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1. INTRODUCTION

There are several competing factors that limit the performance of the
monopulse azimuth estimation accuracy in a noise and interference background,
The first is due to the fading phenomenon that results in a degradation in the
signal-to-noise ratio {SNR) as the target and interference signals approach
the out of phase condition, Pruslin [1], in a simulation of the receiver noise
effects on monopulse performance, has observed that the estimator becomes
biased for low values of the SNR. Browne [2], in an interference-free analysis,
has calculated this bias exactly for all values of the SNR,

Closely related to the bias introduced by fading, is what we shall refer

= » . Fal 2

to as the azimuthal bias that results when the interferer an

fa
w

the target signal
sources are located at different azimuths, Finally, the presence of inter-
fering signals causes the variance of the estimate to increase.

In this note we shall study mainbeam and sidelobe interference and
noise effects simultaneously and use an analysis similar to Browne's to
compute an exact expression for the estimator bias, We specialize our resultis
to real antenna patterns and obtain an expression for the bias that holds for
the high and low SNR situations, hence, we obtain the azimuthal bias and the

fading bias simultaneously. Numerical results are given for some typical

Some further analytical results are obtained for the case of sidelobe

interference for real antenna patterns., In this case too, it is possible for an
ATCRBS (Alr Traffic Control Radar Beacon System) interferer that is located

in a large near-in sidelobe to cause bias errors that are a large fraction of

a beamwidth,



In addition to introducing a deterministic bias to the azimuth estimate,
interference causes the random error to have an increased variance,

We obtain a general expression for the variance that applies to the mainbeam
and sidelobe interference cases using an analysis similar to that developed
by Sharenson [3] who analyzed the noisc-only case., Numerical results are
given that show that the variance also depends critically on the relative
phase between the target and interference signals.,

These general expressions for the bias and the variance of the mono-
pulse estimate provide the tools needed to thoroughly understand the effects
of interference. These are essential in the evaluation of signal processing
techniques.to overcome the effects of interference, The leading candidate
at the moment, is the monopulse interference detector and data editing
scheme followed by an outlier test. Although this is the subject of a sepa-
rate paper [4] the results of the present study are the background for the
succeeding analysis,

2. INTERFERENCE EFFECTS ON ESTIMATE BIAS

We restrict our attention to sum-difference (even-odd) monopulse pro-
cessing that is performed on a sampled-data basis. Assuming mixer pre-
amplifiers at the output of the sum and difference beams, the received sig-

nals in the presence of interference are modelled by



jo, Jeoy _ , .
Yi = Ase G1(es) + AIe Gl(BI) + ni 1= 1, ( )

where yl, Y, refer to the outputs of the sum and difference beams; AS, P
BS and AI. @ p BI are the amplitude, phase, and azimuth of the target and interference

respectively; G;( ), G,{ ) are the antenna patterns of the sum and difference beams,

and these may be complex in general; n,, n, are the independent, zero mean Gaussian
noise samples due to the mixer preamps whose real and imaginary parts have vari-

2
anceg .
An azimuth estimator that is often used in practice is given by

the relation
A
E(8) = Re(yzlyl) (2)

where the monopulse function, E(6), is simply the normalized difference
pattern,

E(8) = GZ(B)/GI(B) (3)
In most cases of practical interest, this function is well approximated by
a linear characteristic, hence we can write

E(8) = k(8/08) (4)

where 8_ refers to the 3 dB beamwidth of the antenna patterns and k is a

standard parameter that arises in the characterization of monopulse systems,



Usually 1 SkS2withk=1.5 being a typical value. When this approximation

is valid, the azimuth estimate is readily generated as
Rel— (5)

We will incorporate BB into our definition of § and hence express all our

results in units of a 3 dB beamwidth.

Our goal is to compute the mean and variance of (5) when inter-
ference is present in the sum and difference signals as given by (1). We
begin by letting

jo jo Bi
] 1
u = A G(o)e " 4AG(8)c = VicJ (6)

Since n, are complex Gaussian variates, they can be expressed as

n, = Ni exp joz{ where Ni are Rayleigh and o; are uniform random variables.

Using these definitions in (1) we have

e

jB. jo B i(B. - B,) Ao -
y.=V.e " $Ne e eJ ! [V.eJ i + N 3(0’1 Rl)]
1 i



I
Since o) and o), are independent and uniform, then so too are & ~ B, a o .

