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ABSTRACT

In Part I of this report the optimum MTI receiver was derived and
analyzed for the case in which the radar pulses were emitted from the trans-
mitter equally spaced in time. For typical long range ATC surveillance radars,
aliasing of the target and clutter spectra results in detection blind speeds
at multiples of approximately 70 knots. It is well known operationally that
these blind speeds can be eliminated by staggering the transmitter PRF,
Heretofore, there has been no thorough theoretical analysis of the effect of
staggered PRF on the spectral distribution of the target and clutter signals.
It is shown in Part Il that the clutter spectral density continues to fold over
at the PRF, but that the signal spectrum becomes dispersed in frequency, some-
what like an anti-jam signal. The effect that this phenomenon has on the
performance of the optimum processor is evaluated in terms of the signal-to-
interference ratio (SIR) criterion that was derived in Part I.

It is further noted that even when the target Doppler shifts are more
than one PRF ‘apart, the spectra are distinguishable, suggesting that unambiguous
Doppler estimation may be possible. This concept is explored in detail using
the MTI ambiguity function. It is shown that good SIR performance can be
obtained by choosing the stagger parameters to minimize the height of the
subsidiary Doppler side-lobes. The resulting design problem is noted to be
similar to that of obtaining good antenna patterns for arrays having non-
uniformly spaced elements.
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A Theory for Optimal MTI Digital Signal Processing
Part II: Signal Design

I.  INTRODUCTION AND SYNOPSIS

In Part I of this report [1] statistical decision theoretical methods
were used to develop a rational basis for comparing the performance of MTI
receivers. The analysis has led to the development of a new receiver struc-
ture that is practical to implement using digital signal processing (DSP)
techniques and achieves essentially optimum performance. A1l of the results
in Part I were based on the assumption that pulses leave the transmitter
uniformly spaced in time. For en-route L-band radars in which the unambigu-
ous range must be 200 n. mi., unambiguous velocity measurements are not poss-
ible because of target spectrum aliasing at the PRF. Furthermore, the clut-
ter spectrum also folds over at the PRF resulting in "blind speeds" at which
the detection SNR of even the optimal detector is degraded below practically
useful limits. This effect is demonstrated in Figure 1. 1In the development
of classical MTI processing it has been found from intuitive considerations
that if the transmitter pulses are staggered in time, improved detection per-
formance can be obtained [2], [5]:‘ However, there has been no thorough theo-
retical investigation of the exact effect that staggered PRF's have on the
underlying target and clutter models. The analysis developed in Part I is
generalized in this report to allow for the non-uniformly spaced sampling

pattern. In Section II, models are derived for the sampled-data target and
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clutter returns that result when a range ring is sampled by repetitive bursts
of M non-uniformly spaced pulses. The resulting model is used in conjunction
with the decision theoretical test of Part I to derive the optimum receiver
structure. As in the uniformly sampled case,the processor consists of a
clutter rejection filter and a bank of matched filters that are in a sense
matched to the target signal over the enlarged unambiguous velocity region.
It is shown that this enlarged complex of matched filters can be realized

by making appropriate interconnections of filters that extend over only

the original ambiguous frequency interval. Hence,it may very well be
practical to implement the optimum processor using DSP techniques. The Signal-
to-Interference (SIR) performance.measure is used to evaluate the performance
of the optimum detector and it is shown that reasonable detection can

be achieved at velocities that previously could not be seen by the radar.

In addition to providing better detection'performance over a larger velocity
interval, the optimal processor is capable of providing velocity estimates
over the larger velocity range. Since staggering the PRF increases the
unambiguous velocity interval at the expense of a decrease in the unambiguous
range interval, it is clear that the ambiguity surface of the transmitted
waveform is being altered. Therefore,staggering the PRF is basically

an MTI signal design problem and hence is characterized by the range-velocity
ambiguity function. This function is evaluated along the Doppler axis

as this represents the output of the matched filters of the optimal processor.
It is shown that the M=~pulse staggered waveform reduces the velocity

ambiguity at the average PRF.



IT. INTRODUCTION TO MTI SIGNAL DESIGN |

The analysis presented in Part I has 1éd to the development of a
quantitative technique for eva]uating optima]}and suboptimal MTI receivers.
The results show that a considerable improvemént in target detection capa-
bility is possible using the matched filter réceiver. The problem formula-
tion and receiver synthesis are based on the éssumption that the sampling
rate is uniform. In that case, for the L-band ARSR [4], an aircraft moving
at 600 kts. induces a Doppler shift corresponaing to 3000 Hz. Since the PRF
needed to obtain 200 nmi. unambiguous range ié 360 pulses/sec., aliasing of
the target and clutter spectra will occur with period 360 Hz. or 72 kts.
Therefore if an aircraft is moving at a ve]oc%ty +nx 72 kts. n=0,1,2,...,
the Signal-To-Interference-Ratio (SIR) will be seriously degraded due to the
clutter aliasing. Furthermore it will be impossible to distinguish between
a target moving at velocity v and another at Q + n x 72. Since staggering
the PRF has been found to improve the detection capabilities of MTI receivers
at the blind speeds [2] it is of interest to determine the theoretical basis
for this improvement and to explore its implications regarding the question
of velocity resolution. Since the underlying statistical properties of the
data samples will be affected by the non-unifbrm sampling pattern, it is

necessary to re-examine the basic target and clutter models that were derived

in Part I for the uniformly sampled system.
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Target Model

