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1. INTRODUCTION

Mean velocity (i.e., first spectral moment) estimation is central to pulsed-Doppler weather-
radar processing. However, some radars, such as the Terminal Doppler Weather Radar (TDWR)
and Airport Surveillance Radar (ASR), operate under conditions that test the limits of current
capabilities. For example, high scan rate and fine (azimuth) sampling requirements yield a small
number of pulse samples per gate! (i.e., small-sample size) while clear-air conditions result in low
signal-to-noise levels. Hence, coupled with general interest for optimal velocity estimation, specific
needs motivate an investigation of improved performance under the constraints of small-sample size
and low signal strength.

As is often the case, the issue of practicability limits the degree to which optimal perfor-
mance can be attained. Further complicating matters in this report is an assumed small-sample
constraint that makes the definition of optimality itself problematic. Indeed, the natural appeal
to the (asymptotic) optimality of maximum likelihood (ML) could fail; verification is ciearly re-
quired. The Cramér-Rao (CR) performance bound could be too optimistic, likely unattainable by
any estimator and therefore useless in gauging what room there is for improvement. Because few
theoretical results exist to serve as guides, numerical methods typically must be relied upon for the
relevant analysis.

This report presents a study of the velocity estimation problem and provides arguments for
frequency-domain smoothing (autocorrelation-lag weighting) as a means of achieving improved ve-
locity estimation performance. Although the emphasis is on small-sample analysis, the results are
not restricted to the small-sample case. Note that the Bayes (conditional mean) estimator (defined
by the usual formulation) minimizes the mean-squared estimation error over all estimators. This
property holds regardless of sample size and hence rationalizes the use of Bayes performance as a
benchmark for optimality in this small-sample case. Unfortunately, even assuming the conventional
Gaussian signal model, the conditional mean is computationally impractical. It nevertheless pro-
vides useful insight to the development of improved (and practicable) frequency-domain velocity
estimators.

At the heart of this study is a Monte Carlo analysis examining small-sample performance for
selected mean-frequency estimators. In addition to the pulse pair (PP) estimator and a typical
Fast Fourier Transform {FFT) estimator [i.e., a periodogram based estimator derived from wind-
profiler (WP) literature], maximum likelihood (ML) and Bayes estimators (these two based on a
Gaussian signal model) are examined and compared. Sample size is fixed to a small (M = 20)
value, and performance at low signal-to-noise ratios (SNR) is also a point of focus. The results of

1For TDWR, on the order of 40 pulse samples are coherently processed per output velocity estimate;
for ASR-9, on the order of 18 (although data sharing has been used to extend this value to 27).



these analyses are used to recommend an optimal smoothing (weighting) strategy for periodogram
(autocorrelation-lag) based estimation.

As stated, the motivating interest is improved velocity estimation for Doppler weather radars,
and the content of this report is clearly oriented toward weather-radar processing. However, the
results of Section 6 should be of a more general interest, presenting a new and novel method for
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2. BACKGROUND

2.1 Statistical Model

For this report, it is assumed that a frequently adopted Gaussian model (for single-source
weather returns in additive noise) is appropriate (see, for example, Doviak and Zrnié [1]). This
model is characterized by the sample covariance relation

o = Se—s(wavmfj,\f e—J4TTmT/A + Nébpm, (1)

where the model parameters ¥ and o, represent mean Doppler velocity and spectrum width, A
is the radar wavelength, and S and A respectively represent signal and noise power magnitudes.
Complex-valued radar returns, Z7 = [20 21...2Mm-1),% corresponding to a single range cell are
assumed to represent M equally-spaced samples (separated in time by pulse separation 7) of a
complex Gaussian process with covariance matrix R = E[Z2Z 1]. In view of Equation (1), R can be
given the parametric representation

R =D[SG + NI|D* = SDGD"* + N1, (2)
where

D = D(w) = diag[l e=%¥ ... e~/ (M~}

p(0) (1) e p(M-1)

G = G(0) = f’(l) f>(0) J.o(M -2)

| (M —1) p(M-2) ... p(0) J
I=diag[11...1),

= o= 3{xmo)? =T = Ox =2
p(m)=¢e"2 y WE—glex, 0=k, and vy = .

?Notationally, a superscript “T” will be used to indicate a matrix transpose, a superscript “*” will
be used to indicate complex conjugate, and a superscript “{” will be used to indicate conjugate
transpose.



It is assumed that A" can be reliably estimated and treated as known, and for convenience
S and N are combined into an unknown SNR 5 = S/A. The complex data vector Z is therefore
governed by the probability density

§(Z|©) = r~M|R[ e~ R1Z, 3)

and estimation of the Doppler velocity w must be done in the context of the unknown parameter
vector ©7 = [weo 7).

2.2 Experimental Design

2.2.1 Weather-Radar Simulation

Weatherlike nnnhlnr sienals were simulated as described by Zrnié [2]. For all simulations,

"U“Ill\'l apaEtaas W gescribed Ly &l e = gL IS,

digital sampling of Ga.ussxan shaped power spectra was emulated, including Nyquist folding, until
all tail values with power greater than 0.01 were accounted for, Given an M point input power spec-
trum, Zrnié's method generates a random vector of M consecutive process samples. A brief study
of sample estimator performance was made to examine (and thereby ensure limits for) uncertainties
due to power spectral sampling and Monte Carlo sample size. As a result of this investigation, a
1024 point power spectrum representation was used and, from the corresponding output process
vector, a block of 20 contiguous samples was extracted for use as a data sample (the remaining

1004 points were discarded). Also, a total of 10,000 (independent) realizations were used for each

assessment of sample mean and standard error.

Error results are presented in both normalized and unnormalized form. In view of the defini-
tions in Equation (2), spectrum width and standard error values are normalized to the magnitude
of the Nyquist velocity vny,. Bias errors are normalized to the magnitude of the true underlying
signal velocity. Unnormalized values are presented in the context of weather-radar processing us-
ing a 10.4 cm radar operating with a pulse repetition frequency of 1000 s~1. (The unambiguous
Nyquist velocity therefore equals 26 m/s.}

Provided also, for reference, are curves corresponding to the CR bounds that were computed
using the well-known result®

- -1 aR -1 3R
fij=tr {R 20, — R 68,~ ) (4)

3A derivation is provided as an appendix.



where F = [f; j] represents the Fisher information matrix

FeR [(alng(ezm))T (8]ng(§|®))] _

The diagonal entries of F provide the desired bounds:
- 2
El(6: - 6:)) 2 Tiso (5)

where F-! = [f; ;] and 6; is any unbiased estimator of component 8; of ©.

2.2.2 Test-Signal Parameters

Performance evaluations/comparisons are based on estimation error that clearly can vary as
a function of the true parameter value. Error quantification for all possible values of the (true)
parameter is not feasible, Evaluations are based, therefore, on comparisons for selected parameter
values.

Target velocities of 0, 5 (0.192 vnr,,), and 13 m/s (0.500 vn,,) are used in the present evalu-
ation. Preliminary studies obtained similar error profiles for velocities in the range 0 to 0.5 vyy,.
Velocities greater than 0.5 vy, are not examined to avoid the added complexity of spectral folding.

