MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

INITIALIZATION FOR IMPROVED IIR FILTER PERFORMANCE

E. S. CHORNOBOY

TECHNICAL REPORT 828

31 DECEMBER 1990

LEXINGTON MASSACHUSETTS



-

TECHNICAL REPORT STANDARD TITL

E PAGE -

1. Report No.
TR-828 DOT/FAA/N R-90/7

2. Government Accession No.

3. Recipient's Cataiog No.

4. Title and Subtitte
" Initialization for Improved IIR Filter Periormance

5. Report Date ...
31 December 1990

6. Performing Organization Code

7. Author(s)
" Edward S. Chornoboy

8. Performing Organization Report No.
TR-828

9. Performing Organization Name and Address

Lincoln Laboratory, MIT
P.0. Box 73
Lexington, MA 02173-9108

0. Work Unit No. (TRAIS)

11. Contract or Grant fo.
DTFA-51-1-83-4-10579

12. Sponsoring Agency Name and Address
" Department of Transportation
- Federal Aviation Administration’
_ Systems Research and Development Service
Washington. DC 20591:

13. Type of Report and Period Covered

Technical Report

14. Sponsoring Agency Code

15. Supplementary Notes-

This report is based on studies performed at Lincoln Laboratory, a center for research operated by
Massachusetts Institute of Technology under Air Force Contract F19628-90-C-0002. -

16. -Abstract

A new method for- inifializing the memory registers of Infinite Impulse Response (IIR) filters is presented.

This method is shown to significantly reduce the initial transients which accompany the filtering of finite-length. -

data sequences. Linlike previous methods.-the proposed m¢thod makes no a priori assumptions regarding the
input signal. Therefore. the method dpplies equally well to a variety of IIR designs and applications.

The method does require a leading segment of the input data for initialization computations before filtering
can begin. For this reason. the method is best suited for signal-processing applications in which batch process-
ing of the data is employed. In particular, the method could prove very useful in situations where data is at a
premium and only short-length sequences are available, because almost all data is usable after. filtering.
Applications using sequential processing of data can be accommodated when delays at the beginning of a

processing segment can be tolerated.

17. Key Words

18. Distribution Statement

Document is available to the public through the
National Technical Information Service,
Springfield. VA 22161.

18. Security Classif. (of this report}

Unclassiﬁe(_l

20, Security Classif. (of this page)

Unclassified

21, No. of Pages 22. Price
19

FORM DOT F 1700.7 (8-72)

Reproduction of completed page authorized



ABSTRACT

A new method for initializing the memory registers of Infinite Impulse Response
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sients which accompany the filtering of finite-length data sequences. Unlike previous
methods, the proposed method makes no a priori assumptions regarding the input signal.
Therefore, the method applies equally well to a variety of IR designs and applications.

The method does require a leading segment of the input data for initialization
computations before filtering can begin. For this reason, the method is best suited for
signal-processing applications in which batch processing of the data is employed. In
particular, the method could prove very useful in situations where data is at a premium
and only short-length sequences are available, because almost all data is usable after
filtering. Applications using sequential-processing of data can be accommodated when
delays at the beginning of a processing segment can be tolerated.
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1. INTRODUCTION

Comparisons between Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters are
often based on the computational complexity' required to achieve a given frequency response. For
applications requiring filters with sharp cutoffs (narrow transition regions), IIR filters are generally
considered better because of the large filter length required in an FIR implementation. This distinction
also occurs with (or is compounded by) applications in which the unfiltered data sequence has a short
overall length or comprises shori-length non-contiguous segments.” In such cases, FIR filters with sharp
cutoffs can become impractical, requiring too great a proportion of the data for initialization of the filter
taps. Because the all-zero portion of a comparable IIR filter is considerably shorter in length, an IIR filter
could conceivably be used in situations with small-sized data sets. Unfortunately, the transient response
of an IIR filter distorts the output of the filter on startup, rendering the situation similar to that of the FIR
filter (i.e., an initial segment of data is consumed to initialize the filter; in the case of lIR filtering, output
sampling is delayed until transients are significantly reduced). For an FIR filter, the amount of data lost is
equal to the filter length N; by one optimistic rule of thumb, a comparable IR filter would require
approximately the same N samples to significantly reduce its transients. To deal with this probiem, it is
often suggested that state initialization (i.e., initialization of the IIR memory registers) be used to reduce
the IIR startup transients. The most common method, which is further described below, is based on
approximating the unfiltered signal by a step input. This report presents a new alternative initialization
method derived from a state-variable description and vector-space view of the transient problem. In
contrast to the step-input approximation, this new method is equally suited to all type IIR structures (i.e.,
low-pass, bandpass, or high-pass).