It was shown in Section II of Part I, that if the aircraft induced a
Doppler frequency v and was located at azimuth ¢ = W, 5 then uniformly spaced

1

transmit pulses led to target samples at a range cell given by ' I-(14), namely

Je2mwunT

s(nT30) =y g(nT-1) e P (1)

P

where g(t) is the two-way antenna voltage gain pattern and Tpis the uniform
interpulse period. In the derivation of this target model,it was assumed
that the transmitted pulses were narrow compared to the Doppler period and

to antenna pattern variations. In other words,the physical sampling was done
by modulating a continuous phenomenon by a train of sampling pulses. A useful

idealization is to represent the sampled data sequence as the continuous time

function as follows:

s(tia) = s(tia) > 6(t-nT)) (2)

= =00

where

j2mut ‘
s(tsa) =vg(t-1) e , (3)

Then the Z-Transform of the uniformly sampled sequence is related to the

Fourier Transform as follows:

1 The notation I-(14) refers to equation (14) in Part I.
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Zs(eJ ' Pia) € 7 [s(nT3a)] , _ eJZ“prH o
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Nk sl =1 Sser - B0) (4)
P e P
where |
S(fso) = F [s(t;e)] (5)

Equation (4) shows the foldover of the targetjspectrum every 1/Tsz.

When a two-pulse staggered PRF samplinb pattern is used, samples of

the target environment are taken at times O, } (Tp -€), % 2Tp, + (3Tp - €),

+4 Tp, ..., as shown in Figure 2. In this cése, the sequence of samples has

values
- 5(0),5(T -€),5(2T)),5(3T -€),s(4T)) 5 ... | (6)

i
These numbers correspond to sampling s(t) at times ... 0, 2Tp, 4Tp, 6Tp, cees

and sampling s(t-e) at times ... Tp’ 3Tp, 5Tpg 7Tp, ««+, A continuous time

representation of the sampled-data waveform for the two-pulse staggered

algorithm is therefore:
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s(tia) = s(tia) p  s(t-2nT) + s(t-eig) > slt-(2-1)TT (1)

N=-o0 . NE-=

For the M-pulse stagger sampling pattern,

s(t) is sampled at 0, MTp, 2MTp, ves
s(t- e]) is sampled at T (M+1) T (2M+1) Tp,

s(t- ez) is sampled at 2T , (M+2)T b’ (2M+2) Tp,

S(t-ey_q) is sampled at (M-1)T, (24-1) T, (aM-1) T, ... (8)

from which it is possible to deduce the fo]]bwing continuous time representa-

tion of the sampled-data waveform:

M-1
’a) z ,S(t € sa) Z (S[t (nM+m)T ] (9)
m=0 =0
The Fourief Transform of this function 152:
N ~' o -jonfe = j2wfmT
S(fa) = Z ie " S(f;g)*[-M-}— e Ps(f - )]} (10)
— p

n=co

2 The asterisk will denote convolution.

o
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Use will be made of the following identity

. o M-1 .
j2nfmT jenfmT .
p _._n_ - p _ M-k
; D e 8(f - ) I 8(f - )
Swc0 P j=- k=0 P
: w  M-1 ., iM-k
* je T _
- z . MTp P o(f - %k)
i=-w k=0 P
= z e G(f T TNMT ) (”)
j==c0 k=0 P

In addition, for the target signal of interest

i -jenft
S(fsa) = v Fg(f-v) e (12)
: J2mvt
where Fg(f) is the Fourier Transform of g(t) and y =y e . Using
(12) and (11) in (10), the target spectrum becomes
S(f3a)
M-1 . o M- ., km
. -jenf(tte ) -J2mg— :
- m 1 N\ M _ iM-k
N . =Y z Fg(f'\)) e * MT s € 6(f MT )
: =0 P = k=0 P

g MT T

o M-1 M-1 .~ km . k i
' -j2mg— -ie2n(frge— - +)(tte) K :
£ 3 RS R e D
P k=0 m=0 P P

(13)



Since the target is sampled only at discrete%instants, the delay parameter Tt

can be estimated only to within an interpu1s¢ period. Therefore, it can be

assumed that w

= I(1) Tp | (14) 2
where I(t) is some unknown integer. Then (13) becomes
S(f;a) =
M- KI(T j
'o-j2nfr -JZW——L—* -JZnM— -Jzn(f+ =)
Y 1 MT T '&m
Le 2 e z | P Tp T (Fruhg— —e
p = _—_ m= 0 : p
| (15)
-jonf f
Since the term e changes slowly relative to the width of the function
Fg(f—v), then to a good approximation
-i2nfe, -32mve, |
e F (f-v) = e F (f-v) (16)
g g
and (15) can be written as )
g(f§_oc) = *
: . -1 ., kIt M-1
-jenf -je
eJTTTz zeJ M .]._ eJZTT‘M_'eJZTT\)Em F(f +L-1)
T M gt't?V T MT_ T T
P j=-w k=0 L m=0 | PP
| (17)

