves

MEM 15

ARM 28

MLM 40

The two correlated

case where the middle

waves has a threshold

case. It would appeaI

50

52...

5&?

signal cases show roughly similar elopes; however, the

plane wave is in quadrature with the other two plane

which is 5 to 12 dB lower than the “all in-phase”

from Fig. 5-32 that for typical field measurement SNR

values of 40 dB, it will be difficult to resolve elevation ndtipath signals

near the horizon for direct signal angles of less than 0.7 BW.

Figures 5-33 and 5-34 compare the correlated and uncorrelated resolution

performance for multipath case No. 2. This caae is intended to roughly repre-

sent a common azimuth ehadowing problem wherein the direct signal diffracts

over the top of the obstruction while interfering signale diffract around the

aide of the obstacle. The uncorrelated and coherent signalfin-phase thresh-

olds are quite similar to canonical case No. 1, as would be expected, since
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the only difference is in the amplitudes of the two outer plane waves. The

most difficult case for conventional system angle-of-arrivsl estimation is

when one or both of the outer sigfialsare out of phsse with the center sig-

nal. Comp&ring Figs. 5-33 and 5-34, we see that the out-of-phase conditions

yield -resoliitionthresholds which are similar to or lower than the inphese

case.

D. Experimental Dats Comparison

Four processing technique (MEM, MLM, .MUSICiand ARN) discussed in the

previous chapter wereapplied to two.groups of field date. Representative

results are presented here. The first group of field”’data was obtained from a

series of experiments at tbe,Idncoln Laboratory.Antenna Test.Range,where our

purpoee was.to resolve two..a=imuthally distribuced signal sources. HereS the

signal environment was completely ktiown,since we set up two signal sources to

radiate with known power ratio, signal-to-noise ratio (SNR).5azimuthal-angle

separation, and:relative phase. The second group of field..data:was obtained

from..variousfield measurements at.several test. sites of different terrairi

types,where our Dbjective was to characterize .terrain multipa’ch environment.

Here, the received signal envi.rcmment.:was partially unknown. That is, we.did

not know the number of multipath signals, .t.heirangles of arrivals, and their

relative signal power.

As noted in the previous section, there are several computational 0pti0n8

available to a given proceeding technique, and in general, different options

will yield different results. For example, different MLM results can be

obtained with varioua options of estimating the covariance matrix. The re-

sults presented below were obtained with those options which we judged to be

suitable for a given estimation technique when only a single snapehot was

available. For MEN and ARM, the prediction error filter coefficient were

computed based on tbe modified covariance method with the filter length (LRA)

set around L/3+1 (L is the number of sensor elements). For MLM, the modified

covariance matrix was used with the order of around L/2+1. For MUSIC, the

unbiased covariance estimate was used in the first group of field data and the

modified covariance estimate with the order of around 2L13 wae used in the
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second group of field data. The number of eigenvalues selected for MUSIC was

the number of those eigenvalues which were greater than the apparent noise

level. Table 5-3 summarizes the actual

used in various caaes.

The

1. First Group of Field Data:

experimental setup for obtaining

parameter values (i.e., LRA, etc.)

Known Signal Environment

this group of field data ia shown in

Fig. 5-35. The first signal source was aet at 0° with respect to the receiv-

ing array boresight, and the second signal source waa aet at any desired angu-

lar separation (azimuth) with respect to the first signal eource. Signals

radiated from two sources were frou the same signal generator, and the

relative phase between two signals was varied from 0° to 360” during a given

measurement. For aperture sampling of the incoming signal, we used a 19-

element 56.7-wavelength (A) aperture C-band array whose beamwidth (BW) was

about 1°. Here, we are interested in knowing (1) if various signal processing

techniques can resolve these two signal sources at a given angular separation

and (2) how the errors in the estimated azimuth angle of the signal aourcea

vary with the relative RF phase between two sources.

Figures 5-36 and 5-37 show the results from the case #1 where angular

separation (Oaep) between two signal aourcea was 1 BW, the power ratio (P1/P2)

was abOut 3 dB and the single antenna SNR waa about 33 dti. Here, the esti-

mated angle errors on the arrival angles of two aignala were plotted as a

function of the relative phase between two signal sources. Figure 5-36 is for

the first signal source, and Fig. 5-37 is for the second signal source. For

this case, all four techniques indicate the existence of two signal components

in the incoming signal for all relative phases. MEM, MLM, and ARM yield

similar angle errors for both signal sources. The peak angle error is around

0.07 BW for the first signal, and around 0.1 BW for the second signal. MUSIC

shows much larger angle errors than the other techniques, especially for the

second signal source. Also, the angle error from MUSIC showa much greater

dependence Orithe relative phase between two signal sources. The larger angle

errors occur around the relative phases of *180° and O“ and the smaller errors

occur around the relative phases of *90°.
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~irstgroup
of data

;econdgroup
of data

TA8LE 5-3

SWRY OF PARAMETER VALUES

CASE

Caaes 1-4
(Fig. 5-2 to 5-9)

Hanscom Airport
L band (Fig. 5-11)
C band (Fig. 5-12)

Fort Devens
L band (Fig. 5-13)
C band (Fig. 5-14)

Otis AFB
L band (Fig. 5-15)
C band (Fig. 5-16)

MEM, ARM I iYLM I MUSIC

L~( 1) NORD(2) NORCX3)
#A(4)

8 9 -2

3 4 -2
7 8 13 4

5 5 63
8 9 13 4

5 5 63
8 9 13 4

L

(1) LRA: Prediction error filter length.
(2) NORD: Order of modified covariance matrix.
(3) FOr the firsc group Of data and the L-band Hanscom Airport data, the

unbiaaed covariance estimate was used. The modified covarlance estimate
was used for the rest of the cases.

(4) #a: number of eigenvaluea selected.
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Figures 5-38 and 5-39 show similar results for case #2 where @sep = 1 BW,

P~/P2 = 10 dB and SNR . 30 dB, Figure 5-38 gives the angle errore for the

first signal, and Fig. 5-39 gives the corresponding errors for the second

signal. Again, all four techniques can resolve two signal sources for all

relative phases, although the second signal is much “weakerin Ehis case than

in the previoue case with the same Osep and SNR (F1/F2 = 10 dB versus 3 dB).

For the first sigm?.1source, MEM, MLM, and ARM again result in similar angle

errors, with the Reak angle error of about 0.03 BW; while the MUSIC yields

much larger errors. (0,08 BW) for the relative phaaes near A180.0. For the

second signal source, MSN and “ARk..app.ear to give slightly sma~~er errors than

MLM,..0..1.BIJversus.0.15 BW; while MUSIC showe much larger errors of 0.25 BW ““”

nearthe *180” relative phases endO. 55 BW around the 0° relative phase. AS

compared te the MEM, MLM; and ARM, the MUSIC angle error Is much more

sensitive to there!.ative phase betweentwo signal sources.

Figures...404Oand5-41 show the results for the..case #3, where $~ep = 0.5 ...

BW, P1/P2 .E3 dB and. SNR.:.35 dB.... The angle errors...for the: fi~st- Signal

source are given in Fig. 5-40,:amd those for the second signal source are

shown iri””Fig. 5-41. Here, only the ARIand MUSIC technique..correctly iridi-

cate the .ex%stenceof two aignak components in the incoming signal:for all

relative phaaes between two signals. The NEM technique only detects one

signal for the relative phases around 0°, and lU,i.fdoee not yield any second

signal at all. Contrary to the previous two cases, now the MUSIC angle errors

are about the same as the ARM angle errors for both two signal sources. Also,

now both the MUSIC and AM angle errors show the strong dependence on the

relative phase between two signals. For the first signal, both MUSIC and ARN

show larger errors of 0.25 BW near *180” relative phases and 0.15 BW around

the O“ relative phase. For the second signal, MUSIC has larger errors of 0.45

BW near the +180° relative phases, while ARM shows larger errors of O.5 BW

around the 0° relative phaes. For those relative phases where MBM can resolve

the two signale, the MEM angle errors are about the same as those for ARM.

Figures 5-42 and 5-43 show tbe results for the case #4, where e~ep = 0.5

BW, P1/P2 = 10 dB and SNR = 30 dB, Figure 5-42 givea the angle errors for the

first signal, and Fig. 5-43 gives the corresponding errors for the second sig-
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nal. For this case, only ARM indicates”the existence of two signal components

in the fncoudng signal for all relative phases between two signals. MUSIC

misses the detection of the second signal around 0° relative phase, while the

MEM yields two signal detections only for the relative phases around +90°.

Again, MLM fails to reveal the second signal. For the first signal, the peak

ARM angle errors are about 0.09 BW for the relative phaaes near *180° and

0°. For the second signal, the angle errors are much larger, especially near

the O“ relativa phase where errors in the order of 0.7 - 1.0 IIWare observed.

Table 5-4 summar.i.zesthe results for the abcwe four cases. For the

larger anguiarseparation between two signals such as 1 BW in the...firattwo

cases,..$t appears that(1) all four pr.w=ssing techniques can resOlve twO

signals,..and(2) the performance of the MUSIC technique was poorer than the

other ttlree.techniques in terme.:ofangle error and much more sensitive to the

relative phase between the.two signals. For the smaller angular separation,

such as 0.5 BW. in the ~~last two cases; only the ARM technique can detect two

signal sources for all relatLve .phasss;however,..the.angle errors.are:consid-

erably greater than those .ifi’the first.two cases of larger angular separation.

It e.hm~ldbe noted, however; that :there was only a single true snapshot

of array dat.a...svailableat each relative phase angle. The Monte Carlo and

deterministic simulation results suggest that the eigenanalysis and MEM/ARM

techniques would have shown more sizable performance advantages had some

degree of time averaging been utilized.

2. Second Group of Field Data: Unknown Muitipath Environment

The bulk of the discussion and analysis above has centered on detection

and parameter estimation for a small number of plane wavea. In this section,

we describe the application of the high-resolution techniques to some experi-

mental terrain scattering field data in which our objective is to characterize

the characteriatice of refiection environment. The approach to performance

aaseasment here wili differ considerably from that in the earlier portion of

this chapter in that the “true” number and amplitudes of planes waves is not

known.

diffuse

Further complicating the data in this case is the possibility of

multipath, i.e., signals arriving from an extended angular region.
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,

TABLE 5-4

SUMMARY OF RESULTS FOR TWO SIGNAL CASES

Detection of
AO**(BW) Strong Dependence

Both of Angl;*~rror on
Technique Two Signals* Ist Signal 2nd Signal $

MEM 1 0.07 0.1 NO

Case 1
MLM 1 0.04 0.1 No

MUSIC 1 0.1 0.4 Yes

Awl 1 0.07 0.1 No

NEM 1 0.03 0.1 No

Case 2
Mm 1 0.03 0.3 No

MUSIC 1 0.08 0.5 Yes

ARM 1 0.04 0.1 No

MR?4 112 0.2 Yes

Case 3
MLN o Yes

MUSIC 1 0.3 0.45 y<3
.

ARM 1 0.2 0.5 Yes

MEN 1/2 0.1 Yes

Case 4
m o Yes

MUSIC 1/2 0.13 Yes

L
ARM 1 0.1 1.0 Yes

*
Detection of both two signals, 1: for all $, 1/2: for part of $, 0: no detection

**A8: Peak angle error in beamwidths (BW)

***
~: Relative phase between two signals

Case 1: 8 = 1 BW, pl/p2 * 3
sep

Case 2: 6 = 1 BW, P1/P2 z 10
sep

Case 3: @ = 0.5 BW, .Pi/P2-
sep

Case 4: $3
Sep = 0“5 ‘w’ ‘1’F2 *

dB, SNR a 33

dB, SNR ~ 30

dB

dB

3 dB, SNR * 35 dB

10 dB, SNR M 30 d~
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Spectrum shape is viewed as a possibly important parameter if one is to dis-

tinguish between a discrete specular reflection environment as opposed to a

mixture of specular and diffuse multipath.

Figure 5-44 shows the equipment setup for the ground-reflection field

measurements to obtain this group of field data. Signals (1090-MHz L-band and

5.2-Gliz C-band) were radiated from a helicopter, flying vertical

descent/ascent flight profiles at distances of 0.5 to 1,5 nmi fcornthe receiv-

ing antenna arrays. The incoming signal at the receiving antenna will

normally consist of a eignal arriving at a positive elevation angle

(corresponding to the direct signal coming from the helicopter) and other

signals generally at negative elevation angles (corresponding to various

ground reflections from terrain features.) Here our objective is to

characterize the elevation multipath environment (i.e., number of inultipath

components, their arrival angles and signal levels) through the angular power

spectral estimates of the incoming signal by various signal processing

techniques. The results shown below were obtained with a 9-element 25.9k-

aperture L-band array and a 19-element 56.7a aperture C-band array.

Figure 5-45 shows the L-band angular power spectral estimate for a flight

test in which the target helicopter was at an elevation angle near 2°. Figure

5-46 gives the corresponding C-band result. The terrain in front of the

receiving antenna array consisted of a fairly flat graas field adjscent to the

main runway at Hanscom Airport, Massachusetts. For the L-band data, it can be

seen that all four techniques suggest the presence of two signals, one direct

signal and one ground-reflected signal. All four techniques yield the same
*

angle and relative power estimates of two arrival signals. In terms of the

appearance of the angular power spectrum, it appears that the MEM shows sharp-

*The estimation of the power relative to the direct signal was obtained by
least-squares fit of the meaaured data with the signal model consisting of
various plane waves arriving at the estimated angles. The direct signal power
is taken to be O dB. The relative power levels are indicated by the letters
,*,, ,~t, ‘Mt, and ‘O’ for MSM, MLM, MOSIC, and ARM, respectively.
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Fig. 5-44. Aperture sampling experimental con-
figuration for terrain multipath measurement.
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er spectral peaks and much lower background spectral level. For the C-band

data, ignoring the spectral peak around -30 dB, again all four techniques

yield the came number of signal arrivals (4), the direct signal at 1.8”, and

the other three signals at negative elevation angles, which are believed to be

the ground–reflected signals. Also, the indicated signal levels and arrival

angles of varioue signal components are very much the same among the four

techniques, except that the identification of various reflected signals with

the MLM technique is more difficult than as that with other techniques.

Figures 5-47..(L-band)and 5-48:{C-band) show the spectral estimates for a

flight test in which the””target::helicopterelevation angle was arord 4.2”.

This field test was taken at the golf course at Fer.t:Devens,Massachusetts,

where the terrain was rolling. FortheL-”band data, all four techniques

suggest the arrival of two ground-reflected eignald”’and yield very similar

angle andpower estimates of theseaignal components. As cmxpared to the MSM-

and MUSIC spectral estimates, the MLM angular power spectrum hasmuch brOader

peaks and much .higker background spectrallevel. For the C-band data,...the

four techniques do not quite.agree with’each .other.in terms of the number of

signal arrivals. However, for those three signal componen.tawhicb””appearin.

all four estimates, all four techniques give the similar indication of arrival

angles and signal levels. ARM and MUSIC indicate one more signal arrival

around 5.5”* at -6 dB --8

arrival at -0.6” at -15 dB.

In the four cases shown

dB, while ARM and ME]! suggest another signal

above (Figs. 5-4.5to 5-48), we nntice that the

multipath separating angles (i.e., the separating angle between the direct

signal and the closest ground-reflected signal) are all mnre than twn beam-

widths. For this larger multipath separation, all four processing techniques

accurately estimated the target helicopter
**

elevation angle and gave

*
If we interpret this signal arrival to be a grnund reflection, the true

arrival angle shnuld be around -12” (since the grating lobe of our C-band
array appeara at about every 18”).

**The larger angle deviatinn of the estimated angle from the theodolite track-
ing angli obs~rved in Fig. 5-47 is believed to be caused by errnnenus
thendnlite tracking.
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essentially identical estimates of the arrival angles and signal levels of

major ground reflected signal components. The multipath separation angles for

the following two cases are less than one beamwidth.

Figures 5-49 (L-band) and 5-50 (C-band) show ths spectral estimates for a

flight test at Otis AFB, Massachusetts, in which the target helicopter was at

aromrd 0.5° elevation. The terrain at this test site consisted of various

small-scale bumps on a fairly flat piece of barren ground. For the L-band

data, the MEM, ARM, and MUSIC indicate one high-level ground-reflected signal

in addition :tothe direct signal.arrival at 0,6°, while thetiLF4“onlyshows a

broad peak at OO.” For the C-band data, although 14EM,ARM, and MUSIC again

suggestone strong ground-reflected signs.l;the estimates of.the arrival angle :

and the multipath level aresomewhat ..different (-O.5” at -2”dB indicated.by..,

the MEM and ARM versus -0,’4°at +2 dB given by the MUSIC). AIso, .as pre-

viously observed, the indications of various low-level signal arrivals are

di.fferentamong. various...processingtechniques ... Again, as observed in the

L-band data, MLM only gives one spectralpeak at 0“.

For these two cases, the separation angles between the direct and the

ground-refIected signals..areabout 1.2° (or 0.6.BW) and 0.8- (m 0.8BW.) for

the L- and the C-band cases, respectively. This gives us the opportunity to

compare results of terrain reflection measurements here with those of twO

signal measurements at the antenna test range discussed previously. To make

the comparison, we need to know the RF phase of the ground-reflected signal

relative to the direct signal at the phase center of our L-band (or C-band)

antenna array. This RF phase* of the ground reflection is estimated to be

about -50° for the L-band case and about -160° for the C-band caae. For the

L-band case (O.6 BW separation and -50” relative phase), the two signal

measurement results for the case of 0.5 BW separation and 3 dB power ratio

*The RF phase of the ground-reflected signal relative to the direct signal at
the Dhaae center of the receiving array was estimated aasuming the helicopter-.
waa above the flat ground at the theodolite
estimate includes the phase delay due to the
the direct signal and the ground reflection ae
the reflection on the ground.
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(Figs. 5-40 and 5-41) suggest that (1) the MLM technique cannot resolve two

signals and (2) the MSM, ARM, and MUSIC techniques should give the fairly

accurate angle estimates for both signal arrivals. This agrees very well with

that being observed here in the L-band spectral estimatea (Fig. 5-49). For,,

the C-band case (0.8 BW separation and -160° relative phase), the two signal

measurement results for the case of 1 BW separation and 3 dB power ratio

(Figs. 5-36 and 5-37) suggest that all four processing techniques can resolve

the two signals and (2) IiEM,ldUi and MLM techniques should give better angle

eatimatea than the MUSIC techniqqe. This also agreea fairly well witk,that

being observed in ttieC-band spectral estimates (Fig.:5-”50),except thatin ~~~

Fig. 5-50 the MLM technique...fails to resolve the two signals. The

diaegreement in.the resolution capabilityof the lILMtechnique between the twO

signal mess.ucementresults and the C-band results shown here probably is :due

to the fact thatthe separation angle is 0.”8 BW for the C-band case here

instead of the larger separation angle of 1 BW.in””the two signal measurement

results in Figs. 5-36 and 5-37.

For terrain””multipath field data, it appeared that all four signal “pro-

cessing techniques would g~ye similar results for a~simple terFain conditiOn

such aa the near-flat terrain for the L-band data taken at Hanscom Airport.

ilowever,when the mult.ipath environment became more complicated, such.as in

the rolling terrain or for the C-band data, tbe results from four techniques

often only agree on the signal arrivals with larger power. In general, the

identification of various signal arrivals with the MU{ estimate was not as

clear as the other estimates, especially when the multipath separation angle

is less than one beamwidth.



VI. HARDWARE IMPLEMENTATION ISSUES
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In this chapter, we consider some of the hardware implementation issues

associated with use of the advanced array processing techniques discussed in

the preceding chapters. The focus here will be on those issues which emerged

as important in the sampled-aperture system shown in Fig. 6-1. This system

has been successfullyused for several years in terrain multipath and plane

wave resolution experimental studies.

The block diagram shown in Fig. 6–2 shows the current MIS studies

sampled-aperture measurement system. The various signal processing techniques

are implemented in software on a general-purpose computer (both on a Data

General Eclipse minicomputer and on the Lincoln timeshare system). The

sampled-aperture field data are obtained from linear antenna arrays together

with a multichannel receiver and a digital data acquisition System. Since a

general-purpose computer with double-precision floating point was used, nO

computation problems arose in the signal processing part of the system after

the software had been implemented and debugged. Thus, our discussion will

focus on the aperture-sampling part of the measurement system, i.e., the first

block in Fig. 6-2.

First, we will describe those problems which are commonly encountered in

the hardware implementation of a multichannel systernfor aperture sampling and

the methods which employed in the existing system to overcome those

problems. Then, we will discuss the system calibration approach used in this

equipment and the principal problems encountered during several years of field

measurements. The final

developing an operational

A. Generic Features

section comments on some of the issues

real-time aperture-sampling system.

involved in

The principal end product of the measurement system is good-quality

sampled-aperture data, i.e., the correct amplitude and phase values of the

incoming wavefrent at the various antenna elements. For an aperture-sampling

system using with several multichannel subsystems as shown in Fig. 6-2, the

quality of the measured data principally depends on the channel tracking or

6..1
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1 Fig. 6-1. Experimental aperture sampling system in terrain multipath measurement mode.
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equalization. The main contributions to the channel mistracking are the

channe1 amplitude and phase biases due to either the physical component

dissimilarity among channels and/or differential channel sensitivity to

environmental factors such aa temperature and humidity.

For an aperture-sampling system using an N-element antenna array feeding

an N-channel RF/IF receiver, each channel typically will consist of an antenna

element, an RF front end which is formed by a preamp/mixer and some RF fil-

ters, and the IF section which consists of filters, amplitude and phaee detec-

tors.. The various components in each channel are normally connected to~ether

through”various RF and IF cables. Of course, one would like to have a system

built with’all.channels being exactly identical....However, more realistically,

there will be variations among all channels in their amplitude and phase

characteristics due to”component““differences. Also, the transfer.function of

various components in a:given channel can be sensitive..t.othe changes in the

temperature andlor humidity. The temperature variation in the component

behavior, particularly that of the components in the RF .frent end and the RF

cablesi waa found to be .a major factor in channel tracking. for the-system

shown im.Fig. 6-1.

Nhewthe number of the antenna elements is greater than the number.of the

available receiver channels and the required data rate is S~OWj RF sw~tchea

can be used to serve the time sharing or channel-multiplexing purpose. For

example, five antenna elements can ahare the same receiver channel by using a

single-pole 5-throw (SP5T) RF switch. A RF switch is a multichannel device by

itself, and thus additional channel tracking issues will arise although use of

a common IF system reduces certain other problems.

The conversion to digitized aperture sample data is accomplished by an

analog-to-digital (A/D) converter at the output of the IF amplitude and phase

detectors. The error in the AID conversion is another contributing factor, in

addition to the channel tracking error, to the total measurement error in the

sensor signal.
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B. Experience with The Current Measurement System

Figure 6-3 shows a more detailed block diagram of the current aperture-

aampling system with two 5-channel RF receivers. One receiver operates at

1090 MRz (L-band) with 17 antenna elements, and the other operates at 5.2 GHz

(C-band) with 29 horn antennas. Both the L- and C-band RF receivers share the

same 5-channel IF receiver. A single time multiplexed 8-bit A/D converter

serves all five IF channels.

As previously mentioned, the quality of measured data produced by an

aperture-sampling system is a strong function of the channel tracking. To

minimize channe1 tracking problems, our approach was to build equalized

antennalreceiver channels to start with and, to make various system

calibrations

amplitude and

1.

before and after measurements to remove any residual channel

phase biases.

Design Features to Yield Good Stability

Here, we will discuss those features which we implemented in the system

hardware to achieve good channel equalization and differential stability. For

this discussion, we will separately consider three parta - the L-band

subsystem, the C-band subsystem, and the common IF subsystem. Referring to

Fig. 6-3, the L-band subayatem covers the system path from the L-band antenna

element down to the L-band IF bandpase (BP) filter, the C-band subsystem is

from the C-band antenns element down to the C-band IF BP filter, and the IF

subeystem is the common phase detectors and log amplifiers shared by both the

L-band and C-band subsysterns.

a. L-band Subsystern

This was built around the existing 5-channel RF front ends from the

precision and Approach Landing Monitor (PALM) system [f12], with a (new)

elevation array consisting of eleven new dipole antennaa and a (new) azimuth

array consisting of six original PALM antenna elements. The eleven dipole

antennas are physically identical and have a close electrical match (E-plane

gain = 8.3 i 0.7 dB and VSWR

elemente were also designed to

= 1.5 ● 0.09 : 1). The original PALM antenna

be identical.
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When the PALM facility was first modified for L-band terrain multipath

measurements, the S-channel receivers (both RF and IF) were kept inside the

electronic van and (eleven) 50-foot RG-214/U coaxial cables were used to

connect the dipole antennas to the RF front ends. The electrical path length

of the RG-214/U cable was found to be very temperature sensitive at L-band.

Subsequently, when the azimuth array was added, several staps were taken to

minimize the system temperature sensitivity due to the RF cables.

First, the RF front ends were moved outside the van and Installed behind

the antenna elements. This significantly shortened therequired length.of RF

cables .from the original.50 to 10 feet. Alsn, thf~allowed the long cable

connection needed between the output of the RF front end to the .IFreceiver

inside the van to operate..ata ..60-M& IF frequency, where the temperature

sensitivity of RG-214/U’“cable would have much less..effecton the channel

differential stsbility.~~~~~Second, temperature-stable semi-rigid~~cables and

flexible cables were usad..fnr...allRF eonnectiorisbetween the antenna elements

and theiz .EU..frent end ““inputs. These cablea.were cut to be of equal length

and~to be as short as possible (Ml feet of.semi-rigid cable for the elevation

antenna and 12 feet of ““cablefor the azimuth antenna). With these cables,

measurements indicate an electrical phase sbability of “better than 1” for a

40“F temperature changa.

Installation of the RF front ends at the antenna array necessitated the

use of long cables to bring the local oscillator (LO) signal from the van to

the RF front ends. To have differentially stable LO signals for five RF front

ends, the LO signal is brought out from the van in a single RG-214/u cable and

split five ways at the antenna array. Again, temperature-stable semi-rigid

cables of equal length were used to carry the distributed LO signals to four

RF front ends at the elevation array and an equally stable cable was used for

the connection tn the RF front end at the azimuth array.