Values for weather spectrum width can range from 0 to vyy,. For coherent processing, only
a small range is of interest. A further simplification is made by considering only extreme points of
this range providing two classes of input signal: narrow and wide spectrum width. Table 1 contains

TABLE 1
Model Sample Correlation vs Spectral Width

~4(xme)?

Sample Correlation: ¢

o
0.040 | 0.100 | 0.200
0.992 | 0.952 | 0.821
0.969 | 0.821 0.454
0.931 | 0.641 0.169

the correlation values for the first three lag indices in the model [Equation (2)] corresponding



to three values of normalized spectrum width. For a normalized width of 0.2, there is significant
decorrelation between samples separated by two or more places. (Improved estimation using higher-
order lag-product statistics would seem unlikely beyond this point.) The normalized value 0.2 is
used to represent wide spectrum width signals. Given the setting of the simulation, this signal
corresponds to a weather signal with a spectrum width of 5 m/s. At the other end, the value 0.038
(corresponding to a 1 m/s spectrum width) is representative of narrow spectrum width signals.

Initially, performance comparisons are made for discrete SNR values in the range -10 to 10 dB.
These (initial) results are the basis for a later shortening of the examined range to -4 to 10 dB.



3. ESTIMATOR EQUATIONS

3.1 ML and BAYES Formulations

The ML solution corresponding to Equation (3) is obtained, in principle, from joint maxi-
mization of the “likelihood” function

L(®)= -R|-2 R 2, (6)

but this has limited practical application because the resulting system of equations is neither
explicit nor separable with respect to the components of ®. The Bayes estimator that minimizes
the mean-squared error E[(& — w)?] is the mean of the conditional (posterior) density p(@©|Z) (see,
for example, Van Trees [3]) where the posterior density is derived from application of the Bayes
formula:

_ _pze)n©)
o2 = Tyzie)se)de @

This too has limited practical use as, notationally, “d®" = “dwdo dn”; the resulting estimator
requires substantial numerical integration to cover the parameter space volume. Approximations
of some form are clearly required in order to proceed further. The approach considered here first
steps back and examines a simpler model for which practical (ML and Bayes) solution is possible
- and, later, examines adaptation of the resulting solutions to the model of Equation (3).

Examining the (somewhat) degenerate situation wherein one assumes the spectrum width
(o) and signal-to-noise (1) parameters known is, of itself, very useful. Under these conditions the
aforementioned computational blocks are largely avoided, and one achieves optimal estimators that
form a foundation for further analysis.

In the case of ML estimation, knowing o and 7 reduces likelihood function, Equation (6), to
the term ZVR~!Z defining the ML solution

M-1M-1

Wy = arg min Z 2 27 Yik 2k eIwli=k), (8)
we[-m7) i=p k=0

In the above, the coefficients v; » are the elements of the matrix I' resulting from the convenient
redefinition

I'=1I(o,9) =[G+ N7, (9)



Equation (8) is not explicit for w; however, a change of variable and rearrangement results in an
interesting frequency domain form:

M-1

&ML = arg min E 1"-9;) e-Ivm, . (10a)
wE[=7 ") = (M-1)

more simply,

(M= ) e
Omy =argminRe { ) i‘},‘l’e"“'"‘} ) (10b)
wE[—-x,x) m=0

where fg ) is the I'-weighted autocorrelation estimate defined by

M-m-1

#HD = 3" 2 Yigem 2iem (11)
i=0

From inspection of Equation (10) it is clear that a solution to this ML equation can be obtained

by implementing a standard FFT transform of the weighted autocorrelation estimates fg‘ ), The
transform samples Equation (10) with a resolution of 2x/Nppr (Nppr is the FFT size) and thus,
by zero filling, computes &psz to a desired resolution.

A similar computational reduction occurs for the Bayes formulation. If one assumes a uniform
prior4 for w, the (one-dimensional) Bayes estimator can be written as

[ we-ZIDIDZ g,

(12)

‘;’Baycs = .
[ e-ziDrDez g)

The above FFT computation, which yields the ML solution, also provides the exponent in Equa-
tion (12) and therefore a starting point for computing the posterior mean.

Comment 1. If, in Equation (11), ¥ii4m = 1, then f-ff ) is equivalent to the (biased) sam-

ple autocorrelation estimate, and an FFT implementation of Equation (10) is equivalent to the
(windowed) power spectral density estimate obtained using the Bartlett window. Hence, there is

4For this report only noninformative priors are considered, which, for w, can be stated as p(w) =
1/27, —7 Sw < .



also an equivalence between the FFT computation for Equation (10) and the periodogram spectral
estimate

2
1
Inw) Y i

E Zy €-IWm

m=0

(13)

The resulting ML estimator would therefore be equivalent to the Periodogram Maximization esti-
mator considered by Mahapatra and Zrnié [4]. (The apparent contradiction in which a minimization
of the power spectrum in Equation (10) defines the ML estimate is accounted for by the sign of the
weights ¥; i4m.)

Comment 2. If ¥ i4m = %m, then Equation (10) implements a classic smoothed periodogram
estimate. However, I' (the inverse of a Toeplitz matrix) is only asymptotically Toeplitz (though T’
is persymmetric: ¥;,; = YM—jm—i). This nevertheless does suggest an alternative frequency domain
solution and approximation based on implementation of a smoothed periodogram estimate.

3.1.1 Smoothed Periodogram Approximation

For this report, the weighted autocorrelation, Equation (11), is viewed as posing no computa-
tional difficulty (the results presented here assume such an implementation). However, a Toeplitz
approximation to I" provides a useful heuristic within which to view the relevance of the parame-

ters 0 and 5. This, in turn, may suggest approaches to the more general case where ¢ and n are
unknown,

In treating I' as Toeplitz, one can compute smoothing weights by taking averages along the
diagonals of I':

M-m-1

Tm = Z Yid4m

i=0

(The minus sign is introduced here so that the ML solution of Equation (10) can be associated with
finding the maximum of the power spectral density estimate.}) This maximum likelihood window
function, indexed by n and o, can be used to define an approximate ML solution

DAMI = arg max E N, Fon €79, (14)
wE[-m %) o (M-1)
where f,, represents the normal {unweighted) autocorrelation estimate.

