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1. INTRODUCTION

This report examines a variety of issues related to the accuracy of

hyperbolic multi lateration systems.

The distinguishing feature of hyperbolic multi laceration systems is

that position is estimated from differential arrival times of a pulse trans-

mitted over several distinct paths. Thus no absolute time reference is

required.

Hyperbolic multi laceration systems can take many different forms.

Figure 1.1 depicts an example of a system that could be uti1ized for aircraft

surveillance. The system operates as follows. The aircraft transmits a

pulsed signal which is received by a constellation of satellites. The

pulse time of arrival (TOA) at each satellite depends upon the distance

between the aircraft and the satellite. Upon receipt of the pulses, the

satellites re-transmit the pulse to a ground station. The ground station

then utilizes differences in the TOA’s and the known positions of the

satellites to calculate the position of the aircraft.

The accuracy of such a system is limited by the accuracy with which

the satel1ite positions are known, by propagation disturbances in the atmos-

phere and by noise disturbances in the satellite receiver. More specifically

the atmospheric and receiver disturbances are translated into TOA errors.

The ground station then translates the TOA errors and the satellite position

errors into corresponding aircraft position errors.

Considerable previous work [1-5] has been done on calculating the accuracy

of such systems. Thus, given disturbance statistics and a specific deploy-

ment of a transmitter and receivers, it is straightforward to calculate the

resulting rms positional error.

The present report complements previous accuracy work by establishing

some useful general principles. Specifically the report asks and answers

questions such as the following.
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1. What are the tradeoff’s between accuracy and the

number of receivers (satel1ites)?

2. What are the tradeoffs between accuracy and the

deployment of the receivers?

3. How do the errors depend on direction? (e.g. in an

aircraft surveillance system it is desirable that

altitude errors be smaller than horizontal errors.

Is this the case?)

4. What are the smallest rms errors that can be attained

using a fixed number of receivers? How should the

receivers be deployed to achieve minimum error?

5. How is accuracy impaired by dropout of a single

receiver? Dropout of which receiver most impairs

accuracy?

3



11. SUMMARY OF RESULTS

Although the present work has been motivated by satellite based sur-

veillance systems like that shown in Figure 1.1, the work is reported in

more general terms to make the results available to other applications as

well. Thus, it is assumed that a hyperbolic multi laceration system

consists of a number N of beacons (e.g. , satellite receivers), and a

subject (e.g., an aircraft). The subject transmits a pulse that is received

at different times by the beacons. (Or equivalently, the beacons simulta-

neously transmit a pulse that is received at different times by the subject)

Due to disturbances of various kinds, the TOA’S are somewhat in error.

Differences in the TOA’s then are used to estimate the subject position by

means of the conventional least squares Pri~ciPle [5].

It should be noted that the assumption of fixed beacon position ignores

the effects of motion in satellite based systems. Thus with regard to

such systems, the results reported apply to a single instant of time.

Both two dimensional and three dimensional hyperbolic systems are treated.

Two dimensional systems are included not only because of

interest, but also because they provide valuable insight

sional systems.

In some cases no geometrical constraints are placed

locations. In other cases the beacon constellations are

their inherent

into three dimen-

upon the beacon

assumed to be con-

fined to a “viewing sector” (two dimensions) or to a “viewing cone” (three

dimensions) , or to a plane.

The primary results for three dimensional systems are as follows. Results ‘

1-7 assume that the TOA errors are uncorrelated and have equal “variance.

Bracketed section and/or example numbers indicate where the results can be

found.

1. It is shown that the inverse of the error covariance matrix

corresponds to the moment of inertia

configuration. The insight provided

4

matrix for a simple mass

by this fact makes it



possible to answer many questions relating to

accuracy [Section IV].

2. For reasonably uniform cone restricted beacon con-

stellations, it is shown that typical error measures

are not highly sensitive to the number N of beacons.

Specifically typical error measures are proportional

to l/~. Thus, for example, to double system accuracy

by the expedient of adding beacons, it is necessary

to increase the number of beacons by a factor of four

[Section VII].

3. It is shown that accuracy is highly sensitive to cone

angle. Thus for example, increasing the half angle

of the viewing cone from 40° to 60° can double system

accuracy, an improvement that otherwise would require

a fourfold increase in the number of beacons [Section

VIII].

4. For cone restricted beacon constellations it is shown

that altitude errors exceed horizontal position errors,

typically by a factor of three [Section IX].

5. Expressions are derived for the minimum attainable

RMS errors given N beacons confined to a cone,. The

expressions are useful for evaluating candidate

beacon constellations [Sections X, xI].

6. For cone restricted beacon constellations, system accuracy

is most sensitive to dropout of a single beacon either

directly overhead or on the cone horizon. If most beacons

are directly overhead, then accuracy is most impaired by

dropout of a beacon on the horizon. If most beacons are

near the horizon, then accuracy is most impaired by

dropout of a beacon directly overhead [Section XII].



7. In ground based hyperbolic systems altitude errors

substantially exceed ranging errors. Moreover the

altitude discrimination provided by such systems is

due almost entirely to the beacon nearest the subject

[Section VII].

8. The conventional estimate of subject position which

assumes uncorrelated equal variance TOA errors is

general ized to the case of correlated TOA errors with

unequal variances. One practical result is a method

for incorporating differences in the received signal

to noise ratios into the position estimate [Section XIV].

9. The moment of inertia method for calculating the

covariance matrix for positional errors is valid

whenever the TOA errors are uncorrel ated. Thus many

of the results obtained herein for uncorrelated TOA

errors having equal variances apply with minor modifica-

tion to the case of unequal variances [Section XIV].

10. The moment of inertia method for calculating the inverse

of the error covariance matrix is general ized to accommo-

date an independent (e.g., barometric) altitude measure-

ment [Section XV].

Analogous results are obtained for two dimensional problems.

The report is written uti1izing an example format. Some examples

draw major conclusions. Other examples serve to amplify earlier results,

or provide a basis for subsequent ones.
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111. EQUATIONS FOR ACCURACY MEASURES

The”basic accuracy measures for a hyperbolic multi laceration

system are derived in this section. The derivation follows that given in

References [2,4,5]. The derivation is carried out for the three dimensional

case. All equations apply with obvious modifications to the two dimensional

case as well .

A typical hyperbolic system is shown in Figure 3.1. The equations

relating the pulse times of arrival to the distances d,, al p,...% are as
follows.

where

‘j

‘j

T1

‘N

.

.

‘j-cj =

‘o =

dj/c =

It is assumed

-C=TO + dN/C
N

The recorded time of arrival (TOA) of the pulse at

the jth beacon

the error term which accounts for disturbances in

the medium through which the pulse propagates, and

noise disturbances in the receiver

(3.1)

the time at which the pulse would arrive at beacon

j where no disturbances present

the time at which the pulse is transmitted

the ideal pulse transit time from the subject

to beacon j (c denotes the pulse velocity)

that the T: are corrected for all known biases so that the e,
J J

have zero mean.
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Equations (3.1) are non-linear when expressed in terms of any convenient

coordinate system. For example, use of a cartesian coordinate system replaces

the distance dj by a quantity of the form /f Xj-Xo)2 + (Yj-Yo)2 + (Zj-Zo)2.

Thus Equations (3.1) are difficult to solve for the subject coordinates..“
The approach selected here for placing (3.1) into a tractable form* consists

of linearizing (3.1) about a convenient reference point as shown in Figure 3.2.
--. The equations then take the form

‘l-cl=
To+r/c+i

1 –1
. @/c

(3.2)

‘N- EN’ TO+rN/c+i N” file

where

**
AR = a vector specifying subject position with respect—

to the reference point

‘j
= a unit vector pointing from the subject to beacon j

It is assumed that the vector & is expressed in terms of some convenient

cartesian coordinate system (X’,Y ‘, i“),

Except for the corrections cj, Equations (3.2) comprise a system of

N linear equations in N unknowns, the unknowns being 70 and the three components

of AR. The equations can be simplified by subtracting each equation from—

its predecessor; this serves to eliminate the (unknown) quantity To. The

resultant equations take the form

(Tl - .2) + (Cl - S2) = (rl

(TN-,-TN) + (~N-1-6N) = (rN-

‘z)/c + (1, - :2) . AR/c—
(3.3)

‘rN)/c + (~N_l-~) . hE/c

*This step follows that in References [2,4,5].
**

An underbar “-” is employed throughout to designate vector or
matrix quantities.
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Because the correction terms Sj are unknown, it is impossible to solve

(3.3) exactly for the subject position AR. The best that can be done is to .

derive from (3.3) a meaningful estimate~ of the subject Position &.

The

method of

Whi

i)

ii)

. ..!

111,

e thi:

)

;

;Ystem (3.3) comprises N-1 linear equations in three unknowns, One

;stimating ~ is to

select three of the equations and ignore the

remainder

set the correction terms cj equal to zero

(i.e., their mean values) in the selected

equations

solve the resulting set of three equations in

three unknowns for the estimate & of ~.

approach is conceptually simple, it discards valuable informat

. .,

.

on,

and eliminates the possibility of error cancellation.

