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This note deals with the accuracy of range-range or spherical multilatera-
tion systems, Specifically the note extends a number of useful results recently
developed for hyperbolic multilateration systems [1] to spherical systems.

Spherical systems operate by utilizing measurements of range from a number
of stations to a subject (i.e., an aircraft), the position of which is to be
determined. Each range measurement serves to localize the subject to a sphere
centered about one of the stations. Thus the subject's position is determined
by calculating the common intersection point of the spheres.

An example of a satellite-based spherical navigation system is shown in
Figure 1.1. The system operates as follows. At an agreed upon time, satellites
1,2,..,N transmit distinct pulses. The pulse time of arrivals (TOA's) at the
aircraft are read from a local clock. The known transmission time is subtracted
from the TOA's, and the resulting time differences (equivalent to ranges) are
used to calculate the aircraft position.

An example of a ground-based spherical system is shown in Figure 1.2. The
system operates as follows. The ground-based stations transmit pulses to the
“aircraft. The aircraft transponder retransmits the pulses which are picked up
by the originating stations. The resulting round trip times (proportional to

range) are used to calculate the aircraft position.

srbn

The accuracy of such systems is limited by the accuracy with which the
locations of the transmitting stations are known, by proﬁﬁbat1on disturbances in
the atmosphere, by noise disturbances in the receiver(s), and the accuracy of
the clocks used. Typically, the algorithm that calculates position translates
these errors into corresponding aircraft position errors.



Considerable previous work [2-9] has been done on calculating the accuracy
of such systems. Thus, given disturbance statistics and a specific deployment

of transmitters and receivers, it is straightforward to calculate the resulting
positional error.

The purpose of this note is to present a novel method for calculating the
accuracy of a spherical multilateration system, and then to use the method as a

hande £a Auvaridmsn sAama sAanAna T Amenl o

basis for drawing some general conclusions about accuracy. Thus, in contrast to
the referenced work [2-9], the emphasis{s is not on calculating accuracy measures
for specific deployments of transmitters and receivers. Rather the emphasis is
on identifying general properties of spherical multilateration systems. Thus,
for example, the report addresses questions such as the following:

1. What are the trade-offs between accuracy and the numbeyr of
transmitting {or receiving) stations?

2. What are the trade-offs between accuracy and the deployment
of transmitting {or receiving) stations?

3. How do the errors depend on direction? (E.g., in an aircraft
surveillance system it is desirable that altitude errors be
smaller than horizontalerrors; is this the case?)

4, How does accuracy depend upon the accuracy of the clock used
to record signal arrival times?

5. What are the smallest rms errors that can be attained using a
fixed number of receivers? How should the receivers be deployed
to achieve minimum error?






II. SUMMARY OF RESULTS

Although the present work has been motivated by satellite-based multilat-
eration systems 1ike that shown in Figure 1.1, the work is reported in more
general terms to make the results available to other applications as well.

Thus, it is assumed that a spherical multilateration system consists of a

number N of beacons {e.g., sateliite-based transmitters), and a subject (e.g.,
an aircraft). The beacons and the subject are assumed to be in fixed positions.
The beacons simultaneously transmit signals that are received at different times
by the subject (or equivalently, the beacons simultaneously transmit a signal
that is transponded by the subject back to the beacons), Due to disturbances of
various kinds, the TOAs are somewhat in error. As a result, the calculated

subject position is correspondingly in error,
The report treats both satellite-based and ground-based systems. It should
be noted that the assumption of fixed beacon positions ignores the effects of

motion in satellite-based systems, Thus with regard to such systems, the results
apply to a single instant of time.

In some cases, no geometrical constraints are placed upon the beacon loca-
tions. In other cases, the beacons are assumed to be confined to a viewing
cone, or a cone-complement.

The main results are as follows:

1. It is shown that the inverse of the covariance matrix for
positional error corresponds to the moment of inertia matrix
for a simple mass configuration. The insight provided by
this fact makes it possible to answer many questions relat-
ing to accuracy [Section VIII].

2. The performance of an actual spherical multilateration system
is bounded by the performance of a comparable hyperbolic
system and that of an "ideal" spherical system (defined in



Section X). Specifically, the accuracy of a spherical system
always exceeds that of a hyperbolic system, but is not as
good as that of an ideal system [Section X].

If 9, denotes the rms error in the recorded signal arrival times
due to highly correlated effects (e.g., clock error, ionospheric
delays, transponder delay), and Oy denégs the corresponding
error due to uncorrelated effects (e.g., receiver noise, beacon
location errors), then the accuracy benefits of an ideal
spherical system are obtained if o, < ot/vfﬁ where N denotes

the number of beacons. For oy > otiJ N accuracy begins to
degrade, and approaches that of a hyperbolic system as o
becomes large [Sections XV and XVIII].

For both satellite-based and ground-based systems it is shown
that error measures typically are not highly sensitive to the
number N of beacons. Specifically, typical error measures are
proportional to 1/ /N. Thus, for example, to double system
accuracy by the expedient of adding beacons, it is necessary

to increase the number of beacons by a factor of four [Sections
XIII, XIV, XVI, and XVII].

The accuracy of an ideal spherical system is much more sensitive
to beacon deployment. For example, in the case of N beacons
distributed uniformly within a viewing cone, increasing the cone
half angle from ¢ = 30° to ¢ = 60° doubles accuracy, an improve-
ment that otherwise would require a fourfold increase in the
number of beacons [Section XIII].

For satellite-based systems the errors made using ideal

spherical multilateration are primarily horizontal errors.
Typically rms horizontal errors are twice as large as rms altitude

errors [Section XIII].

By contrast, for ground-based systems the errors are primarily
altitude errors [Section XVI].



8. Expressions are derived for the minimum rms error that can be
expected from N beacons using ideal spherical multilateration.
Corresponding optimum beacon deployments also are presented.
The results assume that the beacon locations either are un-
restricted, or are restricted to a viewing cone of arbitrary
half angle [Section XX].

9.  The moment of inertia method for caculating the inverse of the
error covariance matrix is generalized to accommodate an
independent {e.g., barometric) altitude measurement [Section
XIX].



ITI. TIME OF ARRIVAL EQUATIONS

A typical spherical muttilateration system is shown in Figure 3.). Under
ideal conditions the signal arrival times are related to the distances d1.d2,
..,dN as follows:

t1 = t0 + d1/c
t2 = to + dzlc
ty © t_0 +'dN/c (3.1)
where
tj = The time of arrival (TOA) of the pulse from the jth beacon
(§ = 1,2,...N).
ty = The time of pulse transmission.
dj/c = The transit time from the jth beacon to the subject (c denotes

the signal velocity).

The basic procedure for determining the subject position from {3.1) consists
of expressing the distances d. in terms of some convenient coordinate system,
and then solving (3.1) for the subject coordinates. Note that the system of
Equations {3.1) is overdetermined in that it consists of N equations in 3 unknowns.
Thus, if no measurement errors are present, only three of the equations are
needed to calculate subject position. The remaining equations are redundant.
When the data contains measurement errors, however, it is advantageous to use
the entire system of equations to calculate subject position. Specifically, it
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is desirable to average the system of equations together to obtain a set of
three equations in three unknowns, and then solve the resulting equations for
the subject position. The averaging step improves final accuracy in that it
permits error cancellation among the measured data.

Equation (3.1) makes the following idealizing assumptions:
1. The time of signal transmission is exactly known.
2. Signal proQﬁgation is ideal.

3. No errors are made in measuring the arrival times of the

cianale
Ul:’lluldn

If conditions 1-3 are satisfied the subject's position relative to the beacons
can be determined exactly by solving Equations (3.1) for the coordinates of the
subject. If in addition,

4, The beacon positions are exactly known in an earth-based
reference frame

the position of the subject relative to a point on earth can be determined
exactly.

Conditions 1-4 never are satisfied, however. The measured quantities
that appear in (3.1) always are in error. Thus the relative position of the
subject that is calculated from the system of Equations (3.1) is correspondingly
in error, as is the position calcuiated in an earth reference frame.



IV, SOURCES OF ERROR

The quantities tj, ty, and dj that appear in (3.1) are ideal quantities
in the sense that they are not available for calculation. Thus let tg, tﬁ'
and dg denote the corresponding quantities that are available for calculation.
That is, let

th

tg The measured TOA from the j~ beacon (j=1,2,...,N).

ta = The measured (or estimated) time of signal
transmission.

th

The measured (or estimated) distance from the j
beacon to the subject.

*
d3

The quantities tg, ta, and dg are related to their ideal counterparts
tj, tgs and dj as follows:

* = t. + . i=1,2,..., .
tJ tJ AtJ [i=1 N] (4.1)
tg =ty * Aty {4.2)
* = d, + Ad, .
dJ dJ dJ (4.3)

where Atj, Aty and Adj denote the relevant measurement (or estimation) errors.

For present purposes it is assumed that the time of arrival error Atj has
four principal components. These are as follows:

Atj 1 = An approximately uniform delay imposed upon all N signals
]
(e.g., by the ionosphere, or a transponder).

At

3,2 Fluctuation in the transit time of the jth signal due to

random effects in the propagation media.

10
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j,3 Error in the measured TOA of the jth signal due to
receiver noise.

Error in the measured TOA of the jth signal due to
clock error,

The error.ﬁ% therefore can be expressed as follows:

4
sty = ; By (4.4)

=1

The error ato results from inaccuracies in the clock used to measure
ty or from error in the assumed time of signal transmission (if ty is estimated
rather than measured).