The relationship between %, and the parameters ¢ and 5 is documented by Figure 1 where
frequency-domain smoothing windows (Fourier transforms of the coefficients ¥,,; interpolated for
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clarity) are presented for three SNR values: -10, 0, and 10 dB, and a range of normalized spectrum
widths. At 10 dB SNR and for low to moderate spectrum widths the smoothing windows appear
to be, practically speaking, square-window averagers. This suggests the generalized view that the
spectrum width parameter ¢ primarily aflects window width. As SNR decreases, the dominant
feature change is a scaling of the windows to smaller magnitudes (although shape rounding and
bandwidth broadening, as measured by 3 dB width, are clearly evident). It is helpful to add
to the generalization by stating that the windows are scaled according to the SNR parameter 7.
Predictions that result from these simplifications are as follows. Clearly [from Equation (10)],
scaling the window does not affect ML estimation, and hence the value of the SNR parameter
n would not be expected to have a strong effect on the performance of an ML implementation.
However, in the case of the Bayes implementation, scaling coupled with exponentiation implicitly
introduces a form of signal isolation. That is, by its nonlinear nature, the exponentiation in
Equation (12) enhances (isolates) large spectral lines in the smoothed periodogram, and scaling of
the window (by n) modulates this isolation by adjusting the power of exponentiation. Heace, one
would anticipate that, at least, the bias of the Bayes algorithm would be affected by the 5 value
used.b

3.2 Time-Domain Processing: Pulse Pair (PP)

The PP estimator is standard in weather radar applications, and its formulation can be
obtained from many sources. Originally proposed in the context of the independent sampling of
PP measurements (for example, see Miller et al. [5], time-domain formulas for PP estimators have
been routinely applied to vector measurements such as those represented by the sample Z. For the
purpose of this report, the PP estimator is defined by the equation

M-2
wpp = arg E 2 Zzig1. (15)
1=0

When M = 2, this also defines the ML estimate, as can be seen by comparison with Equation (8).
Clearly, as o increases and the correlation between samples decreases one would also predict wpp
to approach the performance of g,

3.3 Frequency-Domain Processing: Wind Profiling (WP)

Among the various published frequency-domain methods is one that has been developed for
use in WP networks—a task with inherently low SNR values (see May and Strauch [6]). The WP

5The presence of a uniform noise floor in the spectral density estimate induces a bias toward the
value zero when the mean of the density is computed.

11



estimator of May and Strauch [6] is periodogram derived and has led to general claims of improved
Doppler mean estimation in the case of low SNR; hence, it is of interest for the present report.

The estimator, WP, was derived with one major departure from the description given in May
and Strauch [6) (their First Moment or FM algorithm). Computational aspects of this algorithm
are presented below by way of a comparison with the proposed (one-dimensional) ML and Bayes
algorithms. Note, however, that there is one important difference between the WP algorithm defined
here and the algorithm described in May and Strauch (6). The WP network makes generous use of
periodogram averaging as a means of stabilizing the periodogram estimates (Bartlett’s procedure;
see the mext section). Because the emphasis of this report is on estimation using a fixed small-
sample size, no such averaging is possible. (This report does not consider the possibility of data

averaging across range gates or neighboring radials.)

Estimate Stabilization. At the heart of the WP algorithm is an implementation of Bartlett’s
procedure for estimating the power spectral density. That is, the data segment for analysis (length
M data segment corresponding to a single range cell observation) is divided into ¢ equal length sub-
segments, each of which is used to obtain an M /g-length periodogram estimate. The ¢ power spec-
tral estimates are averaged to improve the stability of the power spectral estimate. The Bayes im-
plementation [Equation (12)] also can be viewed as having a power spectral estimator—a smoothed
periodogram—at the heart of its procedure. Because Bartlett’s method per se is not appropriate for
the small single-sample case (the primary interest here) it may be argued that smoothing windows
therefore are necessary to stabilize the estimates. (It should be remarked that, generally speaking,
the goals of mean Doppler velocity estimation and power spectral density estimation are not one
and the same. Hence, general arguments for improving power spectral estimation do not necessarily
carry over to improved velocity estimation.)

Signal Isolation. After obtaining an estimate of the power spectral density, the WP method
proceeds with an ad hoc attempt to isolate signal from noise. A noise floor for the spectral estimate
is determined, and censoring (zeroing) of all spectral coefficients beyond the first crossing of the
noise floor, when proceeding from that frequency index with maximum power, is performed. The
noise power level is also subtracted from the remaining interval of nonzero values, and a mean
frequency value is computed by constructing a density from the remaining spectral coefficients and
computing its mean. As previously mentioned for the Bayes implementation, the combination of
window scaling and exponentiation can be given the heuristic interpretation of signal-from-noise

isolation.

12



4. PERFORMANCE WITH KNOWN ¢ AND 5

This section presents a baseline analysis corresponding to a one-dimensional parameter space
(i.e., o and n assumed known). These Monte Carlo results provide optimal performance measures
for each method. In the case of the Bayes implementation, results for known ¢ and 5 also provide
a greatest lower bound for the standard error of estimating mean Doppler velocity.® In later
sections, the Bayes curves determined here are employed with the label “Bayes Bound” for velocity
estimatjon.
4.1 Zero Mean Velocity

Figure 2 presents the simplest comparison: estimation of a zero-mean Doppler weather target
(eliminating, for the moment, the contribution of bias” in standard error comparisons). The figure
plots standard error vs input SNR for two cases: a narrow input spectrum width (o = 0.038 vy y,)
and a wide input spectrum width (¢ = 0.192vpy,,). The corresponding CR lower bounds are
included in each panel.

4.1.1 Narrow Spectrum Widths

ML, PP, and WP. For narrow spectrum widths ML, PP, and WP estimates all exhibit
similar functional relationships with respect to SNR. A uniform ranking of these estimators {(across
SNR) cannot be deduced from the data: ML is clearly best at high SNR (7 to 10 dB) values but
the WP method appears relatively better at low SNR. values (less than 0 dB).

CR Bound. For narrow spectrum widths, the CR bound is well below the error curve of
any of the above three estimators—lower by nearly a factor of two at the high SNR end. This

discrepancy between CR bound and observed performance, which is even more substantial for low

RRISLITPalily LDOLWOTH LAV DOUAL Qi Lot wiaolill il 20 OYED 210 Llalalilial A

SNR values, could erroneously lead to speculation that much improved performance is possible,

Bayes Bound. The curve for the Bayes standard error shows the CR bound to be overly
optimistic. However, the Bayes estimator clearly exhibits a performance gain for SNR values in
the range 0 to 10 dB (at 10 dB, the Bayes standard error is respectively 0.72, 0.66, and 0.52%

Bt ol e ML. Baves. and WP pverformance stati
Uumpu.rlbuub luvuwulg ulc Wi, DAYes, alid vy I” periorinance sta

that results from the finite length FFT implementation. For these frequency domain estimators, the
sampling resolution of 2/Nrpr vny, is exhibited as a bias in the range £1/Nppr vy, (and therefore
maps an interval about the error values reported here). All frequency domain computations in this
report were computed using an FFT length of 64.

TFor this zero mean Doppler signal, each of the three frequency domain methods was found to
exhibit an estimated bias below the resolution defined by the 64 point FFT implementation (i.e.,
< 1/32), regardless of the 5 value.
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that of the ML, PP, and WP estimators; at 0 dB, the Bayes standard error is respectively 0.58,
0.60, and 0.54% that of the others). For SNR values less than 0 dB, adequate separation of signal
from noise becomes more difficult and the Bayes standard error drops as its estimate becomes
increasingly biased toward zero. Comparisons among the estimators for SNR values below 0 dB
should therefore include bias error, and this is included in the sections to follow.