We apply these relations to evaluate (5) by writing

*
y Refy,y,)

Re (...,a_) . —2L
71 ly, |

_ [VZCOS(BZ - Bl) + Nzcosorz]_( 1 + Nlcosal) + [stin(Bz- 51)+stin°2]lein“j

V2 + 2V_N_cosg +N2
1 11 1 1 (8)

Following Browne [2] we first average (8) over o, Since this is uniform on

{0, 2m), we have

V. cos(g, - B,) (V, + N, cosex) + V_N_sin(p, - B,)sine
E ol 2P h 121"‘1 2 1%InBy - Py)siney (9)

Z
7} V1 + N1 + 2V1N1cosal

Next he averages over oy - In the Appendix this is shown to give

0 | if N1> Vl
A
(k8) = V2 (10)
o, o - - i ;
172 v cos (82 Bl) if N1 < V1



is the magnitude of a complex Gaussian random variable having

Since N1
?
variance 20 , it has the Rayleigh distribution

2 2
-
p(N,) = L ep |- —12 for N Z 0 (11)
ﬁo 40

Then averaging (10) over N1 gives

v 2
v 1 ~-N
Eks} = £ cos (B B.) L J N. exp L dN
- ) 1
Vi 2 Vyie 9 1 4¢
V2 VZ1
- - - - —_— 12
= 5 Cos(e,2 al) 1 - exp 5 (12)
1 o
Fod that sphow intevrference ig ahosent A =N
LOU Llld Ll WIHIT L] LITtC1liciollue 1o aldotlliLn, JLI A%

It should be no

and from (6) we see that Bl = BZ, and (12) reduces to the same expression
However, we are now in a position to determine the

obtained by Browne,

effects of interference on the azimuth bias. To do this we need to evaluate

V., V./V_and B, - R from (0).
1 2 1 2 1 i
Before performirg this evaluation we first note that the target of
interest lies within the mainbeam of the antenna, hence we may assume that
Gl(es) and GZ(G ) are real functions of BS. Whereas the sum and difference
beams are in phase over the antenna beamwidth, sm

tude and phase tapers render them complex in the sidelobes. Since the



interference can be located in the mainbeam or within the sidelobes of the

antenna, then Gi(BI) must be considered to be complex in general, To make

this explicit we write
Gi(Bl) = A (BI) exp ¥, (91) (13)

Then substituting this into (6) we can easily show that

1/2
2 2. 2
Vi = iASGi (BS) + ZASAIGi(BS)Ai{GI) COS [cp-}' ‘i’i(el)] + AIAi(HI)E
(14)
A A (8) sinlot Y, (B )]
Bi=ms+tan—1 I i aI [ i1 (15)

A G (8)+AA (8)cos ot ¥ (8)]

where ¢ = Q-0 is the relative phase between the target and interference
signals, Using these expressions in (12) and performing straightforward
but tedious trigonometric manipulations we can show that the first moment

of the azimuth estimate is

2 2 2
A A As Gl(es) Al(el) 2 Al (91)
g=p l-exp-z— 1+2p-a'—(é-—)- cosl:go-k TZ(BI) +p T
© 20 1'% G (a)
I1' s
(16)

where p = AI/AS represents the interference-to-signal ratio (ISR) prior

to any processing and



k9 =
o
2 2 2 1/2
G,(8) +02A Ay . Y)+p02(88) Al , AS \ ZELBS’ A—Zﬁcosu e leostory)
Gl(BS) C‘r1 Gl 2 1 GZ(G) GZ GZ GI(BS) Gl Gl 2 1
1's 1 1
Ay -
1+ 2p a Cos(qﬂ-‘l’l)-l-p — (17)
1 G
1
where
. GZ(BS)Alsin”fl+Gl(BS) A2sin ‘¥2 s
Y= tan -
G, (B_S)AICOS‘YI-iGlWS)AzcosYz

These are the key expressions we need to fully understand the deterministic
aspect of the azimuth error introduced by interference.