Fletcher and Burlage, [2] and [3], working in the context of radar-clutter filtering® for Moving
Target Indicator (MTI) radar, proposed a method for improving the performance (i.e., reducing the
transients) of IR implementations in sampling situations as described above. However, their method is
specific for IIR filters designed to filter low-frequency ground-clutter targets; it assumes that clutter-
return signals can be modeled as step inputs with magnitude equal to that of the first recorded data
sample (referred to as step initialization). Assuming that the ground-clutter siep dominates the desired
input signal, an appeal to the final-value theorem for Z-transforms can be used to calculate an approxi-
mation to the steady-state values of the filter memory registers. In the resulting procedure, filter memory
registers are loaded with a scaled version of the leading data sample (the scaling factor is predetermined
by the filter coefficients) prior to the norma! filtering of the data. The method's simplicity is clearly an
advantage, but Figure 1 illustrates the limited extent to which the filter's average-output-magnitude
frequency response can be improved. As can be seen from the figure, the response obtained using the
initialization method is still far from the desired steady-state response; in particular, the inability to
match the extent of the stop-band width is a significant deficiency. Note that neither delay sampling nor
delay sampling after initialization offered a substantial improvement toward approximating steady-state

nprfnrmanr-n
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Development of the initialization method presented in this report was motivated by Lincoln Labora-
tory's work with high-pass filters and clutter removal for pulsed-Doppler radars. An initial objective was



1814321

0 |~ SAMPLES
0-31

«enwee ZERO INITIALIZATION

a o=
3. — == + STEP INITIALIZATION
[»]
= MAGNITUDE RESPONSE |
2
]
L9
= SAMPLES

: 32-63 _

| ] ]
0 /4 n/2
INPUT FREQUENCY

Figure 1. The average-output-magnitude frequency response of a four-pole elliptic /iR filter (after Fletcher and
Burlage). The dotted lines illustrate average-magnitude responses for a zero-initialized filter; responses were computed
by summing the magnitudes of output samples 0-31 and 32-63. Therefore, the lower of the two plots (from samples 32-
63) represents the average response profile obtained after delay-sampling 32 samples. Dashed lines represent the
corresponding profiles for the step-initialization filter. The solid curve shows the steady-state magnitude response of the
filter. Responses are plotted for positive frequencies out to a frequency equal to one half the Nyguist value.

to improve upon the guantitative results obtainable by step initialization (Figure 1). However, this new
method is considered to be of general interest because it makes no a priori assumptions regarding the
content of the input signal or filtering application; the results apply equally well with any design 1IR
filter. However, the improvements realized with this new method are obtained at the cost of additional
computations; in contrast to using only the first data point for initialization, the proposed method requires
a leading segment of the input sequence for initialization computations.* Hence, real-time applications
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initialization. For real-time applications using batch processing, this is not a problem. The required
computations are straightforward-—dot products with real-valued weighting vectors—and the additional
computations are not viewed as a prohibitive handicap.