In satellite applications the error Adj represents combined measurement
and tracking errors. In ground-based applications ﬂdj corresponds to the
beacon siting error.

It 1s reasonable to expect that all of the foregoing errors have zero mean
over a large number of measurements with different transmitting and receiving
equipment, with the exception of Atj 1° The uniform delay Atj imposed by the

1

]

jonosphere, or a transponder has a definite non-zero mean that is measurable,
and that can be subtracted from the arrival times tg before the subject position
is calculated. The viewpoint taken here is that this correction has been made.

Thus, in what follows, it is assumed that

Al. All of the errors Atj 1..,Atj 4 Ato and Adj have zero mean,
] ]
and that Atj 1 denotes the residual deviation of the uniform
delay from its mean.

11



With regard to correlation of the errors, observe that each type of error
tends to fall into one of the following categories.

I. The error is generated by uncorrelated physical mechanisms for

different j. Thus the errors for different j are statistically
independent,

II. The error is generated by highly correlated (if not identical)
physical mechanisms for different j. Thus the errors for
different j tend to have correlation coefficients of unity.

Table 4.1 indicates the appropriate category for each error source. Note
that the clock error At, 4 can be of either type. If independent clocks are

Js
used to measure TOAs, then the errors Atj 4 belong in Category I. If the same
, ,
clock is used to measure all TOAs, the Atj 4 belong to Category II.
»

Henceforth, the following assumptions are made concerning correlation of
errors,

Error Correlation Assumptions

A2. Pairs of errors that a

are uncorrelated.

A3. Pairs of 1ike Category I errors are uncorrelated for different
Jj. For example, At1 9 and At2 o are uncorrelated.
] ¥

A4. Pairs of like Category II errors have identical variances, and
a correlation coefficient of unity. For example, At, 4 and
At2 1 have identical variances and a unit correlation coefficient.

12



Table 4.1

Category I
(Independent for

Category II
(Unity Correlated

Adj (beacon position error)

Error different j) for different j)
At . {racidual dalav) Y
LI\IJ"I LY Ror o WA B ol e \-IJI [A]
AL, 2 {transit time X
31€ flyuctuation)
Atj 3 {receiver noise) X
Atj 4 ({clock error) X or X
)
T F (franemiceinn time Y
L}\JO \\rl MITMMINI 2@ 1 W11 "Bl N
error)
X
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V.  SUMMARY ERROR VARIABLES

Use of (4.1) - (4.3) to eliminate the ideal quantities tys tj and dj from
(3.1) produces the following equations for the measurable quantities tg; t*,
and d}.

L

tT tﬁ + dT/c + At1 - Ato - Adl/C

*
t

n

t*

5 + dﬁ/c + At

N Ato - AdN/c (5.1)

Equation (5.1) can be expanded to place in evidence the TOA error components

Atj }..,Atj g by substituting (4.4) in (5.1). The resulting equations are
4
R
ty = th + dj/c+ p sty - Aty - ady/c
k=1
4
tﬁ = tﬁ + dﬁ/c + :2{ AtN,k - Ato - AdN/C {(5.2)
k=1

To simplify subsequent discussions it is convenient to define summary
error variables as follows:

It

I1

m
n

; Atj,z + Atj’3 + lAtj,4}I - Adj/c (5.4)

14



The error €0 is the sum of all errors that are unity correlated [see Table 4.1].
The € (j =1,2,...,N) are sums of the uncorrelated errors for the different
signal paths. The notations { }; and { };; mean that Atj'4 belongs-in (5.4) if
Atj’4 falls in Category I, and belongs in (5.3) if Atj’4 falls in Category II.

Equations (5.2) take the following simple form when rewritten in terms of
the €Q*EY»+* + 92BN

ct
*
4

T2t df/e tegt g

ot
*
1

N t'6+ dﬁ/c + e0+ ey {5.5)

A1l subsequent discussion is carried out in terms of the summary error
variables €QPEY > ¢ By No further mention is made of the constituent errors
in Table 4.1. Henceforth, the error € is called the clock error, even though
other errors also contribute to it. The errors Ej multiplied by the velocity
¢ of signal propagation are called ranging errors.

As a result of assumptions A1-A4 of Section IV, it is assumed that
€grEqs--rs €y Are zero mean random variables with the diagonal covariance
matrix

A'U

= o } (5.6)

15



The covariance matrix Py for the error terms feo + € ) in (5.5) can be
expressed in terms of P as fo]]ows

(eg+ E-])— [(eq+ &)s ... (eg+ ey ]

.

(5 + )]

fl

E{{H ¢) (H )"}

=HP B (5.7)
where E denotes expectation,
€0
9
=" |{{N+1) rows (5.8)
[
| N
and
H=an N x (N+1) matrix of the form
B ]
1 ] O
E . N rows (5.9)

(N + 1) columns

16



VI. POSITIONAL ERRORS WITH OPTIMAL PROCESSING

Let R be a (3x1) vector that specifies the actual subject position. A
number of different methods exist for "solving" the TOA Equation (5.5) for R.
Each method can be viewed as defining a (3x1) vector function (estimator)

=0 >

= f(¢t ts

* -
N’

1‘*;
0

* +%
12v20

d?,d;,...,dﬁ) (6.1)

that approximates R.

The generalized least squares procedure is one such method [4,6,8]. The
procedure involves linearizing the TOA equations about a point known to be near

the subject. The subject position R relative to the reference point then is
approximated by the vector R that minimizes the quadratic error measure

— —

[(eg + €1)s-renlEy + £y)] (gg * )]
Q= 351 CRE
i 1 (eo + EN_

= (He) pyl(He) (6.2)

17
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The linearized equations take the following form:

g oftol tRY (eg*ey)

A VS

tN C 6N + CJ'N _&+ (EO+ EN) (603)
where

63 = The distance from the assumed position of the jth beacon

to the reference point.

A (1x3) unit vector pointing from the subject to the jth

-te
L]

satellite; see Figure 6.1,
R

A (3x1) vector specifying the subject position relative to
the reference point; see Figure 6.1.

For the purpose of minimizing (6.2) it is convenient to rewrite
Equations (6.3) in matrix notation as follows:

T*

*+%ﬂ£-R+ﬂg (6.4)

fl
O |—

where

g% =| ° (6.5,6.6)

—
*
]

-

o o
)

1™
1

) (N + 1) rows (6.7)

/

S
3 columns

é_n. .

b el

19



and where H and ¢ are given by (5.9) and (5.8).
Use of (6.4) in (6.2) yields

1 1 b el 1 1
= * o . A% L . - -
QR) = [T* - c&* - -HE - Rl P'[I* -2 8% - CHER] (6.8)
The minimizing condition that
- _2_ ' 1 1 '1 l_ l
dQ = - SR F' H' PI[T* - = &% - L HFR] (6.9)

- 1
ng-l B|P|[I_*__6*,__é_ﬂ£_RJ (6.]0)

Solution of (6.10) produces the estimator

|72 >

=[F"H 3{31 BETE 3;1[c1* - §*] (6.11)

Use of (6.4) in (6.11) shows that the error R - R in calculated position
is related to £ as follows:
= ! ! "] -1 1 1 "]
-R=clF' W PL HF) F H P He (6.12)

—_ —— —_ —

(0>

Clearly, R - R = 0 if £ = 0. More generally E[E_- R] = 0 provided E[g] = 0.
Therefore, the estimator (6.11) is unbiased. The associated covariance matrix
for the error R - R is as follows:

Pyp = EL(R - R) (R - R)']
= Cz[_F_' _Ii‘ E_E] ﬂ_]-1
- CZ[EI _H_I (_H_EE _H_')h.l _Ii___]-.l (6.13)



of the subject position R. Other workable estimators can readily be devised.
According to Markov's Theorem [10], however, the generalized least squares
estimator is optimal in the sense that it produces the smallest mean-square
error of all estimators that satisfy the following (weak) conditions.

Conditions
1. The estimator is unbiased.
2. For the error magnitudes of interest, the estimator is
linear in the £y That is

|7 >

=R+Acg
where the matrix A is independent of the €50

Accordingly, in what follows, we restrict attention to the errors generated
by the least squares procedure.

21



VII. ERROR MEASURES

For the purpose of assessing accuracy it is convenient to rewrite the
covariance matrix (6.13) as follows:

Pan = (o%¢)? T (7.1)
Iy ny Pz

- (o), T, T, (7.2)
[xz sz F'22

where (o*c)2 denotes the mean-squared ranging error, That is
N
Can2 1N 2 7.3)
(%) = 5 2, (o ¢) (7.3)
J=1

Use of (6.13) in (7.1) shows that the T matrix is defined by the relationship

L

]
~
-
=
-
=

where En denotes the normalized covariance matrix

- 90,2 -
(Er)

2142
e

(7.5)

22



A1l of the conventional measures of accuracy are directly availabie from
the diagonal elements of the covariance matrix (7.2). For example, the mean-sgquared

arrnre in the ¥! Yitand 7'dirartinne are niven rac
Wt | VI 2 ae il l'\’ " ST I L] I ey T WIS P e jl'hll 1 Y

2 . ( w~\2

ot = (*e)P 1, (7.6)
2 _ ( xp)2 7
a, (g*c) Tyy (7.7)
2 = Fi *C\Z f7 8\
g, \g™c) Fzz 1/.0)

Similarly the total mean-squared error 02, and the so-called "geometric dilution
of precision" (GDOP} are given by

-2 = ~2 + -2 + ~2 = (ﬂ*c)Z {r + 7 +r ) {7.9)
(&) UX Uy Uz VU i AL XX L yy i zzf A i
and
GDOP = L—= (. 4+ +7T )1/2 (7.10)
o*c XX Yy 2z ' )

Equations (7.6) - (7.10) show that the elements of the pr matrix in (7.2)
possess a simple interpretation. Specifically, the elements can be interpreted
as error magnification factors. For example, Equation (7.6) asserts that the
mean-squared error in the X' direction equals the mean-squared ranging error

magnified by r, . Similarly, (7.9) asserts that the total mean-squared error
g2 equals the mean-squared ranging error magnified by the factor (Fxx + Tyy + rzz)‘
Accordingly, the matrix [_ henceforth is called the error magnification matrix.