A more profitable approach consists of

i)

ii)

iii)

averaging the N-1 equations together to obtain

three equations

setting the Cj equal to zero in the averaged

equations

solving the resultant system of three equations.
in three unknowns for an C?St!M?ite~- Of &.

For purposes of averaging Equations (3.3) together, it is conver,ient .

to re-write (3.3) using matrix notation. The matrix counterpart of (3.3)

is

AT- He=: HR+~H FAR— — — — — — — — (3.4)

where

10
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1.

AT = an N-1 element vector—
the TOA difference T .

J

the jth element of which equals

- 1+1

E = an N element vector the jth element of which equals—

‘j

R = an N element vector the jth element of which equals rj..—

~ = an N x 3 matrix the jth row of which contains the three

components of the unit vector ~j pointing to the jth

beacon

~ = an N-1 x N matrix of the form

1
1

0

0

-1 0

1 -1

0 0

. . .

0 1

0

0

-1

N-1 rows

N columns

The averaging procedure selected here consists of pre-mul tiplying (3.4”

by the 3 x N matrix ~’ ~’ (~ ~’)-1 where the prime denots matrix transposition.

The resulting equation for the estimate @* is given by

~’ fl’(tj~’ )-’ ~-~’ ~’(!t!!’)-’!i~ = F’ H_’(H H’)-l H FAR* (3.5)—

This averaging decision follows References [2,4,5,8] and amounts to

selecting the position estimate &* as that position which requires the

smallest total squared error ~’ ~ to account for the observed data (i.e. ,

the .j and rj).

11



In the case where the :j can be represented as uncorrel ated Gaussian

random variables with equal variances, the averaging decision is equivalent

to use of a maximum likelihood estimate since the multi variate probability

density function p: then takes the form

The resulting position estimate &* is given by

E* . c [EI HIWI)-’ NEI-’ II tj’(~ tl’j’ q

- [~’ H’(H H’)-’ ti~]-’ F’ H’(H H’)-’ HR—— ——— . . —

(3.6)

(3.7)

A relatively straightforward calculation shows that the position errors

that result from use of the estimate (3.7) are

(@*-K) __ __= c [F’ H’ (H H’ )-l tl~]- ~’~’(ti~’)-l ~: (3.8)

the.PO ition error is given byConsequently the covariance matrix EAR for

.
= (g’ -&)(&* -g)’‘AR

(CT C)2 [~’ H’(H H’)-l— — — H F]-’.— (3.9)

The quantity ~ in (3.9) denotes the rms error in the TOA recorded at a

typical beaconT[i .e., 0 2=~forj =,2 ~,
T 1 ,, . . . . Thus the factor .(.CITC)2

..

denotes the mean squared rangi~g error implied by the TOA error.

It is convenient to express the covariance matrix (3.9) as follows

‘AR = (aTc)2 ~ (3.10)

12



/-

= (OTC)2

rxx r
XY

r<Xz

r
XY ‘YY ‘yz

1‘Xz ‘w ‘z?

(3.11)

This formulation is useful because it places in evidence the elements of the

matrix

[~’ ~’ (~ ~’ )-1 ~~]-1 A ~ (3.12)

All of the conventional measures of accuracy are directly available

from (3.11). For example, the mean squared errors in the X, Y and Z directions

are given respectively by

2
ox

= (OTC)2 rxx (3.13)

‘Y2 = (aTc)2 ryy (3.14)

2
‘z = (OTC)2 rzz (3.15)

Similarly the total mean squared error 02, and the so-called “geometric

dilution of precision” (GDOP) are given by

2= 2+.02+02= (ac)2(ra xx + r + rzz)‘x Yz T YY
(3.16)

and

GOOP = A = (rxx
T

Equations (3.13-3.17) show

posses a simple interpretation.

as error magnification factors.

the mean squared error in the X

1/2
+r+r

YY Zz
) (3.17)

that the elements of the r matrix in (3.10)

Specifically the elements can be interpreted

For example, Equation (3.13) asserts that

direction equals the mean squared ranging

13



error magnified by the factor (rxx + r
YY

+ rzz). Accordingly the matrix

~ henceforth is called the error magnification matrix.

14



Iv. THE INVERSE ERROR .MAGNIFICATION MATRIX

To deduce useful properties of the various measures of positional error,

it is necessary to relate the error magnification matrix c or some function

of it to the beacon-subject geometry. The present section shows that the

inverse of ~ possesses two extremely simple interpretations in terms of

system geometry. It is these interpretations that lead to the conclusions

summarized in Section 11.

-1
Thus let ~ denote ~ . That is, let

Straightforward multiplication shows that

[1
11 ..1&(HH’)-’~=~-~ 1 1 ..1

——
. . .

ii,. i

where ~ denotes the identity matrix. Thus

) “.
,,

1 1..1-’

1 1:.1
k-~
,,

. . . F= ~2:~
ii.. i –

. ~,
1; –

(4.1)

(4.2)

(4.3)

(4.4)

15



when <~ denotes the jth unit vector in row format, and

(4.5)

To interpret the matrix ~, assume that the following construction is

carried out.

Construction of Beacon Images on Unit Sphere

i)

ii)

iii)

The vector

origin O to the

draw a sphere of unit radius with center at

an origin O

draw the vectors i_, , i2...!N from the origin O

place unit masses at the points p, , P2,. ..PN

where the unit vectors terminate in the sphere

(see Figure 4.1)

~ specified by (4.5) can be interpreted as pointing from the

center of mass Chlof the mass configuration as shown in Fiqure

4.1. Likewise the vector difference :; - ~’contained in the jth row of the

matrix K can be interpreted as a vector pointing from CM to the unit mass

at point pj. Thus if X,Y,Z denotes a cartesian coordinate system centered

at CM, and differing from the system (x’, y’ , Z’)only by a translation, then

the elements of the jth row of K are simply the coordinates x., yj and Zj
J

of the point Pj in the system (X>y,z),

That is,

[

111

K= 222— . . .
. . .

‘N ‘N ‘N

(4,.6)

16
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The desired fomwlation of ~follows directly from (4.1) and (4.6), namely

In some cases it is useful to re-write (4.7) as

L=N

follows.

J

(4.7) ““’

.

(4.8)

Equation (4.7) asserts that the entries in ~are simply the moments and

products of inertia of the unit mass configuration about its center of mass,

By contrast Equation (4.8) asserts that the entries in ~can be regarded
2as averages of the second order products X , Y, Z etc. over .the set of

points PI, P2,...PN.

Both interpretations are highly valuable as they make it possible to apply

insights gained from the fields of mechanics and statistics to the accuracy

problem.

18
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The two dimensional counterparts of (4.7) and (4.8) are as follows.

!1
N NX2

lij~, j ~j~, ‘jyj

. N

Q, xjYj
N

~j~, ‘j*

(4.9)

(4.10)

In formulating (4.9) and (4,10) the sphere of unit radius is replaced by a

circle of unit radius. Otherwise points PI , P2,. ..PN and CM are constructed

as before. Again the quantities Xj , yj denote the coordinates of point Pj

measured from CM,

19
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v. CALCULATION OF THE ERROR MAGNIFICATION MATRIX

Five examples are given in this section to illustrate the ease with

which the error magnification matrix ~ and typical error measures can be

calculated.

A review of Sections III and IV will show that the orientation of the

coordinate system (X,Y ,Z) can be chosen freely. Accordingly the coordinate

systems here are selected to produce a diagonal ~. This choice further

simplifies the calculations.

Example 5.1 Consider a two dimensional constellation of four beacons

having equal ninety degree azimuth separations from the subject.

The unit vectors

:1 ““u and ‘he points

‘1
..P4 for the con-

stellation are shown

in Fig. 5.1.

Clearly the center

of mass CM of points

‘1
..P4 is at the origin.

Thus

I mmmL
Y

I

l’2

/

UNIT CIRCLE

&

,.-+
/

/ \
i2/_ \

\

/’ 11 \p
P3 1 —)(

\ !3 o
I

P4

Accordingly the inverse of ~ is given by

Figure 5.1

(5.1)

(5.2)

[1

20
~=

02

20
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Inversion of (5.3) gives

[1

1/2 o
==~-1=

o 1/2

All error measures of interest are immediately available from (5.4) as

indicated in Section III. For example

(5.4)

2=2
‘x ‘Y

= ~ (ca,)2 (5.5)

2
a = (c01)2 (1/2 + 1/2) = (caT)2 (5.6)

GDOP = 1 (5.7)

END OF EXAMPLE

Example 5.2 Consider a two dimensional constellation of

having equal one hundred twenty degree separations from

The unit vectors t,

11 ““33 and ‘he points

P1
,.P3 for the con-

stellation are shown

in Figure 5.2.

t

three beacons

;he subject.

PII

A

uNIT
/--- -+.