10
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It is appropriate to define the coefficients

.5 kI
e-J 271‘—|j\,|1-l

ak(’l’) = (18a)
M-1 ., km .
-j2 -j2
by (v) = Se I (18b)
m=0
Ck(T’V) = ak(T)bk(V) (180)

as this leads to the following convenient expression for the Z-Transform of

the target:
jorfT S Ficd PR « i
Z, (e P =vy e = O | D oy (f -t == )b (19)
P i=w Lk=0 PP

Clutter Model

In Section II of Part I, it was shown that each clutter scattering
center could be treated as a point target having zero Doppler. Therefore, as

th

in I-(15), the n”" scatterer at azimuth ¢, in the particular ring of interest

generates the clutter signal return

c(ty) = v, 9(t, -t,) (20)

11
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where t_ = ¢n/wS - mAT/2, Yy = An e and tﬁ represents the times the

n
samples are taken. As before, An is related to the scattering cross-section

of the nth

scatterér and % the carrier phase it introduces. From scan-to-
scangthe shift in transmitter phase and the?jitter in the antenna rotation
render 8, and An random variables, but over ény one scan, (20) represents

a deterministic sigha1 return. Hence, the aﬁa]ysis used to derive the

Fourier Transform of the non-uniformly sampled target return is directly

applicable to (20). The using (15) the transform is

C. (f) = ‘
: @ (M1 .o KI(T.) [ M-1 .o km . K
vy, -Ji2nfr -j2m n -i2mg— -i%n (fHge— -+)e .
e n z e W F}ze e M, T, mFg(f+ﬁ'IT<'—-;;-'—)
P j=-o | k=0 m=0 | : p P
(21)

Equation (21) is derived from (15) rather than (19) because the latter
equation has made use of the approximation in (16). Since clutter returns
can be orders of magnitude greater than the éigna] returns, approximations
cannot be made unless they can be justified 6n the basis of signal-to-clutter
ratios. The total clutter return is due to ? finite number of scatterers, -

hence

(e

n

Ct) = > Colty) ‘ (22)

12
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and the Fourier Transform of this aggregate of returns is
C(F) = > T () (23)

Therefore, the energy spectral density of the clutter measured over a single

scan is

cRZ=> > En](f) En;(f) (24)
n] n2-

This is a random process in the sense that after each scan the values of
An and 6, change in a random fash1on. Then the average power spectral density

of the clutter is

5, (f) = —}—S- cnl]? - . Cp, (1) c’;2<f) (25)

n] n2

-

where TS is the scan time and the bar denotes statistical averaging over the

random variables An and en.

Since the amplitudes, phases and azimuthal Tocations of the scatterers
are independent, each of the random variables in (25) can be averaged

separately. Furthermore, it follows that

13



|
|
I
I
|
1

and since the frequency extent of Fg(f) is nérrow relative to a separation

k/MTp,
k i k i % k
1 1 * 2 2 : 1
F(f +qmm - =) F (f 425 =5) = [F(f + o0 - =) 5
g MTp Tp g Tp Tp ig MTp Tp k k 11 2
(27)
Substituting (21) in (25) and using (26) and§(27), it follows that
oo i M-1 1, km
1 M i 2
“”‘T‘(Z lYn‘> Z ‘ Ze Ayl Pyt - 1)
=~ ; k=0 m=0 P P
(28)
where
-j21rf€m |
A(F) = e Fg(f) | (29)
In (29), 1/em is generally much greater than%the frequency extent of the
clutter and it is reasonable to assume that i
-j2ﬂf€m 3 .
e Fg(f) = Fy(f) | (30)

Since the clutter signals can be many orders of magnitude greater than the
signal, this approximation must be undertakeh with care in each application.

An example of the analysis needed to justify:(30) is given in a later para-

14
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graph for the two-pulse staggered case. Assuming that this approximation
is valid then the average power spectrum of the clutter process can be

written as:

-1 M-1

2
an oS {543
P 1

‘jZ“r'%"‘ 2
e 7|

o

I M
k iy]|2
[Fof + 1)
=-o L k=01~ m=0 p p

(31)

where

02 = ES ‘Yn(z (32)
n

denotes the average clutter power per range ring. It is shown in the

Appendix that

1 'JZTTM_' (33)
hence, the clutter spectrum reduces to

2 @ .
5e(f) = ¢ ;1? . g-w ng(f - }—;)‘2 (34)

K

Receiver Noise Model

It follows directly from I-(36) that staggering the transmitter PRF
has no effect on the receiver noise process. Therefore, it remains a zero-

mean white noise process with spectral density 2No.