23



VIII. THE INVERSE ERROR MAGNIFICATION MATRIX

To deduce useful properties of the various measures of positional error,
it is necessary to relate the error magnification matrix I' or some function of
it to the beacon-subject geometry. The present section shows that the inverse
of T possesses two extremely simple interpretations in terms of system geometry.
It is these interpretations that lead to the conclusions summarized in Section II.

1

Thus let L denoteT '. That is, let

=F AR BT HE | (8.1)

-

Js-“

In Appendix I it is shown that the matrix factor H'(H !

from the expression

P, H')"" H can be calculated

1

1 (B - 1 "‘.I ] - 1 "1 ]
RGP )T H= (- My mw)™ w I - nw)' o)
(8.2)

where

M=pP' and U' = [-1,1,1...1] (8.3)

N+1

Use of (8.2) in (8.1) shows that

L=K MK (8.4)
where

K=[1-unuy’vme (8.5)

24



Equation (8.5) can be developed as follows
] e
1L Mgy 5y mN] 0
1 1
| 1
K=\ - —
_" __' N . .
m,
J
J=0 'l 1

1
tap =1 1=

(8.6)

where mj denotes the typical diagonal element of M, iﬂ denotes the jth unit

vector in row format, and

ji = 1 \)‘ m. 1.

N
N i B
(5
J
j=0

(8.7)

To interpret the matrix L, assume that the following construction is

carried out.

25



Construction of Beacon Images on Unit Sphere

i) Draw a sphere of unit radius with center at the
subject position 0.

M~

_____

ne point 0.

-
—h

roin

) Oraw the vectors |1, _2 lN % E
ii1) Place a mass of value m_= {o* ) 0

place masses of vatue m, = (c*) /01 (§=1,2,...N)

respectively at the points where the unit vectors 11

terminate in the sphere (see Figure 8.1)

at the point 0;

greeidy

The vector T specified by (8.7) can be interpreted as pointing from the
point 0 to the center of mass CM of the mass configuration as shown in
Figure 8.1. Likewise, the vector difference ij - 1 contained in the jth row

(J > 1) of the matrix K can be interpreted as a vector pointing
mass mj. Thus if (X,Y,Z) denotes a Cartesian coordinate system

and differing from the system (X',Y',Z') only by a translation,
elements of the jth row {J > 1) of K are simply the coordinates
of the point P in the system (X,Y,Z).
That is,
—XO —YO -Z0
K = '
o Yo Iy

from CM to the
centered at CM,

then the

X:, Y. and Z.

J J J
(8.8)

where XO’ YO’ Z0 denote the coordinates of the point 0 in the system (X,Y,Z).

The desired formulation of L follows directly from (8.4) and (8.8); namely
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V=

£=
j=0
N
;2%
where
m, =

r

ijij

J73m3

1
373 M
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2

J'__

XY,
meJ J

o

2. ijij (8.9)

(8.10)

[ AR
1]
o

(8.12)



Equation (8.9) asserts that the entries in L are simply the moments and
products of inertia of the mass configuration MMy oMy o sy about its center
of mass.

By contrast Equation (8.11) asserts that the entries in L can be regarded

as averages of the second order products XZ,XY,XZ, etc. over the set of masses.

Both interpretations are highly useful.
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IX. EXAMPLES

This section contains two examples which demonstrate the ease with which
error measures can be calculated using the moment of inertia results of Section
VIII. The examples utilize rather symmetrical geometries for the purpose of
obtaining simple expressions for the error measures (7.6) - (7.10). As is
Arit Adamd L :

Py sore  dda eri .....l--'.-. ~
CY TUchie rvvill L!H: UC rvacviun v

the method, however.

TTT on Adinr; da ok mdk 21T mAamac e s s
¥iil >ymneLry 15> TUL di dll neLves>dary wu

The examples are based upon two different beacon-subject geometries. One
geometry is representative of satellite-based multilateration systems. The other
geometry is representative of ground-based multilateration systems,

Example 9.1  (Satellite-Based Navigation)

Assume that an aircraft utilizes timing signals simultaneoulsy transmitted
by four satellites to determine its position., Let the satellites be positioned
at the corners and the center of an equilateral triangle at the time of signal
transmission as shown in Figure 9.1,

Assume that the errors.in the nominal satellite positions, the actual TOA
errors at the aircraft, and the TOA measurement errors in the receiver corres-
pond to an aggregate rms ranging error of (otc) feet for each signal path.

Also assume that the error in the nominal time of signal transmission, the
residual ionospheric delay, and the aircraft clock error correspond to an equiva-

lent "clock error" having the rms value of % seconds.

a & . a4l

The appropriate mass constellation takes the form shown in Figure 9.2.
The masses my - My account for the ranging ervrors. The masses have unit value
since, according to (7.3),

30



s

EARTH

SPHERE

Figure 9.2

31



0% = 15 > pe)?
4c 3=1
- 0 y)° (8.1)
and
2
_ (0*)2 _ k’t) - .
mj krj)z ﬁrt)z 1 jg=1,2,3,4 (9.2)

The mass My at the center of the sphere accounts for the clock error 0 .
The mass has the value

my = G g)f = o k) (9.3)

A simple calculation shows that the center of mass (CM) is located on the
tetrahedral axis a distance

d = 1+ 3 cos g
- 2
4+ 0,/ )

(9.4)

above My Let (X,Y,Z) denote a Cartesian coordinate system at CM as indicated
in Figure 9.3. Let (Xj’ Yj, Zj) denote the coordinates of mass m; with
respect to CM, The elements of the L matrix (8.9) can be calculated straight-
forwardly as follows:

-
t

b4
>

= my (sin ¢ )2 4 (my + m,) (lz sin ¢ )2

-g—sinzcb (9.5)
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(m2 + m3) ( !;Q sin ¢)2

Lyy =
= 3 sin? ¢ (9.6)
Lzz = My d2 + (m] tm, + m3) {cos ¢ - d)2 + m4(1 - d)2
=[u—lT(3 cosz¢+‘l)+a—:—’f—-]—%(] -cos¢)2] (9.7)
ny = sz = Lyz =0 (9.8)
where
o & 4oyfo,)? (9.9)

Thus the L matrix is as follows:

% sin2 ¢ 0 0
L= 0 %—sin2 ¢ 0
(3 cos® ¢ + 1) +a (1 - cos ¢)2
0 0 4
(o + 1}
| .
(9.10)
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The corresponding I' matrix is given by

2 _1 0 0 |
3.
sin® ¢
2 1
' = 0 ——y 0
- 3 sin® ¢
0 0 0'-+]
(3 cos? b+ 1)+ u.%{1 - cos ¢)2
L —

(9.11)

The expressions for the rms error magnification factors are as follows:

12 _ [z _1
(Pxx) T 43 sin ¢ (9.12)
12 . 2
(F_yy) = J; e (9.13)
1/2 a+ 1
z \/(3 cos2 o+ 1) +a %—(1 - cOoS ¢)2

4 1 o+ 1
GDOP = | = + {9.15)
3 s1'n2 o (3 cos? o+ 1)+ a %—(1 - COS ¢)2

For the values ¢ = 45°, oy = 30 nsec, gy = 10 nsec, the rms positional

errors are
- = 1/2 -
oy =0y " (T (o,c) = 34.6 ft (9.16)
- 1/2 -
o, = (rzz) (ctc) 22.7 ft (9.17)
o = 6DOPx (o.c) = 53.9 ft (9.18)
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0
o, =0, = 34.6 ft (9.19)
o, = 87 ft (9.20)
o = 100 ft (9.21)

END OF EXAMPLE

Example 9.2  (Ground-Based Surveillance)

Assume that round trip times from four ground based beacons are utilized
to determine the position of an aircraft. Let the beacons be located at the
corners and center of a very large equilateral triangle as shown in Figure 9.4.
Let the aircraft be located near the center of the triangle at an elevation

=
an

4

mealn ~nf AR funam +h
gic ui o [} L

Assume that the errors in the nominal beacon positions, anomalies in the
round trip transit times and TOA measurement errors are equivalent to a one
way ranging error of (otc) ft for each signal path. Assume also that the air-
craft transponder imposes a residual delay on all signals equivalent to a
one way rms clock error of gq Sec.