/ ‘./c’RcLE
/ \

!1 \
1{ \

\
1’ \K

o l—
I

\ 13 ,’
\ !2

P2 \ , ~~
‘..- ,’

-.. ”

Figure 5.2
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Once again the CM is at the origin. Therefore

~ xjYj = (1

Consequently

[13/2 O
L= and~=L

-1 =
— —

-0 3/2

Thus, for example

2 . ; (CCT)2
‘x

GDOP
* 1/2

=($+3) = 2/6

2/3 O

0
1

2/3

(5.8)

(5.9)

(5.10a)

(5.10b)

(5.11)

(5.12)

ENO OF EXAMPLE

Example 5.3 Consider a (degenerate) two dimensional constellation con-

sisting of three beacons in a straight line with the subject. Assume

the subject is located between the extreme beacons.
~

The vectors II ..~3

and the points ~1. .~3

for the constellation
/,----/””” C“c”

‘.
/ \

are shown in Fig. 5.3. /

,+Lq

Y\
\

11
In this case the center

~ls CM “ ‘, P,
p~ I

of mass CN is not at the \ is ~
\ 12

/ Pz

origin O. Instead CM is \
\

I

a distance 1/3 to the right \
\ /“
=. -_-.”

of O as shown.
Fiqure 5.3

.,

22
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The second moments about CM are as follows

~ Xj2 = 2($2+(;)2= 24/9

~ Yj2 =0

~ xjYj = o

Consequently

[

24/9 O
!__=

o 0

so that

2=
ax

+ (Co,f

2=m
‘Y

GOOP = 01

(5.13)

(5.14)

(5.15)

-1 =

[1

9/24 ~
and ~=L — (5.16a)

m m (5.16b)

(5.17)

(5.18)

(5.19)

Note: It is easy to see that the ~ matrix contains infinite elements
whenever the beacon images P ..PN lie in a straight line (two
dimensions) or in a plane (t~ree dimensions). The reasoning
is as follows. In such cases the center of mass CMof the points

!~”~h ~ame plane as P
P IS located on the same line as P

“!
..P (two dimensions) or

..P (three dime~sio~s) . Thus the coordinateIN
system at CM can be se ected so that one axis, say the Y axis, is
normal to the line or plane defined by P,..P . The entries in the

!Y row and Y column of ~ then are zero so tha ~ is singular and ~
contains infinite elements. Since the ~ matrix for any other
cartesian coordinate system centered at CM is identical to that
just discussed except for an orthogonal transformation, the ~
matrices for all such systems contain infinite elements.

EFiDOF EXAMPLE

23



Example 5.4 (See Appendix 1, Reference

dimensional constellation consisting of

within a coneas shown in Figure 5.4.

Figure 5.5 depicts

the unit vectors ~, ..4

and the points P,. .P4.

A straightforward calcula-

tion shows that the center

of mass CM is a distance

3/4 (1-cos O) from point

P4 as shown.

The ~ matrix is made diagonal

by selecting a coordinate

system (x,Y,z) at CM such

that the z axis coincides

‘ith 4’
and the Y axis is

co-planar with ~1 and ~.

The element Lzz of ~ is

given by

L = [3(;)*+ (;)2](1-COS
22

= ; (1-COS $)*

The results of Example 5.2 can be

[5]) Consider a three

four beacons positioned
~

P.

$)2

i?
Figure 5.5

used to calculate the remaining

diagonal ements Lxx and Lyy if it is noted that the projection of

the vectors ~1 , 12 and 13 onto a plane normal “to ~ is identical to

Figure 5.2 except for a scale factor of sin O, Specifically

L
.3

=L -7sin2$
xx YY

24
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Consequently

L=

0 1
0

3
2-

sin2$ 0

0 0 ; (1-COS $)2
I

(5.22)

Thus the error magnification matrix is given by

$+
sin $

0

Al1 error measures are immediately ava

example

-1

0

4 1

7 (1-COS +):

GDOP =
[
(2)$+ +:

sin $

able from (5.23 . For

8

3(1-COS $)* (l+COS $)

1 1
1/2

(1-COS 0)2

(5.23)

(5.24)

E!IDOF EXAMPLE
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Example 5.5 Consider a fifteen beacon constellation having images

‘1’” ””P15
on the unit sphere as shown in Figure 5.6

The X’ and Y‘ coordinates of CM are zero due to symmetry. The Z‘

coordinate of CM can be determined by examining the Z’ axis dis-

tribution of mass as shown in Figure 5.7. A straightforward cal-

culation shows that CM is located a distance

z’ = .35 (5.25)

from theorigin O.

Selection of the (X, Y, Z) coordinate system to coincide with the (x’,

Y’ ,2’) system except for an upward translation to CM produces a

diagonal ~ matrix.

The entry Lzz can be calculated directly from Figure 5.7. Specifically

15

L=22 ~=, (zj)2

1 (.65)2 + 6

2.16

357)2 + 8(.35)2

(5.26)

The entries Lxx and L
YY

can be evaluated most easily by taking

advantage of symmetry and the Pythagorean theorem for the typical

point Pj. The Pythagorean theorem asserts that

(X;)z + (Y;) + (2;)2 = 1 (5.27) .

Summation of (5.27) over all fifteen Pj yields
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jif ‘x,i)2+ ‘f (Y~)2 + ‘5j~, (Zjf = 15
j=l

(5,28)

8ecause the (X,y,Z) and (X’,Y’,Z’) coordinate systems differ only

by a translation in the z direction.

j[ (y;)2 ‘; (Yj)2 = Lyy
j=l

Moreover straightforward calculation from Figure 5.7 shows that

}, (q)* ‘ 6(.707)2 + 1(1)2 = 4

Use of (5.29), (5.30) and (5.31) in (5.28) shows that

L +L
xx

= 11
YY

But Lxx = LYy by symmetry. As a result

L =L
xx

= 5.5
YY

Consequently the inverse error magnification matrix is given by

(5.29)””

(5.30)

(5.31)

(5.32)

(5.33) “ ~

..
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. [1
5.5 0 o’

~= o 5.5 0

0 0 2.16

so that

(5.?4)

(5.35)[1
.182 0 0

r= o .182 0—

o 0 .463

Thus for example the error measures uz2/(cuT)2 and GOOP are given by

C+(COT)2 = .463 (5.36)

GDOP = (.182 + .182 + .463)’/2

. .910

END OF EXAMPLE
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VI. APPROXIMATE CALCULATION OF ~

Approximate expressions for error measures are very useful for assessing

trade-offs between accuracy and other system parameters. This section con-

tains five examples that show how approximate expressions can be derived.

The basic idea behind calculating approximate error nleasures is to

a!wroximat:lthe ~ matrix (4 .8) or (4.10), and then extract error measures

from ~ = ~ as described in Section 111.

The approximation of the ~ matrix simply involves replacing all discrete

averages in (4.8) or (4.10) by corresponding continuous integral averages.

In two dimensional problems the resulting integrals represent averages of

the products X2, X,yand Y* over a sector of a unit circle centered at the

subject. In three dimensional problems the resulting integrals represent

similar averages over a portion of a unit””sphere centered at the subject.

The quantities X,Y,Z continue to be measured from the center of mass (rather

the origin O).

Once again the coordinate systems in tne examples are selected tu produce

a diagonal ~ matrix.

Example 6.1 (Circular Constellation) Consider a two dimensional

beacon constellation consisting of N beacons equally spaced in azimuth

The array of vectors

~1 ““h and points

‘1
..PN for case N=8

are shown in Figure

6.1. Clearly the CM

is at the origin O.

The X-X element of

the matrix (4.10)

can be approximated

as follows

30
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= 1/2

~ XY ‘h

unit circleX.Y. ~ —
JJ

=0
$ ds

unit circle

and

Thus for example

y,2 :
J

= 1/2

1/2 o

1[

1
20

~
~

o 1/2
v 02

GOOP =
2+2 Jf*=2, m
(-#

(6.1)

(6.2)

(6,3)

(6.4)

(6,5)

ENO OF EXAMPLE
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Example 6.2 (Spherical Constellation): Consider a uniform spherical

constellation of N beacons centered at the subject.
qai4:15150]

The beacon images

‘1
..PN are uniformly

distributed over the

unit sphere as shown in

Figure 6.2. Thus CM is

at the center of the

sphere.

The ~ matrix is diagonal

as a result of the symmetry

of the points P, ..PN. More-

over

POINTS P,

&

z UNIFORMLY

UNIT
SPHERE’= ●

Y
●

●
● *

● ●
● **

● *
●

● x

Figure 6.2

‘N
OISTR(BUTEO

.

~X2da

; j, (xj)2 = ‘~ }, (Yj)2 = 1~ j!, (zj)2 . ‘nit sphere = I
@da T
unit sphere

(6.6)

Consequently

[

1/3

~=tt o

0
L

Thus, for example,

o 0

1[
3

1l/30, 1=~13

o 1/3 ,0

* (OTC) m
ax

GDOP .
3 + 3 + 3)1/2
(N = 3/v’TT

o

3

0

0

10 (6.7,8)

3
4

(6.9)

(6.10)

END OF EXAMPLE
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In some cases it simplifies calculations to determine the moments

~ X2 etc. relative to some point other than the center of mass, and then

translate the moments to the center of mass by using the “parallel axis

theorem” of elementary mechanics. The translation step involves use of

the relationships

where

x, Y, z

X’, Y’, Z’

II—i

The fol

useful.