3. SPECIAL CASE: REAL ANTENNA PATTERNS

The results that have been obtained to this point are free of any
approximating assumptions and apply to the general case of complex antenna
patterns, Unfortunately it is difficult to draw analytical conclusions from
these expressions hecause of the large number of parameters that would have
to be examined simultaneously. Results for the general case will be obtained

using a computer simulation. There is one case of considerable practical



importance that we can explore analytically. This is the situation in which the

antenna patterns are real, which is a reasonably accurate model for the high

near~in sidelobes of the antenna, For this case we assume that

(19)

and then define

G_i (61) = Ai (GI) cos ‘i’i { 91) {20)

which we note arc real functions for all values of BI. Using this assumption,(16)

and (17) become

TR G. (8 GZ (s,
A A s 1 (8 2 7171
8=6 (1 -exp¢(- > 1+2pG(e)cosm+p—-2———— (21}
© 20 1'% G5 )
1 s
where now
02(95) ‘o GZ(GS) GI(GI) ] GZ(QI) cos ¢ 10 2 GZ(GI) GI(BI) 22)
kém Gl(es) GI(BS) GI(F"S) Gl(es) GI(BS) GI(GS)
y 2
o
1+ 2p m(‘.osm-{p 2
1'7s Gl(es)



We recall that p= AI/AS represents the interference-to-signal ratio (ISR} ptrior
to any processing. The measured ISR at the outputs of the antenna ports is

given by

o = A1G19)) - Gy(ep
° A G, (8) G, (6.) (23)

Although both definitions of ISR are important parameters of the system, it
is convenient to rewrite (21) and {22) in terms of p . In this case the mean
e}
value of the azimuth estimate is given by
2.2
-AG
s 1(8 )

2
1 - exp| —=5—— (14 2p_cosctp.) (24)
2a

>
>

o

where now

GZ(GS) .o [GZ(BS) \ GZ(GI) :lcos \ pz GZ(GI)
, o+ e L
o GI(GS) GI(BI) o

1 +2p cosg + p2
o] o
It is interesting that the performance depends only on the monopulse function
E(n) = Gz(e)/G1(9)' In most cases of interest the target will be located within
the 3 dB beamwidth of the antenna. Therefore, using (3) and (4) we can write
G,(8_)

G,(8,) 5

>
-
™

10



where BS is measured in 3 dB beamwidths, In the case of mainbeam inter-
ference this linearity property will also be valid, but in more gencral cases
E(BI) will simply take on the values of the normalized difference pattern. To

handle this situation we define an equivalent azimuth

~ 1
S % G0

¢

and note that whenever BI is within the 3 dB beamwidth of the antenna GI = 61.

In Figure 1l{(a) we have plotted the equivalent azimuth for a monopulse antenna
configuration that has a 4 beamwidth and achieves a -20 dB peak sidelobe level
on both the '"'sum' and "difference' beams, Assuming that BI is uniformly
distributed in (-n, m), Figure 1{b) shows the probability distribution function

of the equivalent azimuth. This shows that "most of the time'' the equivalent
azimuth will be less than 2 beamwidths, hence, for the purpose of analysis,

we can study the cases of mainbeam and sidelobe interference simultaneously.

Then using (26) and (27) in (25) we can express the first moment of the azimuth

estimate as

-
-

r 2.2
- e AG (8)
8=0 {1 s 1 s 142 ip ° (28
=9 -exp | - ) 5 ( DOCOSm Oo) )
g

Ea s ZN
GS+DO(GS+ GI) CcoSs e+t 00 91

2
14+2p cosegtp
0 o}

11
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It is from this equation that we can begin to make some general
statements regarding the performance of the azimuth estimator. We shall
first show how the results are consistent with thc;se previously obtained and
then go on to consider cases that have not yet been explored in the literature.
{a) Casec 1: No Interference

When there is no interference, AI = (, hence po = () and {from

(28) and (29) the average value of the estimate is

AZG
8

This is the result obtained by Browne [2] and describes analytically Pruslin's
observation [1] that as the SNR, ASZ G 12 © S)/20 2,(1ccreases, the monopulse
estimate is biased towards the antenna boresight.

We have tabulated (30} in Table 1 from which it can be seen that
for SNR's above 8 dB, the bias can be considered to be negligible. Since in
the Air Traffic Control (ATC) system the SNR will be at least 20 dB, this
effcct will be insignificant unless fading occurs, as willbe discussed in the

next section.