The mass constellation for this case is shown in Figure 9.5, The

masses my; - m, account for the ranging error (ctc). Again, the masses have
unit value since

4
(o*)? = Zlcf Z] (ctc)z - (ct)2 (9.22)
J:
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and

2
_ (o*)"

Masses my-my are placed on the equator of the unit sphere since Beacons 1-3
are assumed to be on the aircraft's horizon. The mass My at the center of

the sphere accounts for the "clock error” g

The center of mass CM of the configuration is located a distance

4
d=m, 2‘ m, (9.24)
j=0

from the center of the sphere altong the unit vector pointing to my as shown in
Figure 9.5,

Let (X,Y,Z) denote a Cartesian coordinate system at the CM oriented so
that mass m lies in the X-Z plane as shown in Figure 9.6 .

Straightforward calculation shows that the moments and products of inertia
about the center of mass are as follows:

Loy = |5 (&) + 551 (1.875) (9.25)

Ly = |54 (1:5) + 557 (1.5) (9.26)
[ 1 o

LZZ “la¥T (0.5) + ST (0.375) (9.27)
L J

ny =0 (9.28)

L, = |39 (0.5) + 39 (0.375)} (9.29)

Lyz = O (9.30)
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where
A 4‘
a = (Z m‘])/m0 = 4(00/ot)2

Consequently, the L matrix is

2 0 0.5 1.875
o a
L"m 0 ].5 0 +u—:'—_—T 0

lo.5 0

o
o

L
Mo
(%)
et |
o

1

.5

(9.31)

For the specific clock error Op = O (or o = 4), the corresponding I

matrix is as follows:

0.667 0 -0.667

r.= 0 0.667 0
[0.667 0 3.166

The rms error magnification factors are given by

(F,(x)”2 = (r, )'/4=0.816

Yy

1/2 _
(Fzz) = 1.779
GDOP = 2.12]

{9.33)

(9.34)
(9.35)

(9.36)

For the values G = % = 20 nsec, the rms errors in calculated position are

as follows:
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- 1/2 .
oy = (Pxx) (otc) = 16.32 ft

(Fzz)]/z(otc) < 37.58 ft

END OF EXAMPLE
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X. THE LIMITING CASES op + 0 AND ag *

Obviously, as the rms clock error 9 decreases, the accuracy of a spherical
multilateration system increases. Conversely, as the clock error 9 increases,
accuracy decreases.-

It is instructive to examine the mass configuration of Figure 8.1
to see how the foregoing conclusions derive from the moment of “inertia view-
point, The conclusions can be reached as follows. Decreasing % increases

the mass my at the origin., But increasing my amounts to adding new mass to
the system which must

1. Increase all moments of inertia and (thereby) increase
the diagonal elements of the L matrix.

2. Correspondingly reduce the diagonal elements of the
r matrix.

Thus the error magnification factors are reduced so that accuracy is increased.
Conversely, increasing 9 amounts to removing mass from the system which pro-
duces the opposite effect.

Clearly, maximum accuracy is obtained as og 0. Here the center of mass
has migrated to the center 0 of the unit sphere in Figure 8.1, so that
the elements of L are moments and products of inertia taken about 0. Henceforth,
this 1imiting form of a spherical system is called an ideal spherical system.

At the other extreme, minimum accuracy is obtained as the clock error
o+« - Here mg = 0 so that the moments are taken about the center of mass
HCM of masses my,m,,...m,. It has been shown elsewhere [9] that the L matrix
calculated about HCM is the L matrix for a hyperbolic multilateration system
having exactly the same beacon locations and ranging errors as the spherical
system. Consequently, as o > the accuracy of a spherical system degrades
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to that of a comparable hyperbolic syste‘m.]’2

For values of 9p between zero and infinity the center of mass CM is located
on a straight line connecting the points 0 and HCM as shown in Figure 10.1.
The vector displacement d of the CM from HCM is given by

.QI.:] + _h.. (101)

where

|=
1

a (3x1} vector pointing from 0 to HCM

N
o (Z )/mn (10.2)

J=1

One might anticipate that for |d| > |h|/2, or equivalently,

N
0z O om (10.3)

that performance approximates that of an ideal spherical system, while for

N

Z (10.4)

=]

C.a

]This conclusion agrees well with intuition. For assume that the same clock

is used to record all TOAs. C]ear]y, as the clock error becomes large, the
recorded TOAs lose their meaning; only the relative TOAs or TOA differences

then contain useful information. Thus the accuracy of the sEher1ca1 system
must become identical to that of a comparable hyperbolic syste

2For a specific example, compare the Timiting value of (9.15) with the result
of Example 9.1 in Reference [1].
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performance begins to degrade toward that of a hyperbolic system. For the
special case

O = 0p = vvv =0y T [0y {10.5)
condition (10.3) is equivalent to
o
1> 0 (10.6)
ot//ﬂ

Inequality {10.6) is discussed further in Sections XV and XVIII.

Equation {10.1) and the "parallel axis theorem" of elementary mechanics
can be used to put the moment of inertia matrix in a particularly interesting
form. Specifically, the parallel axis theorem states that

(L o(}j §] 44+ myld - h)id - )

oS o) v

= dd' (10.7)
where
(L)S = The L matrix with moments taken about CM (i.e., the L
matrix for the spherical system).
(L)H = The L matrix with moments taken about HCM (i.e., the

______

L matrix for the hyperbolic system).

According to the previous discussion, the L matrix (L)O for an ideal spherical
system is given by
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(L)g = ¥im [(L) ]

00‘*0
= Tim [(L)]
mow
N
= (L) + Z m;) d d (10.8)
j=1

Use of (10.8) to eliminate the product d d' in (10.7) shows that

_ 1 G
Thus the L matrix for a spherical system is an interpolation between the L
matrices for comparable ideal spherical and hyperbolic systems.]

A somewhat more compiex argument shows that the I matrix for a spherical
system Tikewise is a simplie interpolation between the I matrix for a comparable
ideal- spherical system and that for a comparable hyperbolic system. The result
is

-
O = 755 W * 745 ©y (10.10)
where
B = ¢ (10.11)
> omg) by b+
5=
Equation (10.10) can be used to "prove" the conclusions on accuracy stated
at the outset of the section. Specifically, the inequalities given on the fol-

lowing page are immediate consequences of (10.10)

Tsee Eq. (9.32) for a specific example.
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A

(r,)g < )

0 xx’s S (Fxx)H ’ (F"")O < (Fyy)s s (Fyy H (10.12,13)
(Fy)p < (Tp)g < 0,0y » (BDOPY, < (GDOP) < (GDOP),  (10.14,15)
where the notations ( )0, { )

¢ and ( )H mean the indicated quantities evaluated
for comparable ideal-spherical, spherical and hyperbolic systems.
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XI. CALCULATION OF AVERAGE ERROR MEASURES

The error measures (7.6) - {7.10) for any specific beacon-subject geometry
can be determined straightforwardly as indicated in Section IX. Accordingly,
calculation of error measures for specific geometries is not discussed further.

In the next seven sections, the report develops general properties of spherical
muitilateration systems for the following cases of special interest.

Case I {Satellite-Based Systems):

The beacon images are confined to a viewing cone of half angle ¢ as indi-
cated in Figure 11.1. Moreover, the rms ranging errors for all signal paths

are egual.
Case II (Ground-Based Systems):

The beacon images are confined to a cone-complement of half angie ¢ as indi-
cated in Figure 11.2. Again, the rms ranging errors for all signal paths are equal.

Case 1 includes most practical beacon constellations for satellite based systems
Case II includes most practical beacon constellations in which the beacons are

far removed from the subject (aircraft). Applications in which one or more

beacons are in the near vicinity of the subject can be analyzed by the method
of Example 9.2,

An averaging procedure is used to develop the properties of such systems.
The basic approach is as follows:
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1. It is assumed that the image of each beacon can occupy any position
within the allowed area o of the unit sphere; moreover, the beacon
image positions are independent of each other, and all positions
within 2 are equally likely.

2. The L matrix is averaged over all combinations of beacon image positions
to obtain an average L matrix.

[#%]

The average L matrix is inverted to obtain an (approximate) average
I matrix.

4. Average error measures are extracted from the I matrix.

5. Properties are deduced from the resulting error measures.

This procedure leads much more directly to the basic properties of spherical

L Ly -

systems than a detailed examination of typical cases.

The law of large numbers can be used to show that for large N the resulting
*
"average" error measures are rigorous averages 1in spite of the approximation

E[_L,"]J = (E[,L_])'1 (11.1)

in Step 3. For small values of N the resulting "average" quantities are only
approximate averages.

In what follows the quantities produced by Steps 1 - 5 are simply called
"average error measures." It is emphasized, however, that the averages are in
fact approximate, with (11.1) being the approximation involved.

*Specifica11y if N is increased and o 2

0 is decreased such that the quantity
N

(oo/oj)2 remains constant, then the random matrix N x Lf] convérges to

[N
—

N x(E[kJ)-] with probability one as N - .,
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XII. THE AVERAGE L MATRIX

A general expression for the average L matrix is derived in Appendix Il
based upon the following assumptions.

Al. The masses My sMyy...m  are confined to a region 2 on

the surface of the unit sphere.

A2. The mass positions within £ are uncorrelated and are
described by identical probability density functions.