The 6-MRz-bandwidth IF BP filtere are matched in gain and phase with

respect to the reference receiver IF filter tn within + 0.2 dB and ● 1.5°,

respectively.

for the IF fl

Measurements indicate a differential electrical phase stability

ters and amplifier of better than + 1“ rivera 24-hour period.
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b. C-band Subsystem

This subsysternuses a cornbination of new components and some components

from the 12-foot (ITT Gilfillan) C-band Doppler elevation array developed for

the FAA MLS phase 11 field tests [841. The new components, including 5-

channel RF frent ends, 29-horn antennas, and O.6-MHz-bandwidth IF BP filte~s,

had tight specifications with reepect to the channel matching and temperature

characteristics, The components obtained from the ITT array, including RF

cables, antenna switches and array housing, were measured to verify good

channel matthing.

The 29-horn antennaa are essentially identical. The isolation between

any two neighboring horns is better than 40 dB. The RF cables, connecting

between the antennaa to the antenna switch, are equal-length short (2 feet),

and are temperature stable. For each single-pole 10-throw (SP1OT) antenna

switch from the ITT array, the seven most similar input ports were chosen for

each RF channe1. The output of the antenna switch was directly connected to

the input of the RF front end with no RF cable involved. The LO signal ia

generated at the antenna array and distributed to all five RF front ends

through the RF cables of equal length. The entire C-band subsystem, except

the IF BP filtera, was packaged inside the array housing, as can be seen in

Fig. 6-3, with interior temperature and humidity regulation to further enhance

the temperature tracking among antenna/RF receiver channe1s.

Again, as in the L-band caae, the IF bandpass (BP) filters are matched in

gain and phase with respect to the reference channel IF filter to within +0.~

dB and +1”. These IF filters were installed inside the van in the equipment

compartment containing the 5-channel receiver. The electrical stability of

thase filters with time is similar to that of the L band filters.

c. IF Subsystem

This subsystem is essentially unchanged from the original PALM system

[42]. Since this part of the system had been proven to be fairly stable [5,

42] and ia calibrated riverthe full dynamic range for each experiment, the

only effort made to better equalizing the five IF channels was involved gain
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and offset adjustments of various log-video and operational amplifier to

yield a similar amplitude gain and phase sensitivity among five channels.

2. System Calibration

System calibration consists of an internal (IF) calibration and an

external calibration, ae indicated in Fig. 6-2. The IF calibration is

concerned with the path from the output of the L/C-band switch down to the

output of the A/D converter. This path ie entirely inside the equipment van

and mainly consiste of the IF log-video and phase detectore, the channel

multiplexer, and the A/D converter. The external calibration (for either L-

or C-band) calibrates the path from the antenna down to the output of the L/C-

band switch. This path containa RF cable, RF ewitch, SF frent end, IF cable,

and the IF bandpass filter.

The IF amplitude calibration is accomplished by injecting a teet eignal

at the output of the L/C-band switch and recording the A/D converter output of

the log-video detector in A/D counts. The test signal is attenuated from O to

80 dB in 55 steps with a digital attenuator at the output of the teat signal

generator. The digital attenuator was calibrated on a network analyzer and

the precise attenuation values (to 0.01 dB) for each attenuation setting are

stored in a lookup table. Figure 6-4 shows some examples of the IF channe1

amplitude response curves obtained from the IF amplitude calibrations taken at

various times. The IF amplitude calibration generates amplitude lookup tables

to convert the recorded eignal amplitude in A/D counts to the IF signal

amplitude in dB. The peak quantization error for the amplitude measurement

with the current 8-bit AfD converter is about 0.2 dB.

The IF phase calibration is done by feeding the IF test signal to the

Output of the L/C-band switch and recording the phase detector OutPut in A/D

counts in terms of the f-n-phaae(I) and the quadrature-base (Q) componenta.

The channel relative phase is varied from 0° to 360” in 32 eteps by meane Of

a digital phase shifter in the reference IF channel. In the IF phaee calibra-

tion, channel #5 is used ae a phase

shifter waa calibrated on a network

reference channe1. The digital phaee

analyzer and precise phase values (to

6-11
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0.05”) for each digital phase setting are stored in a lookup table. Examples

of tha IF channel phase response curves, together with the measured I and Q

values, are shown in Fig. 6-5. The saturation that appears in Pig. 6-5 on

both I and Q curves was intentional so as to obtain higher A/D qttantization

accuracy with the same 8-bit AID converter. The IF phase calibration yields

phase lookup tables to convert the measured I and Q values in A/D counts to

the relative phase in degrees. The peak phase quantization error is about

0.3°.

For a given field measurement mission,...whichnormally .lasCed“from 4 to 6

hours, at least two IF calibrations (remission and postmission)were msde to

determine the short-term IF subsyste”mstability. As can be seen in Figs. .6-4

and 6-5;.botb amplitude and “phase responses..remainvery much the same between

the pr.emissionand poatmission calibrations. Similar short-term IF subsystem

stability was achieved on the other experiments; although’ there were

significant differences in some cases between the calibrations taken at

different .datee.

The calibration of the system ffom the input .tothe antenna to the ouEput

of L/C-band switchi i.e., the:external calibration,...was accomplished by the

array collhatiem experiment shown in Fig. 6-6 at the ...LincolnLaboratory

antenna test range. This antenna test range was graded to.havea flatneaa of

better than *1” over a 200-foot by 2000-foot area. The measured cross-range

field strength variation* at the receiving end waa well below O.5 dB for

either our L- O? C-band arrays. At the antenna test range, the antenna array

(either L- or C-band)

source would uniformly

there would be a single

was arranged in such a way that a common far-field

illuminate the entire array at the sama time, i.e.,

plane wave normal incident upon the array. Thus, any

*For L-band, the transmitting source was an 8-foot dish at 30-foot height and
the L-band elevation array (30 foot long) was laid horizontally at a 3.5-foot.
height above the range terrain. For C-band, the transmitting
foot dish at 10-foot height and the C-band array (12 foot
horizontally at a 5.5-foot height.
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(a) Premission IF phase calibration

channel 1

(b) Postmission IF

channel 2

phase calibration
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differences in the measured amplitude and phase values for the various

antenna/recei.~archannela are due to amplitude and phase biases.

External calibration by array collimation (as accomplished at the antenna

test range) could not be done at field measurement sites due to difficultiea

fn achieving uniform plane,,wave illumination of the array in the presence of

inhomogeneous terrain. The compromise used to date is to:

(1) make an external calibration by array collimation at
the antenna test range in several different times of
year, e.g., summer, fall and winter. This permits one to
apply appropriate external calibration data to ..process
varioua field measurement da”tataken at different times
of yearjand

(2) to compensate for drifta in the frent-end subsystem
by msking an RF calibration aa indicated in Fig. 6-3,
during.array ..collimation.at the.antenna test range and
prior to field experiments.

The RF calibration shown in Fig. 6-3 is accomplished by injecting cke RF

test signal:immediately behind the antenrtaelement...and recording the measured

phase and amplitude for each antennalrecei.verchannel. In the current.system,

the C-band.IW test signal ia injected behind each.of the29-horn antennaa by a

40-dB slotted-waveguide directional coupler thr”ougha-common waveguide, as

shovn in Fig. 6-7. The directivity of the coupler is better than 20dB. With

this 20 dB directivity plus the minimum of 40 dB isolation between two

neighboring horns, the injected teat signal ia mainly coupled back toward the

output of the RF front end for the desired RF calibration. One problem

encountered in the ‘C-bandRF calibration was that the RF calibration data are

sometimes inconsistent with the corresponding external calibration data by

array collimation. We suspect that the problem is caused by an unstable RF

test signal due to the use of a waveguide feeding point which is less than one

wavelength from the C-band reference channel horn. This distance probably is

too short to ensure the sufficient attenuation of the higher order and/or non-

propagating waveguide modes. Consequently, small temperature and humidity

changes cauae large changea in these higher modes which in turn can cause the

test signal variations at the reference channel and those antenna channela

near the fceding point.
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Fig. 6-7. Coupling arrangement of C-band RF test signal.



The L-band RF test signal is injected through a coaxial directional

coupler to on>3 one of the four antenna channels in the same RF front end.

The choice of one antenna channel ever all four antenna channels for the L-

band RF test signal injection was made based on the following arguments:

(1)

(2)

(3)

It is much simpler to distribute the -RF test signal in
the one antenna channel case than in the four antenna
channel case (one 5-way power divider, five 10-foot RF
cables, and five directional couplers versus one 17-way
power divider, 17 15-foot RF cables, and 17 directional
couplers). In particular, thetemperature tracking among
test signal’paths should be better fer the one antenna
channel case.

Since the shorb RF cables in four antenna channels which
share the same RF fron~ end are of equal length.and very
temperature stable, RF calibration for one antenna
channel should represent the. situation for the Other..
three antenna channe1s using tbe same RF fro.nt.end and

RF cable electrical length variations with temperature
should bemuch smaller .atL-than C-band.

By comparing the.RF calibration values taken at any g~ven measurement.mission

with those taken at the external~calibration by array collimation ac. t~

antenna test range~any change in the channel phase and ampiitude biases ob-

tained frorsthe external calibration can be compensated.

Table 6-1 shows two sets of external calibration values taken about six

hours apart for the C-band elevation antenna system. Also shown in this table

are the corresponding RF calibration valuea. Table 6-2 gives the similar

results for the L-band antenna system which has 11 elevatiOn and 6 azimuth

antenna/receiver channe1s. Additional calibration data are given in Appendix

c. Examination of the external array collimation data and the corresponding

RF calibration data obtained during the past year ahowed that both the C- acd

L-band elevation antenna systems had been fairly stable in the short term (4-6

hours), while the L-band azimuth antenna system showed notable drift in the

channe1 phase bias which often could not be explained by the corresponding RF

calibration values. This larger channel phaae bias variation observed in the

L-band azimuth array channela may be is due to the antenna elements. COntrary

to the simple horn antenna used in the C-band elevation antenna system and the
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(a)

EXTERNAL AND
C-BAND

TABLE 6-1

RF CALIBRATION VALUES:
ANTENNA SYSTEM

Date: 8/15/80

External calibration values
AMP1/AMPR and PH1/PHR: relative amplitude and phase values from two

external calibrations taken 6 hours apart
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0.31
$.45
e.34
e.3e
e.os
a.6e
e,37
e,3a
e.3a
e.28
0.35
a.3a
a.at
e.06
e.2?
@.24
-e.e6
8.1?
e a7
0.0’

PH1-PHR

-3,46
-393
-3 34
-3.41
-3, 42
-2, 9a
-a. 54
-tat
-1. sa
-1.66
-1.54
-i.ea
-1.69
-1.?7
-o,ae
-e.%
-e.as
-o,aa
-e.4i
-e,t?
-0.55
-1.3?
-1.54
-a.07
-1.65
-i.aa
-1.30
-1.46
o.ee

(b) RF calibration valuea
AMP1/ANPR and PH1/PHR: relative amplitude and phase values from two

#+?

a
:
s
a
7
a

18
11
la
13
14
15
16
i7
ta

#

2a
23
a4
22
2a
27
aa
29
3a

N!PI

0s0

RF calibrations taken 6 hours apart
AMPR RMPi-PMPR PM PHR PH1-PHR

e,04

:jfj

-o: a7
-1.93
-i.a7
e.6e
-e,3a
-i.ie
-:.::

-i:ea
-i.9a
e.6a
-e,19
-e,i9
-1.59
o.ta
e.19
e.ee
a.a9
2.a4
aea4
e.as
a.i9
1.44
e.47
040 0s0
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TABLE 6-2

(a)

m?

elevation

array

azimuth
array

EXTERNAL AND RF CALIBRATION VALUES:
L-BAND ANTENNA SYSTEN

Date: 7/23180

External calibration valuea
~1/AMPR and PH1/PHR: relative amplitudes and phase values from

two external calibrations taken 6 hours apart
mu 4WR 4RP1-AnPR PM; Pm Pn;-wa

-a.84 -3.9[ Oaa
-3 El ::;$: 0.43
-3.09 0.6s
-1 ,s9 -a. 38 0.49

0.10 -0. 3? 0.4?
-0, a3 -eel 9.3?
-0.96 -1.18 o.aa
0s9 0.1s 0.41
-1.4i -1,s6 0.16
-108 -1.39 e 31
@ 00 0 O* 0.00

-t3. a4 -13so o.as
-i3.a8 -i418 ese
-le.33 -1237 0.04
-16,49 -1?.04
-lew

0.s4
-10.67 040

-11.41 -1167 0.S6

3a .61ala .80
340 10
36a.31
a3a. $3
;aa,aa
ala.6a
346.6S
146.S8
ta3. M

0.64
7a. aa

i2t.3a
226. 7S
36s 6a

11.63
a73. 6a

-0. ;B
-e a6
-i. ta
-i.;a
-a. 7a
-i. aa
::: ~~

-8.11
-t.aa

0.00
-7.aa
-a. 6a
-7.13
-la.lo
-7 sa
-766

(b) RF calibration values
mP1/ld@R and PH1/pHR: relative amplitude and phase values from two

RF calibrations taken 6 hours apart
Nil m 1 ARPR M!?l+NPR ml PHR Ptll -Pm

[

9 -2 au -4ss
a

1.16
-a aa -4.6s 1.16

elevation 7 a 89 -4,6s
6

i.la
.-a83 -4.0s l.ia

array 5 -..3a -1.50 1 13
-8. 3s -1. s0 1.i3

3> -.0 3a -1 so 1.13
-0.36 -1se 1.13

22s -1.60 -3.19 1.69
-168 -3.la 169
460 060 f:::

[

i -9.a5 -ma3
azimuth s -9.6S -1093 t.aa
array ~ -9,as -1093 l.aa

-6.a6 :;::;
:

i.aa
-8.as i.47
-a9a -M 4a 1.47

313.3’3
313,37
31337
3i337
s6a.a4
2S8a4
266.a4
aaa.a4
al.at
el.ai
6.S0

lla.ai
lla.i
iia.ai
lla.61
363.SO
303.Sb

3133s
313.36
313.36
313.36
a7i.s6
E?l.aa
a7i.a6
awsa
amaa
813,66
e.aa

iaaaa
ms.a8
186.66
ias.aa
30s7a
306,76

0.67
0,6?
o.a7
6.07

-3.66
-3 aa
-3. s6
-3.66
-a.;9
-8.19
0.66
-9,a7
-a.27
-a. 27
-9.87
-a.as
-a.as
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conventional dipole antenna used in the L-band elevation antenna system, the

L-band azimuth elements are printed-circuit dipole arrays whose more

complicated feed structure apparently mskes it more sensitive to temperature
*

and humidity changes.

Table 6-3 summarizes the functions of the above-discussed system cali-

bration procedure in removing the varioue channel tracking error sources.

Figure 6-8 shows how various system calibration data are used to obtain the

correct signal amplitude and phaae at each antenna element, i.e., the measured

amplitude and phase values which are free of channe1 amplitude and phase

biases. Judging from the system calibration data accumulated to date and from

simulation results corresponding to various field measurements with a known

signal environment, tbe accuracy in the estimated amplitude and phase at an

individual antenna element is about 1 dB and 3 - 5 degrees, respectively.

These errors are believed to be primarily from the RF subsystem drifts biases

which were not compensated for with the current RF calibration and/or short-

duration changes in the IF subsystem.

D.

In

Recommendations for Hardware Implementation of Advanced Sampled

Aperture Systems

this section, we consider soma of the principal hardware implementa-

tion issues which arise in attempting to implement the advanced signal pro-

cessing techniques discussed in the preceding sections. In Chapter V, we aaw

that to achieve significant improvements in performance against inbeam multi-

path (e.g., factors of 2-4 reduction in the region of significant errors), it

is necessary to have tighter control of amplitude and phase errors than is the

case with “conventional” processing. Thus, it is important to identify the

major difficulties which may arise in practical implementations.

*Much of the instability of these elements is believed to arise from the
printed-circuit substrate which expands in high-humidity conditions. The
degree of expansion/contraction has been great enough on several occaaions to
cause failure of the printed-circuit lines.
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TABLE 6-3

SYSTEM CALIBRATION*

Error Source Removed by

IF channel bias IF calibration

(amplitude and pnase)

Antenna/RF channel External Calibration by array

bias collimation at antenna test range

KF channel drift** RF Calibration

Antenfia’‘hrift** Not accounted fOr

‘~N”&t-~l—t=e calibrat ion
**Drift refers to the change between the time that external calibration WaS

made and the time a given field measurement was taken.
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1. Antenna Elements

Ideally, the individual array element patterns would be identical to

within a conetant gain factor. Row~ver, this is not always eaay to achieve

due to 1) differences between the isolated element patterns and 2) coupling

between the various elements.

Differences between the isolated element patterns in

plane* are particularly undesirable since there is no hope of

the non-scanned

compensating for

them using the array data alone. The degree of similarity amongst the several

printed-circuit arraye used ae the L-band azimuth array element ie shown~in

Fig. 6-9. We see that the mai.nloberegion is quite. consistent, but that~~~

differencesof 1-2 dB can occur.near the hor.izcmwhere the pattern .isrolling

off sharply. C6mpa.rabledatahave not been published for the slotted-

waveguid”earrays typically used for C-ba”iidMLS azimuth arrays; however, based

on tbe fragmentary availa,ble data [31.] we would expect to see similar

variations:for that implementation as well. .

Variations in the isolated element characteristic within nominal scan

plane should”be small if theee are simple elements (eg.;, hems or dipoles).

Elemente with complir~ted feed structures:in the scan plane (e.g.,..COMPACT

elevation arrays [28]) will.probablyhave a .reproducibil”i”tyeimilar tO that:of

Fig. 6-9.

Coupling effects due to adjacent elements can be pronounced if the ele-

ments are epaced 1A or lese apart. This phenomenon is particularly noticeable

in azimuth arrays with dipole elements when using vertical polarization since

a coplanar orientation maximizes mutual coupling effects. The coupling per se

ia a problem only if the coupling environment seen by the individual elements

ie sufff.ciantlydifferent to produce element pattern differences. Figures 6-

10 and 6-I1 show the differences in gain and phase at azimuthe of 0° and 60”

between the various dipoles of a 2l-element azimuth array with x/2 and 1?.

element spacings, respectively. We see the differences are meet pronounced

*
e.g., elevation plane for an azimuth array.
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Fig. 6-10a. Gain variation due to mutual coupling on boresight for O.5?Ispacing.
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Fig. 6-lld. phase ~axiation due to mutual coupling at 60” fOr 11 ‘lement ‘pac=ng”



near the array ends which suggests using dummy elenents at the array ends to

mitigate the pattern differences. This use of dummy elements is easily

accomplished unless it is essential that the overall array aperture be SMS1l

(e.g., a few wavelength) in which case coupling effects could seriously

degrade the array performance.

2. Electrical Path Length Equalization

Variation in electrical path lengths amongst the various elements will

cause phase errors in the received data. In the experimental data discussion

above, we noted the need .to uae cabling,,yith.low temperature senaitiv”ity.::The

use of frent ends at the antenna elements should also aid in achieving reduced

sensitivity.to cablelength changessince the ekctrical wavelefigthat tYP~cAl

IF frequenciesis quite large.

3, IF Filter Characteristics

The IF filter design repreaenta a

designs since one must trade.off SNS and

key design.issue .in sampled-aperture:

adjacent channel interference perfor-

mance (maximized by ‘wsinga nsrrow bandwidth) against.IF.filter differences

(which areworse near the edges of the passband). Tlieproblem is particularly

troublesome if “thefrequency uncertainty between..grpundand air local oscilla-

tor frequencies is large compared to signal bandwidth.”’TO illustrate; in the

experimental system described above, it was possible to calibrate out any

mid-passband differences between the L- band IF filters, but the filter gains

could differ by as much as 3 dB at the pasaband edge. The nominal L-band

signal bandwidth is on the order of 2 MSz with a nominal frequency stability

of approximately 0.5 MHz. Eowever, experimental measurements have shown that

L-band transponder frequencies for the total aircraft population can vary as

much as 3 MHz. Thus, to avoid measuring some transponder signals at the

passband edges, it would ha necessary to use an IF filter bandwidth several

times larger than that required for the pulses alone.
*

“Since the actual experimental equipment only needed to meaaure signal from a
single transponder, we chose to uae a transponder with crystal-controlled
(cent’d.)
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One approach to alleviating this problem would be to use a finite impulse

response (FIR) IF filter design since these typically give better filter

characteristic control at the band edges as well as linear phase. The FIR

filter can be reslized either by analog methods (SAW, CCD) or digitally,

depending on the signal bandwidth.

4. System Calibration/Compensation/Monitoring

Based on our experimental system experience it appears essential that the

various signal paths be monitored more or lees continuouslyto svoid phase

variations. The amplitude variations seem to be somewhat slower varying and

hence may not need to ba monitored as frequently. The combination of IF

calibration for the individual channel amplitude and phase measurement

circuits together with signals injected at the antennas (i.e., rf calibration)

was reasonably successful, and would be recommended for any future systems.

How@ver, there were some discrepancies between the rf calibration and the

array collimation experiments which probably represent a combination of

1) changes in the antenna element patterns (in the case of
the L-band array) and

2) changes in the signal injection system (in the case of
the C-band array).

A standard suggestion for reducing these effecte is to transmit a signal

external to the array and compare the various received signals. This was

considered for the experimental arrays, but discarded because it appears

dubious that the propagation paths from each of the elements to the external

source would have the desired stability to permit use “ real time”’elament

compensation.

6. Received Signal Digitization

At the time when the experimental aperture sampling array was first

constructed, tbe A/D converters represented an important constraint in that
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the requisite speed and accuracy (i.e., number of bits) was costly if avail-

able at all. The size and power consumption of these A/D converters also was

s mejor detriment to actual implementation,

However, recent rapid progress in this area has lessened the A/D problems

significantly. The experimental van uses an 8-bit A/D converter which can be

operated at 30 MHZ, gives generally good results at 20 MHz, and is quite

reliable at 10 MHz. The cost of these units is approximately $850 with the

A/D converter, input buffer reference voltage and power conditioning occupying

a single 4.5” x 5.5” board.

If greater A/D accuracy is desired (e.g., for 1, Q sampling as opposed to

the log amplitude, relative phase sampling utilized in the experimental equip-

ment), a 12-bit 5-MRz converter fitting on a 5“ x 5.5’”card is currently

available for $3500. Alternatively, a number of 12-bit 500-kHz converters

(cost approximately $269/each) could be used. The point to be msde here is

that the cost and size of high-accuracy A/D converters have dropped signifi-

cantly

syetem

in the past few years such that the A/D converter may not be a major

constraint.

7. Hardware Realization of Msthemstical Algorithms

Rapid progress has also been made in the area of digital signal process-

ing hardware which might be used to implemant the algorithms described in the

preceding section. The specific technology which would be utilized dependa

heavily on

(1) the

(2) the

(3) the

number of aperture samples,

specific algorithm, and

raquisite data rate.

Inasmuch as no specific implementation has been addresaed, it is not possible

to present a detailed anelysis. However, examination of some representative

algorithms indicates the type of hardware which may be required.

The number of multiplies and adds (MAD) used by an algorithm ie a common-

ly used index of the degree of numerical difficulty for real-time applica-
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tions. In Table 6-4 we show the number of MAD required to implement the fiT3M

spectral algorithm for a 20-element linear array.

If all of the computations indicated in Table 6-4 were to be accomplished

on a contemporary minicomputer (5VS MAD) (e.g., as was done for the DLS test

eystem at Braunschweig), the spectrum AR computation would take approximately

10 msec. Assuming an aircraft data rate of 5 Hz, this would suggest analyzing

aignala from at most 20 aircraft per second. Consequently, we conclude that

special-purpose digital processing hardware would probably be required to make

these algorithm useful.

The covariance formation is seen to bs an important computational load

for either of these algorithms. One effective approach to performing this

particular manipulation is the use of hardwired multiplier chips to form the

products. For example, there currently are available 16-bit X 16-bit

multipliers with accumulate capability for $350 which accomplishes a

multiplication in 155 nsec. A bank of 10 such multipliers could form the

initial covariance calculation in approximately 15 paec. The spatial

covariance smoothing (approximately 400 complex adds) could be accomplished in

the same 15 psec by pipelined hard-wired adders.

The normal equation solution would be more costly to achieve in a hard-

wired implementation at this time. If it were to be accomplished on a contem-

porary minicomputer (51JsMAD), the proceaaing time would be on the order of

250 psec.

The spectrum formation requires many computations due to the fine search

grid necessitated by the high-resolution estimators. There are currently

available array processors which could accomplish such a transform in less

than 1 msec. For example, there are fixed-point processors (16 bits, 10

butterfly boards) which can accomplish a 1024-point transform in 488 paec at a

cost of approximately $40K.

Root finding should be more efficient than spectrum analysis in this case

because:

(1) one knows exactly how many roots will occur whereas the
number of spectrum peaks 1s not known a priori (the

6-37



TABLE 6-4

COMPUTATIONS REQUIRED FOR MAXIMOM AUTO REGRESSIVE ALGORITHMS WITH

20-ELEktsNTARMY ~D 6TH oRoER n MODEL

Complex Multiplies Complex Adds

Covariance Formationl 210 392

Normal Equation Solutionz 57 57

Spectrum Formation3 1052 2084

Root Finding4 216 216

Notes

1. Assumes no time averaging of received data.

2. Using LIXJdecomposition of Morf et al [491.—.

3. FFT analysis with pruning and doubling to give frequency reSOlutiOn tO

0.02 beamuidth (10Z4 points).

4. Estimated to be - N
1.74

where Np = number of zeros.
P
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number of spectrum peaks is upper bounded by the number
of roots), and

(2) the results of other estimators (e.g., beamsum) can be
used to furnish initial estimates for some of the roots.

Analytical expressions for the required number of computations for finding the

roots of a complex polynomial are not available. Figure 6-12 shows the

reaulta of our timing exparimenta on the Lincoln Laboratory Amdahl 470 comput-

er timeshare system for a sample case involving two coherent aignala at O.5 BW

separation angle, 45” rf phaae, and 40 dB array SNR impinging on a 20-element
*

array. The ARM root computations are scan to require approximately 10 msec

for ~ 7th-order ~ model. It is difficult to asaign a single MAD execution

time for this computer in tha time share mode since

(1) tha fetch time from memory will depend on whether the
location ia within the current in-core “page” as opposed
to a disk, and

(2) register storage of variables can substantially reduce
the fetch time required to well below that required for
core memory.

A “same page” memory access from core would yield a 7-US MAD for the double-

precision complex variablea used in our current root finding routine, which

corresponds reasonably well to the 5-ps MAD we used in the above computation

time estimates.