15



Two-Pulse Staggering

In order to gain some physical understanding of the mathematical
expressions for the target and clutter spectré the special case of a two-pulse

stagger will be studied. This is i]]ustrated?in Figure 2. Using M = 2,

€ = 0, g = ¢ in (18) and (19) the transform of the target signal is
~ 1 'jo\'fT -I > ‘ i -I 3
S(fi0) = v e T 2 [ColmwIFg(f =y = 42) + ¢ (u)Fg(f-vigr—- 1)
L P | P PP
| (35)
where !
-i2mve !
Colsv) = (T4 e )72 | (362)
I(T) "j2'TT\)€ '
Ci () = (-1) (1-e )/2 v (36b)

Hence the spectrum of the target return is

2 - J—’T’—li z [(COSZTT\)e)
p .

j=-o

i
i

S(f3a)

Folf-v- ,};) |2+ (sinrue) [Fg(foy + gT—p - }—p) |2]

(37)
i
Typical plots of the target spectrum are 111u$trated in Figure 3. There are
two significant observations to be made: (1)§whereas in the uniformty sampled
case all of target energy is located at PRF multiples of the true Doppler,

staggering causes the energy to be split into%tWo pieces separated by one-half

16
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the PRF, and the pair folds over at the PRF, and (2) whereas in the uniformly
sampled case targets moving at dopplers greatef than a PRF led to spectra that
were indistinguishable, now the fundamental ambiguity occurs with a period

2/e. This shows that staggered PRF's provide % basis for unambiguous velocity

estimation.

From (31), the exact form of the clutter spectrum reduces to

5.(f) = -TE‘E e > [cosz'n(f I RAGER D |2
S Tp o p 1 p
2 1 12
+ [sin"m(f + 55— - -—?S]IF (f + 51— - ")' (38)
[ AP T AP

Since the frequency extent of Fg(f) is very nafrow relative to 1/Tp, it can

reasonably be assumed that

R

(COSZWfE) Fg(f) 2 |Fg(f) 2 i (39a)

2

1

(sin

fe) #g(f) 2 . (nfe)? Fg(f)lz‘ | (39b)

Using these approximations the clutter spectra can be sketched as shown in
Figure 4 from which it is observed that as for the target spectrum the clutter
power also splits into two pieces, one piece béing located at DC, the other

at - 1/2 Tp, with the aggregate folding over at the PRF. The simple sketch

18
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Fig. 4. Typical clutter spectral density for two-pulse stagger.
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has been drawn to indicate that the clutter poWer at 1/2 T_ is significantly

‘ P
smaller than that at DC. A quantitative measuke.of the relative power in each
of these terms can be found by integrating (39@) and (39b). This has been
done for the sin x/x antenna pattern and ARSR éystem parameters and it was

found that the clutter power at 1/2 T_ is 56 dB down from that at DC. Since

P |
10 bit A/D converters correspond to a subclutter visibility no greater than

48 dB, the effect of the clutter power at 1/2 T is negligible, hence justi-

p
fying the assumptions leading to the clutter sbectrum in (34).

Therefore, the implications of the staggered PRF are now clear: Whereas
the energy of a moving target return splits inio two pieces, the clutter power
continues to fold over at multiples of 1/Tp. Hence, if the target Doppler is
also a multiple of 1/Tp, namely a former b]ind?speed, then although one por-
tion of the target energy is masked by the DC F]utter, the other portion is
located in a relatively clutter-free area at 1?2 Tp. This is the reason
staggered PRF enhances target detection. Howe&er, if in addition, filters
that are matched to the target spectrum are constructed, then it appears
that Doppler estimation over a frequency inter&a] larger than one PRF is
possible. Although the topic is discussed in more detail in Section IV we

briefly discuss the implementation of the filter matched to the two-~pulse

staggered signal spectrum.

iMatched Filter Realization

From the preceding discussion it is shohn that the target spectrum is

a unique function of the true target Doppler o&er an interval that can be

1
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many times larger than the PRF. If a matched filter bank could be construc-
ted then not only would the detection performance be optimized but unambigu-

ous estimation of target Doppler would be possible.

Let us suppose that we require the resolution of velocity to within
the interval Av = 1/NTp. Then each PRF interval can be quantized into N

subintervals and we can then express the true target Doppler as

i~ n
0 0
AV .
NT
TP p

From (35) the signal spectrum for the two-pulse stagger is

S(fia) = v ZE [CO(T,v)Fg<f- ;%— - 1;10)
j=—

/ " i-io 1
G (OIFg * a1

The infinite sum shows the periodic foldover of the target spectrum at the
PRF. From a measurements 'point of view, nature allows us to observe this

function only in the interval [0, 1/Tp]. Then we see only the function

S(f3a) = v Co(Ts\))Fg(f' WF')') + C](T,\))Fg(f' N_; + m)

We can readily construct a bank of filters that extend over the [0, 1/Tp]

2]



range where each filter is tuned to the function F (f--qf—), n=0,1,...,N-1.

By themselves, these are not matched to the spe01fied 51gna1 To accomplish

this, we combine weighted pairs of filters thai are separated by 1/2Tp Hz.

For the filters tuned to n/NTp and (n-1/2)/Nijwe apply the weights 3

* i n *, i n .
Colts 7=+ 57 » Ci(Top—+ ) for i=0,41,#2,..., M. For each value of

P p P P P %
i, this gives rise to another filter with transfer function

When i=i0, n=n.. this filter is matchedto the two-pulse staggered signal.