(X’)2- (T)2 , TY=TT-T’”7’

(Yj2 - (Y)2 , Tz=m-l’. -i’

.—
(z’)2 - (T)2 , TZ. T’7-- 7-.7

denote coordinates measured in a cartesian coordinate

system (X,Y,Z) set up at the center of mass

denote coordinates measured in a second coordinate

system (x’, Y’, z’) that differs from (x, Y, z) by

a translation

denotes the operation of averaging over the points

P,, P2,. ..PN,

owing example is one where the para” Iel axis theorem proves

(6.11,12)

(6.13,14)

(6,15,16)
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Example 6.3 (Conical Constellation): Consider a constellation of N

beacons uniformly distributed within a cone of half angle as shown

in Figure 6.3.

The array of vectors ~1 ..~ and points PI. .PN is shown in Figure

6.4.

The basic computations required for ~ are most easily carried out

in terms of a cartesian coordinate system X’, Y ‘, Z ‘ centered at

the origin O and having its Z’ axis coincident with the cone axis

as shown.

Straightforward calculation shows that

j~ X2 da

(X’)2 = (Y’)* ~ s - =
: [2-3 COS $ + COS2 $]

,(J da 27r [1 - COS O] -

s

(1-COS ‘$)(2+COS $).
6 (6.17)

34
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Moreover by symmetry

——
X“=X’’=Y”=O

anr!

--T=
x ~

Equations (6.1

(6.20)

=0

-6.16) can be used to translate the moments (6.17), (6.1H)

and (6.20) to the center of mass. The results are:

~ . ~ . (1-COS $)(2+COS ‘i)
6 (6.22)

~ (1-COS 0)2= (2’)2 - (2’)2 = ,2

XT= YT=T2=0

Consequently the ~ and ~ matrices

[

(1-COS 4)(2+COS ())
6

!._:N o

0

are:

o 0

(1-COS $)(2+COS $)
6 0

0

(6.23)

(6.24)

(6.25)
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,. - [7’
6

-Cos ‘$)(2 +COST
o 0

r 6
i

o
11

0
-Cos 0)(2+COS $

12
0 0

‘1 (1-COS O)*

(6.26)

Thus for example the error measures az2 and GDOP are approximated as

follows.

L?2: (UC)2 12
z T (6.27)

N(l-cos $)2

. 1 36

N(l-cos 4)2(2+COS 4’)

END OF EXAMPLE

(6.28)

Note that GDOP+O as N + -in each of Examples 6.1-6.3. This reflects

the fact that the RMS positional error tends to zero when the results of a

large number of uncorrelated measurements are averaged together to calculate

position as described in Section III.

With regard to Example 6.3 it is interesting that GDOP + O as N + cc

even for very smal1 values of O.
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Many practical beacon constellations satisfy the conditions of Example

6.3; namely the constellations are (nearly) uniform and can be regarded as

confined to a cone. Thus results like (6.26)-(6.28) are quite useful. The

approximate ~ matrix (6.26) produces error measures that typically are

accurate to 40% for moderate values of N. The next two examples show how

the approximation (6.26) can be refined to produce error measures that

typically are accurate to 2-5%.
-.

Example 6.4: Consider the use of (6.28) to approximate the exact

GDOP (5.24) for the beacon constellation shown in Figure 5.4.

Table 6.1 summarizes the values of (5.24) and (6.28) for typical

values of 0.

Table 6.1

‘+r30°

““”45°

60°

90°

Exact GOOP Approx. GDOP
Eq. (5.24) Eq . (6.28)

I

8.92 13.2

4.27 6.22

2.67 3.79

1.63 2.15

Clearly (6.28) approximates (5.24) to no better than 40%. Thus the

assumption that the four mass points in Figure 5.4 can be well approximated .

by a unifornldistribution of mass within the same area is not a particularly ~

good 01-le.

A method for Improving the approximation (6.28) consists of “smearing out” ..

the points Pl..P4 on the unit sphere, and then using (6.28) to calculate

GOOP. The “smeared out” counterparts of P] ..PA cover a larqer portion of

the unit sphere than the circle defined

amroach entails use of a cone angle $’

than the actual angle O.

38
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A suitable value of $’ can be obtained as follows. Spreadinq out

‘1
..P4 radially and uniformly about their centers, causes ~ each

of P, ,P2,P3 and all of P4 to be within the circle $. Therefore the

density of points within the circle is

. .

3/2 + 1Density = —
area

5/2 5
= 2m (1-COS 4,) = 4TI (1-COS $) (6.29)

Thus the area consumed b,yall four points is

Area = No. Points
Density””

4
= 5/4. 1-COS $J = ~ (1-COS f!) (6.3D)

If this area is confined to the portion of the unit sphere defined by

O’ [Area = 2T (1-COS o’)] then $’ satisfies

2 lr(l-cos $’) = 16 11(1-cos $)
5 (6.31)

.

or

Cos $’ = 1 -: (1-COS $) (6.32)

Thus the result of “smearing out” P,..P4 is to approximate GDOP by
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GDOP = 36

N(l-cos 0’)2(2+cos $’)

(6.33)

where O’ is determined by Equation (b.3z).

Equation (6.32) can be used to express the approximation (6.33) directly .’“’

in terms of the cone half angle ~. Specifically substitution of (6.32) “

into (6.33) yields

GD z

Table 6.2

of +.

(6.34)

compares the values of (5.24) and (6.34) for several values

Table 6.2

Exact GDOP Approx. GDOP
4 Eq. (5.24) Eq. (6.34)

30° 8.92 8,38

45° 4.27 4.02

60° 2.67 2.53

90” 1.63 1.59

.,

Clearly (6.34) prov

a few ~ercent.

des an approximation to (5.24) accurate to within

EhlDOF EXAMPLE
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ExamI)le 6.5: The basic approach used in Example 6.4 can be used

to improve the more general approximation (6,26).

The reasoning leading to (6.31) in Example 6.4 shows that”the

exaggerated cone angle o‘ generally satisfies

.-
.-’. 211 (1-COS $’) = #- 211 (1-COS $) (6.35)

i

or

Cos $’ = 1 - # (1-COS $) (6.36)
i

where Ni denotes the number of points P,. .PN remaining inside the

circle after “smearing”. Use of (6.36) in (6.26) “with the latter

evaluated at the exaggerated cone angle $’ yields

6
l-1-cos $)(A+cos O)

where

A= 3($).1.

o

0

0

6
71-Cos ~)(A+cos O)

o

(6”.”37)

(6.38)
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It can be shown that the following expression is a qood approximation

where

[1
2

B=ll sin b

2 sin #
.

Thus (6.37)-(6.40) comprise an improved approximation to

Equations (6.38)-(6.40) are used to calculate A and Ni.

then are used in (6.37) to calculate ~.

~. Specifically

The results

.182 0

0 .182

Lo o

GOOP = .910

Moreover it is clear from Figure 5.6 that

Ni = 15-;= 11.

(6.39)

(6.40)

As an illustration consider the uniform 15 beacon constellation of

Example 5.5. The exact ~ and GI)OPare as follows.

o

0

,463

(6,41)

(6,42)

(6.43)

..

.

Ey contrast use of (6.31)-(6.33) yields the following approximations
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[

.179

~. o

0

0

.179

0

0

0

.433
I

(6.44)

. .

GDOP = .889 (6.45)

Ni . 11.03 (6.46)

Clearly the quantities (6.44)-(6.46) approximate (6.41)-(6.43) to

within 2-6%.

With regard to (6.38), (6.39) note that Ni/N + 1 and A + 2 as h!+ ~.

Thus as one would expect, the refined error Imagnification matrix

(6.37) approaches (6.26) as N + CO.

E!IOOF EXAMPLE
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VI 1. DEPENDENCYOF ACCURACY ON NUMBER OF BEACONS

Equations (4.7) and (4.9) for the inverse of the error magnification

matrix ~ indicate that each additional beacon causes a new moment or prodcict

of inertia to be added to the elements of L . This fact suggests successively—

that as the number !/of beacons increases

1) the elements of ~ increase more or less in direct
,.
-.

proportion to N

-1
the elements of ~ = ~ decrease roughly in proportion

to l/K

the various measures of RMS error [e.g. Cx/(CaT) = (rxx)l’2,

2

3

mop = (rxX + ryy + rZZ ) “z] decrease in proportion to’’”

1/JK
-

Examples 6.1-6.3, 6.5 confirm the foregoing hypothesis for the case of

uniform beacon constellations. The results of Examples 6.1-6.3 show exactly

the dependence described above. The (refined) results of Example 6.5 show

substantial ly the same dependence, the only departure being the slow bounded

growth of the quantities (Ni/N) and A.

Thus it is clear that for relatively uniform beacon constellations. the

various error meas[fres are not hiqhly sensitive to the number of beacons.

For example, to halve the RMS error measures it is necessary to increase

the number of beacons by a factor of four.

The following example shows that the l/J~ dependence of RNS errors is

not unique to uniform beacon constellations.

Example 7.1: Consider an arbitrary three dimensional constellation of

N beacons. Let (x,Y,z) denote any cartesian coordinate system at Crl,

Clearly each mass image on the unit sphere has a moment arm not longer

than the sphere diameter (i.e., 2). Thus

L=
xx j~l (Xj)z I f (2)2 = 4N

j=l
(7.1)
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. ..