The result specilized to the case

2. 2 _ L2 1.2
o] =0y = = oy =| 9% (12.1)
or equivalently
e m = - = (OF2
My =my = ...=m = (Gt) = ] (12.2)
takes the following form
B (F] MR
X LX Y Z |
- 1 |
E[L] = N y

X! - k] LK) (y*-71), (2" -3)]
2,2
No /o
0t [
+N“'N)1+(Ncg/oi)E y' -y
LZ_I _ Ef_ ) -

(12.3)
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where E denotes expectation, and x',y',z' denote the coordinates (measured from
the sphere center) of a random point P within ¢ governed by the same probability
density function as the masses My sy s e My

It is useful to rewrite (12.3) as follows to parallel (10.9)

E[L] = 1 1 5 Ly 5 %Va L, (12.4)
where
o =N GS/Gi (12.5)
x| [x* y' z']
Ly = N x E{|y* (12.6)
\L# - /

L2=(1—JN)NXE y'o-

]
p— e

/-
[~
]

™~

I -
—_

(12.7)

The formulation (12.4) asserts that the average L matrix is an interpolation of
the matrices Ly and L,. The matrix L, is the average L matrix for My = e (or

1
og * 0), and therefore corresponds to the average L matrix for an ideal spherical

+hn aunawnann I matimd
LHE avoiayc L liawl 1A

+- a
for my = 0 (or ag * «) and therefore corresponds to the average L matrix for a
hyperbolic system with beacon images confined to g.



Note that the matrix LQ is disadvantaged compared to Lq by the factor
(1 - 1/N). This is due to the fact that for each sample mass configuration,
the elements of L are moments about the sample CM rather than the mean CM, The
disadvantage is most pronounced for My = 0, or E[L] = Ly, in which case sample
CMs can deviate considerably from the mean CM. The effect disappears for
My = or E[L] = Ly in which case all sample CM's coincide with the mean CM.

In physical terms, the matrix Lq corresponds to the moment of inertia
matrix about the sphere center of a thin shell confined to & and having mass
density Np where o denotes the probability density function describing the

nAAM N
TJavAalL. P

of inertia matrix for the same shell taken about its center of mass. For the case
of a uniform probability density function (i.e., p = const,) it is easy to show
that Lq and LQ take the following special forms.

-3

oint P.  Simil he matrix L,/(1 - 1/N) corresponds to the moment

c
- "

Case I (Satellite-Based System)

”kT-cos ¢)(2+cos ¢) 0 0
6
Eq - N 0 (1-cos ¢)é2+cos $) 0 (12.8)
2
0 0 1+¢cos 9 ; cos” ¢
Tl—cos $)(2+cos ¢) B
6 0 0
_ ] (1-cos ¢)(2+cos ¢)
LE = (1 - NJ N 0 3 0 (12.9)
2
1-cos ¢
B 0 0 LTL _
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Case 11 (Ground Based System)

_ p
]?(-I _ S1n3 Q) 0 0
] sin2
Ly =N 0 (1 - ————13 ) 0 (12.10)
0 0 %-sinz ¢
1, sin g, 0 0 i
'é'll = 3 )
. 2
L=O-DN o0 51 - 09 0 (12.11)
1 2
0 0 sin® ¢
L 2 —

Note that the entries in (12.8), (12.9) and (12.10),{12.11) are consistent with
conditions (10.12) - (10.15).
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XITI. SATELLITE-BASED SYSTEMS (00 + 0)

For o = 0 the satellite-based system becomes an ideal spherical system.
The corresponding average rms error measures can be calculated from the inverse
of (12.4) with gy = 0, or equivalently from the inverse of (12.8).

The results are as follows

1/2

172 _ e _ ] :

(T ) i (PYy) i JPN [(1 - cos¢) (2 + cose) ] (13-1)
1/2

172 _ 1 3
r = L
( zz) Jﬂ'[} + cos¢g + coézél e

1/2

_ 12 3

GDOP W [(1 - cosd) (2 + coso) + 1 + coso + C052¢]

{13.3)

A plot of the average GDOP versus ¢ is given in Figure 13.1. The dashed
curve represents the minimum GDOP obtainable from N beacons confined to a cone
of half angle ¢.] Note that the "average" curve is well above the "minimum"
curve and exhibits the same general ¢ dependénce.

Examination of (13.1)-{13.3) shows that all error measures are proportional
to 1//N. This means that the error measures are not highly sensitive to the
number N of beacons. For example, to halve GDOP by the expedient of adding
beacons, it is necessary to increase the number of beacons by a factor of four,

1The expression for minimum GDOP is derived in Section XX.
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Normalized plots of the rms error measures are given in Figure 13.2.
The following conclusions are evident from the figure.

1.

Accuracy is much more sensitive to cone angle than to N.
For example, increasing ¢ from ¢ = 30° to ¢ = 60° halves

GDOP, an improvement that otherwise would require a fourfold
increase in the number of beacons.

Errors in position are primarily horizontal errors. For ex-

ample, for ¢ = 45°, (Fxxi1/2= 2(1‘“)”2 so that rms horizontal
errors exceed rms vertical errors by a factor of two.
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X1V, SATELLITE-BASED SYSTEMS (00 + o}

e uuncapuuui'ﬂg average ¢
with Og = ®s OF equivalent]

The resulting error measures are as follows:

1/2
/2 | /2 _ _] 6 14.1
(Fxx) (Pyy) qﬁirl [(1 - cos¢p) (2 + cos¢)] ( )
1/2 _ 1 2 3
(rxx) B Jﬁ:i'] - cOsd (14.2)
1/2
. 12 12 .
GOOP _va._-'l.' [“ e T Cos¢)2} (14.3)

Again, the error measures substantially have a 14fﬂrdependence so that accuracy
is not highly sensitive to N.

Normalized plots of the error measures are shown in Figure 14.1 for N = 4

and N = =, The curves for 4 < N < = 1ie between the N = 4 and N = « curves.
1

18]

.

The foilowing conclusions can be drawn from the figure:

1. Again accuracy is highly sensitive to cone angle. For example,
increasing ¢ from 40° to 60° halves GDOP or double over-all
accuracy.

2. Altitude accuracy is much poorer than horizontal accuracy.
For example, at ¢ = 45° altitude errors typically exceed
horizontal errors by a factor of three.

]The same conclusions are drawn in Reference [1] using different arguments.
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Figures 14.2-14.4 contrast plots of the average rms error measuresvs. ¢ for

the 1imiting cases oy = 0 (ideal spherical) and gp = (hyperbolic). The follow-
ing conclusions can be drawn from the curves.

Ideal-Spherical vs. Hvnerbolic

1.

Altitude accuracy is much better for the ideal spherical system.
For example, Figure 14,2 shows that for ¢ = 45° altitude errors for
the ideal spherical system typically are an order of magnitude
smaller than those for the hyperbolic system.

The horizontal accuracies are comparable for the two 1imiting cases.

Specifically, the plots of (Fxx)jlzv/N shown in Figure 14,3 are
almost identical.

Over-A11 Accuracy {GDOP) is Signficantly Better for the Ideal Spherical
system. For example, Figure 14.4 shows that for ¢ = 45° GDOP for the
ideal spherical system typically is one fourth of that for the hyper-
bolic system.
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XV. SATELLITE- BASED SYSTEMS (General Case)

The extent to which the benefits of a-gy = 0 (or ideal) spherical system
are realized depends upon the size of the clock error % relative to the

normalized ranging error! otﬂJN.

iEY) r\ MO AlAAL mas nrranaes Laea Jd2 oo a0 o

age rms error measures for different values of g can be calculated
from the inverse of (12.4). Plots of the resulting error measures versus the
normalized variable /N 0p/0y are shown in Figures 15.1-15.3,

It is clear from Figures 15.1-15.3 that accuracies typical of an ideal
spherical system are obtained provided

0y < T AN (15.1)

As o4 is increased beyond otA/N, accuracy degrades and approaches that typical

of a hyperbolic system. Figure 15.1 shows that altitude accuracy degrades
rapidly as 9, is increased beyond OtA/N and substantially equals that of a
hyperbolic s;stem for 00 > 50 OtA/N. Figure 15.2 shows that horizontal accuracy
decreases only slightly as OO exceeds OtA/N and roughly equatls that of a hyper-
bolic system for 9y > 5 GtA/N. Total rms error or GDOP has a /N colot dependence
similar to that of Pzz’ which dominates the GDOP calculations for 0g > 9 otA/N.

The curves of Figures 15.1-15.3 are useful for assessing the effect of

clock improvements, For example, it is clear that for 0y < GtA/ﬂ clock improve-
ments will not significantly improve accuracy. By contrast, for gg = 10 otA/N

clock improvements substantially increase accuracy.

1Th15 is reasonable since in the absence of a clock input, accuracy is propor-

tional to cy//N. Thus for the clock to impact accuracy, o, should be small
compared to 0t//N times a geometric factor. Also, see Section X.

-k

Note that actual clock error is only one component of the error op [see {5.3)].
Thus there is a 1imit to the reduction in o that can be achieved by improve-
ments to the actual clock.
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XVI. GROUND-BASED SYSTEMS (00 + 0)

For g 0 the ground-based system becomes an ideal spherical system. The
average rms error measures can be determined from the inverse of (12.10).
The results are as follows.

)2 = V2= L I RV (16.1)
i l1 PK J

1/2._ 1 A3
r,,)7°= G (16.2)
6oop = | — 4 3= (16.3)
W 1 - sin® sin ¢

Again the error measures have a 1A/N dependence. Consequently accuracy is not
highly sensitive to the number N of beacons. o o

Normalized plots of the err‘ovmeasures(I‘xx)]/2 and (I‘ZZ)”2 versus the
maximum elevation angle ¢ are shown in Figure (16.1). The following conclusions
are apparent from the figure.