From a practical point of view, the sub-bank of filters

N-1 |

* i

Fg(f- N%—) can be formed by taking an N-point Discrete Fourier Trans-
p |n=0 |

form (DFT) of the received signal. The super-bank-of filters is then ob-

. .
th DFT coefficient by C (r; %r-+ —5—0 and the
P

for i=0, +1,..., M. Therefore,

1)

tained by multiplying the n

it}

(n --ﬂ) 'DFT coefficient by C, ey -+ )
T NTp

an N-point DFT gives rise to a bank of 2MN matched filters that extend over

T

MM
o LT
coefficients in the right way.

the frequency interval [- ] simply by combining the outputs of the DFT

22



In Section IV we return to this discussion in more detail when we
consider the MTI ambiguity function. In Section III,a quantitative measure
of the improvement in detection performance will be evaluated using the

Signal-to-Interference Ratio (SIR) that was derived in Part I.

23



ITI. SIR PERFORMANCE ANALYSIS FOR STAGGERED PRF

The SIR for an arbitrary linear, samp]ea—data filter when sampled at
time T was givén by I-(72), viz.
ROALINR 23 A 214 jenfr
|/ me Pze Pigie ) af|

-1/2Tp ‘

olt) = Ty 727 :
PojenfT [ §2nfT
/ lH(e p)’ s (e Py +oan | af
-]/ZTp !

(40)

Even though the transmitter PRF is staggered, fhe sampled-data processor
operates on the samples of the signal and noise and it matters not when those
samples were taken. Therefore, (40) applies té the present problem, although
it is noted that the signal spectrum will be dﬁfferent, due to the non-uniform
sampling. As before, it is noted that only thbse frequency terms in the- in-
terval (-1/2Tp, ]/2Tp) are of interest. This %s consistent with (19) since

the frequency dependence shows up only in terms like F_(f-y + M%— - %—0

g p

which is folded over eVery 1/Tp hz.

Using the Schwarz inequality it is easyjto show that (40) is maximized
by choosing

% JomfT |
jonfT Z. (e Py o) |
= - — ‘ (41)
J2nfT
S (e Py + 2N, 1

24
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which is the clutter filter, matched filter cascade combination. When this

is done, the resulting maximum value of the SIR is

JonfT

_ ’=0
popt h Tp j- jZWpr df (42)
12T S (e ) + 2N,

The aliased clutter spectrum is given by (34), but since the integration ex-
tends over the (- 1/2Tp, 1/2Tp) frequency interval, only the term about DC
need be taken. Taking the squared magnitude of (19) and using the approxima-

tion in (27), the target spectral density reduces to

z (eJZTTfT ,_0)’2 J—-7L 25 ZS ~Ck 0)|2 |F (f - v + _fi_ - 1p) 2

- k=0
(43)
Using these results and the fact that
e (m)| = o ()| = o ) (44)
which follows from (18), then the SIR in (42) becomes
k i 2
M-1 121 ZS’F o * T T;*‘
- 2 2 i=-
popt(vo) - 'Yo| jz 'bk(vo)‘ 624' 1 5 df
k=0 172t o ’Fg(f)' + T
(45)

25



Rather than attempt a rigorous evaluation of (45), it is easier to draw upon
the physical understanding of the target and clutter spectra to simplify the
SIR expression. It was shown in the last secfion that the M-pulse staggered
PRF causes the target energy to split into M éomponents that are folded over
into the (—1/2Tp, 1/2Tp) interval, while the clutter was distributed about
DC. Since the frequency extent of Fg(f) is nérrow relative to the window
1/MTp, there are values of Yo for which therejis no interaction between the
clutter and target spectra. In this case, foﬁ each Yo there is a value of i

k i ‘b : .
that puts Fg(f “ Vo tWT - T;) within the (—1/2Tp, 1/2Tp) interval and

- kK i.2 :
var, 3 [Fglf - v - By
1= LA pr(f-\) P K12 g
1727 O2 1 2 - 2N0ij g 0 MTp Tp
P L ng(f)' N T -1
s p
E
- ZNLT 1
0'p, (46)
where |
1/2T :
e - (7 IF (1=)’2 df 1 (47)
g f g }
172,

26



In the Appendix it is shown that

M-1

{ZE bk(vo)

k=0

2 _ (48)

whence it follows that

2 g
(v,) = 4 (49)
P v =
opt ‘"o ZNOTp
This is, of course, just the coherent integration gain provided by matched

filtering the target out of the white noise background.

The SIR degrades from this optimum value when any one of the M

components of the target spectrum interacts with the clutter spectra. The

worst case occurs when, for some k and i, ko and 10 say,
k i
0 0
-Vt = - == (50)
o MT T
p p

In this case, since the clutter-to-white noise ratio is very large,

' k i
0 0,[2
1/2Tp ‘Fg(f "V YT T T
j. P P - _S (51)
- g_
1/2Tp T 'Fg(f)' + 2N0Tp

For the remaining M-1 components of the target spectrum that are located
within the (—1/2Tp, 1/2Tp) interval, there is 1ittle interaction with the

clutter spectra. Hence, for those values of k # k0 (46) holds and the SIR
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can be written as

§e)

Yol E

2N0Tp

NN a[+2|b<v>|2 T

1-|b (v.)
ko 0

]

kfko

el

2]

(52)

where the last approximation follows from the fact that the clutter to

receiver noise ratio is >> 1.

of \B given by

This expression for the SIR holds for values

k0 m, (53)
v = + 53
MT_ T
° "p T
where first a value of ms is chosen and then fpr each m,s k0 = 0,1,2," " ,M-1.