Similarly

L ~ 4N and Lzz s 4N (7.2,7.3)
YY

Appendix I shows that each diagonal element of ~ satisfies the inequality

.l_
r ‘L

(7.4)
(YCY (KI

Use of (7.1)-(7.3) in (7.4) shows that

1
r

1
xx~m’ ‘YY ~m

(7,5,7.6)

(7.7)

It follows that the RM~ error measures CIxj~y,CIzW and GDop are bounded

from below as follows.

GDOP > ~—
2JTT

(7.8,7.9)

(7.10)

(7.12)

(7.12)

*By utilizing the result of Appendix II with $= m, the bounds (7.1)-
(7.3) can be sharpened to L <N. Thus the factor of 2 can be eliminated
from the bounds (7,8)-(7.12)’?a-
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Inequalities (7.8)-(7.12) show that the RNS error measures cannot

decrease more rapidly than l/@ as N + CO. For example, it is

impossible for GDOP to have a l/N dependence for large N.

ENO OF EXAMPLE

Additional constellations for which the RPISerror measures exhibit

an exact l/~ dependence are given in Examples 10.1, 10.2, 11.3 and 11.4
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VIII. DEPENDENCE OF ACCURACY ON CONE ANGLE

In many three dimensional hyperbolic systems the visible beacons

are confined to a “viewing cone”. Al1 accuracy measures normally are
.. very sensitive to the half angle of the viewing cone.

.. The sensitivity of accuracy to the half angle $ of the viewing
.- cone is apparent from Table 8.1. The table compares the actual angular

dependence of GDOP for five different beacon constellations. Al1 entries

are normalized to unity at $ = 20°. The quantity GDOP4 denotes the

(normalized) GDOP for the four beacon constellation treated in Example 5.4.

The quantities GDOP,5 and GDOPIOO denote the GDOPS for uniform constellations

containing respectively 15 and 100 beacons, calculated by the method of

Example 6.5. GDOP denotes

GDOP denotes GDOP for an
opt

10.2.

GDOP for the constellation of Example 6.3.

optimum beacon constel lation treated in Example

It is clear from the table that accuracy increases rapidly with

increasing half cone angle. For example, increasing o from 40° to 60°

halves the rms error (i.e,, GDOP) in all cases. Note that to obtain the

same increase in accuracy by the expedient of adding beacons with @ = 4X

it is necessary to increase the number of beacons by a factor of four

(see Section VII).

The following example derives an approximate expression for accuracy

(i.e., GOOP), and “explains” why accuracy is so dependent on $.
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Example 8.1: Consider a rotationally symmetric constellation of N

beacons confined to a cone of half angle $.

The images PI ..PN of
-~

the beacons on the unit Al
sphere are shown in Figure

8.1. Because of the P2

rotational symmetry, the 6

indicated coordinate system — S’”’P--l
produces a diagonal ~

matrix.

Clearly the mean moment

arm in the x direction

for the unit masses is

roughly proportional to

the x-extent of the spherical Fiqure 8.1

section. A reasonable estimate

for the mean moment arm is o/2.

Thus to a rough approximation

L
xx

. N ($/2)2

By symmetry

(8.1)

.

. .

L
YY

= N ($/2)2 (8,2)
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Similarly the mean moment arm in the z direction for the unit masses

is roughly proportional to the z extent of the spheric~l section. A

reasonable estimate of the z directed moment arm is ~ ~ 1-C;S $ ~

=42/40. Consequently

L z N($2/4~)2 = N04/32 (8.3)
22

Thus to a rough approximation

[
42/4 o 0 1

~=L-l=~
—-

Equation (8.!

/42 o 0

0 4/42 o

0 0 32j~4

(8,4)

(8.5)

indicates that the RMS error mea: es depend upon arigle

approximately as follows

ax/(coT)= +/o oy/(caT) * +/+ (8.6,8.7)

CIz/(coT)’ K2/0 (8.8)

b 1/2
O/(COT) = K3 (1/$2 + 4/$ ) (8.9)

GOOP
~ 7/2

: K3 (1/$2 + 4/4 ) (8.10)
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An indication of the quality of approximations (8.6)-(8.10) can be

obtained by comparing the angular dependence of GDOP predicted by

(8.10) with that exhibited by the constellations previously considered.

Reference to Table (8.1) shows that the angular dependence predicted

by (8.10) is quite reasonable considering the coarseness of approxi-

mations (8,1)-(8.3).
.-

ENO OF EXAMPLE

I
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1x. DEPENDENCE OF ACCURACY

The errors that result

ON DIRECTION

from the minimum squared error estimate of

position (3...7)have a distinct directional dependence if the beacons are

confined to a relatively narrow sector or cone. Specifically errors in the

direction of the sector or cone axis dominate. This means that in many

three dimensional systems altitude errors dominate.
-.

The following two dimensional example explains why this is the case.

Example 9.1: Consider a constellation of N beacons confined to a .

sector of half angle O . Assume that the beacons are positioned so

that the center of -~i:~sq
mass CM falls on the

vertical centerline as

as shown in Figure

9.1.

Note that the x

U

Y>

extent of the arc

greatly exceeds the +

Y extent of the arc. “,
This suggests that Figure 9.1

or

Lxx ‘> L
YY

so that

>1

52
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In Appendix III it is shown that

1“
. .

so that

Thus it is clear from (9.5) that ~,,/uv> 1 whenever ~< ~/2.
.Y~

For ~ = 45°, (9.5) shows that

9 , tan 67.5° = 2.41
Ox

The construction of Figure 9.2

provides a simple intrepretation

of the condition (9.5). In

particular the ratio ~y/ax exceeds

the ratio b/a shown in the figure.

—

I

An entirely analogous situation obtains

tions confined to a cone. That is, errors in

(or altitude errors) dominate. The following

Figure 9.2

l!!lw!?!.

UNIT
/m

\

b

(9.4)

(9.5)

(9.6)

END OF EXAMPLE

for three dimensional constella-

te direction of the cone axis

examples illustrate this point.

Example 9.2: Consider a constellation of 20 beacons uniformly

distributed within a cone having half angle O. Let (X,y,Z) denote

a coordinate system origined at the center of mass of points

P,,P2,. ..PN, and oriented so that the z axis coincides with the

cone axis.
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The ratios Lzz/Lxx, uz/ux and az/ov can be calculated for different cone

angles using the result of Example 6.5. Results for a representative

set of angles are given in Table 9.1

$’

1°

30°

45°

60°

90”

Table 9.1

LLzz=~
LL
xx

3.71 x 10-5

.0344

.0806

.1508

.387

164.19

5.38

3.52

2.57

1.61

Note that errors in the z direction dominate

90°. For angles typical of synchronous satel

(i.e. , 45°-600) Lxx is an order of magnitude

5

,9999

.97

.93

.88

.75

or cone angles less than

ite constellations

arger than Lzz, and CIz

. .

.“..

exceeds ox by a factor of 3 so that total rms error u is due almost

entirely to rms error in the z direction.
ENO OF EXAMPLE

Example 9.3: The results of Example 9.1 can easily be cxtcn+cd to the

case of three dimensional beacon constellations confined to a cone.

Specifically a bound analogous to (9.G) applicable to three dimer,siol]al

constellations is derived in Appendix III . The bound is as follows.
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. .

(9.7)

The bound is applicable to any constellation of N beacons confined

to a cone of half angle 0, provided that the center of mass CM of

points P,, P2,. ..PN lies on the cone axis. The X,Y,Z axes are assumed

to be centered at CM and oriented so that the Z axis coincides with

the cone axis, and so that L = o.
XY

In the case of a constellation rotationally symmetric about the cone
2

axis G =0
x

Yz so that (9.7) reduces to

which implies

Inequality (9.8) shows that o /0 > 1 whenever
ZY

(9.8)

(9.9)

1
tan (~

>
-$> 1 (9.10)

or

~ ~ 70.6° (9.11)

Note that the interpretation of Figure 9.2 is directly applicable to

condition” (9.9) if $/2 is replaced by @/fl and Y is replaced by i!.

ENO OF EXAMPLE
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The dominance of altitude errors is unfortunate from the point of view

of aircraft surveillance systems that rely entirely upon satellite beacons.

In such system it is desirable to know altitude more accurately than transverse

position. The results of this section show that the opposite is the case.

.,

. .
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x. ERROR MINIMIZATION I

The following questions appear to be basic ones from the viewpoint of

designing hyperbolic systems.

1) What is the minimum error that can be achieved from

a given number of beacons?

2) I!aw should the beacons be deployed to achieve minimum

error?

This section and the following one answer questions of this kind.

Two error measures appear to be appropriate for hyperbolic systems.

These measures are as follows.

1) The mean squared axial errors for beacon constellations
2

restricted to a planar sector or to a cone; i.e., Uz

2) The total mean squared error; i.e., 0X2 + LJY2+ CZ2

(equivalent to GOOP)

The present section identifies constellations that minimize mean

squared axial error for constellations restricted to a planar sector, and

to a cone. The following section identifies beacon constellations that

minimize total mean squared error for four geometries of interest.

In all cases bounding arguments are used to identify the minimum mean

squared error. This is, a lower bound on the mean squared error is esta-

blished. Then it is shown that certain select constellations achieve the

bound.