2. IIR TRANSIENTS AND INITIALIZATION

J P |

Primary attention will be focused on the response of a gcncrcu second-order filter, understanding
that higher-order filters can be obtained by cascading. Extension of the solution to cascaded structures is
outlined briefly at the section’s end. All filter coefficients are assumed to be real valued; a biock diagram
for the conventional direct-form implementation, which is assumed, is provided for reference in Figure 2.
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2.1 STATE-VARIABLE DESCRIPTION
For a general second-order filter, complex-valued input x = {x (r); n > — e} and output y = {y (n);

n >~ =} are related by the defining equation
y (1) = agx (n) + o x (n-1) + ax (n-2) - Bly (n-1) - sz (n-2)

which correlates with the Z-transfer function definition

Hiz )A Y (2) a0+a]z’]+azz"2
X(z)  1+Bz 4B,

The internal state of the filter section is specified by the vector

m,(n) z M, (2)
m(m)=| L—)M(z)= : ﬂ
["‘2{ );‘ { [MZ{Z}JJ

(refer to Figure 2), and the following state-variable description of the filtering equations follows directly
(1a)

M(n)=BM(n-1}+ Cx(n)
(1b)

and
y (n) = ATM (n-1) + ax (n)



where

) e

With only a finite-windowed version of the data {x (n); 0 £ n < N} available, the state-transition
equation is written

n
n—k
Mm)=B"M_+3 5" Cx(k), ()
k=1
where M [m, (1) m (_1)}1" is the parameter describing the initial state of the filter section. As M_
generally undeﬁned in apphcatmns the goal of IIR initialization is selection of a value M that is
appropriate for the filtering application.

The simplest form of initialization is to take M = & (the null vector), Whlch will be referred to as
zero initialization. In step initialization, M = {1 + pl + p2}‘ [x (0O) x (U)j 1s chosen to eliminate
transient response due to zero-frequency energy

2.2 COMPLEX-EXPONENTIAL INPUT

Working the problem for complex-exponential input allows solving directly for the transient contri-
bution to the output response. A one-sided Z-transform analysis for a step-modulated' complex-expo-
nential input, x(n) = ¢’*'u(n), yields the transient output response (assuming for now that M, =0)

n—1 sin rn_2 sin(n—l)9

. - j T
)Ir(n)-—HD(ef‘“)A {]5(n)+r 9 B uln=1)~ ey
Byl u(n- 2)]5 (e?), (3)
where |
Jjo 1 jo { 'jm-l
Hy &)= ——s Wy @ayy )=
a=re Ju—ré } . L€

and 7 is the identity matrix. Note that in Equation (3) 8 and r follow from a polar representation for
the filter poles (i.e., P = re¥® and are related to the filter coefficients by ﬂ = -2r cosP and [32 2 ([1].
pp. 150-162). The vector £ (¢/“) can be viewed as an extension of input sarnples to times —1 and -2. The
gain H) (¢/?) is from the magnitude response of the all-pole (or recursive) component of the filter.
Because H, (¢/*) is determined solely by the filter poles, signal transients can be dlspmpomonatcly
larger for 1nput energy in the stop-band regions (see Figure 3).

4 b Lo e e b P

Assuming the processing of short-length data sequences, it is I helpful to have an example/characteri-
zation of the transient-response effect, both in the frequency and time domains, to help visvalize the
above complex exponential case as well as to provide, a basis for later comparisons. This effect is
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Figure 3. T ransfer-function magritudes fora second—order (high-pass} HIR filter: the frequency magnitude response,
I Hei) | , and the denominator response, IH (e?) I are both plotted. The denominator response is the response due to
the all-pole (recursive) portion of the filter.

introduced in Figures 4 and 5, which were derived from the processing of 64-sample complex-exponen-
tial sequences. Input signals were generated with frequencies spanning the range O — 1t radians. Each
sequence was processed by a second-order high-pass IR filter, whose magnitude response is plotted in
Figure 3. The responses in Figure 4 result from zero-initialized processing of the sequences; those of
Figure 5 from step-initialized processing. Each figure contains time-domain plots of the transient-compo-
nent magnitude (left side) and periodogram spectral estimates of the entire output sequence (right side).

In the time-domain plots, oscillation near the resonant frequency and a characteristic »" decay are
both evident as functions of sample number. In the zero-initialized case, the magnitude of the transient
response vs. input frequency (the axis going into the page) indicates modulation by ¥ (e"")| The step-
initialized case has a similar characteristic, but shows a marked improvement at zero frequency and a
significant magnitude increase for frequencies in the filter’s passband.