On the other hand, it is clear from Fig. 6-12 that certain of the rou-

tines (especially, the normal equation solution) took much longer (relatively)

than would have been predicted from Table 6-4. This type of difference

illustrates the difficulties that can arise when a non-optimized higher order

programming language (e.g., Fortran) is used for computation-intensiva algo-

rithms. More detailed studies using optimized assembly language code are

required, but could not be accomplished in the current study.

*It should be stressed that none of the algorithm were particularly optimized
for a computational speed (e.g., Fortran code was used).
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Computations of the required complex operations were also accomplished

for the Ml,t.ftechnique using the same degree of covariance smoothing. For MLM,

the normal equation solution L? replaced by a matrix inversion which requires

approximately

estimator.

computation as

7 times as many complex

Also, with the MLM one

OPPOSed to root finding to

M aa were required

would have to perform

determine the plane wave

for the AR

a spectrum

angles.
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VII. APPLICATION OF APERTURE SAMLING ALGORITHMS TO MLS ANGLE GUIDANCE SIGNAL
PROCESSING

In this section, we consider how the various aperture sampling algorithms

discussed in the preceding chapters might be applied to MIS angle process-

ing. It should be emphasized at the outset that the results here are less

detailed than some of the preceding sections since our prime objective was to

identify the principal problems in adapting the high-resolution techniques to

the MLS angle systems.

Figure 7-1 shows how the NLS angle guidance is furnished by measuring the

true difference between passsges of a scanning beam past the receiver (the

time reference scanning beam (TRSB) technique). Also illustrated in Fig. 7-1

is how the current TRSB receiver determines the beam centroids by thresholding

on the scanning-beam envelope.

Figure 4-1 showed how this type of processing combined with the common

form of TRSB scanning beam generation via a phased array is in fact analogous

to Fourier analysis in a sampled-aperture system. Unfortunately, the observed

quantity in the current TRSB receivers is typically the log magnitude of the

Fourier transform, i.e., the phase information has been lost. If we were able

to recover the phase Information, then by inverse Fourier transform of the

(now) complex envelope one could obtain the sampled aperture data which was

the starting point for the algorithms of Chapters III-V.

Two approaches to phase information recovery are considered in this

chapter. The first involves complex demodulation of the scanning-besm en-

velope using the DPSK signal which is radiated prior to the beam scan peri-

od. The second approach is to recover the sampled-aperture data from the

envelope magnitude data alone. Section C considers the potential improvement

which might be afforded by the techniques discussed earlier for elevation

angle estimation vis-a-vis the performance offered by the single edge proces-

sor (SEP).

J.)PSK

A. Complex Demodulation of

The TRSB MLS signal format

preamble signal of 1.6 msec

Scanning-Beam Signals

(Figs. 7-2 and 7-3) includes radiation

duration prior to the beam scan period.

of a

The
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DPSK antenna uses the same transmitter (typically a TWT) and local oscillator

that is used to furnish rf power to the phased arrey. Thus, the possibility

then arises to lock a reference oscillator in the aircraft receiver to the

DPSK carrier and then use the reference oscillator signal to coherently de-

modulate the scanning-beam signal.

The first question that arises with such a scheme is the accuracy to

which the DPSK carrier frequency can be measured and what will be the effects

of a frequency offset between the actual carrier frequency and the aircraft

reference frequency. In the simplest implementation, the reference oscillator

locks onto the DPSK carrier anew on each scan. In this case, the carrier

frequency rms error is lower bounded by

(7-1)

for T = 1.6 msec and a SNR = 100 (20 dB). If the DPSK carrier frequency can

be measured over N function preambles, &f would be reduced by a factor
*

of /F . In either case, (based on the Lincoln multipath measurement exper-

ience [5]) the uncertainty in C$fdue to the DPSK short duration should be

several times larger than the local oscillator drifts between the DPSK and

scanning-beam transmission.

Another potentially major source of carrier frequency offsets ia the

“’referencescalloping” effect due to specular multipath. This error, which

arises when the receiver-motion-induced Doppler frequency for the multipath

diffars significantly from that for the direct path, was examined in detail in

the context of the Doppler NLS (DMLS) [28, 291. The errOr fOr the case consi-

dered here corresponds fairly closely to the DNLS situation with a single

antenna scan per data frame. The carrier frequency error depends on the

*This
which
might

avera~inE over successive receptions of a given function (e.g. azimuth)--
are interspersed
be difficult for

between recep~ions of other
an analog implementation.

functions (e.g., elevation)
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,

relative uultipath level (p ) and the difference, f~, in the relative Doppler

frequencies, and could approach 500 Hz for a M/D level of -6 dB. For 10W

frequency differences, the error is upper bounded by the product pf~. Thus,

terrain reflections and/or diffraction multipath would not cauae sizable

frequency errors since fs is typically small for these casee.

Next, we want to consider the effect of a frequency error, u, on the

estimated aperture sample data. Let the received signal along the aperture be

s(x). Then the received complex TRSB envelope in the absence of noise is

v(t) -

The estimated

s(x) =

.
jxisin9t

.

~s(xi) e - /s(x) ejxsinetdx .
i

aperture distribution is then

.

j&J(t) e-jxsinet cos;t

where various normalizing constants

frequency error ~w

;(x) = 6 J v(t)

If we assume that the

(& s O), then

.
s(x) - ?3J v(t)

. S(x-xo)

~jdwte-jX5in&

dt

have been ignored.

COS ‘% dt

(7-2)

(7-3)

When there is a

(7-4)

principal contribution of V(t) is near boresight

e-j ( ex-i5w)tdt (7-5)

where x = 6w/?jis the equivalent aperture displacement in wavelengths. Using
0

the numerical values

L?= 20000 deg/sec = 349 rad/sec

sw = 2T . (550) = 3455 rad/aec
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we obtain

Xo= 0.11 .

This (small) shift in array origin will

various signals by an amount 2mosinei,

ability to analyze the angles of arrival.

an integral over rI= sin at:

change the relative phases of the

but otherwise would not change the

Equation (7-L) can be rewritten as

.
s(x) = 6 J V(n) exp(j y sin

-1
q - nx) dn (7-6)

6

We have not been able to reduce this integral to a closed form by the usual

manipulations. Numerical integration would be relatively straightforward, but

was not accomplished during the current phase of the study. It might be noted

that had ICAO chosen a MM scan format which was linear in ~ so that the phase

shifters could step uniformly in time, then equation (7-5) would be rigorously

true.

Assuming that one has auccesafully recovered the TRSB envelope phaae by

one means or the other, we now want to consider aone realization issues. The

shift of time scale to sample V(t) uniformly in q as opposed to t is relative-

ly atraightforward. The number of envelope samples required ia not quite

clear due

(i)

(ii)

Thus, the

to the following:

if there were no frent end noise, then only N equally
spaced (in n) envelope samples are required to determine
the equivalent aperture wavefront at the N elements of
the ground array.

if the bandwidth of the IF filter is W, then the noise
samples spaced approximately 112W seconds apart are
uncorrelated (and probably independent). The N-point
tranaform of such samples would yield N uncorrelated
samples which is analogous to independent noise at N
frent enda of an aperture sampling array.

equal spacing in q (= sin ~t) suggested by (i) seems incompatible

with the equal spacing in t suggested by noise considerations. If one needs

only to sample near boreaight of the array (e.g., direct signal near boresight
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and a wide IF filter bandwidth), the two sampling grids are essentially iden-

~

)

cical. The general case would (as in the case of a frequency offset) require

numerical assessment,

Another practical difficulty is the apparent necessity to know the number

of antenna elements, spacing, and aperture distribution. These quantities are

not a part of the MIS data transmitted to the receiver although the nominal

ground-antenna beamwidth and proportional coverage limits are known. The

coverage limits and need to avoid grating lobes in the forward sector set an

upper limit on possible element spacings. Arrays are normally designed with a

spacing near this upper limit so as to minimize costs. Similarly, given the

beamwidth, one can make a fairly reasonable guess as to the total aperture

length (and hence, number of elements). We suspect, but have not Yet proved,

that errors of 10% in number of elements and spacings may be acceptable.

The issue of aperture distribution is more difficult. Most high-effi-

ciency, low-sidelobe patterns have roughly similar normalized aperture dis-

tributions [73]. Thus, a nominal correction may suffice to remove some of

these effects. However, there are some knotty theoretical issues associated

with the need to avoid increasing the noise contribution significantly for the

wavefront samples which were heavily altered by the aperture distribution.
*

The degree to which noise power can be traded off with wavefront amplitude

errors due to the (not fully compensated) aperture weighting haa not been

examined quantitatively.

Provided that the above difficulties can be surmounted, the aCtual

Fourier inversion of the complex envelope would be relatively straightforward

to realize with the microprocessors which will be available in the near

future. This is based on the observation that 1) the number of scans/see for

the TRSB functions is approximately 1/2 the number that arose with the DMLS

*
Note: the noise here is added on after the aperture distribution haa been
applied, whereas with a ground-derived system one would alter both the
received wavefront and the front-end noise in weighting the received data to
achieve the desired~delobes.
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receivers [28] and 2) the DMLS receivers did not utilize FFT techniques to

accomplish their Fourier transforms.

B. Reconstruction of the Aperture Data from the Envelope Magnitude

In general, a signal cannot be uniquely specified by only the phase or

magnitude of its Fourier transform. However, one condition under which the

magnitude and phase are related is the minimum-phase condition snd under this

condition a eignal can be uniquely recovered from the magnitude of its Fourier

transform, or, to within a scale factor, the phase of its Fourier transform.

Conditions under which a signal is minimum phase and procedures for

accomplishing the inversion have been considered by Quatieri and Oppenheim

[74]. In particular, they consider the case where the z-traneform of a se-

quence {ri] to be a rational function which we express in the form

no ~fi (l-akz-l) ~~ (l-bkz)
R(z) = AZ

& (l-CkZ-l) & (I-dkz)

(7-7)

whera [akl, Ibkl, Ickl, and ldki are less than or equal to unity, Zno is a

linear phaae factor, and A is a scale factor. When, in addition, {ri] is sta-

ble, i.e., ~lrfl < CO, then lCkl and Idkl are strictly less than one.

R(z) is minimum phase if it and its reciprocal R-l(z) are both analytic

for lz~ ~ 1. Quatieri and Oppenheim show

no, {bk] , and {dk] are zero in Eq. (7-7) and the

within the unit circle. This in turn implies that

represented by an ARMA model.

that this implies that

zero and poles of R(z) lie

the received signal can be

Another condition which can be shown to be equivalent to the above defi-

nition of a minimum-phase aequence is that the log-magnitude and unwrapped

phase of R(z) are related through the Hilbert tranaform [761. The Hilbert

transform relation guarantees that a minimum-phase sequence can be uniquely
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specified from the Fourier transform phase and, to within a scale factor, from

the Fourier traneform magnitude.

For a minimum-phase signal, the log-magnitude and phase of the Fourier

transform are related through the Hilbert transform and the direct implementa-

tion of the Hilbert transform using the DFT has been extensively investigated

[75,77]. One disadvantage of this implementation is that in computing the

phase from the log-magnitude, estimates of the unwrapped phase are required

and are often difficult to compute. A second drawback is that aliasing occurs

in the inverse discrete Fourier transform of samples of

unwrapped phase due to a finite DFT length, limiting

computed samples of the unknown component.

Quatieri and Oppenheim [74] suggest an iterative

the log-magnitude and

the accuracy of the

algorithm for recon-

structing the minimum-phase sequence {ri] from the magnitude of its Fourier

transform by impoaiug, in an iterative fashion, causality and the initial

value r. in the space domain, and the known magnitude in the z domain. When

the algorithm results in a sequence which satisfies certain minimum-phase

conditions and has the given magnitude, it must equal {~i). The iterative

procedure involves repeated Fourier transforms and inverse transforms.

Although successful convergence of the iterative procedure was accom-

plished by Quatieri and Oppenheim, the convergence was sometimes slow (e.g.,

several hundred iterations) and the sensitivity to inexactness in the log-

magnitude, quantization noise is not understood.

Although the received waveform {si] probably can be represented by a

model such as Eq. (7-7), it is not clear whether additive noise would yield a

minimum-phase {ri) . This problem together with the significant computational

coat and issues for the reconstruction technique has lead us to conclude that

these techniques do not appear to be practically usable in an MIS receiver in

the near future.
I

1
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c. Performance Improvement With High-Resolution Sampling Algorithms for
MLS Elevation Angle Estimation

In the preceding sections, we have indicated that there are some diffi-

culties in recovering sampled-aperture data for the TRSB due to the signal

format and current receiver processing. On the other hand, one can consider

whether there are situations where improved angle measurement performance in

the presence of multipath would be of use. The most demanding requirements

for MLS are in the final approach and landing phase. In this region, the

ground-antenna siting and beamwidths are typically chosen so that all of the

multlpath signals are out of besm (i.e., resolvable by the Rayleigh criteria)

except for:

(i) diffraction multipath due to taxiing or overflying
aircraft and fixed objects (e.g., monitor poles),

(ii) terrain reflection multipath for the flare system, and

(iii)building wall refIections of the elevation signal.

Each of the above has been successfully coped with in

scenario simulations to date [28, 29, 801. However, it

stats that the flare terrain multipath problem has 1)

the field tests and

is probably fair to

received the fewest

field tests [86] (due to lack of a suitable flare antenna and signal ProcessOr

during much of the teat program) and 2) represents the most difficult chal-

lenge in terme of long-duration, nigh-level multipath with a small separation

angle [85]. Similar elevation multipat”hproblems may arise when using small-

aperture alevation arrays (e.g., as for military tactical or civilian “emer-

gency” use) to provide guidance at low elevation angles (e.g., < 3°) over

rising and/or rolling terrain.

Thus, it is useful to compare the performance of the single edge proces-

sor (SEP) used as a TRSB low elevation angle/flare processor [79, 85] with the

performance of the extended Pisarenko/AR estimator (ME) discussed in Chapter

Iv. The SEP can be viewed as attempting to improve the estimate of the direct

signal angle by analyzing the Fourier transform (i,e., beamsum) peak on the

7-12
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side ‘“awayfrom” the nwltipath* (see Fig. 7-4). Also considered were sev-

eral other radar elevation tracking algorithms which attempt to take advantage

of the elevation multipath angular location:

(a)

(b)

(’2)

conventional null seeking monopulse (CM) systeme can be viewed
as determining the peak of the beamsum (BS) power spectrum
Ix(e)I since the null Of the ratio. Re[A(fI)/z(6)] with
difference pattern A(e) = dZ(0)/de occurs at the peak of the
beamsum pattern Z(6). The principal difference between mono-
pulse and the beamaum error reapense to inbeam multipath
occurs at high M/D levele with 1) large separation angles with
a relative phase near O“ and 2) at all separation angles with
a relative phase near +90” [28].

the off-foresight monopulse (oBM) technique [78] which
utilizes the fact that when only a direct signal is present at
angle ed and the antenna
beamwidth of 8d,

c(e) 4 Re[A(e)/E(’a)]= (N6)

so that one can estimate 6A

boreaight angle 6 is within 1

(e-ed) (7-8)

without pointing the array at 8A.
With an “off-boresight” el;vation tracker e is constrained ~0
be > 0.7/N6 and Eq. (7-8) is used to eetimate ed if the last
estimate of o is less than 0.7/N6.

t
This keeps the main lobes

of z(e) and A e) pointed above the terrain and thue
significantly reduces the errors due to multipath signals at
elevation angles below @d [781.

At low elevation angles, it may not be possible to prevent the
mainlobes of A(8) from ilhdnatiwz the ground. W. White [18]
has suggested use of a double null monopulse (DNN) in which
the difference pattern has a null both at B and at the
expected angle of the multipath (=-9). The error
metric E(9) fOr White’s monopulse estimator has a null
at tl=edwhen only the direct signal is present and when the
multipath is present at -8d.

Figure 7-5 illustrates the various angle determination techniques in the

context of a ground-derived system.

*This ‘“oneaided” processing (analogous to leading-edge range estimation in
radar and DM8 systems [44]) is plausible here because the terrain multipath is
known to be at a negative elevation angle with respect to the direct signal
angle.
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1. Simulation Results

Figure 7-5 shows the simulation results* for the various angle estimation

techniques for a single multipath signal of relative amplitude p = 0.9 at

angle em when the direct signal is at @d = 0.5 BW, with 30-dB element SNR.

Both 0“ and 180° relative phase conditions are shown since these two bound the

errors at other relative phases. The ME technique appears to give the best

performance over the range of angles with the SEP and DNN techniques a close

second.

2. Experimental Results

L- and C-band terrain multipath field measurement data obtained with the

experimental setup of Fig. 4-44 were used to compare the various estimators

response to inbeam reflection multipath. The C-band results were obtained

with a 10-element 14.3A array, while the L-band results were Obtained with a

5-element 6.5A array.
**

The angular error shown in the following figures is

the difference bet~een the estimated angle and the theodolite tracking angle

at that particular moment. Therefore, it is understood that the angular error

also includes the possible theodolite tracking error. The theodolite tracking

error is expected to be on the order of O.1° for the measurements described

here.

Figure 7-7 shows the errors for the various techniques as a function of

elevation angle for a test at L.G. Hanscom Airport, Iiassachusetts. The

terrain here is nominally flat with grass cover. We see that in general all

techniques except the SEP have similar perforr&ancefor B > 1 beamwidth (BW),

where @d is the target helicopter ekVatiOII angle. The maximum angular error

*All techniques were simulated with a 40-45 dB array SNR.

**
The small number of L-band array elements and limited number of time

observations necessitated using a two-pole model for the ME technique, whereas
the observed angular spectra using 9-element arrays would in several casea
require at least a four-pole model. Consequently, the [W,L-band errors are
greater than would have been the case with a greater number of elements within
the overall 6.5A aperture.

,,:,;
,,
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(A8 max) is abOut 0.07 W, except for the SEP which shows larger error of 0.12

BW. For 1 BW > f3dZO.5 BW> it appears that the ME, DWM, and OBM techniques

yield smaller error (A9 Max = 0.08 BW), with the M8 technique having the best

performance around ed . 0.5 BW. For ed < 0.5 BW, the MS technique appears to

give the best performance with the angular error similar to that observed in

the higher elevation angles. The larger angular error in the L-band results

(Fig. 7-7b), especially with the if8 technique, probably is due to the

insufficient sensor samples (only 5 signal samples available for the L-band

versus 10 for the C-band).

Figure 7-8 shows the errors for the various techniques as a function of

elevation angle for a test at the Ft. Devens, Massachusetts, golf course.

This terrain is rolling with closely cropped grass, as to yield specular

reflections at several elevation angles. In general, the angular errors are

larger for the rnlling terrain here than those previously observed for the

near-flat terrain. Also, the small number of sensor samples has a more

pronounced effect on the L-band angle estimation accuracy here, especially

with the MB technique, than previously observed for the near-flat terrain.

This is tbought reasenable, since the multipath environment was found to be

more complicated for this rolling terrain than for the near-flat terrain. For

the C-band result (Fig. 7-8a) which was obtained with a larger number of

sensor samples, we can see that again the ME technique appears to yield the

best performance, especially for fId< 1 BW. The ME angular errors (A6 max)

are around 0.07 to 0.1 BW, except for one isolated elevation angle

(’Jd= 4.0°) where all techniques shOw a large angular error ( = 0.15 BW).

Again the SEP gives much larger angular error than the other techniques, as we

previously observed. This greater error for SEP is believed to arise from the

SEP sensitivity to sidelobe multipath.

These preliminary results frnm applying five different elevation angle

estimation techniques to several identical data sets, both synthetic and field

msasured, indicated that the M8 technique based estimator seemed to yield the

Dest ,performanceif a sufficient number of sensor samples was available. The

observed maximum angular errors were around 0.07 to O.1 beamwidt”hfor the

target elevation angles from 2 beamwidths down to about O.3 beamwidth. The
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DNM and SEP appeared to work much better than the CM or OBM for the synthatic

data cases. However, in the field measurement results, the DNM and OBM seemed

to give similar performance and the SEP performed notably poorer than the

other elevation angle estimation technique.

We would taution, however, against drawing any substantive conclusions

from these very limited experimental results to the actual MLS situation due

to:
(1) the small number of aperture samples available,

(2) the difficulty in carrying out the meaaurementa at
elevation angles representative of actual flare situa-
tions [85], and

(3) the unrepresentative nature of the golf course terrain
ae far

Rather, we view

placing too much

tion model for

inbeam multipath

as flare guidance is concerned.

the experimental data as stressing the possible pitfalls in

credibility of the claasical homogeneous flat terrain reflec-

characterizing elevation angle estimation performance with

from irregular terrain.

D. Summary of Results

In this section, we have considered how the advanced array processing

techniques discussed in Chapters II - V might be applied to the MIS angle

function signal processing. Although the TRSB signal in spaca is the Fourier

tranaform of the aperture wavefrent, we found there were significant iasuea

concerned with

(1) recovering the phase information which is lost in the
current TRSB receivers, and

(2) inverse Fourier transform of the received data arising
from conflicting receiver noise and ecan format factors
as well as lack of knowledge as to the element number,
spacing, and aperture weighting.

The detailed simulation studies which would be needed to quantify the practi-

cal import of these problems could not be accomplished within the scope of the

current study. Similarly, although a minimum-phase estimate of the (weightad)
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aperture wavefront can be obtained in principle from the log envelope, there

are a number of practical factors which make this unattractive.

The principal application identified to date for improved MM angle

processing in the presence of multipath is in the elevation angle estimation

at low alevation angles such as arisea during the flare operation. A simula-

tion and (limited) experimental comparison was made between the SEP processor

currently suggested for TRSB flare processing, several centemporary radar low

elevation angle estimation techniques, and the extended Piaarenko/AR (ME)

technique. It was found that tha MS-based technique gave the best performance

in two coherent signal simulations similar to those used for MLS flare assess-

ment, but that performance differences were much less clear in experimental

situations characterized by a multiplicity of reflected signals. Since the

experimental results were affected significantly by the smsll number of aper-

ture samplea utilized, it is suggeated that additional measurements be made
*

with a more realiatic number of elements.

Improved angle processing in the presence of diffraction multipath has

many of the same features as the elevation angle processing discussed in

Section C except that it is not clear a priori which “’side’”of the direct—

signal will be corrupted by multipath. Since the aperture eampling techniques

diacuaaed here dn not require a priori data, the simulation results Of

Section C are directly applicable. On the other hand, the operationally most

significant diffraction problem identified to data - azimuth shadowing by

taxiing aircraft - is moat appropriately modeled by two or mere coherent

inbeam multipath signala which may lie on either side of the direct signal.

Our preliminary investigations (recall Ch. V) auggest that the resolution

performance of the various adaptive algorithms may be significantly degraded

in such multiple-algnal caaes. More detailed simulation and experimental—

atudiea are needed here to see if a significant improvement can be obtained.

*The use of a COMPACT array in which each individual
a aixnificant pattern rolloff at the hOriZOn [281

(overlapping) element has
would be advantageous in

terms of reducing the number of significant multipath signals.
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VIII. SUMMARY AND CONCLUSIONS

In this report, we have examined the extent to which sophisticated signal

processing techniques can improve the performance of navigation and/or ATC

surveillance angle-determining systerns. In this chapter we want to highlight

our principal reaulta and to indicate promising avenuea for future work.

Our effort concentrated on improving multfpath performance since

(1) theoretical performance bounds such as the Cramer-RaO
bound discussed in Chapter II auggeet that the likelihood
of subatantlal improvement (e.g., greater than 6 dB in
effective SNR) in parformance against additive frent end
noiee is unlikely,

(2) reducing errors due to instrumention effecta would be
very aystemlimplementation dependent, and

(3) multipath represents an important factor in moat con-
temporary ATC eystem designs as well as being a primary
cause of out-of-tolerance performance.

However, both frent-end noise and instrumention effects were considered, since

it turns out that these error sources limit the capacity for improved multi-

path performance.

The analysie ia chiefly concerned with improving the capability of

antenns systems such as the FRG DAS that estimate sngle of arrival. Such

systems are utilized widely* and are theoretically equivalent to idealized

versiona of other systems (e.g., the TRBB subaystam of the ~S). Two ap-

proaches to obtain improved capability were considered:

(1) the spectral approach whereby one attempts to estimate
the angular power epectrum of a stochastic process which
models the received wavaform at the antenna aperture. In
this approach, the peaks in the (angle) spectrum are
identified with the arrival anglea of plane wavea.

*e.g., The air traffic control radar beacon system (ATCRSS) and akin tracking
radar. Also, some systems in development [e.g., the full capability Beacon
Collision Avoidance System (BCAS)1 will estimate angle of arrival in the
presenca of interference.
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(2) the parametric approach where plane-wave parameter are
estimated explicitly (as in the ML probability methOd) Or
implicitly (as in the Prony method) from the signals
received at the antenna elements.

These approaches are not mutually exclusive in the sensee that some algorithm

(e.g., AR) may combine features

A. Spatial Covariance and

The central role of the

Chapter II. We introduced the

of both approaches.

Consequential Results

signal covariance function was developed in

notion of a “signal in space” covariance which

characterizes the extent that the received signals are correlated at various

times. The subsequent analysis wae concerned with two important limiting

cases:

1. Incoherent Signals

The diagonal elements of ~ repreeent the power
levels of the signals-in-space. If the off-diagonal
elements are identically zero, then the signals-in-space
are said to be (jointly) uncorrelated and, for an ideal
array, the eignal covariance matrix ~ will exhibit the
Toeplitz property; Smn = Cm-n. Any signal with a
Toeplitz covariance matrix was said to be spatially
stationary and the covariance matrix referred to as a
correlation matrix.

The stationary case occurs most naturally when the
signals-in-space originate from (statistically) indepen-
dent sources. Examplee of uncorrelated sources in ATC
systems include temporarily overlapping signals frOm
different transmitter (e.g., fruit or garble in DME and
ATCRBS, DABS and BCAS) or multipath signals with a
relative Doppler frequency which ie high relative to the
SYStem measurement rate.