13



Table 1. Variation of Bias with SNR

A
SNR (dB) 6 - BS
Oh
D
0 0. 37
3 0.135
3. 6 00 1
4,76 0. 05
6.6 0.01
7.25 0,005
8.39 0. 001
8.8 0. 0005
9. 64 0.0001
{(b) Case 2: Fading
If the target and interference signals arrive from the same azimuth

{multipath from a flat earth for example) then EI = BI = GS and {28) and (29)

reduce to

——
—
N

This demonstrates the existence of a fading bias that can occur even al large

SNR when the interference signal occurs out of phase with the target and

. . — -y B, s b
I

. A R | . ey m
LENIUS LD Caricel 1u CIHHICL E Y. 1

TOIT

fading will be negligible as long as the effective SNR is greater than 8 dB,

This will be the case if

14



2
A%l ) L.
5 (1 4+ 2pcosatp)= 6.3 (32)
202 o) o

For a 20 dB SNR, this shows that fading could become a problem only if

< <
755 p, £ L.25.

(c) Case 3: Azimuthal Bias
Next, we consider the case in which the SNR is large and the
interference is of low enough power that the exponential term in (28) is

negligible. Then (29) reduccs to

L ¥ ZN
B8 +(8 +8)p cosentp B
- s s I" "o o 1 (33)

A
8
2

14 2p cosmtp
o o

This result is sufficiently general to describe the cases of mainbeam and
sidelobe interference. Notice that when GS = BI = EI then é: eS and the
estimator is unbiased. Therefore a bias is obtained only when es e 3 'éuI,
namely when the target and interference signals are separated in azimuth.
It is for this reason that we refer to this effect as the azimuthal bias,

To obtain some physical appreciation for the behaviour of the
estimator we consider a specific case of interest. We assume the
target is located on boresight at 20 dB SNR, Thercfore, 85 = 0 and
AzGi(O)/ZGZ = 100. We next let the interferer be located at the edge of the-
3 dB beamwidth so that EI = 8} = ,5, To within a good approximation the sum

2
beam is quadratic over the beamwidth, hence G _(8) =1 - 1.78 . Since the

L

15



output interference-to-signal ratio is P, = pGl(GI)/Gl(BS) where p = AI/.AS,

we see that Py = - 7070 Equation (33) is plotted as a function of the relative
phase angle for various values of p. The results are shown in Figure 2.
Equation (28) was also plotted but there was no discernable difference in the
resulting curves at least for the values of p we used. In Figure 3 these
equations were again plotted for p nearer to unity and the fading effect can

be observed at the out of phase condition., Since there is only a small range

of values for which this effect is observable and since its effect is, if anything,
beneficial, we shall neglect the fading bias in the rest of our work and restrict
our attention to the azimuthal error as described by (29).

The bias in the estimate can be written as

~ cOs
A po + )

2
1 4 2p cosptp
o o

where o and 81 are given by (23) and (27) respectively. Thercfore for small
A
8=

A .
values of P ! es’ while for large values § = 91 which shows how the inter-
ferer '"captures' the estimate. For intermediate values, curves like those
shown in Figures 2 and 3 are obtained which demonstrate the so-called scin-

tillation effect which is a term used to describe the fact that the azimuth

estimate lies cutside the azimuth interval (85, BI).

16
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(d) Case 4: Effects of Relative Phase

It is reasonable to model the phase as a uniformly distributed

random variable on (0, 2m). Then averaging over phase, it is easy to show

that

0 if 1
2n ifo <

1
P f b(wp) deop = (35)
1 if po > 1

In a practical situation, the key issue is how correlated the phase is {rom
sample to sample within a reply, For multipath, the correlation time can

be several seconds because the phase relationship depends on the relative
path lengths between the direct and multipath signals and for typical aircraft
spceds, these change slowly. For ATCRBS interference, the phase difference
will be independent from sample to sample since Lthe transmitter tube is in-
coherent from pulse to pulse, However, since there are relatively few inter-
ference samples in any one reply, the inherent averaging due to phase

cannot reliably be exploited and we must face the possibility of having to

deal with the large errors shown in Figure 2,

19




{(e) Case 5: Sidelobe Interference

Although all of the results given so far are applicable to mainbeam
and sidelobe interference, there are some remarks that are worth noting for
the latter case. In the casc of ATCRBS sidelobe interference, it is possible
that AI/AS can be much larger than unity. l.et us suppose for example that the
DABS tarpget is at maximum range (100 mi) and the ATCRBS interferer is at
the same power, but at a close in range {10 mi say). Then the 20 dB deccrease
in ISR duec to the antenna sidelobes is compensated by the 20 dB3 increase in
power due to the range difference. Then p, can be near 0 dBandsince the
equivalent azimuth is of the order of 1 or 2 beamwidths then, as we have
seen, large bias errors can be expected., Therefore we conclude that if a
strong ATCRBS signal is being received in a near-in sidelobe, the monopulsc
azimuth estimate can have a large bias that exhibits the same dependence on
the relative phase between the DABS and ATCRIBS transponders that was
shownto exist for mainbeam interference. Furthermore, it is clear that very
low sidelobes is not a sufficient means of ¢liminating the effects of this inter-
ference, Therefore, at lcast one additional level of data processing will be
needed to improve the quality of the azimuth estimate for these cases, This
is referred to as monopulse data cditing and will be discussed in a later

paper [4].