1. Horizontal errors are comparatively small and independent of ¢.

2. By contrast altitude errors are large and highly sensitive to ¢.

Indeed as ¢ » 0 altitude discrimination disappears altogether,
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XVII. GROUND-BASED SYSTEMS (00 + )
For oy > the ground- based system becomes a hyperbolic system. Thus the

Yms accuracy measures can be determined from the inverse of (12.11).
The results are as follows.

[ 1/2
172 . V2 .0 2 -
r, .y’ c=(@, )" =- ] (17.1)
XX yy N -1 L . sin ¢ |
|- Sy
] 2.3
D L S T (17.2)
1/2
GDOP = —— [ a4 , 12 ] (17.3)
JN -1 l] ) sin® sin® ¢J

As in all preceding cases, the error measures substantially have a 1/JN depen-
dence. Thus accuracy is relatively insensitive to the number of beacons.
Normalized plots of (Fxx)]/z and (PZZ)]/Z versus ¢ are shown in Figure 17.1.

Horizontal errors are small and relatively independent of ¢.
Altitude errors are large and very sensitive to ¢.

Figures 17.2 and 17.3 compare normalized plots of (I )1/2 and (T )]/2

¥y 77 Vs, O
for hyperbolic and ideal spherical systems. Figure 17.2 shows that
1. The horizontal accuracies of -two systems are almost identical

It is clear from Figure 17.3 that

2. While the altitude accuracy of both systems is poor, the altitude

accuracy of the ideal spherical system is approximately twice as good
as that of the hyperbolic system.

Thus the primary difference in performance of the limiting cases is in

altitude descrimintation where the ideal spherical system performs approximately
twice as well.
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XVIII. GROUND-BASED SYSTEMS (General Case)

The extent to which a ground-based system achieves the better altitude
discrimination of a pure spherical system depends upon the value of the rms
clock error 9 relative to the normalized ranging error ot/JN.

The average rms error measures for different values of ool(otA/N) can be
calculated from the inverse of (12.4) using (12.10) and (12.11),

Figures 18.1 and 18:2 show normalized plots of the error measures versus

V[N a fr The curves start from the values for an ideal Cnhnl“‘lc al cvct

m an
uOIut. it o id vl duu I oFIe i

o d
degrade to those of a hyperbolic system as g becomes large. For 5° < ¢ < 10°
the error measures approximate those of an ideal spherical system prov1ded

op < o AN (18.1}

For 5° < ¢ < 10° the error measures approximate those of a hyperbolic system

whenever

oy > & o AN (18.2)
Thus almost a factor of two improvement in altitude dﬁscrimination over

a hyperbolic system is obtained whenever (18.1) is satisfied. No improvement
is achieved when (18.2) is satisfied. A modest improvement is obtained for

ctA/ﬂ <0y < 5o AN (18.3)
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While spherical multilateration systems provide an altitude estimate,
Sections XVI and XV show that the estimate normally is poor in the case of a
ground based system, and can be poor in a satellite-based system for a suf-
ficiently large clock error %g- Thus in some applications it may be desirable
to use an independent altitude measurement (e.g., from a barometric altimeter)
as an input to the position calculation algorithm so as to obtain an improved
position estimate in all dimensions. The present section extends the analysis
of Sections III - VIII to accommodate such a measurement.

Thus assume that measured altitude is to be used as an input to the cal-
culation of subject position. Let (x',y',z') denote a Cartesian coordinate
system centered at the subject, and oriented such that the z axis corresponds

to altitude. In addition let

r = The altitude of the reference point (see Section VI) a
above andaltitude reference (e.g. sea--level)
z* = The measured altitude.
e, = The error in the measured altitude.
*
The quantities z, z and e, are related by the equation
*
z =1+ [0,0,-11R + €, (19.1})
or equivalently
re=t e+ 110,017 R+ esc (19.2)
c c - = z )
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The subject position now is to be estimated by "solving" (6.3) and (19.2)

for R using the least squares procedure.

The solution parallels that given in

Section VI. The error in the resulting estimate is given by the expression
R-Rg = c[F H'(H, P Hey ! H F Ve wm P Tl e (19.4)
LA <+ S4Vo+ o+ S+ U LY L4 DhU4 Lalad Ty ¥ \ /
where
. - _ _—
& ||t N+2 £y = £ N+2
ELR’ L 0,0,1 |
et e o
3
7] L
H, = H N+1 (19.5-7)
-1 -
L_O 0 ]
N+2

with ¢, F and H as in Section VI, and where P, denotes the covariance matrix

-~
t

= Ele, §i]

p——

('L'U

(19.8)
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and P_ denotes the covariance matrix of Section V.

The covariance matrix for the resulting positional errors is given by

]

D ET{R - RY(R - RY']
"R LA RAY YA RAN
—t

cPLEL Hi(H, P, BTV HET]

The error magnification matrix defined by
A

T =————2-P
-t (o*c) R,

is as follows:
r, = [F) HL(H, Py H)7TH, F]7]
-+ ST I THD Ty Ty

where EN denotes the normalized covariance matrix
+

=°
L

|
- ||
|
|

0 cil(c*c)2

b ——d

and EN and (o*c)2 are as in Section VII.
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It is shown in Appendix III that the inverse of the covariance matrix
(19.11) can be calculated as follows

0

0 (O*C)Z/Ug

=——

where L is as in Section VIII.

(19.13)

Equation (19.13) shows that F;] js computed exactly as in Section VIII
except that the q_uantitl(c:"fc)z_[g_Z now must be added to the Z-Z element of

([+)'1. Thus the effect of the independent altitude measurement is to increase

the Z-Z element of [f] and correspondingly to reduce Pz .

The effect of a highly accurate altitude measurement can be assessed by

examining the 1imiting form of T  as g, > 0.

lim T, =
ag_-0

Thus the error magnification factors (T

expressions

11
TLxx ny
L
|b<y yy
i 0 0 0
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It is clear from {19.13) that

(19.14)

can be found from the

(19.15)

(19.16)



where Lxx’ ny and Lyy are calculated by the method of Section VIII. For small

but non-vanishing o, 1t can be shown that the error magnification factor (FZ ),
is given by

A ori/(o*c)2 (19.17)

as expected.
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XX.  OPTIMUM BEACON CONSTELLATIONS

The following questions appear to be basic ones from the viewpoint of
designing spherical multilateration systems.

1) What is the minimum total mean-squared positional error

02 that can be achieved from a given number N of beacons?

2) How should the beacons be deployed to achieve minimum
error?

The present section answers these questions for beacon constellations
satisfying the following restrictions.

Case I: The beacon Tocations are not restricted and o, > O.

0
Case II: The beacons are confined to a viewing cone having a half angle
¢. Moreover, the system is ideal (i.e., 9 = 0).

The section also presents an example that illustrates the usefulness of the
results.,

Bounding arguments are used to identify the minimum errors and corresponding
optimal constellations for Cases I and II. That is, a lower bound

n o 3
LU LE Lasls G TuUWTT v 1

Oon ¢ S

established. Then it is shown that certain select constellations realize the
bound.

The total mean-squared error o? is given by the sum of the diagonal elements
in the covariance matrix (7.2). That is,

2 2 2, 2

6 =05 +0% + 0

|
—
—
+
—
+
—
—
Q
*
—
™~

(20.1)
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Thus the problem of minimizing o? amounts to minimizing the error magnification
factor

o8

-.-—._.2.(0‘*) = FXX + Tyy +FZZ (20.2)

The following bound' is used to deal with the quantity (20.2):

T 4T 40 > 1 . 1 .1 20,
XX yy 2z - Lxx Lyy LZZ (20.3)

where the equal sign applies if and only if the L matrix is diagonal. The

bound is useful in that it facilitates use of coordinate systems that do not
necessarily diagonalize L.

EXAMPLE 20.]1 {Unrestricted Constellations)

Consider the problem of positioning N beacons in three dimensional space so
as to minimize the total mean squared error 02 at the subject.

Let C denote any conste

T

nnnnnn

| ~ 1
N VT aLvviio ., [ =

am

]}n+1nn nf +hn ] ) denote an

{ .
avion e WX .Y .2

arbitrary Cartesian coordinate system located at the center of the unit sphere.
Let (x,y,z) denote a Cartesian coordinate system located at the mass center of
mo,m],...mN, that differs from (x',y',z') only by a translation, Ffinally, let

Lxx’ Lyy’ l.ZZ denote the diagonal elements of the L matrix for C, calculated in
the coordinate system {(x,y,z).

:::::

2
(CG*)Z - LXX Lyy LZZ .