2. Coherent Signals

If specular reflections or diffraction multipath is
present, the signals-in-space are no longer uncorrelated
since their relative phaees and amplitudes are determined
by geometry and the physical environment (terrain
features, buildings, etc.). When the signals-in-space
maintain a fixed amplitude and phase relationship over an
entire (time) observation interval, the signals-in-space
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By considering certain asymptotic algebraic properties of the signal

covariance eetimates, it was possible to obtain results for the clasaical

problem: how many plane waves can be identified and estimated with a given

array? Specifically, we found that a uniform line array with L identical

elements can asympcotitally* reeolve:

(l) as many aa L-1 signale if the signala are incoherent,

(2) as many as L/2 coherent signale if subaperture spatial
averaging of the type shown in Fig. 8-la ia utilized, and

(3) two coherent signals if only forward-backward smoothing
(see Fig. 8-lb) is used and the relative phase ie not
near 0° or 180”.

A definitive statement of the combined effects of spatial smoothing and

forward/backward averaging in the coherent case remains elusive. For examPle,

it is probably true that forward/backward averaging increases the coherent

signal capability of an array “mOst”’Of the time, prOvided the n~ber Of

signals present does not exeed 2L/3. However, specific counterexamples are

easily constructed. For example, when the received signals are all inphase,

the theoretical capability of an array is not improved by forward/backward

avereging.

B. Probability Function Considerations

Chapter III and Appendix E considered the use of maximum likelihood

(probability) estimates for the parameters (amplitude, phase, and arrival

angle) of several plane waves given the Observed data. Both eingle-and

multiple-snapshot estimators were considered. These estimatee involve

maximization of a nonlinear function of the received data over the angle-of-

arrival parameters. Numerical optimization of the function does not seem

* i.e., as the number of time obaervatione (“snapshots””) approaches infinity.
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Backward Spatial Smoothing.
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practical for real-time applications and hence was not investigated in depth

during the course of this study.

However, several intermediate results are viewed as noteworthy:

(1) a gradient projection technique for recursively computing
the angle parameter estimstes was shown to depend on the
Fisher information matrix which arises in Cramer-Rao
(CR) bounds on the ML performance.

(2) the estimator for multiple observations of coherent
signals is shown to involve the sample covariance matrix
which was considered in Chapter II. A suboptimsl approx-
imation to this result is seen tO i~vOlve use Of the
principal component (i.e.,Xl el el where L1 and el
the largest eigenvalue and corresponding efgenvector) of
the covariance matrix as if the principal component was a
single array observation.

Result (2) is of interest because it relates the seemingly disparate concepte

of covarfance and covariance eigenanalysie to probabilistic considerations.

Explicit Cramer-Rso bounds on the angle-of-arrival standard deviation were

obtained for the case of a single time observation of one or two plane waves

in additive noise. These results extend thoae obtained by other investigators

[15, 161. One important contribution Is that the degradation in effective

signal-to-noise ratio when two signals are present can be written as a product

~ (As) [1 - lf(Aa)12C0S2A6]

where the array efficiency factor, ~ and the array coherency factor f depend

only on the angular separation Aa between the plane waves and A5 depends On

the relative rf phase. This representation clarifies the rather large

performance differences which occur for inphase/out-Of-phase signals as

OPPOSed to quadrature phase.

On the other hand, several apparentlY paradoxical features of the twO

signal CR bound were not’resolved. These include:

(1) no dependence on relative signal amplitudes in the ex-
pression for angle-of-arrival variance. ‘fbisseems odd
in that it euggests a small amplitude signal very near a
much larger signal may cauae a severe error in the angle-
of-arrival estimate of the desired (larger) signal, and
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(2 a very rapid increase in the bound on angle variance as
the separation angle decreaaes for O“and 180” relative
phaee. By centrast, practical angle-of-arrival
estimators typically chow a decreasing rms error as the
separation angles decreased at 0° relative phase.

We have highlighted these paradoxical features Sinca the CR bounds for mOst

radar estimation problems (see e.g., [34]) dO nOt have such anOmalies. It may

be that the restriction to unbiased estimator CR bounds generates some of

these paradoxical features and the use of alternative bounding techniques

[82, 831 may be useful. On the other hand, tbe analysis in Appendix E

suggests that at typical SNR and small separation angles, a “realistic’”

optimal processor which hae no a priori knowledge of the correct number Of

plane waves will simply fail to resolve the

“anomalous“’behavior of the CR performance bound

important in practical situation.

c. Practical High Resolution Technique

Next we considered a number of more practical

two signals. Hence, the

discussed above may not be

estimation techniques.

extended Prony/autoregressive (AR) technique was developed both as

extension of the classical Prony method* and from the viewpoint of fitting

The

an

an-all pole angular spectrum model to the received data. This method was seen

to ba superior in terms of resolution and angle estimation performance to

other common maximum entropy approaches (specifically the Burg and

autocorrelation methods) for the case of a small number of time samples and

equivalent to these in the asymptotic limit for incoherent signals.

The spatially averaged covariance estimatea which ariee out of thie

technique were found to have ueeful application to two other high-resolution

techniques:

(1) the maximum likelihood method (MLM) due to Capon, and

(2) covariance eigenanalysis techniques (e.g., NUSIC)

*
Mathematically
processing.

equivalent to an approach suggested at one time for DLS
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which hitherto had been found to yield very poor performance when the signals

were coherent. This is an important result since it was previously believed

(ace, e.g., [1, 13]) that the MLM technique could not be used successfully in

situations with coherent aignala.

‘l’hecovariance eigenanalysis techniques appear particularly attractive in

casea where there are a large number of time observations. In the limit of

infinite time observations, these techniques permit one to effectively

eliminate the contribution of additive noise to the covariance. When the

noise contribution is eliminated, it is then fairly easy (e.g., by the

Pisarenko method) to exactly determine the arrival angles of the various plane

wavea. However, in the more common case of a small number (e.g., 1-10) Of

time observations, the noise-reduction advantage of eigenanalysis techniques

are not alwaye evident.

ARMA techniques were also investigated because sum of sinusoids (plane

waves) in noise satisfies a difference equation similar to the equation

describing an ARMA process. On the other hand, the presence of zeros (as well

aa poles) in the assumed data model significantly complicates the parameter

estimation problem, and we were not able to develop an effective AIU’fA

algorithm within the time frame of the preeent study.

D. Performance Assessment of Various Techniques

At the time this work commenced, the principal performence assessment of

improved techniques had consisted primarily of simulation studies on:

(i) incoherent signals with the observable being the
ensemble correlation matrix, andlor

(ii) coherent eignals with a single time observation
wherein tha published result waa a angular spectrum
plot.

The ensemble correlation matrix results can provide reasonable bounds on the

multiple-snapshot/incoherent signal performance of several algOrith~ (e.g.,

MLM and AH/ARM), but they tend to give OverlY OPti~etic results fOr certain

othera (especially MUSIC, AXMA, and EAH). The single-snapshot angular spectra

2+7
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displays suffer from the lack of precise quantitative criteria as to the

improvement, especially since visual criteria such as sharpness of peaks are

not necessarily a good measure of resolution or angular accuracy.

To remedy these deficiencies, a Monte Carlo simulation baaed on

statistical decision theory was developed in which the angular spectra (or,

model parameters) were analyzed to provide plane-wave “’targetreports” (i.e.,

angle-of-arrival and power estimates). These target reports are then assigned

to the actual plane wavea so that statistical decision theoretic error

measures (e.g., false alarm and miss probability, rms and bias error) can be

determined. By setting (application dependent) quantitative bounds on each

error measure, one can then achieve a quantitative expression of successful

performsnce.

The Monte Carlo simulations and ensemble covariance studies showed that

certain of the advanced signal processing techniques (especially, the ARM and

eigenanalysia approaches) have the pOtential for sigmificant (e.g., factOrs Of

3 to 10)

1.

2.

improvement in performance for reasonable SNR (e.g., 30):

For incoherent signals or, quadrature-phase cohe$ent
signals, two plane waves can be successfully resolved at
separation angles aa small as O. 1 BW with 10 or more time
observations. At a lower array SNR (e.g., 20 dB) the
minimum angular separation is on the order of O.3 BW.

TWO inphase (e.g., relative phaeea near 0° or 180°)
coherent plane waves with 10 or more time observations
cam be aucessfully resolved at reparation angles down to
0.5-0.7 BW. The degradation with SNR ia relatively slow
(e.g., 20 dB array SNR yields a minimum resolvable
angular separation of 0.8 to 1.0 BW, 40 dB SNR yields a
minimum angular separation of 0.2-0.35 BW). On the other
hand, if only a single time observation is available the
required SNR for resolution will increase significantly
(e$g. , over 15 dB at 0.5 BW separation angle).

*Successful resolution here is defined as miss and false-alarm probabilities
of lese than 10% with angle-of-arrival rms and biaa errOrs on all received
plane waves of less than 0.05 BW.
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Conventional angle determination techniques (e.g., monopulae or the TRSB

thresholding processor) will typically fail these resolution criteria for
**

separation angles below 1.5-2 beamwidths. Thus, the above performance

results represent a factor of 5 to 15 improvement in minimum separation angle

in the incoherent or quadrature-phase caaes and a factor of 2-3 improvement in

the coherent inphaae caae.

The independent Gaussian additive noise considered in the Monte Carlo and

ensemble covariance simulation is one of several error sources for an angular

direction determining system. Other error sources (e.g., receiver channel

drifts, AjD converter errors, array collimation errors) were examined

primarily in the context of experimental measurements. The measurement in a

centrolled environment at the Lincoln Laboratory antenna range generally

agreed well with the Monte Carlo reaulte. For example, the angle error using

a single time observation to estimate the larger of two coherent plane waves

( o = 0.7 ) at an array SNR of 33 dB waa:

(i)

(ii:

< 0.07 BW for all relative phasea which
from 0° or 180”, and

< 0.07 BW for all relative phases at a
of 1 BW.

were 30” rerioved

separation angle

At 0.5 BW separation angle, the weaker of the two plane waves could be

resolved and located tn within O.1 BW for all relative phases which were

approximately 45” removed from the 0“/180” phase conditions.

The (limited) simulation studies of the effects of differential amplitude

and/or phase errors in the measured array data indicate that the performance

fnr coherent inphase signals degrades sharply in terms of detection probabil-

ity and angular errors when the amplitude errors exceed 1 dB and phase errors

exceed 3”. The sensitivity to errora with quadrature-phase coherent signals

was much less pronounced, Much more extensive studies in this

to clarify the performance degradation as a function of SNR,

ment, and number of elements.

**
Depending on the relative signal amplitudes.
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Several axamples using the high-resolution spectrum estimation techniques

to analyze terrain reflection data were presented. These examples illustrate

the problems which arise in attempting to identify the nature of the recaived

signals. Specifically, with the techniques studied to date, it has been quite

difficult to distinguish between an environment consisting of discrete plane

waves with low SNR and small separation angles and a “mixed” environment with

diacrate plane wavea as well as ‘diffuse’ signals from an extended angular

region. ARMA estimators may offer some utility in such casea, particularly

since the environment analysia application often does not necessitate real-

time operatinn.

E. Hardware Implementation of Promising Techniques

Key hardware implementation issues for a sampled-aperture receiving

system were identified based on several years of experience with an

L-band/C-band system and via simulation studies. These investigations have

identified amplitude and phase equalization among the variOus receiver
*

channels as a principal problem. In particular, coherent inphase signal

performance degrades significantly with amplitude errors greater than 1 dB and

phase errors above 3°. Baaed on our experience, it appears that a combination

of careful hardware design and real-time calibration should be capable of

achieving the desired tolerance provided that the array element patterns do

not sufer significant differential variations with time and/Or temperature.

Signal quantization and round-off errors, which had previously been

important factora in real-time implementations, currently appear to be much

leas of a problem due to the significant progreaa in A/l)converter capability

and the ready availability of high-speed, low-coat multiplier chips. The

spectrum analysia computation costs could be significant since a very fine

(angle) grid may be required. However, one of the most promising techniques

(ARM) requires only rooting of a polynomial. Simulation experiments suggest

*
For an air-derived processor (e.g., the TRSB receiver), the correapooding
requirement ia for collimation of the paths from the ground-transmitter local
oscillator (or, transmitter) to the individual elements.
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that the root-finding operation will require significantly less computer time

than angular spectrum analyais for arraye with a small to moderate number of

elements.

F. Application of the Techniques to TRSB Signal Processing

The TRSB signal from a line array is the Fourier transform Of the

wavefront which would be received by a ground-based receiving system with the

same antenna aperture. Thus, a (relatively short) investigation was made of

the possibility for implementing some of the more promising signal processing

techniques in a TRSB receiver. The principal problem identified was the leas

of phase information in the TRSB envelope and two approaches were considered:

(a) recovery of phase information using the DPSK function
preamble, and

(b) wavefront reconstruction directly using the fact that
phase and magnitude are closely related for mi.nimutn-phase
signals.

The phase information recovery via DPSK demodulation requires additional

study to understand how frequency offsets between the demodution frequency and

TRSB carrier (due to low SNR and/or multipath scalloping) will degrade

performance. Some of the difficulty here ariees from the fact that the TRSB

signal format scans at an uniform angular rate rather than uniformly in sine

apace. Other difficulties include the lack of information at the TRSB

receiver regarding the ground-system aperture (e.g., number of elements,

spacing) and the type of aperture weighting used to reduce the antenna

sidelobea.

The direct wavefront reconstruction is appealing theoretically. However,

the algorithms which are currently available typically involve a numerically

difficult gradient search which would not be appropriate for airborne receiv-

ers. Hence, this technique does not seem practical.

An alternative signal processing approach which might be useful is to

investigate high-resolution algorithms which use ae their input the received

signala from a beamformer array (e.g., as from a Butler matrix) since the TRSB
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complex envelope sampled at suitable points in time would cIosely

the output of such a beamformer array.

To provide quantitative insight into the TRSB performance

which might be achieved with sophisticated signal processing

approximate

improvement

techniques,

simulation and field data comparisons were made between several low angle

elevation angle estimators that might be used for flare guidance. Specific

comparison was made between the TRSB single edge processor used for flare

guidance, a AR-based estimator, and several contemporary low angle monopulse

trackers. The AR-baaed estimator showed significantly better performance in

the simulations of performance over flat terrain; however, the results with

field data from irregular terrain showed no clear advantage for any of the

techniques. Additional measurements using a more representative receiving
*

array and aircraft geometry are needed here.

G. Concluding Remarks

Our principal conclusions can be briefly summarized as follows:

(1)

(2)

(3)

(4)

There seems little likelihood of significantly improved
angle-of-arrival estimation performance for cases where
only one desired signal is present and signal-to-noise
ratio is the principal limitation.

Improvements of 2-3 in minimum resolvable angular
separation are possible against coherent interference
(e.g., multipath) with high SNR (e.g., 30 dB) and an
appropriate array geometry which permits spatial
smoothing.

Order-of-magnitude improvements in minimum resolvable
angular separation are acnievaole against incoherent
interference with moderate SNR (20 dB) and modest time
averaging. The most obvious case where such incoherent
interference arises in current ATC systems is synchronous
garble in ATCRBS/BCAS.

Computation hardware for certain of the high-performance
algorithm seems readily achievable at low to moderate
cost.

*Horizon limitations (due to trees) necessitated the use of arrays with a
small number of
the field data.

elements in order to obtain an inbeam multipath condition for
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(5)

The

Receiver calibration/monitor~ng will be a potentially
significant factor in practical realization. The re-
quired amplitude and phase accuracies need additional
study.

preceding portions of this chapter have identified a number of areas

which require additional work. The most pressing items are as follows:

(1) improved performance bounding techniques so that perfor-
mance benchmarks can be defined.

(2) continued work on estimators which offer considerable
promise [e.g., EAR because of its good detection perfor-
mance, ARMA for applications in which the shape of the
angular power spectrum (as opposed to peak locations is
important)1, but have undesirable features in their
current versions. Assessment of nonequally spaced line
arrays and/or two-dimensional arrays is also needed since
a number of current (e.g., VOR) or proposed (e.g.,BCAS
and DAS) systems use such arrays.

(3) inclusion of aperture sample phase and amplitude errors
into the decision theoretic (Monte Carlo) simulation so
that the required channel equalization, calibration, and
monitoring can be more precisely quantified.

(4) detailed investigation of specific candidate systems to
determine the total system implication of using high-
resolution signal processing techniques vis-a-vis current
methods.

1

I

:-13



1.

2.

3.

4.

5.

6.

i’.

8.

9.

10.

11,

12,

w. Gabriel, “Spectral
techniques”, Proc. IEEE

References

analysis and adaptive array superresolution
~, 654-666 (1980).

D. Childers (editor), Modern Spectrum Analysis (IEEE Press, New York
1978).

H. Cox, “’ResolvingPower and Sensitivity to Mismatch of Optimum Array
Processors,” J. Acoust. Sot. Amer. & No. 3, 771-785 (1973).

W. I. Wells, “Verification of DABS Sensor Surveillance Performance (ATCRBS
mode) at Typical ASR Sites Throughout CONOS”, Project Report ATC-79,
Lincoln Laboratory, M.I.T. (10 Nov. 1977), DDC AD-A05112817.

J. Evans, D. Sun, D. Shnidman, and S. Dolinar, “MLS Multipath Studies
Phase 3 Final Report, vol. 1: Overview and Propagation Model
Validation/Refinement Studies”, Project Report ATC-88, Lincoln Laboratory,
M.I.T. (Apr. 1979) FAA-RD-79-21, DTIC AD-A08782712.

J. Capon, “Multipath Parameter Computations for the MLS Simulation
Computer Program”, Project Report ATC-68, Lincoln Laboratory, M.I.T. (8
April 1976) FAA-SD-76-55, DDC AD-A024350/10.

“Development of a Discrete Address Beacon System,” Quarterly Technical
Summary, 1 April - 30 June 1976, Lincoln Laboratory, M.I.T. (1976).

“Development of a Discrete Address Beacon System,” Quarterly Technical
Summary, 1 October - 31 December 1976, Lincoln Laboratory, M.I.T. (1977),
DDC AD-A-37130/2.

“The DM8-Based-Landing System, DLS,” as proposed by the Federal Republic
of Germany developed by Standard Elektrik Lorenz AG. and Siemens, AGo,
Sept. 1975

M. Bohm, “A Simple Multipath Error Reduction Technique For Single Site DF
Systems”, AGARD Conf. Proc. No. 209 on Propagation Limitations Of
Navigation and Positioning Systems, London, 1976.

H. Van Trees, Detection, Estimation and Modulation Theory Part I (Wiley,
New York, 1968).

J. Capon, “High-ResolutionFrequency-wave Number Spectrum Analysis”, Proc.
of IEEE ~,1408 (1969).

13. W. D. White, “Angular spectra in radar applications,” IEEE Trans. Aerosp.
Electron Syst. AES-15, 895-899 (1979).

14. D. Barton, Radar Resolution and Multipath Effects (Dedham, Mass, Artech

R-1



Press, 1975).

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

J. R. Sklar and F. C. Schweppe, “The Angular Resolution of Multiple
Targets,” Proc. of IEEE.

G. E. Pollon, “On the Angular Resolution of Multipath Targets,” IEEE
Trans. Aerospace Electron Systems (Corresp.), =3, 145-148 (1967).

H. Akaike, “Statistical Predictor Identification,‘“Ann. Institute Statis-
tical Mathematics ~,205 (1970).

I?.White, “’LowAngle Radar Tracking in the Pre>ence of Multipath,” IEEE
Trans. Aerospace Electron Systems AES-10, 838-852 (1974).

R. T. Lacoss, “Autoregressive and Maximum Likelihood Spectral Analysia
Techniques, “ in AapecCs of Signal Processing, pt. 2, G. Tucconi, Ed.
(Reidel, Boston,1977).

J. Makhoul, “’LinearPrediction: A Tutorial Review,“’Proc. IEEE ~, 561-580
(1975).

M. Kaveh, “High Resolution Spectral Estimation for Noisy Signals,”IEEE
Trans. Acouat., Speech, and Signal Proceaaing ASSP-27 286-287 (1979).—~

G.E.P. Box and G. M. Jenkins, Time Series, Forecasting and Control (Holden
Day, San Franciaco, CA , 1970).

S. Bruzzone and M. Rsveh, “On Some Suboptimum ARMA Spectral Estimators,’+
IEEE Trans. Acoust., Speech, and Signal PrOCeaSiWg ASSP-28 753-755—~
(1980).

International Mathematics and Scientific Program Library (1978).

J. Cadzow, “’HighPerformance Spectrum Estimation - a New ARMA Method,‘“
IEEE Trans. Acoust., Speech, and Signal Processing AsSP-28, 524-529
(1980).

S. Kay, “A New ARMA Spectral Estimator,” IEEE Trans. Acoust., Speech, and
Signal Processing ASSP-28 585-588 (1980).—~

W.B. Kendall, “Unambiguous Accuracy of an Interferometric Angle-Measuring
System,“’IEEE Trana. Space EIectron and Telemetry ~, 62-70 (1965).

J. Evana, S. Dolinar, D. Shnidmsn, and R. Burchsted, “ MLS Multipath Stud-
ies Phase 3 Final Report Volume II: “Development and Validation of Model
for MLS Techniques,” Project Report ATC-88, Vol. 11, Lincoln Laboratory,
M.I.T. (7 February 1980), DTIC AD-A08001/3.

R-2

—--—-—’-—’. --,----------------------



29. J. Evans and S. Dolinar, “MLS Mult~path Studies Phaae 3 Final Report
Volume III: “Comparative Asaessment Results,‘“Project Report ATC 88, Vol.
111, Lincoln Laboratory, M.I.T. (in press).

30. R. Schmidt, “Multlple Emitter Location and Signal Parameter Estimation,”
Proc. RADC Spectrum Estimation Workshop, Rome, N.Y., 1979.

31. S. Lang and J. McClellan, “Frequency Estimation with Maximum Entropy
Spectral Estimators,‘“IEEE Trans. Acoust., Speech, and Signal Processing
ASSP-28 716-724 (1980).—~

32. S. Lang, “Near Optimal Frequency/Angle of Arrival Estimates Based on
Maximum Entropy Spectral Techniques,” in Proc. 1980 IEEE Intl. Conf. on
Acoustics, Speech and Signal Processing, 829-832 (1980).

33. K. Kohler, “Synthetic Radio Direction Defining Methods with Virtual
Antenna Patterns’”,Electrical Coinm.48,299-304 (1973)—

34..D. K. Barton and H. R. Ward, Handbook of Radar Measurement (Prentice-Hall,
New Jersey,1969).

35. U. Nickel, “Detection and Parameter Estimation of Closely Spaced Multiple
Targets,‘“IEEE Symp. on Info. Theory, Ithaca, N.Y., 1977.

36. H. Birgenheier, “Parameter Estimation of Multiple Signals,” Engineering
System Science Ph.D. Dissertation, Univ. California at Loa Angeles, 1972.

37. 1. Kupiec, “Experimental Verification of the Performance of the Aperture
Sampling Technique,” Technical Note 1975-45, Lincoln Laboratory, M.I.T.,
(15 September 1975), DDC AD-AO16779/l.

38. I. Kupiec, “Compensation of Multipath Angular Tracking Errors in Radar,”
Technical Report 501, Lincoln Laboratory, M.I.T. (20 March 1974),
DDC AD-781100/3.

39. J.E. Howard, R.A. Birgenheier, and G.O. Young, “Application of Learning
Techniques to ANTI Radar Problems,” Technical Report AFAL-TR-72-240
(August 1972).

40. T. Ulrych and M. Ooe, “Autoregreasive and Mixed Autoregressive - Moving
Average Models and Spectra,” in Nonlinear Methods of Spectral Analysis, S.
Haykin, Ed. (Springer Verlag, N.Y., 1979).

41. M. Morf, B. Dickinson, T. Kailath, and A. Viera, “Efficient Solution of
Covariance Equations for Linear Prediction,” IEEE Trana. Acoust, Speech,
and Signal Processing ASSP-25 429-433 (1977).—$



42.

43.

44.

45.

46.

47,

48.

49.

50.

51.

52.

53.

54.

55.

56.

J. E. Evans, D. Karp, R. LaFrey, R. J. McAulay, and I. G. Stiglitz,
“Experimental Validation of PALM - A System for Precise Aircraft
Location,‘“Technical Note 1975-29, Lincoln Laboratory, M.I.T. (29 April
1975), DDC AD-AO10112/l.

Federal Republic of Germany, “The Need for Integrated Navigation Systernin
the TMA,” ICAO All Weather Operation Division Working Paper AWO178-WF/56,
(1978).

J. Evans, “’L-bandDME Multipath Environment in the MLS Approach and
Landing Region.“’Project Report ATC-116.Lincoln Laboratory, M.I.T. (March
1982),“FAAzKD-82/19.“ -

Weiaa, L. and R. N. McDonough, “’Prony’s Method,
Approximation,” SIAM Rev. ~, 145 (1963).

Van Blaricum and Mittra, “Problems and Solutions
Method for Processing Tranaient Data,” IEEE Trans.
174-182 (1978).

Z–Transforma, and Pade

Associated with Prony’s
Antennaa Propag ~,

F. B. Hildebrand, Introduction to Numerical Analysia (McGraw-Hill, New
York, 1956).

R. Prony,” Esaai experimental et anslytique, etc.,” Paris, J. 1‘EcOle
Polytechnique l_,cahier 2, 24–75 (1975).

O. L. Frost, “An Algorithm for Linearly Constrained Adaptive Array
Processing,” IEEE Proc. &l, 926-935 (1972).

A. J. Bernf, “Angle of Arrival Estimation Using an Adaptive Antenna
Array,” IEEE Trans. Aerospace Electron Systems AES-11, 278-284 (1975).

L. Marple, “fiigh-ResolutionAutoregreasive Spectrum Analyeis Using Noise
Power Cancellation.” IEEE International Conf. on Acoustics, Speech, and
Signal Processing, Tulsa,

R. Nitzberg, “Application
Covariance Matricee to
Electron. Systems ABS-16—~

Oklahoma, 10-12 April 1976.

of Maximum Likelihood Estimation of Persymmetric
Adaptive Processing,” IEEE Trans. Aerospace
124-127 (1980).

Y. L. Chu, “Optimum Complex AMA in Caacade Form,” S.B. Theais, M.1..T.
Electrical Engineering Dept., May 1981.

R. Manasae, ‘“AnAnalysia of Angular Accuracies from Radar Meaaurementa,”
Group Report 32-34, ‘LincolnLaboratory, M.I.T. (6 Dec. 1955), DDC236166.

M. Marcua, “Basic Theories in Matrix Theory,‘“ National Bureau Of
Standards, Applied Math Series, Vol. 57, (27 Jan. 1960).