4.1.2 Wide Spectrum Widths

For wide spectrum widths also, the general observations of the previous section apply, but of
particular note for these input signals is the following. ML and PP performances are predictably
close, although ML is better at higher SNR values and appears to approach the CR bound (as SNR
increases), whereas the PP curve appears to plateau at alevel distinctly above the CR bound. From
inspection of Table 1, one may surmise that at a normalized spectrum width of 0.2, the decorrelation
between samples is such that very little improvement can be realized from using higher lag terms
in the estimation process. In confirmation, there is less difference between performance of PP and
ML and the CR and Bayes bounds; however, note that WP stands alone as a clearly suboptimal
estimate. This exceptionally marked degradation in WP performance persists to high SNR values
and confirms a wide-spectrum-width weakness identified by other investigators. The ML estimator
appears to achieve the lower Bayes bound for SNR values in the 5 to 10 dB range, and both ML
and Bayes improve upon PP performance over this range (at 10 dB, the Bayes standard error is
respectively 0.98, 0.81, and 0.37% that of the ML, PP, and WP estimators). For SNR values 0 to
5 dB, ML and PP performances are essentially equivalent, and both depart appreciably from the
Bayes bound as SNR approaches 0 dB (at 0 dB, the Bayes standard error is respectively 0.83, 0.83,
and 0.64% that of ML, PP, and WP).

As a secondary note, one should observe that there is no conflict in the fact that the CR
bound and Bayes error curves cross (there is an implied crossing of these two curves for the narrow
spectrum width case as well). This only serves as a reminder that the CR bound applies to the
performance of unbiased estimators, which the Bayes estimator, generally speaking, is not.

4.2 Nonzero Mean Velocity

Standard error and bias results for nonzero mean velocities (¥ = 5 m/s and ¥ = 13 m/s) and
narrow and wide spectrum width cases, as above, are presented in Figure 3. Standard error results
are summarized in the upper half of each panel, and bias results are summarized in the lower.

4.2.1 Standard Error

For SNR values greater than 0 dB, there is general agreement (within the resolution of the
Monte Carlo parameterization) with the results of Figure 2. Below 0 dB, there is 2 notable departure
(most evident for the Bayes results) due to inclusion of bias error.
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4.2.2 Bias

For both narrow and wide spectrum widths there is a breakdown of all four methods as SNR
decreases below 0 dB. For SNR values greater than 0 dB, the bias of each estimator appears to
be within acceptable limits and generally near zero. A large proportion of the improved (standard
error) performance of the Bayes method, for SNR < 0, is at the cost of increased bias (toward zero).
Generally, the PP estimator appears to have the best (j.e., smallest}) bias performance. Departure
from zero-bias performance in the narrow spectrum width case occurs earlier (i.e., at higher SNR

values) in comparison to the wide spectrum width case.

PP and ML results do not appear to change appreciably when the weather velocity is changed
from 5 to 13 m/s. Although the theoretical CR bound does not depend on weather velocity, this
is not true for the bound provided by the Bayes estimate. Performance for the Bayes and WP
estimators, which both compute a spectral mean, deteriorate when weather velocity is increased to
13 m/s—a performance loss due to spectral folding. (Interestingly, moving weather velocity from
5 to 13 m/s has its most significant bias effect in increasing that of the PP estimator.)

4.3 Summary
4.3.1 Narrow Spectrum Widths

For narrow spectrum widths ML, PP, and WP methods all have similar performance charac-
teristics (over the range of SNR values examined). Nevertheless, it can be argued that ML provides
better performance at higher SNR values. Clearly, the indication is that higher SNR values are
required to bring out a decisive advantage here from the ML implementation; a more extensive
Monte Carlo analysis (including higher SNR values) would be needed to measure the extent of
these improvements. As SNR decreases away from 0 dB, all methods begin to fail although the
bias performance of PP is uniformly best. The CR bound is much lower than the performance of
all, but the Bayes results show the information bound to be overly optimistic for this small-sample
(M = 20) case. The asymptotic optimality of ML estimation was also demonstrated to be of no
consequence for this small-sample case. The Bayes estimator demonstrates a markedly improved
performance, but for SNR values below zero, this is at least in part, at the expense of increased
bias. Bias does not appear to contribute appreciably to estimation error for SNR values above
0 dB. All four methods, however, do exhibit notable bias for SNR values in the range -5 to 0 dB.
Bias comparisons appear to always favor PP estimation.

4.3.2 Wide Spectrum Widths

At wider spectrum widths ML and PP are for the most part similar, but the ML results
show a slight improvement at higher SNR values (greater than 5 dB). Although Bayes performance
represents the optimum, ML and PP are close to its bound (compare to the narrow spectrum case);
all three estimators perform near the CR bound (again, in comparison to the narrow spectrum
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case). However, the WP method clearly has an undesirable performance at wide input spectrum
widths. An explanation for this is offered in Section 5.2.
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5. PERFORMANCE WITH ARBITRARY ¢ AND g

The previous section indicated that a small performance improvement (as measured by stan-
dard error) might be obtained using an ML formulation (relative to PP and at high SNR values
only), and that a much improved (and optimal) performance might result from a Bayes implemen-
tation. The task at hand, now, is to preserve these performance gains while addressing the issue
that o and 15 are never known exactly.

In the remainder, the Bayes and ML algorithms will process data using approximate values
for the parameters ¢ and # and, in that sense, represent suboptimal algorithms. (However, for
convenience, the labels Bayes and ML will still be used.)} Before evaluating practical approaches to
estimating o and 7 it is useful to examine the effect of arbitrary ¢ and 5 values on Bayes and ML
performance. In othier words, for velocity estimation, first consider whether it is important that
either ¢ or 5 be known at all. This examination is made by keeping one parameter fixed at ite
known value while varying the other among appropriate candidate values.

5.1 Sensitivity to Incorrect 5

Figures 4 and 5 continue the narrow/wide spectrum width analysis of before by examining
performance when data are processed assuming either one of two fixed n values: 0 or 10 dB. These
choices represent logical test cases in the sense of asking whether reasonable performance can be
obtained by categorically treating the data as either low or high SNR data. Figure 4 considers
ML estimation for the narrow and wide spectrum width case; Figure 5 repeats the analysis for
the Bayes estimator (comparisons for Doppler weather targets of 5 m/s (0.192 vpy,) and 13 m/s
(0.500 vp,,) are presented). In this, and all following figures, the Bayes performance curve for the
case of known o and #n (Section 4) is repeated as the “Bayes Bound.” The results for PP estimation
are also reproduced for continued comparison.

5.1.1 ML Algorithm

In the case of narrow spectrum width weather [Figures 4(a) and 4(b)], the parameter n as
predicted {Section 3.1.1) has no apparent eflect on ML performance. This is not quite the case,
however, for wide spectrum width weather [Figures 4(c) and 4(d)] where mismatch between assumed
and actual SNR results in increased estimation error. As will be seen also in the case of the Bayes
algorithm, using a 10 dB value for the SNR parameter results in a performance loss (relative to
PP) for input SNR values below 6 dB. Hence, the view of a smoothing window shape independent
of g is, in places, an oversimplification.