The periodograms both indicate two primary spectral contributions, ene a positive frequency (sweep-
ing the range 0 — & and corresponding to the input-signal frequency) and the other a real sinusoidal
component [energy at both + 6, see Equation (3)], attributable to the filter’s transient response. The
characterization in this figure can be correlated with that presented in Figure 1, in which the average-
output-magnitude frequency response measures the total output energy comresponding to a given sinu-
soidal input. Each spectral analysis includes a projection (onto the Magnitude vs. Input-Frequency plane)
of a component attributable to the transient response. In the case of zero initialization, the shape of
this component is due to weighting both by |H (e’“’) | and the geometric decay of 7*; however, the influ-
ence of IH (e’“‘)l is still apparent. For step mluallzauon this spectral component clearly illustrates
improved performance at zero input frequency but illustrates an apparent compromise at higher passband
frequencies.
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Figure 4. Filtering a short-length data sequence—zero-initialized transient-response characterization: time-domain
values of the transienr-component magnitude (left side) and windowed-periodogram (Kaiser weighting) spectral
estimates of the complete 64-point owrput signal (right side) are plotted, Input signals were sampled complex
exponentials having frequencies in the range 0 to & (plots are indexed with respect to input-signal frequency from
Joreground to background). Each input sequence was processed by a second-order IR (high-pass) filter stage (see
Figure 3). All filter memory registers were zeroed prior to filtering. Values for the transient-response magnitude are
represented on a linear-magnitude scale; those for the spectral analysis, a log-magnitde scale (values are expressed
in dB relative to an arbitrarilv chosen level). The rransient response introduces a signal component with energy
measurable near svstem resonance. A shaded plot of the spectral component near resonance is projected onto the
Magnitude vs. Input Frequency plane.
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Figure 5. Filtering a short-length data sequence—step-initialized transienr-response characterization: the plots in this
figure are companion plots to those of Figure 4. The description of this figure is the same as in the previous figure, except
that these plots result from processing the data with a step-initialized filter. Note: in contrast to the previous figure, there
is no transient response corresponding to a zero-frequency input. However, this desired attenuation of the transient
response is quickly lost as the input frequency increases. For input frequencies in the filter’s passband, the magnitude
of the transient response is actually greater than in the zero-initialized case.



Continuing the one-sided Z-transform apalysis to compute the response to M_ (i.e., X = &, which
also provides the homogeneous-equation solution), the same form as Equation (3) is obtained, as is the
conclusion that M _ _H (&) £ (&) yields ¥, (n) = 0 for the case of complex-exponential input. As a
special case, takmg = 0 results in M = {1+ ﬁ] + /32]‘ [1 177 which is the step-initialized solution.

The transient response to any step—modulated signal must have the form of Equation (3), because by
direct analogy with the solution of second-order differential systems, the transient response must have
the form of the homogeneous solution to the second-order difference equation. By viewing the transient
component {y (n); 0 Sn <N} as an element in an N-dimensional vector space, the conclusion is that the
transient response (for a second-order system) is restricted to a two-dimensional subspace. This also can
be seen in Equation (3) if € (¢/) is viewed as an arbitrary 2 x 1 weighting vector (representing the only
degrees of freedom). Hence, for N sufficiently larger than 2, this constraint on the transient component
may be used to advantage for initialization. This is the basis for the proposed initialization method,
referred to as projection initialization.