Then the optimum SIR performance curve can be sketched by using the formula

o) 2 . M ko
(v,) 1-|b \1fv=—‘*m—
p \)0 ko 0 0 Tp p
[‘YO\ Eg} 1

2N 1 | otherwise

(54)
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For the case of a two-pulse stagger, M =2, k_=0or 1 and

0
2 2
[by(v)I" = cos®my e (55a)
2 .2
|by (v )" = sin®mye (555)
so that
( m
. 2 . o)
sin“mv e if v =7
o (\6) 0 0 Tp
2 m
0
lYO, Bgl = ) cosznvoe if v =T;' + ?%;
ZNO Tp
; 1 otherwise
(56)

Whereas when no pulse staggering is used (¢ = 0), the SIR is essentially
zero at multiples of the PRF, staggered pulse transmissions lead to mean-
ingful detection performance, especially at higher Doppler velocities. The
price paid for this enhanced performance at the blind speeds is a degradation
in the SIR performance at intermediate Doppler frequencies. These results
are summarized in the SIR performance curve plotted in Figure 5. It is

worth noting that similar results can be obtained for the pulse canceller
clutter filters by working directly from (40) using the appropriate filter
transfer functions. The SIR performance of the ASR-7 that uses a 6-pulse

stagger algorithm is shown in Figure 6.
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IV. STAGGERED PRF AMBIGUITY FUNCTION

In Section II, the target spectrum resuhting from a staggered PRF
transmission sequence was derived and, for theitwo-pu1se case, illustrated in
Figure 3. It was noted that the spectra for targets separated by'Dopp1er shifts
greater than one PRF were not identical as was;the case when uniform sampling was
used. This indicates that it may well be poss%b]e to estimate target Doppler
unambiguously. This question is most easily eiamined by evaluating the
ambiguity function of the staggered PRF pulse train. The calculation is not
conceptually difficult but it can become tedious. In order to develop some
intuition,the clutter-free ambiguity function W111 be computed first and then
generalized to the situation in which the c]ut#er filter is present. In the
former case the ambiguity function is the de]a&-Dopp]er distribution of the
output of the matched filter. It is denoted b& [g(g,go)[ where

1/2 Tp ;
Elaag) = | 2 (F10) Z,(Fs) df

-1/2 .Tp (57)

Rather than attempt to evaluate (57) by direct! substitution it is easier and
more instructive to draw heavily upon the phys%ca] interpretation of the
correlation operation implied by this equation. The necessary intuition can
be developed by studying the transmitted signaﬁ for the three-pulse staggered

case. From (18) and (19) the transform of the target signal is
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Z, (fia,) = T Z 35(Tg)by (v )F g (F = vy - T;)
i=-o
o e ]
* 2y gy (0 g (F = v + 37 - %—p—)
2
+ (10 )by (v )F (F = vy + i —};) (58)

The magnitude characteristic of this function is illustrated in Figure 7a.
It will be assumed that T, T, and v, are fixed so that the correlation opera-
tion in (57) can be studied as a function of v. Making use of the ]/Tp
periodicity in the target spectrum, the integral in (57) can be evaluated
using

v

0

*
£ (Ts Tgs Vs V) = f Z, (5 1ov) Zo (f3 145 v, )df
vo-1/Tp

The first situation of interest occurs when v = Yo in which case the Doppler

coefficients 1ine up exactly. Equation (59) becomes
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Fig. 7. (a) Typical target spectrum for three-pulse stagger; (b) Shifted target

spectrum for three-pulse stagger.
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g (T’TO’vO’vO)

v
J&l [lb (v )12 fo a, (t)a (1) Fg(f-vo)'z e

o'Vo
sz
\)0—1/Tp

Yo

*
[y [7 S 2y @ag () |Fytov, + g}—p)jz e
\)0-1/Tp

+

Yo

*
P a agleg)|Fylfv, + -3-%

+
o
n
—~
<
S

\)0-1/Tp

Assuming the t takes on only integral values of Tp, then from (18a)

.. KT
-j2ﬁkI§T! -JZ“MT;

It then follows that

Vo

[ al g leg)|Fyte-v, + )
V1T, P

jenf(t-1.)
2 o 0% 4f

jemv _(t-1.)
- ) 0 _
e Rg(r T,)
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j2ﬂf(T-To)

j2ﬂf(T-To)
df

df

)'2 . j2ﬂf(T-T0)df}

(60)

(62)



where

1721 .
) 2 jenfr
Ry(t) = f \Fg(f)' e df

-1/27
/2 o

(63)

In Part I it was shown that this function was precisely the autocorrelation

function of the two-way antenna pattern. Then the ambiguity function when

the signals are matched in Doppler is

g(T’TO’\)O’vO)I = J;—:—[Rg(‘r-'ro) [.bb(\)o)'z +'b](\)o)‘2 + 'bz(Vo)l2]

where from (18b)

M-1
.~ km .
-jemg— -j2mve
bk(v) = %- :S e M e m
m=0

It is shown in the Appendix that

M-1

kgo ‘bk(\))‘z =

hence

[vo|
E(T,To,vo,vo)| = R (t-1.)