5.1.2 Bayes Algorithm

From Figures 5(a-d), it is clear that the Bayes implementation, using an arbitrary fixed 5, has
a substantially altered performance. In neither case (0 or 10 dB window) did performance match
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the optimum Bayes Bound for all input SNR values; nor did it, at least, uniformly improve upon
PP performance,

For the narrow spectrum width case of Figure 5(a), there is an (apparently) anomalous
crossing of the Bayes Bound curve by the performance curve assuming n = 0 dB. This is not a
contradiction because the Bayes Bound optimality applies only in the sense of average performance
against the totality of all possible weather target velocities. Hence, it is possible to obtain lower
standard errors for this particular weather velocity of 5 m/s. (Clea.rly, the estimator ¥ = 5m/s,
an extremely degenerate case, has zero standard error and bias at this test point.) With the 0 dB
window, note the severe compromise in estimator bias. This bias is reflected in the (standard error)
performance loss, which is most notable at higher velocities [see Figure 5(b)]. Hence, for narrow
spectrum width weather, processing the data with an assumed SNR of 0 dB incurs the penalty of
increased bias resulting from inadequate signal isolation.

Assuming an 5 of 0 dB does make sense for wide spectrum width weather [Figures 5(c) and
(d)]. For low input SNR values, the optimal Bayes Bound is matched, and at higher input SNK
values, performance appears to be no worse than that of PP. The bias of this implementation is
also very similar to that of PP.

At the other extreme, processing the data assuming n = 10 dB appears to better PP perfor-
mance in the case of narrow spectrum width signals but at the cost of a performance loss (vs PP)
at low input SNR values and wider spectrum widths [Figures 5(c) and 5(d)]. The bias performance
with a 10 dB window, if anything, does improve upon that of the ideal (7 known) case.

5.2 Sensitivity to Incorrect o

For this series, the known values for n were used in the algorithm and a set of values for the
parameter o, ranging above and below the true value, were tested. In contrast to varying 7, the
range of o values tested did not appreciably change the bias results. Therefore, bias curves for this
set are not presented. Figures 6 and 7 summarize the standard error results for ML and Bayes
algorithms respectively.

T o - .._ Py ™ _— - - e - Tan mon -
For the narrow mpul. spectrum lrlguwb ﬁ(a), 6(b), 7(4), and 7\”}] values mug; g from

Otruef4 to 5:7,,.,c were tested; for the wide input spectrum [Figures 6(c), 6(d), 7(c), and 7(d)],
values ranging from o¢,./5 to 9/50,,,,, were tested. In plotting the results, the performance
region spanned by underestimating o is marked in white; the performance region spanned by
overestimating o is indicated with dark shading. Performance curves for each of the tested values
are included as thin lines; the lowest curve in each panel always represents the performance when

8Values 0.25, 0.5, 1.0, 2, 3, 4, and 5 m/s (044 = 1 m/5) were examined.
%Values 1, 2, 3, 4, 5, 6, 7, 8, and 9 m/s (6¢rue = 5 m/s) were examined.
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there is a perfect match between the assumed o value and that of the weather. The heavy curve
in each panel is PP performance for reference,

In general, significant deviation from optimal performance occurs for ¢ parameter values
grossly in error (using values 3, 4, and 5 m/s when o4y, = 1 m/s, and using values 1 and 2
m/s when o¢ry. = 5 m/s). Because ML performance, assuming ¢ and 1 known, is close to PP
performance, not knowing the correct value for o generally results in a significant performance loss
[Figures 6(a-d)]. For narrow spectrum widths and SNR values in the range 0 to 5 dB, a marked
performance gain still exists for the Bayes estimator, regardless of the value used for the parameter
o. The potential compromise at larger SNR values, however, indicates that the algorithm does not
perform well with a ¢ value that is too distant from the underlying true value.

Comment. The WP method, prior to noise subtraction and censoring, can be viewed as
a Bayes algorithm wherein the parameter o is assumed to have an arbitrary narrow width (no
frequency domain smoothing is done). The plots in Figure 7(c) and 7(d) confirm this notion as it
can be seen that the Bayes performance curves approach those of the WP method (see Figure 3)
when a narrow o is assumed but the weather possesses a wide spectrum width.

5.3 Summary

It is unclear whether arbitrary fixed values for ¢ and n can guarantee an estimator performance
that is consistently better than that of PP. Bayes performance relies heavily on knowledge of both
o and i, ML performance, more appreciably on o.

In the smoothing window view of Section 3.1.1, it is not enough to smooth arbitrarily. It
is important that the data be processed with an amount of smoothing that matches correlation
strength between samples. Treating the data as being highly correlated (low o) demonstrated a —
severe performance loss when weather signals in fact had wide spectrum widths. This explains
why periodogram based algorithms, such as WP, do not perform well given wide spectrum width
weather (too much weight is given to higher lag products). Unfortunately, treating the data as
being largely uncorrelated (high o) resulted in a corresponding performance loss with input signals
having narrow spectrum widths and high SNR values. Nevertheless, the indications are good that
improved performance (relative to PP) is possible with a smoothing methodology requiring less
than perfect knowledge of ¢ and 1.

The ML implementation at best only matches PP performance; any performance gain at
higher SNR levels would clearly be compromised by inaccurate knowledge of o. (Hence, the ML
implementation will not be considered further in this report.) A successful Bayes implementation
will require an adaptive selection of smoothing (weighting) coefficients, which is the focus of the
next section.
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6. PERFORMANCE WITH ADAPTIVE o0 AND 5

With an emphasis on the estimation of w, one can adopt the view whereby o and 5 are
treated as nuisance parameters. Here, there exists a natural Bayesian method of treatment: removal
through expectation. This logical recourse unfortunately does not lead to algorithm simplification
(in the present case), requiring as much computation as that needed for solving the vector parameter
problem. (It appears that the integrations required for nuisance parameter removal must be done
numerically and also require the data vector to be in hand.) Coupled with this observation, the
results of the previous sections motivate an approach that seeks to adapt the computational form
of Equation (12) using (suboptimal) estimates for o and 5. Simple estimation of o and 5 (using
method of moments estimates described below) and direct substitution into Equation (9) and (12)
(sample by sample) were found to yield a performance clearly worse than that of PP. This is not
(entirely) unexpected because, like w, o and 7 are being estimated from a small sample and (w-
performance) sensitivity to large deviations from the true o and 5 values can, on average, do more
harm than good. Clearly, an approach is needed whereby the estimated values & and #, substituted
into Equation (12) via Equation (9), are suitably constrained to minimize penalties that result from
their inaccuracy. This section describes one such approach that was found to be successful.

The general processing strategy considered is as follows. Given a data sample Z, suboptimal
estimates of o and 75 are first computed and used to select a weighting coefficient array (matched
filter) T from a small, fixed, and predetermined family of matrices; the chosen matrix is used to
process the data as per Equation (12) and provide a velocity estimate. The number of matrices
required, their coefficient specification, and the criteria used to choose from among them is the
. subject, then, of this present section.