1See Appendix I, Reference {17,
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The parallel axis theorem of elementary mechanics asserts that

where

Similarly

where

N N
- ’ 2._ ) |2 —-r2
Lex = ;: mj(xj) = ;L nﬁ(xj) - M(x")
j=0 j=0
_— n
= MH(x')‘ - M(xT)
N N
- . —'-.:l ) b
M ZmJ , X MZmeJ
j=0 j=1 '
N N
- | _J____ ) |2
y = :Z, mi (x )2 ik :Z, mJ(xJ)
J=1 j=1
- Y -2
Ly = My (V)7 - MEyT)
— |2 '_'l"2
Lzz = MH (z - M(z")
_7 N‘
() = 3= > m(yh?
MHr_e J J
i=1
—'——T N\
(z')" = LN m.(z‘)2
UF=REhe
J:
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Use of (20.5), (20.10) and (20.11) in (20.4) yields

2

o 1 + 1
(@) — 2 W ToT 2
My (x5 - M(XT) My(y')" - M(y™)”
+ ] (20.14)
M, (22 - ME"? '
It follows from (20.14) that
+* _'M .
(o™ Hlan? v @)?

vy =7" = 0.

with equality possible only if x" = y' = 2

According to the Pythagorean Theorem, the coordinates (xj,yj,zé) of each
mass mj on the unit sphere satisfy the relationship

22 4 w2 4 (2 .
(xj) + (yj) + (zj) ] (20.16)
Summation of (20.16) gives
N N N N
Y , 2 - \ 2 Al . 2 _ iR
> om P e Y mrf e Y m? e Y g (20.17)
3= i=1 j=1 3=
so that
(x')2 + (y')2 + (z')2 = 1 (20.18)
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Use of (20.18) in (20.15) yields

1 ] ) 1
72 + + (20.19)

R N R N O LTIt

(x')? + (y')% < (20.20)
0 5(7'? , 0 s W (20.21 a-b)
indicates that
f(j_)fi%ﬁ (20.22)

Moreover, the minimization procedure shows that equality in (20.22) holds only
.if va = Lu = L?’ = MH/3'

Y]

JJ
A review of the development (20.1) - (20.22) shows that the lower bound

(20.22) is achieved if and only if the following conditions are satisfied
1. The L matrix is diagonal.
2. x' =y =z"=0.

3. L. =L =L_=M/3
XX yy 2z H

For the case of equal ranging errors,

2 2 2
0y = 05 = = oy (20.23)

The bound (20.22) reduces to
2

v L (20.24)
(co*)
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5]

It is easy to identify beacon constellgtions that attain the bound (20.24).

For example, for N = 4,6 the constellations shown in Figures 20.1 and 20.2
achieve the bound. Similfarly, the N = 8, 12 and 20 constellations in which

the beacon images are Tocated at the vertices of the regular solids realize the
bound (20.24). Also, any superposition of the "regular” constellations or their
rotations achieve the bound (20.24). More generally, any constellation in which
the beacon images are (approximately) uniformly distributed over the unit sphere
satisfies conditions 1 - 3, and therefore (nearly) realizes the bound (20.24).
Note that the bound (20.24) is equivalent to the relationship

GDOP > 34/N . (20.25)

For the case of unequal ranging errors fewer constellations realize the
lower bound {20.22) exactly. The bound can be realized approximately, however,
by positioning the beacons so that Mys Mys oo My approximate a uniform distri-
bution of mass over the unit sphere. For such constellations

GDOP > 34/M, . (20.26)

It is interesting to note that the bound (20.24) 1is identical to the

corresponding bound for a hyperbolic system.]

Thus an optimal spherical system
is not more accurate than an optimal hyperbolic system having the same number

of beacons. Rather the constellations have exactly the same accuracy.

END OF EXAMPLE

Tsee Example 11.2 of Reference {1].
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EXAMPLE 20.2 (Cone Restricted Constellation; oy * 0)

Next consider the problem of placing N beacons within a cone of half angle
¢ so as to minimize the total mean-squared error 02 at the subject. Assume
that the rms clock error g is zero.

Let (x ,y ,z ) denote a Cartesian coordinate system at the center of the unit
sphere and oriented such the z axis coincides with the cone axis as shown in
Figure 20.3.

According to (20.2) and (20.3) o2 satisfies

o’ LI . (20.27)
> N
(co*)2 = Lyx Lyy L,z

On the basis of Fiqure 13,2 one expects that

Lxx << LZZ and I'_yy << Lzz (20.28-24)
so that the right hand-member of (20.27) is dominated by the 1/LXX and 1/L
terms. This suggests that the proper strategy for minimizing 02/(co*)2
consists of placing the beacon images so as to maximize Loy and Lyy. In the
case of equal ranging errors

2 _ 2 _ _ 2
0] =05 = ... = Oy (20.30)
or equivalently
My =My = cov = my = 1 (20.31)
the quantities LXx and Lyy evidently are maximized by placing the N beacon
Smamnac N 3 Farml swvatingd tha vinn chnwn 4n Fiauve 20 4 A ctvaiohtforward
HIAYED W TUTRIT Y QTUVMANY e 1 1y 1V 3ivwil in 1 T gur w [4 v st diyinvivi vrls

86



[IB-Q-]SB?S]

UNIT

BEACON IMAGES
SPHERE

ALLOWED HERE

N BEACON IMAGES
EQUALLY SPACED p——

RING R

Figure 20.4

87



J,;-sin2 o 0
‘
L=nN o 4 sin? ¢
| o 0
so that
¢ _1|a_, 1
(co*)2 N s1'n2 ¢ cos2 ¢
and

GDOP =

114 +
JW sin2 ¢

can be explored as follows.

The aquantities L__. L
' xX* Tyy?
N
N\ e _
Ly = Zi.mj(x.) =
Jj=0
N
- N\ 2 _
Loy Z mJ(yJ) =
Jj=0
N
-\ e
L,, = mj(zJ) =
j=0

, and L

ZZ

M (x')E

H

88

1/2
1
cos2 ¢

The conjecture that {20.33) actually is the minimum value of 02/(c0*

are given

0 (20.32)

(20.33)

(20.34)
)2

(20.35)

{20.36)

(20.37)



where (x')°, (y')7 and (z')% are as in (20.9), (20.12) and (20.13). Once
again, the Pythagorean Theorem {20.18) applies. Use of (20.35), {20.36), and
(20.37) in (20.27), followed by use of (20.18) to eliminate (z‘)2 yields

2 I . . ]
—7 ?_'w"r{ ' = ' = ' } (20.38)
()™ H{G?Z (v 1 - ()2 - (v)?

Now the coordinates x&. yé of any mass mj within the cone satisfy

(x} )2 = (r1)?

n

)2 4 (yj (rj

< sin® ¢ (20.39)

for ¢ < w/2, with the equal sign possible only if mj is on the ring R.
Summation of (20.39) as in (20.17) shows that

7 ? ? ,
(xé) + (y!)" < sin ¢ '20.40)

[}
J
for ¢ < m/2, with the equal sign applying only if all of the masses
m],mz,... m,, are on R.

Minimization of the right- hand member of (20.38) over the domain D defined
by {20.40) and the conditions

(20.41-42)

produces a bound on 02/(0*c)2 that depends only upon N and ¢, and therefore one
that can be compared with (20.33). The domain D consists of the shaded area

in Figure 20.5. The minimization is performed most directly in terms of the
variable

(20.43)

89



DOMAIN D—_]

N
AN

(¥ 18-4-15821
]

‘y///LINE X124+ (Y12 = sinl

0

- -
AN

%///%4’ - WP
AN

LINE CF CONSTANT h /)\

Figure 20.5

90



Use of (20.43) in (20.38) gives
[1 P N 1\
(x)% h-(xn? 1o

It follows successively from (20.44) that

:zra

(o*c)° ~

62 N 1 Minimum { 1 1 4o
(ovc)? =1 oY

o*c}

1 M1n1mum [ﬂ_+ 1 ]

h 1 -h

" 0<h<s1n $

1
H sin ¢ cosz¢]

for ¢ < sin”) 2/3

k.O

/"__

for ¢ > sin”) /2/3

with equality in (20.45-46) possible only if

for ¢ > sin'] _V} 2/3
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A review of the development (20.27) - (20.46) shows that the lower bo

und
(20.45-46) is realized if, and only if, the following conditions are satisfied:

1.  The L matrix is diagonal.

2. Ford g_sin']V/2/3 the masses m, are located on the ring
R in such a manner that (20.47) is satisfied.

3. For¢ > sin']x/Z/B the masses m, are placed within the

cone such that (20.48) is satisfied {but not necessarily
on the ring R).

For the case (20.30), M, = N. Thus Inequality (20.45) shows that for
¢ < sin ]\/2/3 the ratio © /(cO*)2 cannot be smaller than the value predicted
by {20.33) and realized by the constellation of Figure 20.4. Inequality (20.46)
ind 1cat§s the ;1m|taL|075 of (20.33). Specifically for ¢ > sin™' /2/3, the
*

ratio u”/(co*)” can be smaller than that suggested by (20.33) but cannot be
smal]er than 9/N. Note that the constellation of Figure 20.4 with ¢ equal to
sin’ \/2/3, among others realizes the bound (20.46).

In the case of unequal ranging errors, the lower bound {20.45), (20.46)
normally cannot be realized exactly., The bound (20.45) can be realized approxi-
mately for ¢ i_sini}V/2/3 by placing the beacon images my.m,,...,m  around the
ring R so that conditions 1 and 2 are satisfied as nearly as possible. For
¢ > sin“lvfé73, the bound (20.46) can be approximated by placing the beacon
images My sMas e sy around a ring with ¢ = sin"]\/é?3 in such a manner that
condition 1 and (20.48) are satisfied as nearly as possible.