2.3 VECTOR-SPACE SETTING

Let input and output sequences be viewed as N x 1 vectors in a complex-valued vector space: X, ¥ €
CowithY=(@®y{)---y (N—l)]]r and X =[x ©O)x(1)---x (N-—l)]r. By componentwise application of

Equations (1) and (2), linear operators F (C* — €") and G (CV — C") can be defined which describe the
relationship between input, output, and initial conditions:

Y=FM +GX . 4)
Specifically, F is the N x 2 matrix

AT
AT
F B
ATBNHI

and G is the N x N lower triangular matrix

A 0 0 0. 0 0
ATc o, 0 0o 0 0
ATBC ATc 0 0 0 0

G = . . ao 0 0 0
ATc ¢, 0 O

: : ATBC ATC o, 0

| ATBN=2Cc ATBN3C ATB2C ATBC ATC o



In the context of the initialization problem, the filter output can be viewed as being decomposed into
steady-state and transient components: ¥ = ¥+ ¥, , where following from the previous section ¥ &
R(F) (the range of F) can be declared. Ideallv the eoal of initialization would be to obtain Y, = &; or,
equivalently, to find an appropriate criterion for minimizing IIY II Neither problem can be formulated
directly; it is necessary to work an approximate problem. In particular, the objective is to make the
transient distortion small, or at least reasonable for a practicable filter.

The projection operator [4] PF =F (F‘TF)‘lF:r can be used to provide a decomposition for CV, and
the output response can be written as the sum of two orthogonal components: ¥ = (I -P,)Y + P_Y. The
orthogonality of the decomposition provides the relation

WA = lIJ-P NP + 1P 1P
which, because P, is a projector for the transient-response subspace, can also be written
W = I-PY 12+ 1P Y, + Y )P

The first term on the right, I/ - P )Y I, does not depend on M . If the treatment of IIP Y + Y Il could
be rationalized as an approxlmatlon to IIY I, an initializing M could be selected as the solutlon to

~

M

= ag min "PFYII . (5)

M_e ¢?
Proposition 1. For the second-order [IR filtering problem described above, selecting
M_ =~(FTFy"'FT Gx (6)

ensures that

x 2
.2 .2
max |) — ”H (efw)| |X(e1“’)| do
Osne<N" I i
where || - Il represents the normal Euclidean norm.

In the case of complex-exponential input, the transient-component magmtude will be propomonal
to the filter's overall magnitude response | H (¢/%)| instead of the denominator magnitude response
| H, (e"‘")l . The most significant consequence is that transients elicited by input-signal energy in the stop
band are greatly attenuated, because the filter's zeros now play a role in determining the transient
response. The next section continues the previous numerical examples and illustrates the improved stop-
band performance.

Proof. The solution to Equation (5) is obtained by solving P.Y = 0, which, after substituting
Equation (4) and rearranging, becomes FM_, = —~P,GX. Equation (6) follows, given the definition of P,.

For this choice of M_, we have Y, = —-PFYSS ; therefore, using Parseval’s relation,

1 % 2 o2 |2
== [|H )| |x (7®)[ dw
22::[1 .

e
(P, being a projection operator and therefore idempotent, has a spectral norm of 1).

9



2.4 IMPLEMENTATION

Implementation of Equation (6) is straightforward, as the matrix (FTFYIFTG is completely prede-
termined by knowledge of the filter coefficients. The coefficients of the weighting matrix are all real
valued; the initialization computations only require real-valued dot producis between input data and
vectors of weighting coefficients. For a second-order filter, four such multiplications are required; one
each for the real and imaginary components of both memory registers. Once an initialization vector has
been computed, the initialized IIR filter can be implemented using standard methods. Altematively, the
output ¥ can also be computed directly by implementing the matrix multiplication Y = (/ - P )GX.

Higher-Order Filters: Cascading. For a cascade of second-order sections, repeated application of
Equation (4) can derive a relationship between input and output that is analogous to Equation (4): ¥ =
FM_| + GX, where

T n
£A | . |
F= (HGi)Fl 1(HGi)F2 1) GoFoor ( Fo b
: T
I VNS VU VA

IJ

]'[G =Gy Gy Gy »

n
e

and F, G, and M_| . represent the coefficient matrices and initialization vector for the i * filter stage.
Note that now Fis N x 211 and M ; 18 217 x 1, where 7 is the number of second-order stages in the filter.
Correspondingly, the dimension of R(f) will be 21 (assuming no degenerate cases). The initialization
solution here is wholly analogous to the second-order case, and the solution [Equauon (6}] applies with
the substitution of M_, ,F,, and G for M . F,and G.