20



For sidelobe multipath, on the other hand, we can reasonably expect
that the reflection coefficient, AI/AS ~ , 707, For antenna patterns with 20dB -
peak sidelobe levels, this puts Py less than . 07. From our studies so far we
know that the bias error pcaks when the direct and multipath signals are #out

of phase, Using (34) the bias error can be bounded by
< Po e~ -
ble)| € P~ e N CEIN AN (36)

where the last approximation follows from the fact that p is quite a bit less
o

than unity. For a DABS target on boresight, es = 0 and then using (23} and (27)

the bound becomes

A G.E)
< 1 1 2V 1

bl = = % cweo (37)
s 1o

which shows that the bias error depends on the sidelobe level of the differ-

on attern ralative +
H awl'n I'.atlivVa ¢

Q
e+

}-\n

i

n

11 hearm oain Far the owvare
Uill UGN gaadi, 4 U wvab Las

AI/AS =, 707 and GZ(BI)/ Gl(es) = .1, which yields a peak bias error , 047

3 dB beamwidths.

4, INTERFERENCE EFFECTS ON ESTIMATE VARIANCE

In this section we will compute the variance in the monopulse azimuth
estimate. Sharenson [3] has studied this problem for the case when the inter-
ference consisted only of receiver noise. We shall extend his analysis to in-
clude the effects of mainbeam and sidelobe interference. We begin with the
equivalent signal model formulated in (1), (2}, and {5). The monopulse estim-

ator of interest is

21



@k 1 Re(ylyg)
Tk 2 (38)
|y]|

which gives the azimuth estimate in 3 dB beamwidths, From (1) and (6),

yi=ui+ni (39}

so that

n 2

2
L4 gl (40)

v, IF= luy 151 o

where the last approximation holds provided the equivalent SNR, |u,1 |2/202

is large enough, typically »12 dB. Then the moments of (38) can be com-

puted by evaluating the moments of
z = Rely,v, ) (41)

Since the noise terms n, and n, are independent, the first moment is simply

z = Re(u 1“2:::) (42)

and hence the first moment of the azimuth estimate is given approximately by

> 1

@
1

cos (B, - B,) (43)

=
<

22



which is the same result we obtained in the last section when the effective

SNR was greater than 8 dB. Proceeding further, the second moment of (41)

can be calculated using the identity RexX)Rey) = lRe %y )+ -1-Re xy. In this
y > yit3

case we let x=y= yly; and then

2 1 2 2 1 2 %2
o= ZIY].! IYZI -}-ZRCYIYZ (44)

2 2 2
From (39) and using the fact that [nil = 20 , n, = 0, wec obtain

2 2 4
ly 7= ™+ 20 (452)
i i
2 2 o
Yo Ty (45b)
Combining (42), (44) and (45) we can show that the variance of » is
2 -2 2 2\ 2 4
Z - Z i(h‘!llr 4 iqzl )O’ + 26 (46)

Finally we use (40), (46) and (38) to show that the variance of the azimuth

estimate is

J

1+ g (47)

A
Var (8) =

23



Since ]uil = Vi’ then {47) could be expressecd in terms of the complex antenna
pattern parameters by using (14). Unfortunately the resulting expressions
are complicated and in order to obtain some meaningful analytical statements
it is not fruitful to rectain the most general equations. Therefore, we shall
follow the direction of the preceeding secction and restrict our attention to the
case of real antenna patterns. In addition we note that (47) describes the
estimate variance only when the effective SNR is large, This means that

|u1 l2/202 >>1, hence we can also neglect the effects of the second order
SNR term that appears in (47). Under these conditions we can then use (14)

for real antenna patterns and show that the variance reduces to

2 ind “~2
1+k“8 @ 1+k°8
1+ 2 sl . 108 1
2 00 2 2 OsfP P
. 2 1+x"8° 1+k°9 14k°8
Var(®) = 5% — 2z - 2 )
ASGI(BS) k 1+ 2p0c05cp+po

where, as in the case of the bias effects, 0, and rél are given by (23) and (27).
In the next few paragraphs we shall consider some more spccialized
cases,