2 90
"
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a result which is intuitively satisfying.

In order to evaluate the ambiguity function at other values of v, it
is useful to think of gradually increasing v from its value at Vo© For
example, when Vg <V < 1/3 Tp, the absolute value of Zs(f;r,v) is shown in
Figure 7b. When the correlation operation is performed to evaluate (59)
for these values, there will be no spectral overlap and the ambiguity function
will essentially be zero. No significant contribution will be made to the

ambiguity function until v = Yo + 1/3Tp. In this case, different frequency

coefficients line up and (59) becomes

AV
0 jonf(T-1_)
1 _ Yo | * L * 2 J 0
E(T,To,vo + §T;“vo) = T; [b] (vo + §T;)bo(vo)_[ a, (T)ao(To)té(f-vo)‘ e df
vo-l/Tp
Yo (1-1.)
j2nf(t-T

* ] * 1,2 9 0

+ b, (v, + gy () [ 3, (D)ay () |y - v, + W)‘ e of
vo-l/Tp

Vv
. : ° ., s |p d2nf(r-T )
+ bO (\)O "*:;ﬂ?)bz(\)o)[ ao (T)az(To),Fg(f = Vo + ﬁ‘p-)’ e
\)o-]/Tp
(68)

From (61) it follows that
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(1]

4+
o

21 (D2 (1)

(69)
and therefore
Vo :
* . k 2 jZTTf(T-To)
j ak+-|(T)ak(T0) Fg(f -\)o + MT;)_) e | df
v0-1/Tp
in T
jZNVO(T-TO) Jengr—
= e e P R (t-1.) (70)
‘ g 0
The ambiguity function is then
] _ |Yo| x 1
E(tatgav, + §T;’vo$" T2 Rg(T'TO)['bl (vo * 3770 (V)
ox 1
tiby vy # '3T—p)b1<\’o)
o 1
+?b0 (\)o + 'ﬁg)bZ(vo)” (71)

The next step is to set v = Yo + §%—-and repeat the above operations. In this

case, the coefficients are displaced by two and the ambiguity function becomes
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* 2
* by (vo * §Tgob1(vo)

+ by (v, + ﬁ;)bz(vo)” (72)

This process continues ad infinitum and it is possible to deduce a rule for

generating the ambiguity function. In the M-pulse stagger case, it becomes

M-1
+ Y * +nM
E(T’To’vo ¥ mM¥M’Vo)| ) 1;34'Rg(T‘To)‘:£ bk+m(vdF mﬁ?'obk(vo) (73)
P p ‘=0 p

where for positive values of n = 0,1,2,°°", m takes on the values
m=0,1,2," " ,M-1, and for negative values of n = -1,-2,..., m = M-1, M-2, 0.

In (73) use has been made of the fact that

beem() = D(iam) () (74)
modulo M

which follows directly from (65). It is shown in the Appendix that (73) can be

reduced to
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M-T jzﬂm+nM

(kT_ +g,) (75)
>0’"0 Mip’ 0 T g 0 'ﬁ'k |
p =0

which is a function only of the differences, =T, and V=V, and the stagger
parameters €y €1° Tt €M-1- It can be deduced immediately that the ambiguity
function is unchanged if € = 05 hence for an M-pulse stagger there are M-I

parameters that can be chosen to shape the ambiguity surface.

For the special case of a two-pulse stagger (75) reduces to

[ mmelie . .n
§ ' cos T;_ if v = Vo + Tp
_1'o
E(T—To,v-vo)l = if?le(T-To) <
p Y /1L N (R R |
. Sin oy if v Vo t T 5T

; “p p o “'p

| (76)
and this is sketched in Figure 8a and compared%with the ambiguity function
for the uniformly sampTed case in which ¢ = o,jin Figure 8b. It is clear
therefore that Doppler resolution is theoreticé]]y possible. Whether or
not the stagger parameters can be chosen to force the subsidiary side-lobes
below a practically useful level is, however, a separate question. It is of
interest to examine the ambiguity function of higher order stagger sequences
that are currently used in bractice. The results for the ASR-7 radar, that

uses a 6-pulse stagger are shown in Figure 9.
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(b) Uniform PRF.
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The Matched Filter-Clutter Filter Ambiguity Function

In the preceding section, the ambiguity function for the clutter-free
case was derived. This is a useful characterization when the signal is
designed to function in only a white-noise environment as it is then clear
that all of the side-lobes should be made uniformly low. The more typical
situation for MTI requires a charactefizatidn that includes the clutter in
the analysis. If the ambiguity function is viewed as the delay-Doppler
energy distribution of the signal out of the optimum processor, then it is
clear that the effect of the clutter is to add notch filters at multiples

of the PRF's. Then the more general ambiguity function is given by

1/27
)= [ HADZ ()7 F3a)df (77)
-1/2Tp

As in the clutter-free problem the general result will be obtained by extending
the arguments made for the three-pulse staggered case. This is most easily
done by writing a general expression for (60) and (68) from which the