6.1 Constrained Inverse Filter (I'} Selection

This section focuses on the nuisance pair (o, 7) as an element of a (parameter) set ¥ that is
assumed to be partitioned into X disjoint pieces, i.e.,

K-1
v = U ¥y, where ¥, NV, = 0 (: £ 7).
k=0

Each region ¥, is assigned an optimal representor {0, n); € ¥, and a corresponding weighting
matrix T is computed as per the definition {Equation (9)]. A representor for a given ¥y is
determined by means of a minimization involving the directed divergence {7} (i.e., Kullback-Leibler
information})

Ip:0) = B [log 22 . (16)
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The divergence I(p : ¢) has a useful interpretation as a distance,’® measuring an ability to dis-
criminate probability density p (and, hence, its corresponding model) from alternative ¢ (note:
I(p:g)>0and I(p:g) =0 & p=g). Furthermore, the divergence [Equation (16)] is easily
computed for the Gaussian case [Equation (3)): if Ty and I'; correspond, respectively, to densities
p1 and ps, then

I(py : p2) = log |T4| — log |T'a| + te(ToTy =" - 1).

A somewhat natural approach, then, is to deﬁne the optimal representor for ¥4 as that
whose corresponding density [Equation (3)] minimizes the discrimination information (divergence
averaged over all densities ¢ corresponding to parameter pairs in the set Wy:

R arg min ] I(g : By}, (17)

Ul'?

where P, is the density corresponding to (o, n), and £ is an index to pairs (o, ) in ¥,. In words,
as representor for the set Wy, select that density (model) which, in an average sense, is least
distinguishable from the feasible densities (models) in V. Note, no restriction is made that the
point (o, ); must be contained in ¥;.

Ezample. Consider the (trivial) case where it is assumed that ¥ = (0,0.25] x (0,20] and
K = 1. That K = 1 is specified assumes all data can be processed with the weighting coeflicients
corresponding to one (arbitrary) set point (0759- For this case it is an easy matter to solve Equa-
tion (17),)' and one obtains the solution (g, ), = (0.165, 8.4). Figure 8 shows the performance
of the resulting estimation algorithm. Alihough performance is near optimal for wide spectrum
widths and high SNR levels (locations near the set point}, uniform improvement jor the entire range
of parameter values in ¥ is absent, and performance is severely compromised in places as well. One
must conclude that this ¥ is too large to be represented by one set of weighting coefficients.

Figure 9(a) is a plot of the divergence for the above example. Divergence is near zero in the
vicinity of the set point and curves upward (away from zero) as weather spectrum width and SNR
deviate from the set point. Note, also, that the curvature is not uniform in direction—the most
acute curvature occurs with respect to spectrum width as weather SNR becomes large. Clearly, the
goal is to devise an adaptive method that has a composite divergence surface as flat and as near

10Technically, the divergence fails as a true distance because it does not satisfy the triangle inequal-
ity. This failing, however, does not prevent its use in the present application.

1(ptimization was achieved by means of an implementation of the Nelder-Mead modified polytope
(direct-search) algorithm (see, for example, Gill et al. [8]).
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zero as possible, The logical extension, of course, is to seck improvement by solving the situation
for K > 1. Two simple extensions, a two and three compartment model, are also illustrated in
Figure 9(b-c). Here, the divergence surface for each compartment is computed as per Equation (17);
although not yet striking, the notion of flattening the composite surface is clear.

There is, however, a problem with the simple extension of Equation (17) to K > 1; Equa-
tion (17), as written, has the implicit assumption that one would (could) distinguish perfectly
between the opposing hypotheses as to whether data Z were more consistent with parameters from
the set ¥, vs alternatives from its complement ¥§ = ¥ — ¥;. Clearly, for K > 1, Equation (17)
must be modified to account for the accuracy of the decision procéss that matches the data to one

of the subsets ¥;:

(o, m: & argmin {Pr(select ‘I’kl‘l’k)-f‘P I(g¢ : D) d€

(e.m)ev
r h]
+ Pr(select ¥, | ¥°) ../W . I(ge :ﬁk)d{'}. (18)

In this way, the desire to optimally match (o, ), to ¥ is balanced against the probability that
the data will be incorrectly matched with ¥.

6.2 Suboptimal Estimation of o and 5

The calculations for Equation (18) require specification of a set of decision rules and the
corresponding statistics (estimators) to be used; however, once this is done all information required
to solve Equation (18) is present and the selection of T't, (k = 0,...,I — 1), can be completed
prior to the processing of any data. Therefore, although computationally formidable, the solution of
Equation (18) is quite achievable. This section will focus on decision rules using easily computable
suboptimal estimates for ¢ and 5. For suboptimal estimates, an appeal to the assumed correlation
structure of Equation (1) and (method of moments) estimates for & and #, derived from a weighted
least-squares fit to the data, can be used. The least-squares equations

M-1 M-1 1 M-1
Y W Inliml = Y 0 0[S + Nbp] ~ 7%0? 37 wym? (19a)
m=0 m=0 2 m=0

and
M-1 M-1 1 M-l
Z wam?In|fm| = 3 Wpm? In[S + Nép] - 3‘5202 >, Wy m? (19b)
m=0 m=0 & m=0

can be used to solve for ¢ and & (which provides an estimate for 7); the lag estimates fy, are
unweighted here and the (least-squares) weights wm can be used to weight or select the lag estimates
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to be used. If wy, = 6m.1, for example, & becomes equivalent to the common single-lag spectrum
width estimator [see Zrni¢ [9], his Equation (5.1)). For the results of this report,

Wy =

det |} 1 form< 4
0 otherwise

was used for estimation of ¢ and 7.
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Figure 10. A partition design using simple decision rules.

8.3 Decision Rules and a Partition for ¥

At this point it is necessary to be more specific regarding the description of the ¥;’s. For the
remainder, it is assumed that ¥ is the parallelepiped of the previous example: (0,0.25] x (0,20]. To
simplify definition of the ¥,’s and to provide decisions based on simple rules, consider a partition
derived from a sequence of threshold tests—first, for #) and second, for &. The general design is
illustrated in Figure 10. A threshold test of 7 against (yet undetermined) SNR values divides ¥ into
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columns of (yet undetermined) width. Each column is further subdivided along spectrum width
values (also to be determined) and a requirement is imposed whereby increased partitioning of a
column with respect to spectrum width requires correspondingly high values for SNR. (The surface
curvature of Figure 9(a) suggests that more detailed representation is desired for high SNR values
than low.) To simplify implementation, each new column to the right is allowed one additional
division with respect to spectrum width. The placement of SNR and spectrum width thresholds,
the selection of (o, ), values, and specification of X are all unknowns to be determined.

For K fixed, Equation (18) can be used to identify optimal values for all threshold boundaries
and all (o, 1), pairs. A K-compartment summed divergence error can be defined by summing the
divergence error in Equation (18) over each set in the partition of ¥. The K-compartment summed
divergence is monotonic (nonincreasing) in K. Certainly adding extra compartments in Figure 10
can only lower the total divergence error. For example, optimal threshold placement would force
new compartments to become degenerate (collapse to nothing) if they could not improve the overall
error value; lower resolution compartments to the left would get squeezed by higher resolution
compartments from the right if the data and estimators for ¢ and 5 could support finer levels of
partition. Hence, as K increases, the K-compartment summed divergence error (bounded below by
zero) must converge. A stopping criteria can be established for selecting K by arguing diminishing
returns with further increases in K. In this way, K, optimal threshold placement, and optimal set
point values can be obtained.