B. Cantrell, W. Gordon, and G. Trunk, ‘“MaximumLikelihood Elevation Angle

R-4



I

i
I

1
I
i

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Estimates of Radar Targets Using Subapertures,” IEEE Trans. Aerospace
Electron. Systems ARS-17, 213-220 (1981).

J. E. Howard, “’ALow Angle Tracking System for Fire Control Radars,‘“IEEE
1975 Int. Radar Conf. Rec., 412-417 (1975).

D. C. Rife and R. R. Boorstyn, “Single-Tone Parameter Estimation from
Discrete-Time Observations,” IEEE Trans. Inf. Theory ~, 591-598
(1974).

G. Trunk, B. Cantrell, and W. Gordon, “Probability Density of the Maximum
Likelihood Elevation Estimation of Radar Targets,” IEEE Trans. Aerospace
Electron. Systeme ASS-15, 288-289 (1979).

B. Gold and C. Rader, Digital Processing of Signals (McGrawHill, N.Y.
1969), Chapter 8.

J. P. Burg, “A New Analysis Technique for Time Series Data,” NATO Advanced
Study Institute on Signal Processing with Emphasis on Underwater
Acouetics, August 12-23, 1968.

J. P. Burg, “Maximum Entropy Spectral Analysis,” PhD Thesis, StanfOrd
Univ. May 1975.

N. O. Anderson, “On the Calculation of Filter Coefficients for Maximum
Entropy Spectral Analysis,“’Geophysics~, 69-72 (1974).

A. B. Baggeroer, “Confidence Intervals for Regression (MEM) spectral
Estimates,‘“Tech. Note 1975-41 Lincoln Laboratory, MIT, (18 June 1975),
DDC AD-A-012286/l; and IEEE Traris.Inf. Theory ~, 534-545 (1976).

T. J. Ulrych and R. W. Clayton, “Time Series Modeling and Maximum
Entropy,” Phys. Earth Plan. Int. lZ, 188-200 (1976).

A. H. Nuttal, “Spectral Analysis of a Univariate Process with Bad Data
Points, via Maximum Entropy and Linear Predictive Techniques,” Naval
Underwater Systems Center, New London, CT, Tech. Rep. 5303 (Mar. 26,
1976).

V.F. Pisarenko, “’TheRetrieval of Harmonics from a Covariance Function,”
Geophys. Royal Astron. Sot. ~ 347-366 (1973).

U. Grenander and &-Szego, Toeplitz Forms and Their Application (Univ. of
California Press, Berkeley, 1958).

S. S. Reddi, “Multiple Source Location - A Digital Approach,” IEEE Trans.
Aerospace Electron Systems AES-15,95-105 (1979).

R-5



.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

“Development of a Discrete Address Beacon System,” Quarterly Technical
Summary, 1 Oct. - 31 Dec. 1973, Lincoln Laboratory, M.I.T. (1 January
1974), FAA-RD-74-8, DDC AD-776118/2.

J. L. Allen, “The Theory of Array Antennas,” Lincoln Laboratory Technical
Report No. 323, (25 July 1963).

N. R. Goodman, “StatisticalAnalysis Based on Certain Multivariate Complex
Gaussian Distribution,” Ann. Math Stat. 34,152-177 (1963)..

F. J. Harris, “On the Uae of Windows for Harmonic Analyaia with the
Dfacrete Fourier Tranafonu,” Proc. IEEE 6&,51-83 (1978).

T. F. Quatieri and A. V. Oppenheim, “Iterative Techniques for Minimum
Phase Signal Reconstruction from Phase or Magnitude,” Technical Note
1980-34, Lincoln Laboratory, M.I.T. (1 August 1980), DTIC AD-A091111.

J. R. Fienup, “Reconstruction of an Object from the Modulus of its Fourier
Transform,” Opt. Lett. ~, 27 (1978).

A. V. Oppenheim and R. W. Schafer, Digital Signal Processing (Prentice-
Hall, Englewood Cliffa, New Jersey, 1975).

B. Gold, A. V. Oppenheim, and C. M. Rader, “Theory and Implementation of
the Discrete Hilbert Transform,“’Proceedings of the Symposium on Computer
Processing in Communication, Vol. 19 (Polytechnic Press, New York, 1970).

P. Dax, “Keep Track of that Low-Flying Attack,” Microwaves 36-53 (1976).‘“

J. Beneke, D. Wightman, A. Offt, and C. Vallone, “TRSB Multimode Digital
Processor,” FAA-sD-78-84 (April 1978).

J. Warren, “Flight Testa of the Microwave Landing SyaternMultimode Digital
Processor,” FAA Technical Center Report No. FAA-CT-80-19 (Jan. 1981).

H. Kahn, “Applications of Monte Carlo,” RAND Corp. Research Memorandum
KM-1237-ABC (April, 1956).

M. Wax and J. Ziv, “Improved Bounds on the Local Mean-Square Error and the
Bias of Parameter Estimators,” IEEE Trans. Inf. Theory IT-KK, 529-530
(1977).

L. P. Siedmsn, Performance Limitation and Error Calculations‘for Parameter
Estimation,‘“Proc. IEEE, ~, 646-652 (1970)

ITT/Gilfillan, “Microwave Landing Systern (MLS) Development Plan aa
Proposed by ITT/Gilfillan During the Technique Analysis and Contract
DefiriitionPhase,“’FAA-RD-74-118 (Sept. 1972).

R. Kelly and E. LaBerge, “MLS Flare Low Elevation Angle Guidance

R-6

. .......,m..m



86.

87.

88.

89.

90.

91,

92.

93.

94.

95.

96.

97.

98.

99.

Considerations,” National Telecomm. Conf. Record, volume 1, Houston,
Texas, Nov. 1980.

C. Wightman, “Flare Pole Tests of the MLS Multimode Digital Processor,”
CALSPAN Corp., TN-15, June 1978.

S, Haykin and J. Reilly, ‘“MixedAutoregressive - Moving Averaging Modeling
of the Response of a Linear Array Antenna to Incident Plane values,“’Proc.
IEEE ~, 622-623 (1980).

A. Cantoni and L. Godara, “Resolving the Directions of Sources in a
Correlated Field Incident on an
(1980).

D. Sun, Lincoln Laboratory,
preparation).

Array,” J. Acoust. Sot. Am. 64. 1247-1255—

M.I.T., Project Report ATC-107 (in

R. Gallagher, Information Theory and Reliable Communication (Wiley, New
York, 1968).

U. Grenander snd G. Szego, Toeplitz Forms and Their Applications (Univ. of
Calif. Press, Berkeley, 1958).

D. Luenberger, Optimization by Vector Space Methods (Wiley, New york,
1969).

J.Edward and M. Fitelson.,‘“Noteson maximum entropy processing,“’ IEEE
Trans. Inf. Theory. ~, 232-234 (1973).

A. Van den Bos, “An Alternative Interpretation of Maximum Entropy Spectral
Analysis,” IEEE Trans. Inf. Theory (Corresp.) ~, 493-494 (1971).

R. Deutsch, Estimation Theory (Prentice Hall, Englewood Cliffs, N.J.,
1965).

J. Durbin, “’TheFitting of Time-Series Models,” Rev. Intern Statist Inst.
3,233-243 (1960).

N. Levinson, A Heuristic Exposition of Wiener’s Mathematical Theory of
Prediction and Filtering,” J. Math. Phys. ~,llo-119 (1947).

R.C. Buck,

R. Bartle,

Advanced Calculus (McGraw-Hill, New York, 1956).

The Elements of Real Analysis (Wiley, New York, 1964).

R-7

——— ..._..__... _.,__ .,.,... ,.W ,,..



1 APPENDIX A

C-BAND ANTENNA ARRAY

1
The C-band antenna array, aa shown in Fig. A-1,

*
consists of 30 antenna

elements with two different element spacings. The elements in the upper half

of the array have 3.1488 wavelengths (a) spacing (distance between the centers

of two adjscent elements) and those in the lower half of the array have

1
1.5744A spacing. In the actual C-band measurement system, only the lower 29

‘1
**

elements are used. This yields the usable array aperture of 56.7A.

The individual antenna element consists of an E-plane sectoral horn and a

twisted waveguide section with the coaxial feed at the far end of the wave-

guide section. This twisted waveguide section was necessitated by the desired

broad-wall to broad-wall waveguide coupling for the RF test signal injection

for the RF calibration as discussed in Chapter VI Section B-2. These 30 horn

antennas are then attached to a directional coupler assembly which is a 12-

foot-long 2“ x 1” waveguide with specially designed coupling slots for inject-

ing the RF test signal, as shown in Fig. 6-7.

The coupling (or isolation) between two adjacent horns was thoroughly

investigated. The isolation between two horns was measured for the two most

I popular arrangements of two horns, as shown in Fig. A-2, i.e., E-plane tO

E-plane and H-plane to H-plane. Although the arrangement of 30 horna in our
I

I C-band array was E-plane to E-plane, the isolation measurement result for the

I
H-plane to H-plane arrangement would be helpful”,in case we had some misalign-

ment of theae horns along the array axis. The measurement results are shown

in Fig. A-2. We see that the isolatinn for the H-plane to H-plane arrangement

is very good, well above 40 dB for any spacing. However, the isolation fnr

1 *
I In this picture, the array radome was removed to show the actual antenna

elements.

**
The use of only 29 elements (instead of available 30) is to make each of the

fnur RF frent end shared by the same number of antenna elements, with the
i bottom element used as a phase reference channel which was connected to the

reference RF/IF receiver channel as shown in figure 6-2(b).
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Fig. A-1. C-band array used for experimental studies.
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the E-plane to E-plane arrangement can be as low as 25 dB for very C1OSe

spacing. Aa indicated in Fig. A-2, the iSolation for the large element spac-

ing in our C-band array is around 40 dB while that for the smaller spacing ie

only about 28 dB which is not good. To make the isolation between any two

adjacent horns in our C-band array be at least better thsn 35 dB, an RF de-

coupling choke was instslled in each space between two adjscent horns fnr the

lower half of the array. With the choke in place the isolation between two

adjacent horns with smaller spacing is improved from 28 to 36 dB, as indicated

by the symbol in Fig. A-2. To further enhance the horn-to-horn isolation,

when the antenna array was installed inside the radome, the distance between

the array horn surface to the radome was adjusted to produce a 50-dB horn-to-

horn isolation, as shown in Fig. A-3.

The connection between the 29 antenna elements and the 5 RF front ends is

made through 5 SP1OT RF switches as shown in Fig. 6-2(b). The bottom antenna

element is used as phase reference and connected through nne SP1OT* switch to

the reference RF front end. The other 28 antenns elements are equally divided

amnng 4 SP1OT switches. Sn, in the measurement, every 7 antenna elements are

time multiplexed through one SP1OT switch to share nne RF front end. Since

there are 10 input ports in one SP1OT switch, 7 input ports with the best RF

isolation and the least loss are chosen tn be connected to 7 antenna ele-

ments. The measurements indicate that the switch port XF isolation is better

than 40 dB for all switches used.

4

,

The design dimensions fnr the E-plane sectoral hnrn are given in

Fig. A-4. Since the radiation characteristics (such as directivity, 3-dB

beamwidth, sidelnbe level, etc.) of a horn antenna can be fairly accurately

determined from the horn dimensions, no radiation pattern measurements were

made for the 29-horn antennas used in our C-band array. The calculated values

are given below:
I

*
The use of a SP1OT switch in the reference RF front end is to equalize the RF
path lengths among all antenna/RF receiver channels.
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I

E-plane 3-dB beamwidth . 32”

H-plane 3-dB beamwidth = 72°

directivity s 12 dB

maximum E-plane sidelobe level = -12 dB

maximum H-plane sidelobe level = -26 dB

The VSWR with respect to the 50-0 line for the individual horn assembly (i.e.,

an E-plane aectoral horn and a twisted waveguide section) was specified to be

less than 1.2:1.



This appendix

data obtained from

APPENDIX B

EX~ERfiALAND RF CALIBRATION DATA

presents the external and the associated SF calibration

the array collimation measurements at the Lincoln Labora-

tory antenna test range during the past year (December 1979 to August 1980).

The setup for the array collimation measurement is sketched in Fig. B-1, with

a photo of the C-band antenna system positioned for collimation shown in Fig.

B-2.* The position of the far-field calibration source was fixed. The align-

ment of the array boresight direction to the far-field source was obtained at

the beginning of each measurement day by adjusting the array position such

that the array phase center and the array axis fell on the presurveyed align-

ment point/line marks on the ground at the receiving end. Some of the compo-

nents (such as RF cabies, RF frent ends, etc.) in our antenna systems, espe-

cially in the L-band antenna system, were repaired or replaced during the past

year. Therefore, especially in the L-band calibration data, we can expect to

see large changes in the array collimation/KF calibration values fron one

measurement mission to the next when the components were repaired or replaced

in between two measurement missions.

Tables 3-1 and B-2 show the calibration data for the C-band antenna

system, and Tables B-3 to B-S are for the L-band antenna system. In each

table, two sets of calibration values, taken at two different times (usually

they are about 4 to 6 hours apart) of the same mission day, are given to show

the short-term variation. In general, our antenna ayatems remain fairly

stable, except for the L-band azimuth array which we have discussed in

Section 6-2. The slight variations seen in the C-band array collimation

values which cannot be explained by the corresponding RF calibration data are

believed to be due to the slight change in the C-band array boresight align-

ment with the far-field calibration source, either due to the wind blowing

*The space behind the steel door in the photo is an outdoor anechoic
chamber. During the measurement, the steel door was kept open to have
absorption walls of the anechoic chamber behind our C-band antenna system.
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Fig. B-2. Array collimation measurement for the C-band antenna system.



TABLE B-1

EXTERNAL AND RF CALIBRATION VALUES:
C-BAND ANTENNA SYSTEM> 12/14/79

External calibration values
AkiP1/AMPRand PHl/PHR: relative amplitude and phase values from two

external calibrations taken 3 hours apart

lWIPi

-1.50
-2.25
-3.60
-.2.85
-2.25
-i?.2s
-2.?0
-2.25
-2.77 !
-2.25
-2.25...
-0.75
-2,2s
-3.00
-0.?5
-0.?5
-1.w
-1.s0
-1.Qs
-0.98
-0.75
:::;

-0.68
-%.75
0.?5
0.37
-tl.7s...
0,00

M4PR

-1.25
-2.00
-2.60
-2.7S
-2.08
-2. @a
-2.30
-2. eo
-2.60
-1.99
-2.00
-0.50.
-2.89
-2.7%
-0.50
-0.50
-1.25
-1.2s
-0.95
-0.96
-a. so

1.CW
l.oe

-0.50
-0. s0

i.oe
‘a.62

-0 ..5e.
0,00

IXIPi-iWIPR

-0,2s
+3. 25
-1. w
-e. ie
-0.25
-e.a5
-0.4@
-0.2s
-0.17
-e.3s
-e.25
-a.25
-0.25
-0.25
-b.2s
-0.25
-0.2s
-e.a5
-ale
-o..Q2:
-e.2s
-$!;2:

-Q.17,
-0.25
-0.25
-0.25
-e.zs*:UO

Plu

239.92
:$;.;4

222:7s
22E.68
268.2s
2s8.2s
267.61
287.65...
!2??.44
284>3S
236.80
277.36...
255.7s
26i.4i
293.37
29@.29
3%3.iG
294.10
329.02
3eo.46
259.2s
268.fe
,?49,02
2SS.05
277.13
F?83.17
229.69
0.00

Pm PH1-PHR

236.11
::-J.;:

220:39
223.22
264.98
254.91
265.17
284.89.
27s.67
283.35.
2SJs.54.:~7G::i5
25+;64
p; :7;

288.46
303.10
293.”46““:
310;46
2$?8.17
2S8.44
267.88
249.$36
.s!s6.14
a77.01
282.W
23e.24
0.00~~~

3.s1
3.75
3.80
2.4$
3,46
3.27
3.37
2.44
2.76
1.77
1.63
1.06
1.21
1.11.
1.69
ala
1.83
e.e6
@.64
1.66
1.2s
6.2.1
e.22
-e.04
-e.e9
e..le
e.35
-e.ss
e.ee

RF calibration ValUeS ~~~
~t-pl/AM-PRand pH1/p~: relatfve amplitude and .nhasevalues from N% ~

calibrations taken 3 hours apart.

W2Pi

-3.98
-4.63
-5.48
-4.98
-4.18
-S.27
-s.18
-3.9s
-3.98
-4.65
-3.98
-3.98
-s,02
-5.48
-3.98
-3.98
-3..98
-6.23
-3.98
-3.9a
-3.56
-e.83
-2.33
-4.27
-3.9s
-2.33
-2.33
-3.98
e.oe

i3~PR

-3.24
-4,4e
-s.40
-4.7s
-3.9e
-4,9e
-4.95
-3. 9e
-3.90
-3498
-3.9Q
-3.9e
-4.88
-s.4e
-3.se
-3.90
-3.9e
-6.15
-3.9e
-3,9e
-3,4s
-e.75
-1.s0
-3.90
-3.73
-e.7s
-2.25
-3.90
Q*06

-0.?4
-0.23
-e.08
-e.23
-0.2a
-e.38
-e.23
-e.oa
-o.ea
-0.67
-e.08
-0.e6
-e.ts
-0.08
-%.e8
-0.08
-e.e8
-e.08
-e.88
-e.08
-e.12
-e.o?
-e.82
-0.38
-e.24
-1.s8
-0.e7
-e.08
0.00

PHi

291.6%
75.e9
278.29
?7,17
f;::::

2?9.33
iee.43
298.0S
12.t4
iie.6s
216.17
.285.49
347.88
84.63
208.67
289.47
25.2i?
112.84
222.s3
288.46
339.95
02.6S
!31.62
249.49
345.97
93.00
127.53
e.oe

PH8

291.63
7S.84

278,81
77,18

2S3 .48
te9.ss
279,26
la@.88
297,67
i3.4e
109.98
215.36
28s.58
3;;,!33

2e9120
289.13
25.44
112.48
222.6e
::3.&??

83:27
L33,64
~4.7J

56:41
127,68
e.oe

PH1-PH2

-e.58
-e. 74
-e.s2
-e.ee
e.is
-1.28
e.07
-::;g

-;.::

et8i
-a.09
-o.es
-e.es
-:.::

-::::

-e107
e420
-1.86
-e.63
-2.02
-e.28
-1.08
+.41
-0.15
e,ee

B- 4



TABLE B-2

RXTERNAL ANE RF CALIBRATION VALUES:
C-BAND ANTENNA SYSTFM, 1/10/80

(a) External calibration values

(b)

AMP1/AMPR and PH1/PHR: relative amplitude and phaae values
two external calibrations taken 5 hours apart.

fwlPl

0.33
-0.32
-0.78
-e.52
-0.Za
-@.37
-::::

-0.83
-0.42
-0.32
9.5!3
-0.83
-%.73
0,63
0.68
e.os
-@.fa2
0.18
0.16
6.52
2.18
2.18
e.88
1.02
2.13
1.68
0.58
0.0$3

MPR fMIP1-WIPR

@.56
0.59
-0.23
0,00
0.50
0,00
%,00
O.m
O.@@
0.0!3
0.49
1,0s

-0.23
-1.35
1.28
1.15
6.s5
0.50
O.I-lo
@.60
0.s5
2.81
3.01
1.05
1.50
.2.51
2.06
1.60
e.ee

RF calibration valuea

-’2.1s
-0.83
-0.55
-0.52
-0.73
-0.37
-9.52
-B.S2
-Q,83
-0.42
-9.72
-t?.48
-0.60
-0.38
-0.s7
-@.47
-a.+?
-9.s3
-0.62
-0.42
-0.13
-@.63
-0.84
-0.18
-e.4a
-0.36
-0.33
-e.43
0.80

PH1

232.20
198. S8
231.98
216. S6
221.26
263.1?
253.3?
263.63
283.88
274.89
282,61
294.6@
:;::;:
-1
.?57.93
z9i.3s
::k?. $33

290:55
317.25
299.71
262.12
271.34
25%.12
258.98
279.00
286.23
233.51

O.f?a

PHR

831.67
1ss.12
:::.:5

219:10
263.20
252.94
261.17
281.49
272.94
280.33
29Z .06
273.02
251.28
254.69
229.40
285.46
3a0.54
209,53
316.27
299.41
261.76
27!.56
249.59
268.20
278.90
284.94
232.73

0$00

.4WP1/AIITRand PHI/PF13?:relztive amplitude and pliace
two KP calibrations t,nkcn5 houro apart.

M4Pi

-1.5%
-3.04
-3.90
-2.88
-2.95
-3.23
-3.15
-1.50
-2.33
-8+66
-.2,33
-1.6L3
-3.60
-3.80
-2.24
-3.15
-2,9e
-4.65
-3.15
‘2.33
-1,50
e.Oe
e.eo
-e.?s
-:.WJ

-13:75
-i.5i3
e.oa

MPR

0.00
-1. s0
-2.66
-1.s0
-0,is
-2.33
-2,33
0,%0
-0.30
-0,75
-9,75
0.05
-i.27
-1.67
0.00
-1.27
-1.50
-3.15
-0.98
-:,;2

1:50
1.s5
1.50
0.00
1.s0
1.50

-0.08
0.00

-1.50
-i .s4
-1.25
-1.38
-1.99
-0,9e
-9.82
-1.50
-ea.?
-1.91
-1. s8
-1 .s5
-.2.33
-2.~3
-2.24
-1.8S
-1.40
-1.50
-2.17
-2+10
-1.50
-1.50
-1.55
-2.2s
-0. ?5
-1.50
-2.25
-1.42

9.00

PHI

291.71
77.44

278.98
79.49

254,29
111.4e
276.61
101.16
298.67

13,02
112.76
215.19
283.88
348.69

87.19
299.66
2:::;;

ii4. @i
223.45
291.86
350.65

91. e9
154. S2
2S4.84
3S5.63
101.50
136.81

0.00

PHR

292.13
78,76

279.59
80.99

254.19
iit. S8
278.70

99.70
297.13
11.48

111.07
213.44
~8i.89
347.70

84.85
209.63
291.01

28.38
169.58
221.73
:5’; , g

91:96
153,29
256.58
356.19
101.32
134.76

0.00

0.53
2.86
1.46
2.69
2.16
-0.63
0.43
?!.46
2.39
1.95
2.18
2.54
f:;:

3.24
1.95
1.46
1.28
1.92
0.98
0.30
0.36
-0.22
0.53
0.18
9.10
1.29
6.78
O.oe

from

values from

PH1-PHR

-0.42
+::

-1.49
0.10
-0.18
-0.09
1.46
1.54
1.54
1.69
1.75
1.99
0.99
2.34
0.03
1.97
2.50
4.43
1.72
0.84
0.40

-0.s7
1+53

-1.74
-0.56
$3.18
2.05
0.00
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TABLE B-3

EXTERNAL AND RF CALIBRATION VALUES:
L-BAND ANTENNA SYSTIHi,1/24/80

(a)

RNT.

External calibration values:
AMP1/AMPR and PH1/PHR: relative amplitude and phase values
from two external calibrations taken 3 hours apart,

MIPl IWIPR 911P1-AMPR PH1 PHR PHt-PHR

-1.13
-1.50
-1.13
-0.1s
o.eO
a<oo
-1.50
0.75
0.00
O.eo
0.00

-:$.;:

-7:10
-12,93
-?,95
-8.10

-1.?5
-t.5%
-1.@@
-’?.30
-0.75
-0.75
-a.75
1.50
1.50
1.45
“8.00
-9.52
-7.05
‘6.85
-12.23
-7.50
-7,35

-0.07
0.00
-0413
0.15
0s75
0.7s
-0.75
-@.75
-1.50
-1.45
!2.00
-1.8s
-l?.Ga
-@.2s
-0.7$3
-’a.45
-0.75

343.64
347.90
22.?0
49.%0
244.30
200.1?
218.00
357.87
162.61
297.9t
2.00
60044
145.65
258<33
342.@6
66.13
t8.79

341.99
347.6’s

21.72
48.4a

241.34
i98.96
216.53
356.58
161.35
296.2Y3

@.@@
67. S7

152.11
264.84
345 .9?

65,91
19.30

1.6S
0.3e
0.98
13.78
;:;;

1.47
1.29
1.26
1.88
6.08
-’?,23
‘5.46
-6.51
-3.91
0.23
-0.51

EL
array

Az
array

RF calibration values:
AMP1/ANPR and PH1/PHR: relative amplitude and phase values from
two RF calibrations taken 3 hours apart,

AMP1 N’lPR

-0.65
-0,65
-0.2.s
-0.65
-0.90
-0.90
-0.90
-%.90
-0.68
-0.68

0.00
-6,23
-6.23
-6.23
-6.23
-8.19
-8.19

#lP1-RMPR PH1 PHR PH1 -PHR

-0.0s
-0.’85
-’a,’25
-0.05
O.@@
0.00
0.00
O,@’a
0.38
0.38
O.%a
-4.65
-4.65
-4.65
*4.65
-7.88
-7.88

0,69
0.60
0.60
0.60
0.90
0,90
9.90
O.w
1.05
1.05
0.00
1.58
::s:

1.58
0.31
e.31

20.78
20.78
2@.78
20.78
278.94
2?8.94
278.84
278.94
229,31
229.31
0.69

189.46
189.46
189.46
1:;.:;

47.97

20.92
2B.98
2’3,99
20.38
277.36
277.36
,?77.36
277.36
228.3S
222.35
e.09

204.23
204.23
204.23
204,23
54.33
54.33

-B. E’1
-0.21
-8.21
-8.21
1.58
i.5a
1.58
1.58
0.96
@.96
0.0$3

-i4.77
-14.77
-14.77
-:::;~

-6.36

EL
array

Az
array

B- 6



EL
array

AZ
array

EL
array

TABLE B-4

ERTERNAL AND RF CALIBRATION VALUES:
L-BAND ANTENNA SYST~, 7117/130

(a) Rxternal calibration values:
AMP1/AM-R and PH1/PHR: relative amplitude and phase values”from
two external calibrations taken 2 hours apazt.

6NT. lwlPl mm fWIP1-fWIPR PH1 PHR PH1-PHR

-3.41
-2.58
-3.56
-3.’?8
-0.63
-0.m
-0.96
-6+.96
-1.2i
-$3.45
0.@e

-13.71
-13.43
-la.5s
-17.03
+::;

-3.45
-2.70
-3.4s
-3.75
-0.59

0.03
+.66
-0.66
-1.44
-: :;:

-13.. s2
-13.26
-12.51
-17.04
-10.66
-12.47

(b) RF callbratien values!