With respect to the first error measure, let a denote a coordinate

axis parallel to the sector or cone axis of interest.. The mean squared
2

error o ~ in the ~ direction is given by

2
Ga = (UTC)2 raa

57



where a and c are as in Section III, and raa is the a-a element of the
T

matrix r. Clearly to minimize (10.1) it is necessary to minimize the—
magnification factor

---

(10.2) - .

..

The following bound* is used as the starting point in the examples

of the present section

r
1

?1u ~~ (10.3)

where the equal sign holds if and only if La6 = O for 6+ a. The bound is

useful in that it facilitates use of coordinate systems with one axis

parallel to the sector or cone axis rather than coordinate systems that

diagonalize the ~ matrix.

The examples employ the “ “ notatio to denote averaging over the
71set of points P1,P2,...pN. e.g. , Y = 1N j=,

(Yj)2.

Example 10.1 (Planar Sector) Consider the problem of placing N

beacons on a plane within a sector of half angle @ so as to minimize

the axial squared error.

Let C denote an arbitrary

constellation of N beacons

[

P2

confined to the sector. CM

Let the coordinate system P1

(};,Y) be selected at the Cll

of the beacon images PI..pN

with tt,eY axis parallel to

EEEEl

‘/
UNIT ARC

> “T—, ‘N

T 1.00
Y’‘\

ti ...........l_Y,. + / ,0s +

the sector axis as shown in Figure 10.1



. .

.- “.

Figure 10.1. Let (X’,Y’) denote a parallel coordinate

the center of the unit circle as shown. Let T’ denote

coordinates of the CM in the system (X’,Y’).

It follows from
2

‘Y
satisfies

system at

the ‘i’

(10.2), (10.3) that the mean square axial error

1
>—— L

YY

1—

z
(10.4)

Intuition suggests that the denominator NYZ of (10.4) can be increased

by removing the points P, ,P2,...PN from the center of mass T’ as far

as possible while maintaining ~’. Ap&endix II shows that this is the

case, and that the enhanced value of Y2 is (1-P )(~-cos $) . More pre-

cisely Appendix 11 shows that

7
Y : (1-P )(T’-COS $) (10.5)

with equality holding if and only if P, ,P2,...PN are distributed

between the minimum Y and maximum Y Dositions of the unit arc as shown

in Figure 10.2, Use

of (10.5) in (10.4)
Pl,pz““

shows that ALLl

2 /

S!->1 1

(CUT)2 - N (1-T) (Y’-COS $) P

(10.6

Thus to find the minimizing

conste’ ation it is only

lI@!!EL
ONLY
HERE

~

Figure 10.2
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necessary to examine all constellations of the type shown in Figure .10.2,

and select the one that minimizes u
2

That is,
Y“

1
——

(1-Y’)(Y’-COS h) }
. .

(10.7) ““-.

The minimizing calculation shows that the minimum is obtained for ~’

equidistant between the limits cos ~ and 1.

A straightforward cal-
1’,4-,5,58:

N, ::{, s

culation shows that any
.,,01.,s N,,.,,,s

constellation of the .,., “,.,

type shown in Figure 10.3

achieves the bound (10.7)
~“”-~----”~

provided ,/’

‘1
= N/2 (10.8) .-~ .

b,/

‘2 + ‘3
= N/2. (10.9)

u

Figure 10.3

Moreover a careful review of the inequalities (10.4)-(10.7) shows that.

these constellations are the only ones that achieve the bound (10.7).

Thus the minimizing constellation is that shown in Figure 10.3 with

(10.8), (10.9) satisfied. The corresponding squared error is given

by

2
“Y

= (C6T)2 ~ ‘
sin4 *

-..

(10.10) -.” “

ENO OF EXAFIPLE
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Example 10.2 Consider the problem of placing N beacons within a cone

of half angle ~ so as to minimize mean squared axial error at the vertex

of the cons?. ~n;4ijji~
z

Let C denote an Y

arbitrary constella-

tion of N satellites

confined to the cone.
p,

The system of vectors
.

~1 ,12...~ and points

PI ,P2.,:PN are shown

in Figure 10.4. Let ~

the coordinate system

(X,Y,Z) be set up at the

center of mass CM so

that the Z axis is

parallel with the cone Figure 10.4
axis as shown.

It follows from (10.2), (10.3) that

~z2
1

(COT)2 2 ’22

The argument leading from (10.4) to (10.7) applies once again.

Consequently

(10.11)

(10.12)
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with equality holding only if the beacons are distributed equally

between the pole and ring as shown in Figure 10.5.
~;8~~6~

A straightforward calculation

shows that the constellation
N,BCACONS N2BEACONS
HERE HCRE

of Figure 10.5 indeed achieves

the bound (10.12) provided

m

●

N1 = N2 = N/2 (10.13)

Thus the minimizing constella-
-’?

tion is that shown in Figure

‘0’5 ‘ith ‘1=N2=N’2” ‘he
corresponding minimum value /

2
of u is

z

2=o
z

(c.T)z ; ~
sin4 $

(10.14)

7

v4

Figure 10.5

. .

The minimum value of o,’ given by (10.14) represents a clear improve-

ment over that for a uniform constellation. As an illustration, consider

the uniform fifteen beacon constellation shown in Figure 5.6. Example 5.5

shows that

CTzvcoy = .463 (10.15)

By contrast an optimum fifteen beacon constellation for the same half “.’I
cone angle (41=n/2)exhibits the following mean squared error .. I

.

(10.16) ‘.”’

.

.266
E~iOOF EXAMPLE
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xl. ERROR MINIMIZATION 11

. .

. . ‘.

.“

This section identifies beacon constellations that minimize total mean

squared error (U2) or, equivalently GoOp. Four different beacon geometries

are treated:

i) unconstrained two dimensional constellations

ii) unconstrained three dimensional constel lations

iii) two dimensional..constellations confined to a sector

iv) three dimensional constellations confined to a cone

The total mean squared error 02 is given by the sum of the diagonal

elements of the covariance matrix (3.11). That is,

two dimensions:

2=
‘o (GJT)2(rxx+ryy) (11.1)

three dimensions:

2
0 = (c. )2 (rxx + ryy + rzz)

T

Thus the quantity ~2 is minimized by minimizing the magnification factors

in (11.1); namely

two dimensions:

U2/(oTC)2 = rXX + ryy

three dimensions

u2/(0Tc)2 = rxx + ryy + rzz

(11.2)
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The

two

following bound*

dimensions:

is used as a starting point in each example

r+r -J--+-J-
Xx yy > Lxx L

YY

three dimensions:

r +r+rzz:+++t+
xx YY xx YY 22

(11.3)

(11.4)

where the equal sign applies if and only if ~ is diagonal . The bound is

useful in that it facilitates use of coordinate systems that do not necessarily

diagonalize ~.

The examples employ the following notation.

1) X’ , Y’ (or X’ ,Y’,2’ in three dimensional examples)

are cartesian coordinates measured with respect to

the origin O of the system of unit VeCtOtY ~, ,~2,. . .~.

2) X, Y (or X,Y,Z in three dimensional examples) are

cartesian coordinates measured with respect to the

center of mass of the points PI,P2,...PN. It is

assumed that the coordinate system X,Y (or X,Y,Z)

differs from X’,Y’ (or X’, Y’,Z’) by a translation

so that Equations (6.11)-(6.16) can be used.

3) The “-” notation again is used to denote averaging

over the set of points PI ,P2,...PN,

Example 11.1 (Unconstrained Planar Constellation): Consider the

problem of positioning N beacons in a plane so as to minimize the

total mean squared error U2 at a point in the plane.

*
see Appendix I
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Let C denote any constellation of beacons in the plane. According

to (11.2), (11.3)

,. - It follows from (4.10), (6,11) and (6.13) that the diagonal elements

of ~ are given by

(11.5)

L
xx

= N(7) = N [~ . (~)2] > 0
— (11.6)

L
YY

= N(7) = N[@.(~2]~0 (11.7)

Moreover geometry imposes the constraint

fi+fi=l
(11.8)

since (X{)2 + (Y;)2 = 1 for each point Pi on the unit circle, Thus

the bound (11.5) can be rewritten

=1

[

1 1
Ei— +—

(X’)2 - (X’)2 F
1

=1

[

1 1
Ti- +—

,_~ - (ry -7 1
=1

[

1 1
K + ——. —

l-~ - (r) 2 m - (W)2
1

(11.9)

(11.10)
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The denominators

l-(- ~

n (11.10) are bounded by

-fl-r)?>o —

Consequently

2
1

fq-m

1

I-(Y’)? - (r)?

1

[

1 1
~ R

—-+—

1-FF n

—

= 4/r4

where equality holds i“

~ = diagonal

T=v=o

+— 1

(11.11)

(11.12)

(11.13)

m - (Y-72

(11.14)

~x,)2= ~= ,,2

It is easy to demonstrate

the lower bound (11.14).

of ~2/(coT )2. It follows

2
0 min = (CaT)2 4/N

and only if

(11.15)

(11.16)

(11.17)

constellations of N beacons that achieve

Thus the bound represents the minimum value

that the minimum mean squared error is

(11.18)

-.

66



. .

,- .

.- .

—

The corresponding value for GDOP is

GDOPmin = 2/~ (11.19)

Moreover Equations (11.15), (11.16) and (1”1.17) represent necessary
2

and sufficient conditions for a beacon configuration to minimize a .