ambiguity function is deduced. This expression is

m+nM _

E(T,TO,vO + _MT_’VO) =
M-1 v .
Yo +nM 0 * J2nf(r-1,)
> 2 BV * HB(v,) [ k(T (rg) |Fg(f -vg + W) | (e > df
P k=0 P v =1/T P
Yoo/ p
(78)
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For the purpose of this discussion it is reasonable to assume that the

clutter filter transfer function changes s]owly over the width of the signal

3

spectrum, hence allowing the following approxiﬁation for the last term in

(78)
jenf(t-t.)
H(\)OMT)/ a;+m(r)a(T)F(f\)+MT)2 °"af
-1/T | p
j2my (r-x ) 32T ‘
- Ho e © %e  PRy(rry) (79)

where the last equation follows from a generalization of (60) and (68). Then

the ambiguity function is

m+nM
E(T,TO,\)O + —m:,\)o) l

—2 R (T'To)ljz b:+m(vo ¥ m;$M) (v H (vo MT wr) (80)
p k=0 P ‘ P

To evaluate (80) it is assumed that the clutter filter is well modelled by a
notch at DC as well as at all multiples of the PRF. The approximation was

developed in conjunction with the evaluation of the SIR for staggered PRF's.
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Suppose now that

k n .
V. o= F — k =0,1,""",M-1 (81)
M T L AL ] ?
° "o Tp
holds for every n, then
Ho(v - o) = (82)
c'o MTp -

and (80) reduces to the clutter-free ambiguity function. If for some value

of k, k' say,

kl

n
V- ogm— = (83)
T
o M, Ty
for some value of n, then
H(v -&)~0 (84)
ct’o MT
p
and (80) reduces to
M-1
m+nM _ Yo * m+nM
ETToeVg ¥ T V)| T T2 Ry (eo) | S bican(v * ()
P b er p
k#k'
(85)

This function is much more difficult to plot as it depends on the true target

Doppler rather than just the difference between the true and tested values.
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i
In fact, for an M-pulse stagger, (M+1) cuts of;the ambiguity function are

needed to describe it completely.

MTI Signal Design

In the clutter-free case, it is clear that the stagger parameters
should be chosen to produce an ambiguity surfa;e with uniformly low Doppler
side~lobes. From (73) this reduces to the prob]em of picking the stagger

parameters e , €15 "'', gy_q SO that

. +
Jj ZTTmM—.?ﬁ( kTp +€k)

M-1

1 p <
|Mze = ¢
k=0

where for 20dB sidelobes ¢ would be -1, etc. %This'signal design problem

has much in common with design of antenna pattgrns using an array with non-
uniformly spaced elements. This is a difficu]% problem to solve and it is
expected that when the clutter filter is added; it would be even more difficult
to simultaneously design the (M+1) folds of thé cluttered ambiguity function.

A simpler design strategy can be obtained fromjthe SIR analysis in Section III
where it was shown that the degradation in the?performance was given by (50).

From this expression it is clear that the stagger parameters could be chosen

to minimize the depths of the notches by miniﬁizing the functions
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1

(4]

Xy

.Mk .n_M+nM
jemr —JZﬂ—MT;ek (87)

M-1 -
m+nM _ 1
Ibm(_W_)‘ = ane e
P k=0

which follows from the definition of bm(v) in (65). This expression can
easily be manipulated to take exactly the same form as that in (86). This is
interesting as it shows that the simple criterion of uniformly low sidelobes
is a good signal design strategy in the cluttered as well as the white noise

environments.

Unfortunately, time did not permit the thorough examination of these
signal design problems. Therefore, as of this writing, their solution
remains an unanswered question and it will be necessary to be content to use
the MTI ambiguity function as a tool for signal analysis, and only indirectly

for signal synthesis.
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If <u, v> denotes the inner product in CM, theﬁ

!/ (\)0 + !—nﬁ-_r[],—M- ,\)0) = <"X.m(\)o 4+ i m+nM )’x (\) )
p
- m m+nM
= < Mgy, + ),MB( o)
P

*

< MO MTg(v, + ""'“M),_e_(v ) >

where * denotes conjugate transpose. Now let :

" - Mo*Mm
Then
M=1
QE] N <Mo*)kp(Mm>p2
p=0
M1,
- (Mo> pk(Mm>pz
p=0
M-g  jorB -Jznip-*—’h‘dl)—@
A N 1.
M M
p=0
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1 1
- = = e (A-12)
: M Mp=0
>
If k =g, then
m 1 jzﬂ%g
Qkk =ve (A-13)
For the case when k# g, the second term in (A-12) can be evaluated by setting
3E(k-2)
vV =e (A-14)
and noting that
M-1 jontkegle oy
. M D 1-M
e = >W=— =0 (A-15)
p=0 p=0
Hence QEQ = (0 when k#t and therefore the matrix Qm is diagonal for all m.
Using this result in (A-10) yields
. M-1
; m+nM _ m+nMy 1*
. Vg * T wvo) = [Qkkek( T )] Bk (Vo)
p k:o p
M-1 jeme
- * +nM
=D By, + T W) ()
k=0
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as required,

M-1 j2ﬂ£¥s

- N

Cin M+NM
J2TyT <
P

e

M(kTp + EL)
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