For the case (20.30), Figure 20.6 depicts a normalized graph of the mini-
mum value of GDOP versus ¢, implied by (20.45-46). Note that GDOP achieves its
absolute minimum at ¢ = sin”! J/2/3. Note also that the curve decreases more
rapidly than the corresponding curve for a hyperbolic system,] but attains the
same final value as predicted by Example 19.7.

]See Example 11.4 of Reference [9].
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According to the discussion of Section X, the curves of optimum GDOP
for non-ideal spherical systems lie between those shown in Figure 20.6.
END OF EXAMPLE

EXAMPLE 20,3 (Satellite Position Determination)

As an example of the
the problem of determining the position of a satellite S in synchronous orbit
about the earth. Assume that N ground stations simultaneously take range fixes

to determine the position of S.

The earth subtends a half angle of 8.7° viewed from S. Thus the N ground
stations are confined to a cone of half angle ¢ = 8.7°,

If the "clock error" % is zero, then according to (20.45), the mean-
squared positional error 02 is bounded below by

2 (g*e 4 ‘ 1

2
s )
= My sin2(8.7°) c052(8.7°)J )

2
- 229.7 ("%L (20 .49)
H

If % is non-zero, then the mean-squared error 02 again satisfies (20.49)

2

for the reasons given in Section X. Thus o° satisfies (20.49) in any case.
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For the parameter values

and

01 = 0, = 03 = 30 nsec (20.51)

condition (20.49) shows that the rms positional error exceeds
229.7 39 T/z = 262 ft (20.52)

END OF EXAMPLE
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APPENDIX I
PROOF OF IDENTITY (8.2)

Theorem:
If
> L
U = any k x £ matrix of rank 2
H = any (k-2) x k matrix of rank (k-g)
for which HU = 0
P = ak x k symmetric positive definite matrix
W= op!
Then

B PHO)T R = [L-MuUru) UINL - U)o (A1)
Proof:

Let ﬁ+ denote the k x k matrix
)
: . {A1.2)

Because of the way in which the final & rows of H, are constructed

H | III - A .
(-.+ —_—— )
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so that

-1
-l [(H pryl | o 1
(E+ E-B+) - . | PP (A1.4)
L v LMy
Thus
(1, 2" (| 1 o) {(“ﬂ"'w 0 a
WO PH) TV H = [W]|MU
LT L LS = 0 ](!. ﬂ!)—1 U EJ
= H WP Henuu T e (A5)
Rearrangement of (A1.5) gives
] 1 "'] - t ' "-‘ 1 -1 |
H' (HPH') "H = Hy (H-{—Eﬂq-) He -Mu(u MUy UM {A1.6)
But K, (H, E_ﬂ;)-] H, = M. Consequently

L]
1=
1
=
=
———
Loy
=
Lo
——
]

n
—
[v—
1
=
Lo
-
[y
=
=
o
]
—
=
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APPENDIX 11
DERIVATION OF EQUATION (12.3)

Qutline of Derivation:

For any placement of the masses (o*)z/c.lz...(o*)z/oN2 on the unit sphere,
the matrix L of moments about the center of mass, the corresponding matrix Ly
of moments about the origin, and the vector i pointing from the origin to the
center of mass satisfy the identity

L= Ly~ (my+m) T3 (A2.1)

where

e

N
My m (A2.1a)
j=1

The identity is a form of the "parallel axis theorem" of elementary mechanics.

The relationship (12.3) is derived by averaging (A2.1) over all mass
constellations that satisfy the following assumptions.

Assumptions

*2, 2 *2, 2
Al. The masses (o ) /0, ...(c ) /oN are confined to
a region O on the surface of the unit sphere.

A2. The mass positions within & are uncorrelated
and are described by identical probability
density functions.
The derivation is broken into three steps. First the term LO in (A2.1)
is averaged over all mass constellations consistent with assumptions Al and AZ.
Next the quantity T ' is averaged over the same constellations. Finally the
average of L is determined from the relationship
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E[L) = E[Ly) - (my + M) E[TT'] (A2.2)
where E denotes the expected value over the area 9.

Step 1: Average of Ly

at the origin. The expected value of LO is as follows.

S e S @y Loy
) (%) {7—) XiY! (=) X:iZ!
g, g, .
F R B & % 9 AR
J J=
N, * 2 N * 9 ) N * 2
g 1y o 1 a_ 171
(L] 6 %, 2, G0 > Enlizd
J=1 §= 3=1
N * N * 2 N * 2
o g N 40 Lot e
A — L. o .
2 Gxy PRI > &) )
J:| 'v J:l J J= o _
X L YLz
AN H J} (X5 Y5 J],
DI CEN: v (A2.3)
R ] |
J
where Xj, Yj, Zj denote coordinates of the mass (c*/oj)2 measured
from the origin. Since the probability density functions are
identical for all masses, Eq. (A2.3) can be rewritten as follows
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X7 XYz
‘VY'
L

= MH X E Y! (A2.4)
ZI
where X', Y', Z' denote the coordinates of a random point P
within @ having the same probability density function as
* *
the masses (o /01)2...(0 /01)2.
Step 2: Average of i i'
The vector pointing from the origin to the center of mass
is given by
X!
N * 2 J
T = cade > () Y! (R2.5)
- ms + M Z, o’ 3 )
0 H = h
3= lz'.J
J
Thus the average value of the product i i' can be expressed as
follows.
1 [} L] |
__ NN, wp [N TRRA
('] = —— £ Y > (&) (&) |V
(m, + M) — j k J
0 H i=1 k=1 71
J
(A2.6)

101



It is convenient to break the right hand member of (A2.6)

into two terms T
-—C

é——l

)

It

and Iu as follows

] = I +1, (A2.7)
'| N, * 4 Xj [XJ YJ ZJ]
———— (= |y (A2.8)
(mg + M) P T I
\ L“iJ }
X7 Ix vy 7]
] ﬁ‘ N‘ RTG ¥
——— £ (z7) &) s
(mg + My) ok 4k
\ j#k L JJd f
(A2.9)

The term IC contains all correlated products of mass coordinates.
The term Iu contains all uncorrelated products of mass coordinates.

The term Ic can be developed as fo]]ows

%

t

Loyl o919
[X; ¥} 23]

—
P
—
™4
s
—

(A2.10)

—X[-
. * J
0 1
(my + M )? Ei 53 Yj
j""l Zl
L J
) [ yo-
N ey
1 o] )
*“*————“—“2 (E;T) xE Y
{m, + M) . j
0 H J"] Zr
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with the last line following from the hypothesis that the
* *

masses {o /01)2...(0 /UN)2 and the point P are described

by identical probability density functions.

In a similar manner the term Iu can be developed as

follows.
NN, ay B Y 2]
T = ! D NS S N § K
~{ (m. + M )2 G, Uk Jj
0" ™ =1 k=1 9 ,
J#k J
I | v—l =1
] N N fo %o X X ']
- g o]
s |2 ) & &) | |7
(m, + M) e - J k -
0 H j=1 k=1 7
j#k
N X X'y 7
1 2 "4 -
= m [MH - z (g—-)] X Y' (A2.11)
‘e J —

where the notation " denotes expected value.
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Use of (A2.10) and (A2.11) in (A2.7) gives

N
N [ Toxe - ¥ rexr vy vz - 5031)
. {E_) \ i Lt Y = ~ Jd
+ 3= 32_ % E (Y' - V)
(mO + MH) _
(' - 7')
(A2.12)
Step 3: Average of L
Substitution of (A2.4) and (A2.12) in (A2.2) gives
X7 [X' Y Z2']
E[L) = M, x E{[v
AR
5 ~ Y [3(‘: VI '2"1]
My
- Im0+MH§ Y
AN
N
N * 4 r 1 Vi 1 Vi =
2 (e =T [ - - V)@ - 7))
=1 9 -
- x E (vy'" - Y'}
(my + M) N
(2' - 7")
(A2.13)
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Equation (A2.13) can be rewritten as follows
Xl [xl Y' Zl:]

E[L]=ﬁ1—%—+—ﬂ— x E§]Y

(X=X D=2 (Y -V )z -7")]

N
by i 3 @l
(z'-7')
(A2.74)

Use of (A2.1a), (12.1) and (12.2) in (A2.14) leads directly
to (12.3).
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APPENDIX III

PROOF OF EQUATION {19.13)

The inverse of (19.11) is as follows

(E-l-)‘.l = E,:_ !_'l__;. (ﬂ; n H_lr)

—
I
w
M

el

—r

]
The matrix factor ﬂi (5+ gN ﬂ+) 1 H, can be evaluated using the result of
Appendix I as in Section VIII. §pec1fica1]y, with the agreements

rj+ = EN+ and [_J_;_ = tl_,j_’__]v:“]’(]] (A32)
N+2
there follows
B(H, P, KT W, =
=+ =+- =N, -+ -+
+
SRR TR T NN s SR AT T (A3.3)

Use of (A3.3) in {A3.1) shows that

)7 =Kk, (A3.4)

where

= 1 "T 1
K, = (I - 9+(9+ My !+) s M+] Fy (R3.5)
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Evaluation of K _ shows that

(A3.6)

2 0
:
o=l ok bl o 0 K
1
|
_ ;o on2 .2 o
U (g*c) /CfZ 0Ol
|__ . Iy —
0 0 0
=k Mk+lo 0 0
B 0 (U*c)z/ogu
0 0 0
=L+ (0 0 0 (A3.7)
0 0 (U*C)z/{}g

where L is as in Section VIII.

Q.E.D.
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