The constellations considered in Examples 5.2 and 5.1 are examples

of minimizing (or optimum) constellations for N=3 and N=4. More

generally it can be shown that a constellation consisting of N beacons

separated by 3600/N in azimuth is optimum.

It should be noted that beacon constellations other than “equally

spaced” constellations also satisfy (11.15-11.17) and therefore are

optimum. For example it is easy to show that superposition of the

optimum N=3 and N=4 constellations considered in Examples 5.2 and 5.1

produces an optimum (non-equally spaced) constellation for N=7.

END OF EXAMPLE

Example 11.2 (Unconstrained Three Dimensional Constellation): An

analysis similar to that of Example 11.1 shows that for a 3 dimensional

constellation of N beacons

2
02 (COT )2 9/N

and

GOOP ~ 3/@

Moreover equality in (11.20), (11,21’

L = diagonal

67
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(1

holds if and only if

(11.22)

(11.23)

(11.24)

.20)

.21)



118-4-15161I

PI UNIT SPHERE

P2

Figure 11.1
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It is easy to show that the minimizing conditions (11.22-11.24) are

satisfied for N=4, 6, 8 if the points P,,P2,. ..PN are placed at the

vertices of the appropriate regular solid inscribed within the the

unit sphere. For example, the “tetrahedral” constellation in Figure

11.1 satisfies (11.22-11,24). Furthermore the results of Example

6.2 show that the minimizing conditions are approximately satisfied

for any value of N, if PI, P2. ..PN are “uniformly distributed” over

the unit sphere.

Consequently (11.20) and (11.21) represent the minimum values of

U2 and GOOP for N=4, 6 and 8. For other values of N (11.20) and

(11.21) can be regarded as lower bounds which are very nearly

realized by uniform distributions of beacons.

Once again uniformly distributed constellations of beacons are not

the only constellations that satisfy (11.22-11.24). For example it

is easy to show that superimposing the (uniform) optimum constellations

for N=4 and N=8 produces an optimum (but non-uniform) constellation

for N=12.

ENO OF EXAMPLE

Example 11.3 (Planar Sector Configuration): Consider the problem of

placing N beacons on a plane within a sector of half angle $ so as to
2

minimize total mean squared error G at.the vertex of the sector.
lb~f~szi

Let C denote a con-

stellation of N beacons

confined to the sector.

The system of vectors ,(’*5: ,“

~ls~2,...~ is shown in
.’,,

“i’”

,, . ‘ ‘,,,r ,.’!.
‘, .’

Figure 11.2. Let.the
,,

,’ + .;),,*
coordinate system (X’,Y’) ~,

———. ,,
be selected as shown. Figure 11.2
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The reasoning leading to the bound (11.9) again is applicable. Con-

sequently

1

[

1 +-J--.-
N 1-7- T)2 - (X’-)2 ~ 1

>1_-
N

[

1

1-7- (7)2
+

where e~ualitY in (11,25) applies only if X’ = 0, and ~ is diagonal .

As discussed in Example 10.1, ~ satisfies the inequality

(11.26)F < (1-Y’)(T-COS 4)

with the equal si9n aPPIYinq cnlY if the Points pl ~p2J..‘PN are cOn -

fined to the minimum Y’ and maximum Y’ position of the unit are as

shown in Figure 11.3. Given that ‘?’~ 1, it is a Simple exercise

to deduce from (11.26) T$33EZL

that there exists an PO,NTSP,,P,, PM0.,,ALLOWED

HERE

angle ~’ satisfying
,,
,.....~-. .. ..

,,

? = (1-Y’)(T’-COS 4’)

(11.28)

\\ +v‘\
Figure 11.3

. .

(11.25)

*See P,ppendix IV for an interpretation of (11.27) and of the subsequent
inequality manipulations that lead to the final bound (11.33-11 .34).
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Consequently (11.2!

1.
N

can be rewritten

1 + 1

1-(1-T)(V-COS $’)-(V)2 (1-T) (T-COS ‘$’)1
1 + 1 1 (11.29)

(l+COS $“)(1-V) (r-. co$ +’)(1-Y)

It follows straightforwardly from (11.29) that

{

& ~ k :;:i:&-51 ,1 + 1

T (l+COS 41’)(1-V) (V-cos @ ‘)(1-V) }
(11.30)

.; 1
I (11,31)

16 COS2 ~ sin4 ~

1 Ninimum

{21

1
~ 1 (11.32)

N o~~’: @ 16 COS ~ sin4 ~

[2

1
1

E 16 COS + sin4 $ for $ L -~ (11.33)
=

4 for o > $.
R

(11.34)

.“

For $ ~ 2T/3 the constellation C*($) of points P, ,p2,...pN shown in

Figure 11.4 achieves the lower bound (11.33) provided
. .. .

N, = N [ 1-2 (::: ~jj)2] (11.35)

N2 = N3 = N (*)2 (11.36)
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[li,4:i516<]

N, ,0,., s
MEW

N, ,0,.1s

!
N, P04N1S

Moreover a careful review of HERC “CRC

the inequalities (11.25-11.33)

v “

shows that C*(e) is the only

constellation that does achieve

the bound. $

Thus for ~ s 2n/3 the minimum squared error is
Figur~ 11.4

The corresponding value of GDOP is

GDOPmin = +
1

VfN 4 cos $ sin2 $

(11,37)

(11.38)

The minimizing constellation is that shown in Figure 11.4.

For ~ ~ 2T/3 any optimum constellation of Example 11.1 that is consistent

with the sector constraint achieves the bound (11.34). For example the

“equal angle” constellation shown in Figure 5.2, and multiples of it,

achieves the bound (11.34).

Thus for o > 2T/3

2
0 min = (COT)* 4/N (11.39)

and

GDOPmin = 2/~( (11.40)
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In this case, the constellation shown

it, among others are optimum.

It is interesting to note that for O<

constellation is not optimum. Rather

that shown in Figure 11.4.

in Figure 5.2 and multiples of

211\3the “uniformly spaced”

the optimal constellation is

The values of N1 and N2=N3 for several values of o are summarized in

Table 11.1.

Table 11.1

@

1°

10°

30°

45°

60°

90°

120°

N,/N

.50

.50

.50

.48

.46

.41

.33

(f42/N)= (N3/N)

.25

.25

.25

.26

.27

.29

.33

It is clear from the table that the optimum values of N,/N and N2/N =

N3/N are almost identical to those in Example 10.1 for $~n/2. This is

a consequence of the fact that the mean squared error a2 is dominated

by 0Y2 over this range of angle.

END OF EXAMPLE

I
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Example 11.4 (Cone Configuration): Consider the

N beacons within a cone of half angle o so as to

squared error o2 at the vertex of the cone.

Let C denote a constel la-

tion of N beacons confined

to the cone. The system of

‘ectors ~1 ‘12’”““h ‘s ‘hewn
in Figure 11.5. Let the

problem of placing

minimi ze total mean

coordinate system (X’,Y’,Z’)

w

\

1
*,

be selected as shown.
“’

An analysis similar to that
+

leading to Equation (11.25)
-–.—+ “‘

in Example 11.3 shows that Figure 11.5
2...

[

~ ~ i ~.—L——
1 1+—

T 1-(Y’)’-Z2-(T)2- (F)2 ‘~_(v)2 ~

1

[

1 1
~Fi—

-+ — +L

l-(yl)z-~ - (T)2 m? 1
with equality holding in (11.41) if and only if ~ = diagona’

Y’ = o.

(11.41)

and X’ =

—

The results of Appendix II show that Z2 satisfies the inequality

. .

-.

(11.42) .,-.

..
with the equal sign applying if and only if the points P, ,P2,...PPI

are confined to the minimum Z’ and maximum Z’ positions of the spherical
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. .

sector as shown in
~iiq

Figure 11.6. It POINTSCONFINELI
HEREl,f10HERE

follows from (11.42)

that there exists an

angle o’ satisfying /-+

: @ (11.43)

w

Zf

1-7’)(Z’-Cos $’) I
(11 .44)

v
Consequently (11.41) can be rewritten Figure 11.6

02 1

[

1 ~
~~v

l-m- (1-r) (u-cos $’)-(r)z
‘*

+
1

(1-Z’)(Z’-COS $’)
1

r

11

[

1 1 1

‘N
(1+.0s ~’)(l-r)-m

+ ~+ (1-7-) (r-cos $ ‘)J

(11.45)

It follows from (11.45) that
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2
1

(c:,)
{

1—2~M Minimum + 1—.

Cos @<1 (l+COS 4’)(1-7T)-(Y’)2 (Y’)2

+ 1

(1-T) (T-COS 0’)

16

. .