Figure 11 plots the K-compartment summed divergence for the partition scheme illustrated
in Figure 10. Evaluation of Equation (18) was approximated by using a Monte Carlo simulation
to obtain a mean and standard deviation characterization for the & and # of Equation (19), and
a Gaussian approximation was used to evaluate Pr(select ¥;|¥,) and complement. Based on the
results presented in Figure 11, K = 15 was selected for continued analysis. The corresponding
thresholds and set point values for K = 15 are summarized in Table 2 and illustrated in Figure 12.

In Figure 12, optimal set point locations are indicated by a labeled (square) dot. The convex
hull of the set points in ¥ is illustrated by shading. The most striking result of the optimization is
that the best set point for a region ¥, is not necessarily contained within ¥,. The convex hull of the
set points represents the constraint required of & and f) to balance the effect {on velocity estimation)
of their uncertainty. Figure 13 plots the sequence of convex hulls for the values of K considered
in Figure 11. As K increases, the convex hull expands but there is a fundamental limitation to its
eventual extent. To increase the extent of the limiting hull requires more precise estimators for o
and 7 or, equivalently, more data. The limiting hull will always be strictly contained within ¥: for
the hull to be equivalent to (i.e., cover) ¥ implies that perfect estimation of o and 5 is possible.

6.4 Adaptive Estimator Performance

The adaptive procedure defined by Table 2 (Figure 12) was used to process simulated data as
in the previous sections. The results for narrow and wide spectrum width weather are presented
in Figure 14,
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For narrow spectrum width weather, Panels a and b, the adaptive method demonstrates a near
uniform improvement on the performance of PP. The performance is not only better than that of
PP, it is much closer to the optimum bound established in earlier sections. The slight deterioration
at the higher SNR values may be due, in part, to the decision to use the 15 compartment partition.
Figure 13 indicates that the 21 compartment partition added refinement specific to higher SNR
values; therefore, some further improvement at higher SNR values may be possible. Note, also,
that in parallel with approaching the standard error bound for velocity estimation, the adaptive

SLLIAUNCIAY 22V AN W ciLLILY Lolllllalliisil

estimator also approaches the bias performance of the optimal Bayes (bound) estimator.

For wide spectrum width weather, Panels ¢ and d, the room for improvement was not as
evident (except at low and very high SNR values). Nevertheless, the adaptive method demon-
strated performance improvement relative to PP at low and high SNR values—those regions where
improvement relative to optimal performance was most likely.
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Optimal Thresholds and Set Point Values (K = 15)
Upper n Upper o
Compartment Set Point Threshold | Threshold
0 (0.0983, 2.386) | .. 1.367 -
1 (0.1095, 3.892) 3.545 0.0909
2 (0.1659, 3.794) -
3 (0.1041, 6.440) | = 7.047 0.0549
4 (0.1452, 7.082) 0.1279
5 (0.1921, 6.960) -
6 (0.0907, 6.554) 12.006 0.0380
7 (0.1317, 9.723) 0.0903
8 (0.1667, 10.203) 0.1476
9 (0.2039, 10.916) -
10 (0.0811, 13.093) . 0.0354
11 (0.1186, 13.822) 0.0821
12 (0.1554, 13.927) 0.1252
13 (0.1848, 15.046) 0.1844
14 (0.2155, 15.438) -

The data of the previous figure was combined with measurements at additional weather
spectrum widths to produce Figure 15, which illustrates estimator performance as a function
of weather spectrum width for fixed levels of SNR. There is an almost uniform improvement in
performance relative to PP and this improvement for a fixed SNR level is seen to apply across the
range of spectrum widths considered. The improvement is most striking for the two low SNR levels
(Panels @ and b). Improvement does not require a corresponding performance loss at higher SNR
levels—the adaptive method continues to improve performance there as well.

8.5 Summary

Applying adaptive procedures to situations with small-sample sizes is a difficult task. This
section has shown that by adopting suitable constraints, an adaptive method could be developed
for the small sample velocity estimation problem.

Performance for the adaptive (Bayes) estimator is close to the optimal performance bounds
established earlier. Significant improvement relative to PP was established.

50



SPECTRAL WIDTH

0.25

19067525

14
13
12
4
7 11
0 1 3 6 10
20

SNR

Figure 12,  Optimum parlition and setl point localions.

51



SPECTRAL WIDTH

19067526

0.25

SNR

Figure 138. Set point convex hull with increasing K. Fundamental limitation on eztent
of sel point convex hull is illustrated for o sequence with increasing K value.

52



ADAPTIVE o AND 1 \w0e75.27

7 | T T I T T 0.269
6 |- A BAYES — 0.231 x
] ¢ PP g
g 5 |- ~ 0192 w
= 0, = 1 m/s (0.038 Vy, ) e
o v=5mis (0.192V, ) s
4 +— Ny ~ 0154 B
& (10,000 Realizations) 154 F
w o
o (7
0 | BAYESBOUND dons @
- w
] N
z pu
=2 |- 0.077 g
o o
O
=

1 —— | 0.038
CR BOUND
0 i 1 I L I i 0
26 1 T , ] T I 0.2
= (/)
° YRR g
— ¥ - m
()
g
@ A BAYES 2
@ O PP =
[
-1 - 020
o, = 1ms (0.038 Vy )} <
V=5m/s (0.192 Vy,)
= {10,000 Realizations)
Y. $
-2 | | A | | 1 04
—4 -2 0 2 4 6 8 10
SNR (dB)
Figure 1{. Bayes algorithm with adaptive 0 and 11: 15 compariment weighting coefficient

set (I). (8) T =5 m/s, o, = 0.038 vny,.

53



ADAPTIVE 5 AND 1 19067520

7 1 T 1 T 1 ] 0269
6 A\‘ A BAYES 0.231
O PP : &
_ G
E 5 | o, =1m/s (0.038Vy,) ] 0.192 &
= BAYES BOUND V=13 m/s (0.500 Vi, ) o
o {10,000 Realizations) -4
€ 4 -{ 0154 2
o
@ <
a &
<3 Jd 0115 n
< w
2 5
iﬁ 2l . danm «
w NS F E
[
g
1 — -] 0.038
CR BOUND
o 1 1 B ] 1 ] 0
26 1 T | T | T 0.2

o
|
-
=]

BIAS (m/s)

A\ BAYES
A
v

oD
rFr

NORMALIZED BIAS

A
x

]

&

g, = 1m/s (0.038 vy )
v =13 m/s (0.500 VNyq)
{10,000 Realizations)

-52 ! i | | ! | 04
-4 -2 0 2 4 6 8 10

SNR (dB)

Figure 1{. Bayes algorithm with adaptive ¢ and n: 15 compariment weighting coefficient
set (I). (b) T =13 m/s, o, = 0.038 vpy,.