{a) Case 1: No Interference

When there is no interference, AI = 0, hence p =0 and from (48)
o

we sce that the variance is simply
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2 1+ kzez

Var (,e\) = 2 02 * 2 : (49)
A G (8) k
s 1''s

which is the result obtained by Sharenson [3] and others, and shows that the
variance decrcases with SNR and the slope of the normalized difference
pattern and increases with the degree to which the target is off boresight.
(b} Case 2; Fading

If the target and interference arrive from the same azimuth

{multipath from a flat earth for example) then EI = 81 = Bq and (48) becomes

2 l+k282
A g 5 1
Var (8) = 53 ' 5 . > (50)
_|.
ASGI(BS) k 1+ 2 p,coswtp

which shows that when multipath fades occur therc can be a reduction in the
effective SNR which in turn leads to an increase in the variance. In the last
section we found that a bias error was also introduced in the fading situation.
(¢} Case 3: Azimuthal Variance

When the target and interferer are at different azimuths we see
from (46) that the variance will be further increased, Typical results are
plotted in Figure 4 for the case of a .target on boresight at 20 dB SNR

and an interferer located at the edge of the 3 dB beamwidth., We sec¢ that the
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Fig. 4. Variance of the azimuth estimate in the presence of interference.
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most significant degradation in performance occurs at the out-of-phase con-
dition. However, the magnitude of the errors is much smaller than the con-
tribution due to the bias, and furthermorec since the errors are random,

their effect can be further reduced simply by averaging many of the estimates.
Therefore, we conclude that the bias error is likely to be the more troublesome
problem for ATC direction finding.

5. CONCLUSICNS

An exact expression for the bias of a two beam monopulse azimuth
estimate has been derived that describes the depradation in performance due
to receiver noise and ATCRBS and rnultipath interference, At low SNR and
high ISR the bias tends toward boresight, although for all practical purposes
the net effect of this bias is negligible., More important is the azimuthal bias
that describes the so-called scintillation of the azimuth estimate that has
been observed in many monopulse tracking problems, Depending on the
values of the SNR, ISR and the relative phase between the DARS and inter-
ference signals, the bias can be quite significant even when the interfering
signal arrives through a low level sidelobe.

A first order analysis was used to obtain the variance in the
azimuth estimate when interference is present in a noisy background.

Although the results indicate that the random errors will not be insignifi-

cant, the deterministic bias error will be, by far, the more dominant effect.



For ISR's less than -30 dB, the cffect of the interference is negligible,
As this quantity increases, the bias and variance increase and errors that are
of the order of a beamwidth can be obtained. For ISR's between 4 10 dB there
is a strong dependence on the relative phase, with a peak error occurring at
the out-of-phase condition. As the ISR is further incrcased, this peaking
effect subsides until the interference completely captures the monopulse
processor which at this point would track the interference target.

Although the results are applicable to analyzing the effects of
ATCRBS interference and multipath, a distinction between the two phenomena
should be noted. For muliipath, the direct and indirect signals are at the
same frequency and coherent in the sensc that their relative phase may be
constant during several seconds duration. For ATCRBS interference,
however, the transponders arc incoherent from bit to bit and possibly for
samples within a bit since there may be carrier frequency offset. Therefore,
in the ATCRBS case, there will be averaging that can be exploited to reduce
the overall bias error, in which case the cffect of the increased error
variance would become a more important efiect, From a processing point
of view, this could be overcome by using more samples to form the azimuth
estimate,

In a separate study [4] the performance of the maximum likelihood
interference detector has been presented in detail, The next step is to com-
bine the results of both studics to evaluate the data editing concept. This
will determine whether there is any promise to the idea of introducing an
additional level of data processing to improve the overall quality of the

azimuth estimate,
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To compute the average of (9) with respect to 0y, 2 uniformly

distributed random variable on (0, 21} we have

21 2
A 1 V. 4+ V N, cos
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Since the integrand of the second term is an odd function, its integral is
1

zero. Using siandard integral tables, Browne showed thai the integral in the

first term reduces to
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where the positive square root is understood. Therefore

0 ifN, <V

A 1 1
E (kO) =
0%
VZ
Tf—; cos(az-gl) 1fN1>V1
as given in (10).
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