&NT.

AW1/AMPR and PH1/PHR:

6.Q5
0.12
-0.li
-9.03
-@,a4
-0.12
-e.30
-0.30
0.24
0.!34
0.00
-e.2%
-0.i?
-::.aa

0.02
-%.34

300.67
305.s4
337.31
3S6.?17
242.19
196.1?
214,33
348.77
i46.78
284.24
0,06

28E.S8
329.38
74.g4
162.22
20;18
287.?2

299.93
365.19
336.47
3s6.3e
240.3a
194.45
2iZ.6e
347.

Y146. 2
2a3.?i
0.60

276.89
3;;.;:

155:4s
19.95
286.5s

0.74
6,35
9.24
yg

1.72
1.71
1.77
0,66
0.s3
@.@%
5.69
6.59
7.C18
6.77
1.13
1.17

relative smplitode and phase values from

two RT calibrations taken 2 hours apart.

AIIP1 fiMPR WIP1-IVIPR PM

-3.30
-3.30
-3.30
-3.3e
-0.75
-0.7s
-8.7s
-’J.75
-1.88
-1.28
0.00

-1L3,13
-lo.t3
-10.13
-10+13
-10.7s
-10.78

-3.33
-3.33
-3.33
-3,33
-1.13
:1.13
-1.13
-1.13
-f.6s
-1.65
0.00

-l@.31
-!0.31
-10.31
-10.31
-10.70
‘16.70

0.03
13.03
0.03
0.03
0.38
0+38
9.38
0.38
-0.23
-0.23
0.W
0.19
%.19
@.19
0.19
-0.0s
-e.92

216.63
316.63
316.63
316.63
~72.87
272.87
Z!72.87
272.87
213.61
213.01
0.06

197.05
197.05
197.05
197.es
165.80
16s.86

PHR

3i2. ii?
3b2.ia
312,12
312.12
267.56
267.56
.367.56
::;:;;

209.81
0,%0

281.95
201.9S
201.9s
201.95
19’a.32
190.32

PH1-PHR

4.s1
4.5i
4.51
4.51
5.31
5.31
5.31
5.31
3.2e
3,28
e.eo

-4. 9e
-4.98
4.9@
-4.90

-24.63
-24.62

B-7
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~

!

2 EL
array

AZ
array

(d

TABLE B-5

EXTERNAL AND RF CALIBF=4TIONVALUES:
L-BAND ANTENliASYSTEM, 7/17/80

External calibration Yalues:
AMP1/AMPR and PH1/PHR: relative
two external calibrati~na taken

RNT . WIP i fvIPR

[

9
$3
7
6
:

3:5

22

-:

[

5

:
2
1

(b)

-3.03
-2.44
-3.52
-3.63
0.0’2
@.55
+.~g
-0.30
-1.23
-:.g

-ia:96
+:,::

+:::

-12:05

-3.31
-2. S6
-3.42
-3.83
-0.40

6?.20
-0.76
-0.66
-1.36
-:.:4

-13:16
-ls .86
-12.03
-1!3.86
-it4. a5
‘12.42

amplitude and phase values from
4 hours.apart.

WIP1-AMPR

8.28
%.11
-9.10
a.20
0.4@
0.36
0.26
*.~6
0.13
-::‘3:

0..?0
-:,:;

-O:i?
-e.28
0.37

PHi

302.64
3%2.56
342.57

1.43
e43.70
197.92
21S. ?6
351.69
14t,43
28:.::

?93:%
346,0?

8S.64
!:;2;:

.279 :99

PHR

300.71
30S .42
339.11
357.74
240.61
194. ?1
212.98
346.94
145.7i?
283.3e

e.o~
282.03
328.45

74.74
lfi2.26

18.7ti
282.87

PH1-PHR

1.93
2.14
3.46
~.g

3:2t
2.78
4.7s
2.71
.?.58
%.@3

11.92
17.57
;4.3e
11. s4
-i? .92
-2.88

RF calibration valnea!
AMP1/AMPR and PH1/PHR: relatfve amplitude and phase valuea from two
RF calibrations taken 4 hours apart.

fiNT . MIPl AMPR ,4MP1-9MPR

[

9
8

EL
:
5

array
3;

Ei5

i

-2.48
-2.48
-2.48
-2.48
-0.23
-@.23
-0.23
-e. 23
-2.2s
-2. ,?s

~.ee
-10.53
-ie.53
-ie.53
-lQ. S3
-10.38
-10.38

-2.55
+.55

-2. 5s
-2.55
-0.1s
-%.15
-0.15
-0.15
-2.25
-2. Z5

13.00
-l@.26
-10.26
‘1O.26
-10.26
-iO. e6
-lo. e6

PH1

314,65
314.65
314.65
314,65
272.41
272.41
272.41
272.41
213,41
2123.41

0.$0
303.95
303.95
303.95
303.95
.274,84
.2?4..34

PHR

310.19
310.19
3ie. i9
3:@.19
268.77
26s . ?7
268.7?
268.77
2io. ee
W3:3;

327.62
327.62
327.62
32?.62
321.48
321.48

PHI-PHR

4.46
4.46
4.46
4.46
3.64
3.64
3.64
3.64
3.41
S.4S
e.oe

-23.67
-23.67
-23.67
-23.67
-46.64
-46.64

B-8
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during a given measurement day or misalignment of the array boresight to start

with on a given measurement day. The case of the large variations sometimes

observed between two sets of the C-band array RF calibration data have been

conjectured in Section 6-2.

B-9
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APPENDIX C

1

SIMULATION RRSULTS ON THE EFFECTS OF MEASUREMENT PHASE
AND wLITUDE E~oRS ON THE AR w m ALGoRIT~S

This appendix presents some simulation results to show the effect of the

measurement phase and amplitude errors on the resolution capability of the AR

and ARM techniques. The phase (or amplitude) errors for all sensor channels

are modeled as the independent random variables with mean errors equal to the

desired measured errors. The received signal consists of two plane-wave

signals. Signal //1 arrives at -0.50 with respect to the receiving array

boresight and signal //2is at 0°. This corresponds to O.S-beamwidth separa-

tion of two signals for the size of the receiving array used to process the

data. Signal //2ie at 3 dB lower power than signal Iil,i.e., P1/P2 = 3 dB.

The array signal-to-noise ratio (SNR) is 43 dB. The relative RF phase of two

signals is $.

Figure C-1 shows the results for the case of no measurement errors, i.e.,

phase error (FPRASE) = O and amplitude error (FAMF) = O. Figure C-2 shOwa the

results for the case of phase error only with FPHASE = 3°. Figure C-3 shows

the results for the case of amplitude error only with FAMP = 1 dB. For each

case, results for three relative phases ($ = O“, 90°, 180°) are given. For

each 4, 20 spectral estirsatesare obtained for 20 random noise and error

sample functions used. We can see that the l-dB amp.litude error has more

undesirable effects on the AR and ARN eetimates, in terms of signal resolution

and signal arriving angle estimation, than the 3“ phaee error.

Figure C+ shows the results for the case of much larger phase error

(FPRASE = 5“), and Fig. C-5 shows the results for the case of much larger

amplitude error (FANP = 3 dB). It appeara that the 3-dB amplitude error is

too severe for the AR and ARN techniques to perform properly. For 0° relative

phase case, they cannot even resolve two signals. However, the results for

the 5“ phase error are still fairly comparable to thoee for the 3° phase

error.



I
2 plane wave arrivals

Separation angle = 0.5 BW
power ratio = 3 dB
Array SNR = 43 dB

Relative RF phase between
two signals = @

--3(a) o = 0“

... 4

(b) $ = 90°

(C) $ = 1$33”

Fig.C-1.
~ angular power spectra: sirnulatiOnresults fOr
no measurement phase and amplltude errOrs,

c- 2



4-’, ,’ i
z ~lane wave arrivals

separation angle = O. 5 Bw
po”er ratio = 3 dB
Array SWR = 43 dB

Relative RF phase between
two signals = ‘$

(,,) @ = 0“

(b) ,$ = 90”

(c) $ = u30”

Fig, c-2.. AR angular pOwer spectra: Simulation results

for ~ea~urement phase error of 3” withOut amplitude error’

c- 3



.,

.,..

.!,

. .

.“

L
...-........................ A

. .. . . . . . . . . . .

.

> L. ,.,, . .. ... . .. ..” ..” ,.” . . . ..!

..
. . . i

al
.2
4J

:

2

,. ‘: P’~’*m’’’’r’o’r’o’‘“~’x!

2 plane wave arrivals
Separation angle = 0.5 BW
po~er ratio =-3 dB
Array SNR = 43 dB

Relative RF phase between
two signals = $

(a) $ = ()”

(b) $ = 90°

(C) @ = 180°

Fig. CF3. .~ an~lar power spectra: Simulation resulte fOr

measurement amplitude error of 1 dB without phase error.



2 plane wave arrivals

Separation angle = 0.5 BW
Power ratf~ = 3 dB
kr~a~ SWR F 43 dB

Relative RF phase between
two signals = 0

(a) $ = 0“

(b) $ = 90°

(C) $ = 180°

I
‘1
I

Fig. C-4. AR angular power spectra:
for measurement phase error
error.

C-5

Simulation results
of 5“ without amplitude



I

,.
, 4’ ‘“’’’’ 1’’’’’’’: ’’’”1.. 2 plane wave arrivals

Separation angle = 0.5 B~
power ratio = 3 dB
Array SNR = 43

Relative RF phase betweer
two signals = 0

(a) 1$ = 0“

-. 1,,,, 1!,!!1[4! 11,,!,,,’,’,+.,----- . . ...” ..” ..”.......s~.”-... ,.” ..,. . . . ..s
... ..” ,.” ..- ..” . . t.-

(b) @ = 90°

(C) $ = 180°

Fig. c-5 . ~ angular power spectra: Shulat~On results

for measurement amplitude error Of 3 dB tithOut
phaae 6VKr0K.
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Table C-1 summarizes results shown in the above figures. It shows some

statistics on two-signal resolution with various measurement phase and ampli-

tude errors.

TABLE C-1
SCATISTICS FOR TWO sIGNAL WSOLUTION WITH

vAR1OUS MEASUSJSMENTPtiASE AND AP!YLLTUD& ERRORS

CASE ~=u. * . gij. ~ = 180”

AR AM AR ARM AR AKM

% DET 10IJ 100 -Go 100 100 100

1 1 I I I I I 1
4

)

FPHAW = 0“ {I1 ? u.i317 0.029 -0.0U2 0.001 -0.014 0.004
s 0.023 0.152 0.028 U.034 0.071 0.09

FAMF=l DL!

FIG. (C-3) II2 $ -0.012 -0.019 O.oul o.0U04 0.024 0.002
s 0.031 0.243 0.032 0.04 0.097 0.12

X DET 70 100 10U 10U 100 100
.——

FPHASE = 5° n1 : 0.033 U.02 <.000 0.006 0.012 0.009
s 0,072F&NjJ. (). 0.097 0.013 0.U13 U.031 0,03

(PIG. C-4) /12 z 0.U71 U.049 U.U12 0.014 -0.015 -0.012
s 0.136 u.1’3b 0.018 0.018 0.044 0.042

Z DET
~

40 25 100 65 100
J

FPtiASti= 0“ #1 : -- 0.15 -0.006 0.037 -0.139 -0.035
s –- 0.069 0.05 0.U6 9.065 0.154

FAMT=3DB

(FIG. C-5) //2 : -- 0.138 -0.003 0.051 0.216 0.065
s _- 0.358 0.057 0.237 0.122 0.241

Z JET:Percentageofs.ccessf.lresolution(i.e., existenceof2 sp.ccral
peaks> ’15d~)

#1: signal#l, //2,Signal/)2
;: Meanangular error in degrees in locating signal #i, i = 1,2

s: standard deviation of angular error in degree.

c-7
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APPENDIX D

MAXIMUN ENTROPY SPECTRAL ESTIMATION, AUTOREGRESSIVE PROCESSES, AND
LINEAR PREDICTION

In this appendix, we investigate the principal relationships between the

information theoretic concepts of mutual information and entropy,

autoregreasive processes, and linear prediction. In the course of the

discussion, we will develop the key theoretical ideas behind an area of

research that has come to be widely known as maximum entropy spectral

analyais. Nhile none of the umterial presented here is entirely original,

perhaps some modest benefit will accrue by exploring, in a logical and

mathematically consistent msnner, the important relationahipa that exist

between the underlying concepts mentioned above.

Information and Entropy

The average mutual information between two (continuous) random vectors x

and ~ may be defined [90] to

where $

= T(s;r)——

be

generally denotes a probability density function (pdf).

(D.01)

The statistical average (expected value) is taken with respect to the joint

pdf 1= e _of r and ~. For our purposes here, it is convenient to use the

mtura—I’—algorithin,and information is measured in nats (or nits) rather than

bits. The average information ia zero if ~ and ~ are statistically indepen-

dent. In general, ~ and ~ are statistically dependent, and the conditional

pdf

(D.02)

D–1
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is useful, i.e.,

~(s;r) = E{.tn$ )—— rls——

When the (observed)

statistically independent

ated in terms of the pdf

- E{ln *=) . (D.03)

vector ~ is the sum of the (signal) vector & and a

(noise) vector ~, the conditional pdf may be evalu-

of Z, i.e.,

(D.04)

It follows eaaily that

The obvious change of variablea ~’ = ~ - ~, y’ = y has a Wronskian determi-

nant of unity. Consequently,

= E{9.n$n}
—

Thus, the average information about a signal & contained in a noisy observa-

; i

This result may be expressed in terms of the entropy functional
1
,

n($) ~ - J[.tn$(~)] V(Z) d~

(D.06)

(D.07)
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where $ is any (marginal) pdf and the integral is over the domain of t, i.e.,

(D.08)

for statistically independent vectors & and ~.

The result in Eq. (D.08) ahowa that the average information contained in

a noisy observation of a desired signal ia the entropy of the received signal

less the entropy of the noise. We may conclude that maximizing the received

entropy (given such power) yields the maximum average information, provided

the signal is received in statistically independent noise (beyond our

control).

Gausaian Signala in Gausaian Noise

In principle, the entropy of a random

Eq. (D.07), given the pdf of the vector.

vector can always be obtained from

Fortunately, the pdf for Gauasian

vectors is easy to specify, and Gausaian entropy is

late. Here, we consider the caae of a (circular)

vector & with mean ~ and (non-singular) covariance&,

q = E{&}

and

& = E{(& - ~) (~ - ~)H}

where ~ is a positive-definite Hermitian matrix.

not difficult to

complex Gauasian

i.e.,

calcu-

random

(D.09)

(D.1O)

The concept of a complex vector is seldom useful unless its raal and

imaginary random components are identitally distributed and uncorrelated,

i.e.,

E{(A -g)(~-g)Tl” Q (circular~) .

The pdf of a Gaussian random vector satisfying the above conditions is
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-(~ _ _- m) HC-l(~ - g).

$&) = 1
(2T)Llq e

(D.11)

1
where L is the dimension of & and 1~1 denotes the determinant of & The

Gaussian entropy is

The expression inside the first pair of brackets is a constant, and the second

integrates to L, e.g.,

E{(z - A)H~-l(z - ml} = E{tr[~-l(~ - q) (~ - ~)Hl
1

‘1 E[(~- ~) (Z- &]}= tr{~

= tr{C-lC}——
I =L.

Consequently, the entropy of an L-dimensional complex Gausaian vector does not,

depend on its mean ~ i.e.,

n(IIII) = L(l + In 21T) + tnl~l . (D.12)

When a Gaussian (signal) vector ia observed in statistically independent

(s.i.) Gaussian noise, the average informstion per element (sample) is given

by using Eq. (D.12) in Eq. (D.08) and dividing tbe result by L. Thus, we let

(rl.13)

denote the information rate for a Gaussian signal with (non-singular) covari-

ance & observed in Gaussian noise with (non-singular) covariance ~. In the

following sections, we will deal only with the normalized white noise case,
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i.e., ~=~. In this important special case, the Gaussian information rate ia

yL = ~ !nl~–~1

L
=+9,n Il (

2=1

= + jl .trl(

-t at)

i- Al) (D.14)

where {llll=l,....L} are the eigenvalues of ~. The general case is handled

similarly by finding the eigenvaluea of ~ in the mstric of ~; i.e., the char-

acteristic equation for the eigenvaluea is always

As

is

In

E-axl= o.” (D.15)

the number of samples increases, the limiting information rate per sample

written as

Y. A ~l}mm yL .

the next section,

(D.16)

the limiting function rate ia examined for the important

class of stationary Gaussian processes.

Stationary Gausaian Processes

When the signal

(s) =C
—m m-n

covariance matrix ~ is Toeplitz, i.e.,

,

the (zero-mean) signal ~ is said to be

covariance matrix is always Hermitian,

(harmonic) relationship

*
c =C
-m m

(D.17)

(wide-sense) stationary. Since a

the correlation laga satisfy the

(D.18)
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and hence the power spectral density

.
-ima

X(a) ~ ~ cme , (D.19)

is a real fu~~tion. More generally, the z-transform of the lags is written as

.
c(z) ~ ~ Cmz-m . (D.20)

--

We refer to a positive semi-definite matrix that is both Hermitian and

Toeplitz as a correlation matrix.

Aa tbe number of lags Increases without limit, the eigenvectors of a

correlation matrix must approach (orthogonal) eigenfunctions of

~ cnmem=Xen
m=--

The solutions of Eq. (D.21

e = kzn
n

(D.21)

take the form

(D.22)

for any complex numbers z and k. The eigenvalue associated with z is given by

the z-tranaform of the lags, i.e.,

Y(z) = c(z) , (D.23)

For z on the unit circle, the (limiting) eigenvaluea are given by the signal’a

(real) power spectral density, i.e.,

X (eia) = X(a) . (D.24)

Consequently, we consider approximations of the form

s = y(q) 1(q) IH(S J , (D.25)

where ~ (~) is a (square) direction matrix of the type of introduced in
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,
,
,.

i

i

Chapter II, and ~ (_~) is a diagonal matrix of eigermaluea obtained by

evaluating the power spectral density (D.24) at uniform intervals around the

unit circle, i.e., the elements of & are

al= 2nt/L

Assuming the

sense as L + CO,

Gaussian process in

Y- = ~l+mm YL

; f.= 1,...,L . (D.26)

approximation in Eq. (D.25) converges to & in some suitable

the limiting information rate Eq. (D.16) for a stationary

white Gauaaian noise is (evidently given by

(D.27)

The absolute integrability of the logarithm of the power spectral density fa

known as the Paley-Weiner condition. Under this condition, Szego [90] derives

Eq. (D.27) in a mathematically correct manner. Our heuristic approach la

offered simply as a plausibility argument. The interested (brave) reader is

referred to the first five chapters of [90] for a rigOrOua treatment Of the

subject.

Msximum Entropy

In this secton, we first show that the Gaussian pd+ maximizes the entropy

functional for random vectors with specified (i.e., known) mean and covari-

ance. A similar type of argument then leada to the ‘maximum entropy’ power

D-7



I

spectral density for a stationary Gaussian random process. In both cases, the

discussion is based on certain rudimentary results from elementary functional

analysis. In particular, at least a nodding acquaintance with the basic prop-

erties of convex sets and functions is assumed. A good treatment of these

topics may be found in Luenberger [911.

Maximum Entropy Probability Models

In a previous section, the entropy of a random vector was defined in

terms of its pdf. Quite often, only second-order etatistica of a rsndom

signal (vector) are available. These statistics may be interpreted as con-

straints on the set of admissible probability models. Specifically, an

admissible model for a random signal ~ with specified mean ~ and non-singular

covariance ~ ie defined to be any (real) function $ thst ie non-negative over

the “domainof the signal and, in addition, eatiefies

(D.28a)

where v is the standard (i.e., Lebesgue) measure in the signal domain. Of

course, the integrala in Eq. (D.28) are evaluated over the entire signal

domain (e.g., a finite-dimensional complex vector space).

Now euppoae that + and + + 6+ are two distinct admissible models. Since

the set of admissible models ia clearly convex,

(1 ‘T)~+T($+t@=!+T~!J , O<T<l

ia also an admissible mOdel, and we say that 8$ is an admissible

perturbation. From Eq. (D.28), we conclude that any admissible perturbation

6$ must satisfy

(D.29)
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(D.30)

as well as

J I ISI/J(g)du(g) = O .

-1Multiplying Eq. (D.30) by s and taking the trace of the result gives

Of course, Eq. (D.29) remains valid when muliplied by any (nOn-zerO) scalar.

AS an immediate consequence, we observe that the (complex) Gaussian

density $g has the property

j&)l.n$gdp=O (D.32)

for any admissible perturbation. This important intermediate result follows

directly from Eqs. (D.29) and (D.31) by first writing Eq. (D.11) aa

Multiplying this equation by &v(I) and integrating over the signal domin

yields the desired result Eq. (D.32).

Recalling Eq. (D.07), we now differentiate

II(I) + TL$$)= ‘E{ln($ + T~$)}

= ‘/($+ T6$) In(y + T6V) du

with respect to T. It then follows from Eq. (D.29) that

(D.33)
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1 Differentiating once more yields a fundamental property of entropy,

~z
~ TI($+ T&$) = ‘~(8$)2(0 + T$$)-ldp . (D.34)
a~

<o

This important inequality shows that the entropy functional is strictly’con-

cave over any convex domain. l’herfore, any (admissible) stationary point of

the entropy functional o also maximizes q over the convex set of (admissible)

pdfs.

By definition, any (admissible) ~g is a stationary point of q($) iff

(D.35)

~
for every admissible perturbation 6$. Since the complex Gaussian density in

1 (D.11) is obviously admissible, we may substitute $8 for $ in Eq. (D.33).

Formally taking the limit as T + 0+ (i.e., from above) then givee

j Comparing Eq. (D.35) and (D.36), we may conclude that *g is the maximum entro-

~ py density iff ~ 6V tn $g dp = O for every admissible 6v; however, this pro-

perty has already been established Eq. (D.32) for tbe Gaussian density *g.

Therefore, the maximum entropy pdf for a random vector with apecified mean and
i

covariance is always Gaussian.i
Moreover, the numerical value of the maximum

entropy does not depend on the mean Eq. (D.12).

Maximum Entropy Spectral Estimation

Given a finite sequence of correlation lags,

(D.37)

.
the maximum entropy power spectral density x is defined [92] to be the power

spectral density (psd) that maximizes the Gaussian information rate (i.e.,
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‘entropy’)

YO(X) = -& ~ tn x(a) da (D.38)
-T

subject to the lag constraints in Eq. (D.37). It is assumed here that the

correlation (Toeplitz) matrix constructed from the given lags is positive

definite. Of course, the remaining lags may be estimated (calculated) from
.

Eq, (D.37) as soon as the maximum entropy (ME) estimate x is found. As it

turns out, the extended ME lags also satisfy a simple recursive relationship

[93].

An admissible power spectral density (psd) is any real non-negative

function x that satisfies Eq. (D.37). Clearly, the domain of admissible power

spectral densities is convex. From Eq. (D.19) or (D.37), we conclude that any

admissible

6X(a)

Of course,

spectral perturbation may be expressed as

‘i
~-ina ~c .

(D.39)
In >L

n

the corresponding lag perturbations in Eq. (D.39) must satisfy

&c_n - 6C*
n

(D.40)

in order for rSXto be an admissible (i.e., real) spectral perturbation.

Following essentially the same procedure as before, we first differen-

tiate Y-(X + T.5x)with respect tO T, i.e.,

Differentiating again, i.e.,

(D.41)

(D.42)

<o

we found that ym(X) is (also) a concave functional over any convex domain of
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(admissible) power spectral densities. Consequently, the MS psd ~ exists and

is unique.

Substituting ~ for x in Eq. (D.A1) and taking the limit as T + 0+ yields

.
lim + & Y@(X+ T6x) ‘~ ‘j ;-l 6X da (D.43)
~+o -n

. 0
.

since x must (also) be a stationary point of ym. Comparing Eqs. (D.41) and

(D.43), we conclude that the ME psd satisfies

& J ;-l(.) (
f

eina
6Cn) da = O .

-T In >L
.

Since x is real, we immediately deduce the equivalent

(D.44)

condition(s)

(D.45)

for the (admissible) msximum entropy power spectral density. If (D.45) iS

violated, we may obviously choose 6cn = cf~ for some sufficiently small e > 0

and some n > L such that fn * O. We msy honor Eq. (D.40) by setting &c_n =

Efn, and the remsining lag perturbations are set to zero. We would then

calculate

in violation of Eq. (D.43). Thus, the

by contradiction.

The result obtained in Eq. (D.45)

necessity of Eq. (D.45) is established

shows that the inverse of the maximum

entropy “spectrum” (power spectral density) has a finite Fourier series. This

immediately suggests that the ME signal ia an autoregressive process.

In the next two sections, autoregressive processes are defined and some

of their fundamental properties examined. In particular, we will show that

there is a unique (admissible) autoregressive process of order L that satis-

!
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fies the correlation constraint in Eq.

density of this or any other Lth order

of the form

%
x.(a) = .

(D.37). Moreover, the power spectral

autoregressive process is ahown to be

(D.46)
-1,

lPL(ei’ll’

where ~ > 0 and PL (z) is an Lth order polynomial in z of the form

PL(Z) =ZL+ ...+pL .

It follows that X~l(a) is a ‘trig’ polynomial of order L in eia, i.e.,

~~1 = {PL(eia)12 . (D.47)

. e-id +
+ qge

id. +
... +e

inL
...

Integrating Eq. (D.47) over (-n, m), we observe* that

1!

~ x~l(a) eina da = O ; In] > L (D.48)

-n

for ~ Lth order AR power spectral density. However, only one Lth order AR

process is admissible. Comparing Eq. (D.45) and Eq. (D.48), we conclude that

the unique ‘msximum entropy1 power spectral density consistent with the known

correlation lags in Eq. (D.37) is an autoregressive process. In a subsequent

section, we will discuss an efficient algorithm for actually calculating the

(unique) autoregressive parameters from a given set of lags.

Autoregressive Processes

The concept of

linear prediction.

an autoregressive process is closely tied to the idea of

The development here is based on the usual orthogonal

*Recallthat ~ e’ne d!j# O
-T
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decomposition of a (zero-mean) random process {sk}. Thus, we consider first

the best linear estimate of Sk based on the entire past history of the
.

process, i.e., there exists a linear operator L such that

. ,.