54



ADAPTIVE o AND 1

190675-29

7 T T T T T m| 0.268

6 A\ BAYES — 0.231
Nt

5 O = 5 ms {0.192 Viyyg) | 0192
V= 5 m/s {0,192 Vyg)

4 5\ {10,000 Realizations)  _{ g 154

STANDARD ERROR (m/s)
NORMALIZED STANDARD ERROR

BAYES BOUND
3| - 0.115
2| CR BOUND 0.077
1 —g 0.038
0 i i i L i i 0
1 T T T T T T 02

=
|
o

BIAS (m/s)
T
I
NORMALIZED BIAS

A BAYES
O PP

T —

o, =5m/s (0.182 Vi, )
V=5mis 0.192 Vy, )
4 (10,000 Realizations) =1

5

-2 | | 1 1 1 ] 0.4
-4 -2 4] 2 4 6 8 10

SNR (dB)

Figure 14. Bayes algorithm with adaptive o and 1): 15 compartment weighting coefficient
set (I). (c)T =5 m/s, 0, = 0.192 vpy,.

55



ADAPTIVE 6 AND 1

190675-30

] I | I 0.269
6 I\ BAYES — 0.231
o PP 5
7 &
m —
g° Gy = 5mis (0192 Vg | 01 U
T ¥ = 13 m/s (0.500 Vnyg) <
9.;_ 4 (10,000 Realizations) — 0.154 %
i =
Q 0
e 0115 5
=) CR BOUND W
< =
2 - 0.077 o
g z
: O
1 - 0038 #
0 | 1 1 L 1 4
26 , | T | , 0.2
o} N : o 9
? = ) j o
: 2
o — — N
< A BAYES =
o =
o PP =
- o
264 Oy =5mis 0192V | CF 2
¥ = 13 m/s (0.500 Viyq)
(10,000 Realizations})
4
52 | 1 I L ] 0.4
-4 -2 2 4 6 8 10

SNR (dB)

Figure 14. DBayes algorithm with adaplive o and 5:
set (I). (4} T=13 m/s, ou = 0.192 vny,.
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Figure 15. Bayes algorithm with adeptive o and 5: 15 compartment weighting coefficient
set (II). {a) SNR = -5 dB. (b) SNR = 0 dB.
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set (I1). (¢} SNR = 10 dB. (d) SNR = 20 dB.
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7. CONCLUSIONS

Each of the previous sections included a brief summary and these statements will not be
repeated here. Some concluding remarks are, nevertheless, in order.

This report’s primary ob jective has been to examine the challenge of Doppler velocity esti-
mation when confronted with a small-sample size. Applying a generally accepted model for the
measurement of (meteorologically generated) Doppler signals, lower bound performance limitations
were first established. These bounds were shown to be clearly different (greater) than those pro-
vided by standard CR analysis, but room for improvement (relative to the standard PP estimator)
was nevertheless indicated. Optimal velocity estimation, under the assumed model, by definition
requires the joint estimation of a vector parameter. Previous attempts at such optimal estimation
have been hampered by the technical difficulties that arise in solving the complicated system of
equations that result. The potential of approximate methods that seek to treat some of the vector
parameters as fixed quantities was explored. Sensitivity to these approximating assumptions was
studied and insight into the relative importance of these nuisance parameters was provided. An
adaptive method was proposed. The new method does not require excessive computations—nothing
more extensive than previously proposed FFT methods. The final adaptive estimation scheme was
shown to provide near optimal performance for a span of SNR and spectrum widths likely to be
associated with meteorological signals.
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'APPENDIX A
Proof of Equation (4).

Proposition A.1 Let 27 = [292,...2x-,) be a complex random vector with Gaussian density
p(2I0) = =~M|R| 202,

where R = R(©) is the M x M covariance matriz and ©T = (6, 6,...0,_,) is a real-valued
parameter vector. Then, the Fisher Information matriz F = [f; ;] defined by

FeE [(alnp(ZIG))T (Bln p(Zl@))]

0e J0

can be obtained equivalently from

SR _,OR
= -1 9Rp 4 OR
f..,—tr{R 55 R 33,—}' (A.1)

Proof: Define the unit vectors of order n as

€ =

3 ese 9

and the elementary matrix E;; (of order n x n) as
E;; = eiel.

J

For an arbitrary matrix A = [a;;], the following identities are standard (see Graham [10], for
example):

a;; = e,TAej, (A.2a)
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A= ZZQ;J Ei,j = ZZa;‘j e,'c;'-r, (A2b)

and

Fa Ny 4N

To prove Equation (A.1), begin by taking the logarithm of the density,
p(Z|®) = ~MInr -In|R| - 2{R1Z,

and compute the derivative, term by term, with respect to ©®. Only the latter two terms are of
importance. For the first of these, 81n|R|/80O,

Oln|R| 8ln|R|Br,.,
6Bk - Z‘:Z 37‘,,3 63*
1 J|R|8ri;
EZ |R|6r;; 08
L
22":- BB {smce IR = |R|R™ }

ofi2)

where the last line follows from application of Equation (A.2):

Al S | 31". J

{_ -1 A TN Tyt TBR
triR TJ=LLJ’eJR C.‘Cl‘-a—g—kej=2:_‘L 7 69k
For the second term, note that

Z‘IR-—IZ = tr{Z‘IR-]Z} = tr{ZziR'l}

0z'R-'Z _ ou{zziR-1)
e 00 '
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Continuing,

~ b -~
NHr{ZZ'R™*} otr{Z ZZ'R } Ori;
ZZ r 8ZZJ‘R Br.,
= tp-1 -1 3?‘,,
= Ez-u{zz R™ E;; R} =0
where the last line follows from the result
OR™! -1 -1
G = ~RTERT
Additional rearrangement results in
otr{ZZ{R-1}) ) S
-—**wa-ak_ = —1{r {R 80 —R ZzZ } (A4)

Combining Equations (A.3) and (A.4) provides the intermediate result

Onp(ZI®) l“gg?@) {R"‘ OR p-1 (22 - R)} (4.5)

The next step is to evaluate the expectation. From the definition of the Fisher Information matrix
and Equation (A.5),

dlnp(Z|®) 8lnp(Z|@)
a6; 08;

Fij = E[

E[t {R—' R-‘(zz’f R)} !R“‘ aRR- 1(zzt - R)H.

Working with the terms inside the expectation and again using (A.2):

tr{R-l ‘;?R- (zzt - R)} { g;ln—l(zzf R)}
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tr{R-‘aRR-‘(zz" R)} tr{(zzf rR)r-1 2R g }

36 o0,
= %j;.a{n-l g—: R (22! - R)e, F(Z21 - R)R-? gf' R e, (A.6)

Now,

(zz! - Ryerel (22! - R)
is an M x M matrix with nm** entry given by

(202 = rag)(2i2m — Tim)
for which the expectation is commonly known (see Miller [11], for example):

E{(znz} — o) 2120 = Tim)} = TnmTik.
Therefore,

E{(z2! - R)ese] (22! - R)} = Ry (A.7)

Finally, using Equations (A.6) and (A.7) one obtains

- Ty Ipt Ry R
- e R g e
= ):Z[R'l——R" aRR"] Tk
k| 98 ki
IR R
— -1 -1
= {R a6 ae,-}

which is the desired resu'lt.‘
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