10



3. RESULTS

The previous numerical example is completed by including the case of a projection-initialized filter,
ie., a filter initialized by Equation (6). The characterization is presented in Figure 6. Referring to the
time-domain plots, with projection initialization there is considerable improvement in the stop-band
extent of transient reduction; there is also a reduction in transient magnitude for much of the passband
region as weil. Only for input-signai energy near the resonant frequency is there an obvious increase in
transient magnitude. Depending upon the application, this increase may not be significant, as the tran-
sient component is near the resonant frequency, giving rise to a spectral component corresponding to the
input frequency. The accompanying periodogram piots clearly illustrate the motivation for Eguation (6).
Viewing the magnitude of the transient-response spectral contribution (vs. input frequency), a modula-
tionby | H (e"“’)f is clearly evident.
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Figure 6. Filtering a short-length data sequence—projection-initialized transient-response characterization: the
description of this figure is the same as that of Figure 4, except that the data were processed with a projection-initialized
Silter. In comparison to Figure 5, there is significant attenuation of the transient-component magnitude throughout most
of the stop band and for a large portion of the passband as well. The magnitude of the transient-response spectral
component indicates modulation by the filter's frequency-response magnitude. This is in contrast to the two previous
cases where the denominator response modulates the transient-response energy.

3.1 INITIALIZATION FROM PARTIAL OBSERVATIONS

To this point it has been assumed that all data to be filtered are used for initialization; this need not
be the case. For data processed sequentially (as opposed to batch) this usually cannot be achieved.

11



However, if the sequential processing can afford a delay of a number of data samples, initialization based
on these data can be used. Figure 7 surnmarizes the effect of initialization sample size by plotting
magnitudes of the transient-component spectral contributions for partial observation sets of 64, 48, 32,
and 16 samples. The top plot for 64 samples, the entire data set, corresponds to the shaded (oblique) plot
in Figure 6. Each panel also contains a plot of the corresponding magnitude for the zero-initialized case
(see Figure 4). These results show that the method is still exceptionally effective at reducing the tran-
sients in response to input energy near the filter zero.
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Figure 7. Initialization using partial observations—spectral magnitude at system resonance vs. input frequency:
spectral magnitude at resonance is plotted vs. input frequency. The plots are derived, as in Figure 6, from projection-
initialized high-pass filtering of 64-point input sequences. Four panels are illustrated corresponding to using the first
64, 48, 32, or 16 samples for initialization computations. The top panel, 64 samples, uses all available data and is the
same as the oblique projection shown in Figure 6. For reference, each panel also contains a plot of the spectral magnitude
corresponding to zero-initialized processing. Attenuation of the transient response for frequencies near the filter zero
is well preserved.
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4. CONCLUSIONS

The transient response that occurs at the start of an IIR filtering pass usually results in the discarding
of usable data to allow for IIR transient decay. In practical applications, much of the difficulty with
transients stems from their disproportionately large magnitude in response to input energy in stop-band
regions. This occurs because the transient response magnitude is determined by the filter poles. Projec-
tion initialization, which takes into account the location of the filter zeros, was shown to significantly
reduce the transient-response magnitude in response to input energy near the filter zeros. Hence, regard-
ing the filtering of short-length data sequences, the method can improve the effective stop-band perform-
ance of an IR filter and substantially reduce the amount of data discarded.

The derivations and comparisons presented are based on a standard second-order filter definition;
extension to higher-order filters was demonstrated by cascading. This does not imply that the method
only works for even-ordered filter structures. Odd-ordered filters can be dealt with by placing the odd
stage in second-order form (with some degenerate coefficients). The solutions prescnted can apply if a
generalized inverse interpretation is applied to the solution.

Because the method requires an initial segment of data, it is ideally suited for applications where
data is processed in batch mode. Sequential data processing can be accommodated only when delays at

tha h, M
the beginning of a processing block can be tolerated. However, the method can improve performance,

using only a small initial segment for the initialization computations.
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