‘klk-l
L L(sk-l, Sk_2, ...) (D.49)

.
minimizes the mean square error E ISk - Sk1~_l12 over all (linear) estimates of

the general form L(sk_l, Sk-z, ...).

The vinnovations’

A .
w—
k ‘k - ‘klk-l

process is defined as

.

The well-known orthogonality principle [94]

A

E{(sk - ‘k[k-l
)s:}=O ; j(k

guarantees that Wk

E (WkW; ) = O

and Wj

,

are uncorrelated;

k#j.

When {Sk} is a stationary random process,

value; i.e.,

(D.50)

(D.51)

i.e.,

(D.52)

the variance of wk has a COnStant

(D.53)~~ E{lwk12} , arbitrary k .

‘Theparameter u is often referred to as the prediction error.

An autoregresaive process may be defined to be any (zero-mean) random
.

process such that ‘he ‘atimte ‘kIk-1
is a fixed linear combination of a

finite number of past observations, i.e.,

‘k “ ‘k
- (al sk_l + ... + aL sk_L) . (D.54)

Thus, an Lth order autoregreasive (AR) process satisfies the Lth Order linear

difference equation
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I

‘k = al ‘k-l ‘a2sk-2+ ”””+ aLsk-L+”k “ (D.55)

The innovations of an ~ process may be generated by applying the ~

process to the input of a linear time invariant (LTI) filter; from Eq. (D.54),

we conclude that this filter ia of the (finite) moving average type with z-

tranaform

~(z) = 1- (alz-l + a2 Z-2 + ... + aLz-L) (D.56)

. Z-LPL(Z)

where PL(z) is an Lth order polynomial with a unity leading coefficient. If

all of the zeroes (roots) of PL(z) lle inside the unit circle, then A(z) has a

stable inverse A-l(z) (i.e., all the poles of A-l(z) lie inside the unit

circle). Under this important stability assumption, the AR process defined by

the difference equation (D.55) is atatiatically stationary, and its power

spectral density is obviously

x(a) = /-4-l(eio)/2 ~ (D.57)

%.

lPL(eia)12 “

A standard problem in AR analyais is to generate the autoregresaive coef-

ficients al! ““”~ aL of a process from its known correlation lags. Quite

often, the prediction error ~ ia also of interest. Note that when dealing

with AR processes, the prediction error ia given a subscript corresponding to

the order of the process.

The relationship bstween the autoregressive coefficients and the correla-

tion laga

Cfi *};= E‘Sk ak-t k arbitrary (D.58)

is eaaily obtained by multiplying all the terms in (D.54) by a~_n and taking

D-15
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the expected value of the result. By the,orthogonality principle, E{wk s~_n)

= O for n > 0, and we obtain

The

For

c
n - al ‘n-l ‘a2 en-2 - ““” ‘aLcn-L

=0 , n>O. (D.59)

first L of these equations may be arranged in the normal Yule-Walker form

‘co c-l “ ● “ C-L+l

1 [“

al

c1 co
..

.
. . .

.
. . .

. .
. . c-1 .

. .
CL-l . . . co aL [1

c1
.

=“

.

CL

n=O, we obtain an equation similar to Eq. (D.59), i.e.,

(D.60)

*

co - ale-l - a2c-2 ““” ‘dL C-L = ‘{”k ‘k} ‘
(D.61)

Multiplying Eq. (D.54) by W:, taking expected values, and invoking the orthog-

onality principle (again) shows that the right-hand side of Eq. (D.61) is

real, i.e.,

E(w;sk) = EIwkl2 . (D.62)

“t

Substituting Eq. (D.62) in Eq. (D.61), and appending the first L equations

from (D.59), we obtain the linear prediction equations

[

co c-l “ “ “ C-I

c1
. .
. .

. .

.

. 6-1

CL”” ”CICO [1
1
-a

1
.
.
. ‘%
-a
L

1
0

..
Ii

(D.63)
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Of course, the Yule-Walker norms1 equations and the linear prediciton

equations are (essentially) equivalent; the choice between solving Eq. (D.60)

and Eq. (D,63) is often a matter of personal taate. In [95], Durbin presented

a recursive procedure that aolvea the normsl equations twice as fast as

Levinaon’s original algorithm, which permits a general right-hand aide for Eq.

(D.60)0 In the next section, tiederive the equivalent of Durbin’a algorithm

for the linear prediction equationa in Eq. (D.63). We always assume that the

Toeplitz matrix in Eq. (D.63) is Hermitian (recall c_n = en*) and at least

positive semi-clefinfte. In general, we refer to a positive semi-definite

Hermitian Toeplitz matrix as a correlation matrix.

Linear Prediction

Consider a positive-definite correlation matrix in the standard (parti-

tioned) form given below

* *

4+1 “

cOcl”””cn
*

cl”. c1
. .
.
.
.Cn ””” c1 co

where

c A(C ... Cn)
T

1

(D.64)

(D.65)
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is an n-dimensional vector of the correlation lags, and ~ is the indicated

nxn principal submstrix Of ~+1.

is to solve

4 n+l

.-
1
-a1
.
.

L
.

-a
n

. Wn

--
1
0
.
.
.
0

m..

for the prediction error Wn and

The nth order linear prediction (LP) problem

the n (complex) LP coefficients {al ... an}.

(D.66)

In order to diacuas (D.66), it iS convenient to introduce the (n+l)-

dimenaional vector of error filter weights.——

aa

of

4(1 -al ...
T

-an) (D.67a)
%+1

well as the unit vector

A(lo ... O)T (D.67b)
%+1

the same dimension. Tbua, the problem in Eq. (D.66) may be put in the form

%+1 &+l - ‘“n%+1 = o

T
=0.

%+1 %+1

(D.68a)

(D.68b)

We first show that the solution to the (n-l)at order problem exists and is

unique. Naturally, the same argument appliea to the nth order case as well.

Since ~ is (alao) non-singular, ~_l = O cannot be a solutiOn Of

c =uln_lvn .
—n~n

(D.69)
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Consequently, we may rearrange Eq. (D.69) to obtain

(D.70)

Thus , the (n-l)st order error filter weights are specified to within a scale

factor by the first column of the inverse of the correlation matrix. Since

the leading (first) element of ~ is constrained to be unity (i.e., AT ~ =

1), it follows directly from Eq. (D.70) that the (n-l)st linear prediction

error is

-1 =
wn-1

MT&

cofactor of the upper left element of ~ n

1- !
l% I

The ‘ratio of determinants’ formula

(D.71)

(D.72)

follows from Eq. (D.71) and the observation, from Eq. (D.64), that IL I ia the

cofactor of the upper left element of the correlation matrix ~+1. Obviously,

the reeult in Eq. (D.72) remains valid even when ~+1 iS a general (nOn-

singular) covariance matrix. However, the results obtained subsequently apply

only to correlation matrices.

Levinson Recursion

‘he special case of the Levinson recureion [96] that solves the Yule-

Walker normal equations most efficiently is usually credited to Durbin. It is

currently more fashionable to solve (D.66) in order to obtain the prediction

error (explicitly) along with the autoregressive coefficients. Burg [621

refers to the linear prediction algorithm presented below as the ‘modern’

Levinson recursion. Our derivation relies on the algebraic properties of the

exchange operator introduced in Chapter II. The essential feature of our
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argument is that a Toeplitz Harmftian matrix is always equal to its exchange

(i.e., correlation matrices are harmonic).

We assume that the (n-l)st prediction error ~_l > 0 is known and that

the corresponding error filter weights are available in the form of the n-——

dimensional vector & with a leading element of unity. We eeek the eolution

of Eq. (D.61) in the form

- kn ~++
%+1 “ %+

(D.73)

where ~ is a convenient notation for the ‘one-step zero exteneion’ of ~,

i.e.,

For convenience, the exchange of ~+

Clearly, the form of the propoead

(D.74)

is written as ~+ without parenthesee*.

solution in Eq. (D.73) preserves Eq.

(D.68b). me nth (complex) reflection coefficient kn is to be detefined,

together with ~ > 0, so that Eq. (D.73) sOlvee Eq. (D.68a).

We first substitute Eq. (D.73) in Eq. (D.68a) and arrange the reeult as

%+1 %+ - II

We now calculate

%+1 = k“ %+1 Xl+t“

c t
-n+l F n+

= gn+l -+

%

(D.75)

(D.76)

*
i.e., we alwaya intend that NT ba interpreted aa (~+)+.
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~H t
w

-n -n. -----------
H “t

‘n -n

using the partition of ~+1 in Eq. (D.64). By hypothesis, & 801VeS Eq.

(D.69), and it follows** that

CW+=UJ.
-n-n

Substituting this identity in Eq. (D.76) and introducing

H t)*
en~(~nw

-n

+H
=C
—n ~n

leads to *
e

t= n
%+1 %+ t

un-1 A

(D.77)

(D.78)

Exchanging Eq. (D.78) yields a 5imf1ar equatfOn, i.e.,

t
+ (u-l ~+1 .

q+l q+ = ‘n ~+1
(D.79)

Substituting both Eq. (D.78) and Eq. (D.79) directly into Eq. (D.75) leaves

(.n-l- Wn)>+1 + en VJ+l=kn e: &+l + kn (IJ_l&+; .

Identifying coefficients, we have only the trivial system

*
(JJ -wn=kne”
n-l

**Note that Un_l, ~, and &+l are all harmOnic.

(D.80a)
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e = k un_l
nn

(D.80b)

I
$

left to solve. Substituting Eq. (D.80b) in Eq. (D.80a) yields tbe well-knO~

recursive relationship for the prediction errors

t) = (1 - lkn12) wn_l
n

(D.81)

where the nth reflection coefficient kn $s

The

kn = en/wn_l .

complex parameter

(D.82)

en is easily calculated from (D.77) using the correla-

tion coefficients (i.e.; ~) and the (n-l)st order LP

~). Written explicitly in terms of the (n-l)at order

have

n-1
e =c -
n n 1 am Cn_m .

m= 1

coefficients (i.e.,

LP coefficients, we

(D.83)

~uS, en iS aometius interpreted as the ‘“errorin predicting the nth lag”.

To show thst the LP filter is stable, (i.e., ~ > O), we find it conve-

nient to express ~-1 snd en in terms of ~+. Pre-multiplying

Eq. (D.79) by ~H+ yields

H
=W

‘n-1 -n+ Q+l %+ “

Similarly, pre-multiplying Eq. (D.79) by f+ ,qives

+H
e =W
n -n+ %+1 %+ “

Introducing the inner product

(z,L)n+l ~ 5“ q+l y

both sides of

(D.84)

(D.85)

(D.86)
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in Eqs. (D.84) and (D.85) leads to

(wJ+>q+)
kn=w

*+, I?+

for the nth reflection coefficient defined in Eq. (D.82).

Since ~+1 is harmonic, ~ alsO have frOm Eq. (D.86)

(D.87)

(D.88)

Thus, the Schwartz inequality guarantees {knI < with equality

iff ~+ = c ~+ for some non-zero (complex) c. However, ~+ and W:+ are

linearly independent by virtue of their zero-extensions, i.e.,

[1

~
.

[1

=> ~+= ‘3+.%+ o
%

Since the leading coefficient of ~ is unity (by hypothesis), we must

conclude that the magnitude of the nth reflection coefficient ie strictly less

than unity, i.e.,

Ikn[ <1. (D.89)

Moreover, the recursive relationship (now) established in Eq. (D.73) guaran-

tees that Eq. (D.89) wil~ hold for each succeeding value of n. The recuraiOn

is started with m. = co, ~ = (1 O)T and hence Eq. (D.89) holds for every

positive integer n.

Stability of LP Filters

The nth order filter %(z) derived from the

ehown below to be minimum phase and hence stable.

for

Eq.

this argument are that ~ satisfiee the

(D.73),

error filter weight *+1 i$

The only assumptions needed

recursive relationship in

=W - kn ~~%+1 -n+
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4

\
1

{

for ~ set of reflection coefficient satisfying

Iknl < I

for all n ~ 1, where

% i (:)

and, for n > 1,

We introduce the polynomial operator

ETn+l(z) ~ (1 z . . . Zn) (D.90)

and define the nth order error filter (in the usual faehion) ae the z-

transform of the error filter weights, i.e.,

An(z) “ ~+l(Z-l) T&+l . (D.91)

Actually, the stability argument is aimplified aOmawhat by working with the

(equivalent) error filter polynomials. Thue, the error polynomial is defined

aa

Pn(z) ~ &;l (z) q+l .

The nth reciprocal error polynomial ia defined to be

P’ (z) ~&T+l(z) ~+1 (D.93)
n

and may be obtained from Pn(z) by ‘exchanging’polynomial coefficiente, i.e.,

(D.92)

I

1
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]

I

P*(2) = pnzn = . . . + I)lz+ PO
.

=> P;(z) -p:zn+. . .
*

+ P:.lz + Pn

Szego [90] defines

notation P*(z). We

P*(z) = P:zn +

the reciprocal polynomial

prefer to use P*(z)

. .

Note that the conjugate

[P(Z)]* = P*(z*)

*
. + p; Z+p

0“

of P(z) must be

in the same way, but uses the

to refer to the conjugata polynomial

written aa

in order to be consistent with the notation introduced above,

A polynomial and its reciprocal (polynomial) have certain interesting

analytic properties. For example, if Zi is a root of P(z), then I/zf* iS a

root of Pt(z). Thus, P(z) and Pt(z) exhibit a type of symmetry with respect

to the unit circle. Moreover, it follows directly from the definition in

Eq. (D.93) that

Ipn(ei+)l = lP~(eiO)l . (D.94)

With our notation established, we combine Eq. (D.92) with Eq. (D.73) to

obtain the polynomial recursion

Pn(z) = f+l(Z) [W&+ - kn ~+]

~_,(z)-P - kn Z Pi-l(z)

where the second term steme from tha representation

~+, (z) = z (z-’ ~ (z)) .

We may now apply a fundamental result from the theory of analytic function

to show that the zeroes of Pn(z) are alwaya outside the unit circle.

(D.95)
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Rouche’s lleorem [97]

Let f(z) and g’(z)be analytic inside and on the unit circle C with lg(z)I

< If(z)l on C. Then f(z) and f(z) + g(z) have the same number of zerOes

inside C.

The previous assertion concerning the zeroes of Pn(z) can now bs estab-

lished by induction; i.e., we assume that Pn-l(z) has no zeroes inside m on

the unit circle and show that Pn(z) enjoys the same property. Obviously, the

hypothesis is true for Po(z). We identify the polynomials Pn_l(z) and

-knzP~-l(z) with f(z) and g(z) in Rouche’s theorem. Since Ikn[ < 1,

F,q.(D.94) guarantees that Rouche’s condition is met. Consequently, we

conclude from Eq. (D.95) that Pn(z) and pn-l(z) must have the sau number Of

zeroes (i.e., none) inside the unit circle. Moreover, Pn(z) cannot have any

zeroes on the unit circle (either) without contradicting Eq. (D.89). By

induction, all the zeroes of Pn(z) lie outside the unit circle (for any

positive intager n).

Since the z transform of the nth error filter weight is related to the

nth error polynomial by

-1An(z) - Pn(z ) (D.96)

i
the zeroes of ~(z) must lie inside the unit circle (i.e., Zj is a zero of ~

iff Z;l ia a zero of Pn).
I

Since Pn(z-l) = z-n P!(z), it follows that all the poles of ~(z) occur
I

at the origin. A filter with all its poles and zeroes inside the unit circle

, ia said to be minimum phase [74]. Therefore, any filter ~(z) derived (recur-

sively) from weights satisfying the conditions specified in this section ie

minimum phase. Moreover, the inverse filter A:] (z) ie also minimum phaae

(and hence stable).

Information Rate and the Prediction Error

For a stationary process with cOrrelatiOn lage {CO,C1,...}, the li~ting

information rate (per sample) ia
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Ym~~i~Y*

where the average information rate for n samples (D.14) is written as

(D.97)

I

,

,

in the case of a stationary signal. The matrix & in (D.97) is specified in

(D.64). The nth order prediction error for ~ is determined by (D.66).

It fo11OWS

satisfies

from (D.81) and (D.89) that the sequence of prediction errors

o < tin< Illn-l (D.98)

and, consequently, a (unique) limiting prediction error

10 ~ ~ig wn (D.99)
m

is guaranteed to exiet. Our goal here is to relate the information rate Y- to

the limiting prediction error um.

The following theorem is a standard exercise in many calculue (e.g.,

[981) and real analysis (e.g., [991) textbooks. The proof is riotobvious, so

ie given below for the sake of completeness.

Theorem: Let {%} be any sequence Of pOsitive numbers. If lim ~ =(0 E!o,

then
n

lim A;/n = u .

Proof: lhe trick is to first write the identity

A A Ann+l n+l AN+l ‘N.—.
—“~~””An ‘1 ‘n

for any n> N. Given c > 0, there exists a positive integer N such that

D-27
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A
fJ)-E< =<(J+E

An

for any n > N.

Consequently, we obtain

(u _ ~)n+l-N

Multiplying these

n+1
a(u -c)

where we have put

‘N ‘n+l
~<~ <( W+C)

n+l-N ‘N
~“nn

inequalities through by (positive) An yiehia

< An+l < B(W - E)
nil

a = AP1/(w- s)Nand $ = AN!(o!+ C)N.

It follows that

~lln(w - l’n < PY’’(ld+ c) .c) ( An

since lim ~lln s IIm B1/n = 1 (assuming positive

u-z< lim A~l~<lo+’c.
n

Since c can he chosen arbitrarily small, the

---

a), taking limits gives

theorem follows directly for

positive u. If u = O, A~Jn is bounded from below by O

proving the theorem for u EO.

This theorem establishes the well-known relationship

and above by c, thus

between the (Wiener)

linear prediction error O& and the (Shannon) Gaussian information rate ym.

Setting An = IL I, it follows from (D.97) that

An+1
wn=—

An ,

and from (D.97) we obtain
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Taking limits and applying the above theorem gives

Y= =inuw.
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AFPENDIX E

A VECTOR SPACE FORMULATION OF THE SDN OF

SINDSOIDS/PLANEWAVES PROBLEM*

A unifying geometrical interpretion based on least-squares concepts is

given to the problem of measuring the parameters of a finitely sampled signal

composed of a sum of complex sinusoids (e.g., plane waves). : +cial attention

is given to the problem of order determination, i.e., determining the number

of distinct sinusoids present.t

The problem is seen to have two Important facets, one of approximation

and one of estimation. Every signal of the assumed form has a precisely

defined order; however, clifferent order signals are not equally distinguisha-

ble. Every signal of a given order is characterized not only by its order but

also by how closely a lower order signal can approximate it. A vector norm

definition seems appropriate for quantifying the approximation accuracy.

The minimum approximation distance by lower order models, a purely deter-

ministic parameter associated with each signal, is shown by Cramer-Rao bound-

ing arguments to be an appropriate measure of “signal strength” for the prob-

lem of estimating the true order when the signal is observed in white Gaussian

noise. The definition of effective signal-to-noise ratio under this criterion

*
This self-contained appendix is drawn from an internal Lincoln Laboratory

memorandum by S. Dolinar. The notation used here ia different from that of
the body of the report, but we have indicated the correspondences at
appropriate points.

t This ia not the same as determining the order of the best-fitting AR or ARM
model; rather it corresponds to counting the number of peaks in the AR(m)
estimated spectrum.
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is shown to reduce to the usual definition in terms of signal component ampli-

tudes whenever the signal frequencies are widely spaced. For closely spaced

frequencies the effectfve signal-to-noise ratio is found to depend on other

parameters aa well, most notably the frequency separation and relative phase.

An order determination algorithm based on a maximum likelihood estimate

of the minimum approximation distance is suggested. Bounds on the error

performance of the order estimator are calculated, and the behavior of the

algorithm is further examined by applying it to computer-generated synthetic

data. It is shown that accurate order determination of a closely spaced two-

frequency signal is possible for signal amplitude significantly lower than

those that have so far been needed for accurate AR or ARNA estimates. In

fact, it is argued that an unrestricted ARMA model is probably too general to

permit optimum order resolution.

The problem of maximum likelihood estimation of the remaining signal

parameters is also seen to have a useful interpretation in the vector space

formulation. The signal component amplitudes and phases are determined by

simply projecting the signal into a subspace spanned by vectors associated

with each signal component frequency. The signal frequencies are determined

by

1.

or

maximizing this projection.

Problem Formulation

We consider the problem of detecting several complex sinusoidal signals

plane waves in white Gausaian noise. The observed data consist of N

equally spaced samples {~1 , where

E-2

.——.. .-



~=sk ‘“k
k = 1, ....N

jui Al’
.fii=e,

*
NAT = 1

(1)

i = 1, 2, .... I (unknown) (3)

i=l, z, . . . . I (unknown) (4)

(5)

‘lc” E%nt=O

Enk*nt=028U .

(2)

and {nk} is a complex white Gauasian nOise PrOcess, with

(6)

(7)

To simplify the analysis we introduce vector notation, defining

*This condition implies that the frequenciea {ui} are ~asured in units Of
2m x beamwidtha, where one beamwidth Is the frequency (in HZ) required tO

produce a phaae clifferential of 2m(N-1)/N between the Ist sample and the Nth
sample.

E-3
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s= [sl 52 .,. SNIT (8)

~i =

n=[n

x=—

N-1 N-1 T N-1 T-_
2 2

-jwiAT~ jwiAT ~

Ri ... si . e ... e
(9)

‘2 ... ~lT

‘1 ‘2 ... qT

Then equations (1) and

x= s+n— — —

The above signal

Chapter II as follows:

This Appendix

ai (= Aiej$i)

6i

wiAT

~i

x—

(lo)

(11)

(2) can be rewritten

(12)

(13)

model is related to the signal model introduced in

Chapter II

Pi

Oi

2n ~ sin 9i

~ (ai)

r—
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s s— —

The vectors defined above are assumed to be elements of an inner product

space V, with inner product function and vector norm defined by

(14)

11~11= v’(~, y) (15)

where {wk} is a real window sequence satisfying

W>o
k

k= 1, .... N

and

N
Ewk=l.

k=1

We will normally assume that {wk} is uniform,

(16)

(17)

w .;
k

k=l, .... N (18)

but many of our results are not dependent on this assumption.

2. Lth Order Approximations to a Known Signal

We consider Lth order approximations to the signal vector & in the form

E-5
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1

where the set of admissible

form (9), i.e.,

&E B,&i complex numbers (19)

representation vectors coneists of all & of the

jwAT(k - ~)
B = {~= (f31... flN~T:f?k=e for some real u} . (20)

The accuracy of the Lth order approximation is measured by the dietance

3(L) between S(L) and a—“

8(L) “-(L),,=lg-~ . (21)

-.(L)The most accurate Lth order approximateion is the one which minimizes 6 ; the

-(L)reaultlng minimum approximation distance is denoted &min .

Part of the minimization problem leading to the evaluation of the most

accurate Lth order approximation is straightforward. For arbitrary fixed

representation vectors {Ii} , the optimum choice of complex amplitudes

Idi] produces an approximstion vector E(L) equal to the projection of the

true signal

tie optimum

vector y- into the subspace spanned by {~i].

{di~ ia thus reduced to the solution of a set

The determination of

of linear equations,

i=l,2, ....L. (22)

E-6
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For {~i~ given in terms of {Ii

evaluated aa

by (22), the approximation distance is

2
= 11s!1

2
- nPL(& , .,. ,~L)# (23)—

where PL(~l, .... EL) is the projection operator for the L-dimensional sub-

spsce spanned by~l, ...._L.F The 0ptimum aet of representation

vectors ~~~~ is tbe
2

one which maximizes llPL(~l,.... &) En for

admissible Ii E B.

The optimum approximateion distante %~~ is a monotonically decreasing

function of the approximateion order L. For L > I (I is the true order), the

approximatfOn can be made exact by taking Ii = &i, f = 1, .... 1. FOr L < 1,

the non-zero approximateion distante ~fi~ measures the extent to which the true

~th ~rder signal can be df~tin~ished from an Lth order mOdel. FOr example, a

second-order signal with two comparable amplitudes and widely spaced frequen-

cies ia characterized by ~~~ = O and ~~~ large, whereas a second-order

signal with closely spaced frequencies or one very small amplitude

has & = O and ~~~ nearly zero. For the latter example, a very small

-(L)
uncertainty in the observation of 6min , L = 1, 2, will prevent One frOm

determining the true order.

3. Estimating the Lth Order Approximation Distance in the Presence of Noise

E-7
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When the observation of the true signal is corrupted by noise, the optimum

~th ~rder approximation can only b@ estimated. Limits on the achievable

estimstion accuracy can be inferred from the Cramer-Rao buund.

In particular, we are interested in estimating the Lth order approxima-

tion distance ~~~ when the true signal is observed in additive white Gauaaian

noise, as in (1) - (13). For this noise model, the Cramer-Rao bound on the

accuracy of any

takes the form*

Var(i) > ~~ m
o

unbiaaed estimate b of an arbitrary unknown eignal parameter b

(24)

In order to calculate the derivative of ~ with reepect to x~: , we

express & in the form

(25)

where 11 (~~, .... Lo) ia the optimum Lth order approximation error vector,

normalized to unit norm.

Thus, if ;(L) is any unbiased estimate of ~~~ , it follows from (24) that

*
The uniform window assumption (18) is made in writing this expression.

E-8
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Var(;(L)) > & . (27)

This result helps to quantify the uncertainty in determining the true

signal order I by estimating ~~~ . The two cases ~~~ = O (implying I ~ L)

and O < 3(L) < /u2/2N (for which I > L) will be very difficult to distinguish
min

when noise is present.

4. Estimating the Signal Order

A simple algorithm is suggested for estimating the true signal order.

First, a sequence of Lth -(L)order approximation distance estimates 8 ,

L = O, 1, 2, .... is generated from the observed dsta & These estimates

should embody tbe

would be nice if

bound. Next, a

estimator variance

monotonicity constraint 6(0) > ~(l) > ~(z) > . . . and it

the accuracy of the estimators approached the Cramer-Rao

suitable threshold c is determined on the basis of the
.

and the desired resolvability. The eetimate I of the true

signal order I ia given by

i = min (L: ;(L) <c} . (28)

two

A

The estimate I may be either too high, too low, or exactly correct. The

incorrect types of estimates will be described in binary detection nomen-

clature as “false alarm” and “miss”’eventa, respectively, occurring with

probabilities E’~l),P:).

P(I) “(I) > ~,
F

=Pr(; >I)=Pr16 (29)

E-9
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~(1) ‘(I-I) < ~ ,

\

M
=Pr(~<I)=Prl& (30)

i

The simple evaluation

of {;(L)].

The “false alarm”

of P;I), P:) follows from the assumed monotonicity

and “miss“’probabilityies are more conveniently ex-

,

pressed In terms of the normalized zero mean, unit variance random variables

d(I)
F

= I;(l) - E ~(1)1 / {Var(~(l)) (31)

d(I)
M

= [E ;(l-l) - ~(l-l)j / ~Var(s(l-l)) (32)

and the normalized thresholds

~(1)
F

- IE- E ;(l)

‘1) = [E i(l-l) - el / vWar[i(X-l)l .
‘M

The probabilities P~l), P:) are then given by

P(I)
F = Pr 141) ‘ &J

(33)

(34)

(35)
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I

~(1) (1) > ~f)j .
M

=Pr l%

‘(I)
If the estimates fi

, j(I-1

(31) - (34) are calculated as

(36)

are unbiased the expectations required in

~ ;m s ~

~ ~(1-1) = &(I-l)
min

and if the estimators

given by

(37)

(38)

achieve the Cramer-Rao accuracy bound, the vari~.ncesare

‘(l-l)l = “ar,&)l =: .
Varl6

Thus, the normalized error probability thresholds satisfy

(39)

(40)

The expression (40) implies a trade-Off relatiOn between the ObservatiOn

noise

fixed

level

level and the minimum (I-1)th_order approximation distance. For any

(I)
minimum performance levels OF

, ~(1)
M

, the maximum acceptable noise

~(1-1)
a is proportional to the distance tin between the true I‘h-order

th_order approximation tO ‘to
signal and the best (1-1) Thus, the minimum

(I-1)th-order approximation distance may be regarded as the effective “signal

strength” for the order determination problem, and an effective signal-to-

noise ratio may be defined by

E-n
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-(I-1)
SNR(l) = ~ I&min

eff
o

2
(41)

th order ApprOximatfOn Distance5. Evaluation of the Minimum L

a. General Formulation

The

follows:

I
S=,I—

i=l

approximation problem

Given a signal vector

considered in Section 2 can be restated aa

eB

find L admissible repreaentation

maximize IIPL(~l, . . . . ~) ~11, the norm of

(42)

.-
vectors 131, ..., &L , f3ic B, which

the projection of ~ into the sub-

space spanned by ~1 , .... _L. We assume L < I because the sOlutiOnF

for L > I is trivial.

In order to establish a connection between this geometrical problem and

the physitally meaningfu]

definitions of the signal

tors {~i], it is neceasarY

ship among the vectors in

, jw’AT(k - ~)
where Bk= e >

frequency parameters {wi} , f~il underlying the

component vectors {~i} and the approximation vec-

to be more specific about the geometrical relation-

B. The inner product between vectors & ~’ E B,

is calculated as

(&,~’) = W(OJ- w’) (43)

E-12
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where W(.) is the discrete Fourier transform of the (centralized

‘equence ‘k+(N+l)/2‘

W(w) =eLE

k=]

The vectors & e B al

N

e-jwATk
‘k

.

have unit norm

IIR II
z

=W(o)=zwk=l—
k= 1

(44)

(45)

window

and two vectors ~, ~’ c B are approximately orthogonal if their frequency

separation Iw - 0’ I is outside the effective bandwidth of the window

1, W(.) is given bysequence. For the uniform window sequence (wk = ~ ,

sin E
2

w(w) = s sine 0/2 if N is large (46)

N ‘in %

where

sincx. ~. (47)

Since the window spectrum W(.) completely specifies the inner product

structure of the set of admissible representation vectors B, it is possible to

reformulate the approximation problem in terms of W(.). We write the L’h -

order approximation distance as

E-13



l@’)J 2- (g, g - - )s)- PL(t31,.... ~_

,;

:I

11 IL
= ~ E ai* aj (&i, 13j? - $ ,7 ai* ;,(&i, Ej) .
i=l j=l i=l j=l (48)

Referring to (22) for the evaluation of the projection coefficients ai> ‘e

rewrite (48) in the fO~

g. = [01, . . . aLIT (50)

w+
and W1l, WL1, WLL, L1 are matrices (of dimension 1x1, LxI, LxL, P.L, respec-

tively) defined by

(wll)ij= (~i, &j) = WJi - q) (51)

E-14
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(wL1)ij= (&,&j) = hq -Uj)

(‘LL)ij = (~i, &) = W(;i- q (53)

(w;l)ij= (f3i,~j) = W(wi-:j) = (wL1);i. (54)

The first term in (49) equals IIsII
2
and the second term is an explicit—

2
evaluation of llPL(~l,.... &)~n , i.e.,

2
11s1!= a+ W1l g— (55)—

2 . +W +-l
llPL(t?l, .... EL)E1 s LI ‘LL ‘LI ~ “

(56)

b. Special Cases

There are some special cases for which an approximate solution to the

approximateion problem haa been obtained.

(i)

For

Widely Spaced Signal Frequencies

this case we aasume that the signal

(52)

frequencies {wi’ are separated by

at leaat twice the effective (one-sided) bandwidth of the window spectrum

w(m). This implies that no approximateion frequency ~i can be close to two or

more signal frequencies m , 0 , simultaneously.
jj

Specifically, we assume that

for every approximation frequency ;i there is a unique signal frequency index

E-15
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I
i

m(i) such that

(ii, q) = w(~i- ~ ) . 0 for all j * m(i) .
j

(57)

This implies that

(Ei, pL(&, ....llL)Ej)=o ifi+-1 (58)

and

(8 -_i , pL(& , ....lL)6i) ‘O if i* m(j) fOr anyj = 1, .... L .

(59)

Therefore

llPL(~l, .... &,)gll
2
= (~, PL(E1, .... EL):)

P (F , ....&)&(i))= 1 lam(i) !2(&(i)3L –1
i=l



(60)

This upper bound can be achieved by an obvious choice of representation

vectors,

& “ i-l, ....L (61)
= %(i)

where ;(.) is the functiOn which re-Orders ‘he ‘ignal component ‘ndices ‘n

descending amplitude order, i.e.,

(62)

Thus, ‘(L)] definedthe {&i

distance is calculated as

by (61) are optimum and the minimum apprOximt iOn

(63)

The effective signal-to-noise ratio for the order determination problem is

given simply by

(64)

E-1?
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I

i.e., the effective signal-to-noise ratio is equal to the array signal-to-

noiee ratio SWRamp defined in terms of the amplitude of the weakest

component. Therefore, the

probability as long as the

component is high enough.

exact signal order can be determined with high

(amplitude) signal-to-noise ratio of the weakest

(ii) Closely Spaced Frequencies:

We consider first-order (L = 1)

true order I. The results are most

First Order Approximation

aPPrOXimatiOnS to a signal of arbitrary

useful for the case I = 2 because. as

ahown earlier, the minimum (I-1)th
-(1-1)-order approximation distance 6tin ia the

key parameter for determining the resolvability of an Ith-order signal.

The sIgnal frequencies are asaumed to be reasonably closely spaced.

Specifically, we aasume that all frequency differences involved in the defini-

tions (51) - (54) of W1l, WL1, WLL are emall enough that the following

approximation to

w(u)= Cos Y(II

the window spectrum W(W) ia valid:

(65)

Y2=& (1 - ~) for uniform ~wk} .
N’

(66)

With this definition of y the approximation (65) haa the same Taylor series

expanaion ae the exact uniform window spectrum (46), through third-order
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terms. For loI A T (separstims tithin half a beamwidth), the aPPrOximatiOn

is accurate within 3%.

For L = 1 the

matrix WL1 is a row

in (49) to calculate

I

matrix WLL is simply a scalar (equal to unity) and the

vector. Thus, the ij‘h component of the IxI matrix used

the minimum approximateion distance is given by

~ Thus,

1
,

1
I -jyoli 2 I jYfJJi2

.—

/

4
‘Eaie + Xafe

i-l i=l

jzy~l : ~ ,-jy~i ; .* e-jy~j
- 2Rele

1
i 1“ (68)

i-l j-l j

This expression is obviOusly ~ni~zed by selecting ~1 ‘0 give ‘he last ‘em

zero phase. The rasulting minimum approximateion distance is

#1) 1

I

I jYwi _ I -fiYwi

min”~
Z aie Eaie . (69)

i-l i-l
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1

(iii) Closely Spaced Frequencies: Second-Order Signal

We now consider the previous case specialized to I = 2 (second-order

signal).

~(1) :
rein”;

The minimum first-order approximation distance is expressed as

max (lull, la21) (70)

x JI + pz + 2p COS($ + YAW) -41 + p2 + 2P COS($ - YAU)
I

where

a2/al If la21 < lull

pej$ : al/a2 if Ian < la21

AIL!= IW2- ~~I
The effective

given by

.

signal-t0-noise

(71)

(72)

ratio for the order determination problem is

s..:;;=: min(la112, la212)n(P,+JAw) - SNRamp n(P,+,Aw) (73)

where

2
/1 + P* + 2PCOS($ + YAW) -41 + P2 + 2PCOS(0 - YAW)L .

n(P,$,AfJ))= J
4P* (74)

By comparing (73) with (64) we see that the effective signal-to-noise ratio
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for closely spaced frequencies is reduced from the amplitude signal-to-noise

ratio SNRamp by the factor n(p, O, AoJ). Thus, in order to maintain a given

effective signal-to-noise ratio for order determination, the amplitude aignal-

to-noise ratio must be increased by the reciprocal of the reduction factor (as

compared to the case of widely separated frequencies).

The effective signal-to-noise ratio reduction factor

plotted in figure E-1 versus Aw for various values of p and

behavior of this function may also be examined analytically

second-order Taylor expansion of (74) for small Au:

n(o, +, AIO) iS

The general$.*

by considering a

(YAU)2 sin2 $ .
n(p, $, Au) *

1 + pz + 2pc0s4
(75)

(iv) closely spaced Frequencies: second-order Wnal tith

0° or 180° Relative Phase
I

According to (70), if the window spectrum is given by the approximateion

{ (65), the minimum first-order approximation distance is exactly zero for a

!
second-order signal with relative phaae $ = O or v; i.e., the second-order

I

signal is indistinguishable from the beat first-order modeI of it. When the

actual window spectrum (46) is used in place of the approximation, there is a

small difference between the two models.

1

*The curves for $ = O, n are calculated from (81), (82) of the next aectiOni

rather than from (74).
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To calculate the actual minimum first-order approximation distance we

first add on a fourth-order correction to the window spectrum approximation,

w(w). Cosy(u+ y’ w
4 (76)

where

Y ‘=*(1-&l-~).
N’ N’

Then we recalculate the matrix in( 67) a~’

(W1l - ‘:1 ‘~~ WL1)ij = sinlY(til.-Wi)] sinly(~l ,-@j)1

+ higher order

It is assumed that

x y’(tii.:- Wi)(:
1

terms.

the minimizing

(77)

0)):
j

(78)

approximation frequency ~1 is chosen-to

minimize the contribution to X(’) of the dominant first term in (78);

i.e., VI is selected according to the criterion following (68). For real a~,

a2 and small separation frequency AW, the optimum :~ can be expressed as

@lwl + ~’”’
‘1- a1+a2 ‘

(79)

Therefore, the minimum first-order approximation distance is evaluated as
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(80)

and the effective signal-to-noise ratio reduction factor is given by

6 Y’(Au)4
n(P, 0, Am) =

(1 + D)2

n(p, =, Aw) = 6 “(AU)4 .
(1 - 0)2

(81)

(82)

c. GeneraI Comments

An intereating feature of the analysis presented in this section is that

none of it depends on an assumption of large sample size N. In fact, the

window spectrum approximation (65) used fOr the clOsaly spaced frequencY case

is exact when N = 2. This simple case can provide some

mysterious sinz$ dependence of the effective signal-to-noise

spaced frequencies.

We consider N = 2 and I = 2, and We seek to perfOrm

decide whether the signal ~ is first order or second order.

‘(L), L = 1,to measure the minfmum approximation distances &min

pier statistic based on the ratio S2/s1 of the twO signal

insight into the

ratio for closely

a measurement to

Instead of trying

2, we use a sim-

samples. If the

signal were first order we wOuld find that 1S2/S1I = 1 exactlY. For a second

E-24
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-order signal,

1- ls2/s J*

.

j(lJ2- &j)/2
la112 + IU212 + 2Re[a~a2e J

1-
* -j(W2 - ul)/2

2 + 2Re~a1a2e 1I la112+ la2

4 Im(a~a2) sin(w2 - wl)/2
.

-j(u2 - ~l)iz
Ial12 + IN212+ 2Rela~a2e

2p Aw[sin$I. if Au is small .
1 + p2 + 2pc0a.$

(83)

This is the same type of frequency and phase dependence exhibited by the

-(1)
minimum first-order approximation distance 6tin. In particular, if the rela-

tive phase is O“ or 180” it is impossible to distinguish the second-order

signal from a first-order signal on the basis of amplitude variation.

It is significant, though, that this distinction is possible for other

phases, because such resolution does not appear to exist under a general ARMA

model. In our vector space formulation, a general ABMA model with poles not

restricted to the unit circle corresponds to using a larger set Bt of admissi-

ble representation vectors, with

N+I
k2.—

B’ = ~E= [81, .... 6N1T : flk=s for some complex B,

E-25
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I

(84)not necessarily satisfying IsI = 1] .

-(L)The minimum approximateon distante 8tin achieved by projections into.L-dfmen-

sional subspaces spanned by vectors drawn from B1 cannot be any greater than

the 8(L)tin computed for B, and in fact it can be considerably smsller. A simple

manifestation of this phenomenon is the failure under a general ARMA model of

the amplitude comparison stheme described above. With admissible

representation vectors drawn from B’ instead of from B, it is not necessarily

true that Is2/s1I = 1 for a first-order

between first order snd second order is

signal and thus the basis for deciding

lost.

6. THE MAXIMUM LIKELIHOOD ESTIMATOR FOR THE MINIMUM LTH ORDER APPROXIMATION

DISTANCE

In Section 3 we calculated the Cramer-Rao accuracy bound on any unbiased

estimate of the minimum Lth-order approximation distance, when the signal is

observed in white Gaussian noise as in (1) - (13). In Section 4 we related

the accuracy of the approximation distance estimste to the error probability

achieved by a signal order estimate derived from the estimatea of the minimum

aPPrOxi~tion distances. In this section we derive the maximum likelihood

estimator for the minimum approximateion distantes and examine the error proba-

bilityy achieved by the corresponding eatimate of the signal order.

Since the observed data ~ conaista of the signal & plus white Gauasian
.

noise ~, the msximum likelihood estimate = of the aignal baaed on ~ ia calcu-

lated from the combination of unknown signal pararseters which

E-26
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minimizes 11~- ~11. For an Lth-order model, the maximum likelihood estimate is

obviously

A
s= PL(i31,.... ~L) ~ (85)

where ~1, .... &, ii s B, are admissible representation vectors which mini-

mize 11~- PL(&l, .... &L)~ll.The resulting minimum data approximateion distance

is the maximum likelihood estimate of the ~nimum Lth-order

approximation distance ~~~, i.e.,

signal

“(L) =
$-m min lx - PL(~l,— .... &)zll = II=- PL(&, .... ;L)zn .

~i6B (86)

The maximum likelihood approximation distance estimator ;:) is a

monotonically decreasing function of the approximation order L (as desired)

for any value of the obeerved data vector & It is difficult to determine the

“(L)
exact statistical behavior of 6M because of the dependence of the

minimizing projection in (86) on the observed data.

It is possible to obtain analytically ueeful bounds on the false alarm

and mise probabilities P.$l~P:) attained by the order determination algorithm

‘(L)
of Section 4 applied to the maximum likelihood eetimator 6m . For any x_,

the minimum data approximation distance ;$) in (86) is obviouely upper

A(L)
bounded by the approximateion distante 8 that would result from using the L

0

representation

(uncorrupted by

vectors ~~, .... ~~ which best approximate the true signal

noise), i.e.,



1

= ,16(L) 1 -O ;O)+~l(Fj,~in~(ll, ...>_~ .... ‘@l? (87)

where gl (~~, .... ~~) is the orthogonal projection of the noise vector,

1 --0
;O) = g - PL(];, .... ]:)g1(111, ...._~ (88)

and E1(&~, .... &) is a unit vector in the direction of the orthogonal pro-

jection of the signal vectOr,*

~l(g;, .... ~:) = [~ - PL(~;, .... ~;) gJ/&: . (89)

Thus, the upper bound on the square of the maximum likelihood approximation

distance

variable

The

estimator is simply a noncentral (unless %~~ = O) chi-squared random

with 2(N-L) degrees of freedom.

relevant approximation distance estimate for computing the false

alarm probability P,$’)is the Ith order estimate ;:). Since the true minimum

~th_order apprOximatiOn distance is obviously ~~~ = 0 (1 = true signal

order), the upper bound (87) on the square of the Ith-order maximum likelihOOd

estimator ia simply the

11:1Gi:,....@n2. Therefore,

false alarm probability is upper

(central) chi-squared random variable

for any order determination threshold s, the

bounded by

#)
F

= Pr[;:) > CJ < Prlffnl(~~,.... ~)lf2 > E*] . (90).—

As ~ function of ~2 the upper bound is a chi-squared probability distribu-



tion function. Evaluation leada to

_Ne2,02
(I) ~ e

N-I-1

‘F } ~ (Nc2/02)m
m=O

< e-NE21a2 ~~~ ~ (Ne2/02)m . (91)

The upper bound in (91) is plotted in figure E-2 as a function of the

“threshold-to-noise”ratio Nc2/02, for all possible sample .!?iZeSfrom N = 2 tO

N = 32. It is seen that the false alarm probability goes to zero

exponentially as the threshold-to-noise ratio is increased. Since the

(second) bound in (91) is independent of 1, an appropriate order determination

threshold to insure a tolerable false alarm probability can be selected from

Fig. E-2 without

Analysis of

the upper bound

sny prior knowledge of the true signal order.

the miss probability P:) is more difficult. To begin with,

(87) on the maximum likelihood eetimator of the minimum ap-

proximation dietance leads to a lower bound on the miss probability, i.e.,

(92)
--(1-1) 1 -o

> Pr/lf6tin S(E1, .... E;_l) +Z1(E; , .... ~-l)uz < S2J.

If the signal-to-noise ratio is high enough to produce good maximum likelihood
.

estimates &l, .... il_l of the optimum (I-1)th-order approximation vectors

~;, -.., E;.-l,then the lower bound in (92) will provide a good approximation

of the actual miss probability.
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As ~ ~unction of ~2 the lower bound is a noncentral chi-squared distribu-

tion function. Evaluation leads to an expansion of the form

Both summations in (93) involve.Poisaol]..probabilities. The result of the

inner s“mrnation gyss to zero rapidly as the summation limit (N+k+l) iS in-

creased be,yo.ndthe cerreaponding Poissonmean, Nc2/”&2.“

are overwhelmingly probable whenever the POiasOn

au~atio-, .SNR::;,..:s much greater than Ne2/u2.

probability, may be expected whenever...the.effective

greatly exceeds the threshold-to-noise ratio.

Such“largevalues of .k

mean in the

Thus, a small

signal-to-noise

outer..

miss

ratio

Figures E-3a, E-3b,and .E-3cplot the lower btiiindon the miss probability: ~~~

veraua the threshold-to-noise ratio for all..sample sizes from N=2 .toN=32 and ~~~

three values of the effective signal-co-nofae ratio, SNR::;= 5, 10, 20. It

is seen that the miaa probability bound decreasea exponentially as the thres-

hold-to-noise ratio is decreased.

The results of figures E-2 and E-3 can be combined to determine the

trade-off between false alarm probability and miss probability aa the decision

threshold is varied. Figures E-4a, E-4b, and E-4c plot the lower bound (93)

on the miss probability versus the upper bound (91) on the false alarm

probability for N = 2, .... 32 and SNR~~~ = 5, 10, 20. It is seen that the

error probability trade-off curves for fixed effective signal-to-noise ratio

E-31
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are not highly dependent on the sample size N, and in fact they approach a

limiting trade-off function as N + CO.

If the errors of overestimating and underestimating the true signal order

are equally undesirable, then the threshold-to-noise ratio should be chosen to

minimize the total error probability (i.e., the eum of the falee alarm and

mies probabilities). Figure E-5 plots the approximate optimum error proba-

bility, obtained by,Maimizing the sum of the falae alarm and mfss probability

bounds,
(2)aa a .functioaof the effective stgnal-to-noise ratio S~eff.. IE iS

seen that effective signal-to-noise..rat.icmbetween:lO” dB and 20 dB “areeffic-

ient to produceerror probabilities.between 10-1

7. COMPUTER “SIMULATIONOF THE PERFORMANCE.OF THE

The order estimationalgorithm described in

and 10-5.

ORDER ESTIMATOR

Sections4 and 6 was..eimula-

ted with eymthetic data. One:hundred independent noise realizations~,..

q = 1, .... 100, weze generated, each with a sample ~size N = 9. Next, a know

second-erder signal ,s_was added to each ..ofthe noise realizations, .resu~ting

in 100 data eets~, q = 1, .... 100.
“(I.)

Maximum likelihood estimators 6
‘q’

L = 1, 2 were derived from each data set ~ according to the formula (86).

This procedure was repeated for signala with varioua amplitudes, phaaea, and

frequencies. The same noise data wae used for each signal &

A decision threshold c was selected to guarantee a falae alarm probabil-

ity lees than O.05; according to figure E-2 the required threshold-to-noise

ratio is NS2/~2 = 14 (i.e., 11.5 dB). Each second-order signal ~ ia

“(2) < ~ < ;(l) for at least 90% of theconsidered to have been resolved if 6
q q

data sets ~. Figure E-6 presents the signal-to-noise ratioa and frequency
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separations of the signals that were resolved and those that were not

resolved. In the figure the separation coordinate is Af = ~2T‘
and the plotted

signel-to-noise ratio is SNRamp = N min( Ial12, la2/2)/02. Results are

presented for twG cases, $ = 0, ~, with p = 1. Three curves are shows for.

each phaae value. The upper curve connects points (denoted by ‘E’) for which

the order determination was auccesaful, and the lower curve connects pointa

(denotedby ..!0’)“”for which the true order:was.not estimated..The wfddle curve

is thevalue of SNRamp required to yield an.effective stgnal-to-noise ratio

SNR(.2)= 12.5 (i..e., 11 dB). According..tofigure E-5, this is the effective
eff

signal-to-noise ratio required to achieve an approximate total error

probability of 0.1.

I
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APPENDIX F

LOSS OF HESOLUTION WITH THE ‘“STANDAHD”
METHOD WITH COHERSNT MULTIPATH

MLM

In this appendix, we provide an explanation for the loss of resolution

the “normal” MLM technique when coherent multipath is present. By “nor-

technique, we mean the spectrum estimate

‘MLM
(e) = (XH ~-1~)-l (F-1)

of Eq. (4-6) where the covariance estimate ~ is time averaged, but not spa-—

tially smoothed. With this particular estimate, it has been observed that the

angular spectrum estimxtes for two coherent signals typically shows a single

peak located between the two arrival angles and an apparent noise floor which

is much closer to the spectrum peak levels than is the case with the actual

noise level (see Fig. 4-9).

The explanation we give here is an adaptive nulling array interpretation

due to Warren White* [13]. First we recall that one interpretation of the MLM

method is that one seeks to minimize the output power from the array subject

to the constraint that the gain in the steering direction, e, is held fixed at

unity gain. With uncorrelated signals, this is achieved by steering nulls

towards the signals not at 8 as wae illustrated in Fig. 4-8.

However, with coherent signals (e.g., multipath), the array output power

is no longer minimized by steering nulls to the signal anglea other than e.

To see this, consider the case of 2 signals at angles eland 62 with ampli-

tudes S1 and S2 = S.lpe~0. If we wish to estimate the power at angle 61 and

are given the ensemble covariance for uncorrelated signals (so we can null out

the second signal), the output power will be

P
2

-s +P
out 1 N

*A more mathematical discussion is available in Cantoni and Godara [88].

F-1
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where PN = array output noise power (. noise power at an element/nO. of

elements ). However, in the coherent case, if we have a weight gain of -pej+

in the direction of 62 then the array output will be

P(el) = <[S1 + S2 (-pej$)+n12>=PN.

Similarly, when we eetimate the power at angle 6
2’

with uncorrelated

signale, a null ie formed in the direction of 61 ao that

P(e2) -S; +PN

jwhereas with the coherent eignals a weight gain of -(1/p) e 0 in the direction

of 01 yielde:

P(@2) =< I S2+S1(-~ej0)+n12> -PN .

With uncorrelated signals, the power estimates at the two arrival anglea

are biaeed upward by PN whereas with coherent signals, the arrival-angle POwer

eatimatea are close to pN. Thus, with coherent signala and a high SNR, the

MLM power estimates at anglea eland 92 corresponding to the actual plane-wave

arrival anglee are significantly lower than they should be.

The resolution performance depends on the power estimatee at angles 0,

other than the arrival anglea. With incoherent signale, nulle are placed at

anglee eland 62 (recall Fig. 4-8) eo that the power eetimate ia

P(e) = PN (l+ct) e * fjlorL32.

The parameter a can be significantly greater than O due to the very high

(e.g., +20 dB) ‘“sidelobes” of the steered pattern at angles other

than 6, elor !32 (Fig. 4-10). But, as long ae S12 and S22 are > PN, there

will be sharp peake in the MLM epectrum estimate at eland 92.

“<
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1

With coherent signals, it is not necessary to point nulls in the direc-

tions of eland 82 to eliminate the plane-wave signals. Rather, one only needs

to have

where F(81, 0) is the array (voltage) gain at 61 when steering to angle 9.

Thus, the array output power will be

P(e) - PN

i.e., the estimated power is roughly constant at all angles.

When the plane-wave signals are cancelled, the output noise power depends

on the modulus of the weighting vector. It turns out that the spectrum weight

modultiswhen pointing at 01, e2 and between these two angles is larger than

that which arises at angles well removed from eland L32. Thus, there is some

structure to the resulting MLM spectrum estimates for coherent signals such

that one could roughly infer the sector with plane wave arrivals. However,

the spectrum estimate is significantly poorer in all reapecta to that afforded

by conventional (Fourier) techniques.

F-3
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