(11.46) - “

(l+COS +’)(/l+cos $’ -
(11.47)

A-3 Cos @’)~

16

(l+COS +’)(fl+cos $’ - /5-3 Cos or)
2}

16 (11.48)
(l+COS @)(/l= - “’5-3COS $)z

for~~ cos-l(- ~

for ~ > cos-’(- ~) (11.49)

For o ~ cOS-l(- ~) the constellation C*(O) of points shown in Figure 11.7

achieves the bou;d provided

1.
_N fll+Cos $)(5-3COS 0) - (l+CCJS

N1-T[
0)

1-Cos 4, 1 (11.50)

2.
_ N ~ (5-3cos O) - fll+cos +)(5-3COS

‘2-T
$)

1-COS $ 1 (11.51)

76



118-4-151671

N, POINTS

AT POLE

N2 POINTS

AROUND RING

Figure 11.7

.-
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3. ~ = diagonal (1

yl=yl=~
(1

.52)

.53)

(11,54)

The conditions (11.52-11.54) are identical to the optimizing conditions -

(11.15-11.17) for unrestricted planar arrays, except for the factor -.

sinz O. Thus (11.52-11 .54) assert that the projection of the ring of -

the N2 points into the X’,Y’ plane comprises an optimum two dimensional

array, except that the points are distributed along a circle of radius

sin4 rather than the unit circle,

A careful review of the inequalities shows that the constellations

satisfying (11.50-11 .54) are the ~ constellations that achieve the

bound (11.48).

Thus for os cos
-1

given by

2
u

min
= (co

- ~) the minim
3

urnattainable mean squared error is

)
21 16

(11.55)
N (l+COS ,j)(~ - /’3-5cos 0)2

The corresponding value of GDOP is

GDOPmin = 1 4

N ~ (~ - /3-5cos ~)z
(11.56)

The minimizing constellation is that shown in Figure 11.7 with (ll.5C!-

11.54) being satisfied,

For OL cos-’ (- ~) any optimum constellation of Example 11,2 that is

consistent with the cone restriction achieves the bound (11.49). For

example, the optimum N=4 (tetrahedral ) constellation achieves the

bound (11.49).

. ..”
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Thus for o ~ COS-l (- ~) the minimum achievable mean squared error is

2
‘rein

= (COT)2 91N

The corresponding value of GDOP is

GDOPmi n = 3/~

(11.57)

(11.58)

The tetrahedral constellation, and multiples of it, among others are

optimum.

Representative values of N1 and N2 for the optimum constellation are

given in Table 11.2.

r1°

20°

40°

60°

90°

100°

109.5”
—

Table 11.2

N1/N

.500

.485

.447

.395

.309

.279

.250

N2/N

.500

.515

.553

.605

,691

.721

.750

Note as o approaches the “tetrahedral” angle 109.5° ( COS-l[- ~1) that

N1 and N2 approach values consistent with the optimum tetrahedral con-

stellation in Figure 11.1 of Example 11.2.

The angular dependence of GDOPmin is shown in Figure 11.8. In principle

high positional accuracy can be obtained for small values of @ by using

a sufficient number of satellites. Figure 11.8 shows that the price for
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*
such accuracy is high, however. For example, approximately 24 beacons

are required to obtain the same value for GDOP at o = 40° as can be

obtained with only six beacons at @ = 60°.

Tables 11.3, 11.4 and 11.5 compare the geometric dilutions of several

“unifotmly spaced” constel Iations [Example 6.5] with the corresponding

values for an optimum constellation for N = 15,100 and infinity. It is

clear from the tables that the optimum constellation is modestly better

(approx. 10%) in the case of fifteen beacons, is significantly better

(approx. 33%) in the case of one hundred beacons, and is substantially

better (up to 50%) in the case of larger numbers of beacons.

END OF EXAMPLE

*Also see Section VIII
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Table 11.3

GDOP FOR OPTIMUM AND UNIFORM CONSTELLATION

CONTAINING N=l5 BEACONS

GDOP X ,fi

m

GDOP X m

(uniform)

38.17

10,51

5.44

3.44

Table 11.4

GDOP FOR OPTIMUM AND UNIFORM CONSTELLATIONS

CONTAINING N=100 8EACONS
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Table 11.5

GDOP FOR OPTIMUP AND UNIFORM CONSTELLATIONS

CONTAINING N=m BEACONS
.-

C20”

40”

60°

90”
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XI1. SENSITIVITY OF ACCURACY TO SINGLE BEACON DROPOUT

An important consideration in the design of beacon constellations is

the sensitivity of system performance to single beacon dropout. In a

satellite based surveillance sYstem, dropout can result either from failure

of on-board equipment, or from jamming. This section derives relatively

simple formulae for calculating the effect on accuracy of such beacon dropout. .

Thus let L denote the matrix (4.10) for a two dimensional constellation -.
—

C containing N beacons. Let Ci denote the constellation that results when

beacon Bi is removed from C. Assume a coordinate system at the center of

mass CM of C that diagonal izes ~.

Removal of beacon Bi from the constellation C changes the ~ matrix in

two ways, First the contribution of Bi to the elements of (4.10) must be

subtracted out. Second, the center of mass of the constellation changes so

that the elements of ~ must be adjusted through use of (6.11)-(6.16). The

resultant matrix ~i is given by

[1~i=~-‘i [Xi,yil _ &

[1

‘i [Xi,Yi]

Yi Yi

~~
subtraction of change of CM
Bi terms

[1xi
=L+ [xi ,Yi]

-Yi

(12.1)

(12.2)

where Xi and Yi denote the coordinates of Bi with respect to the center of

mass of C.

If gz and Oiz denote respectively the total mean squared errors for the

constellations C and Ci , then direct calculation shows that
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2_02
‘i

-1Tr[l-~’] - Tr[~ ]

(12.3)

. .

where

N
a = N-1

Equation (12.3) can be rewritten in

system (X’,Y’) centered at CM as follows

(12.4)

terms of an arbitrary coordinate

(12.5)

Here ~’

a2xl

(x’,Y’)

An

denotes the matrix (4.10) calculated in terms of X’ ,Y’ and ~ denotes

vector the elements of which are the coordinates of Bi in the system

analogous derivation shows that for three dimensional systems

U2-G2=
i

.
I

[

X.2 Yi2 Z.z
(x

++~++

YY 1Zz
“xx; Y2 z?

[

l-a&L”& +1-+
xx YY 22 1

(12.6)

where once again the coordinate system

Equation (12.5) is directly applicable

are interpreted in the obvious manner.

at CM is selected to diagonal ize ~.

to three dimensions provided ~ and ~’
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One expects the total mean squared error to increase when a beacon drops

out. Equations (12.3) and (12.6) show that this is the case. The denominators

in both equations are positive since both represent the quotient of deter-

minants I~il/l~1 , and the matrices I_iand ~ are positive definite. Consequently

Oiz -02 >0 (12,7)

The following example illustrates use of Equation (12.6).

*1U Consider the uniform distribution of beacons shown in

Figure 5.6. Assume it is desired to assess the effect of dropout of

the polar beacon (i.e. point PI).

One method of calculating the change in total mean squared error due

to dropout is to calcul.ate the mean squared error 02 for the constella-

tion of Figure 5.6, and that (IJ,2)for the constellation minus point

‘1 ‘
and then take the difference. This method shows that

a2 = .8?7 (12.8)

2=
‘1

.949 (12.9)

2 2=
al-o

,949 - .827 = .122 (12.10’

Equation (12.6) provides an alternate and faster method for calculating

the change ~12 - ~2. Specifically (12.6) shows that

2
‘1

an
2= Zz

G

‘1l-a~
22

,.

-.

(12.11)
.122
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often itis desirable to know which beacon dropout will most impact the

total mean squared error o*. Equation (12.6) provides a simple answer to

this question for the important case of a cone restricted beacon constellation

where
. .

L << L
Zz

xx and Lzz << L
YY

(see Section IX). Here (12.6) reduces to

22 1

‘i-o 2 Lzz

with

~2

a—
L;z < ‘

(12.12,13)

(12,14)

(12.15)

Clearly the change (12.14) is maximized by the point Pi having the maximum value

of Zi ; that is, by the point Pi most removed in the Z direction from the center

of mass. Thus for a reasonably uniform cone restricted beacon constel latiorr,

accuracy is most impacted by dropout of a satell ite either directly over-

head, or near the horizon. Clearly if most of the beacons are directly

overhead ,then accuracy is most impaired by dropout of a beacon on the cone

horizon. On the other hand if most of the beacons are near the cone horizon,

then accuracy is most impaired by dropout of a beacon overhead, *

The conclusion that accuracy is most sensitive to overhead and norizun

>eacons complements the results on oDtimal beacon constellations obtained in

*The objective here is to make the resulting set of beacon images
as nearly planar as possible. See Example 5.3.
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Examples 10.2 and 11.4. In effect the examples show that accuracy is most

improved by placing beacons directly overhead and on the horizon. Thus it

is quite reasonable that accuracy should be most impaired by removing beacons

from these same Dositions.
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XII I . GROUNO BASED MULTI LACERATION SYSTEMS

In ground based hyperbolic multi laceration systems the beacons tend to

1ie in a plane; moreover the spacing between the beacons greatly exceeds the

. .. altitude of the subject (aircraft) above the plane. These facts limit the

accuracy with which ground based systems can determine altitude.

The following examples utilize the results of Section IV to obtain. .
useful bounds on the ability of ground based systems to measure altitude.

Example 13.1 Assume that no beacons are in the immediate vicinity

of the aircraft so that the (N) beacon images lie within a band of

the unit sphere as

shown in Fig. 13,1.

Let the coordinate

system (X,y,-Z) be

selected so that

the Z axis coincides

with the vertical as

shown.

Clearly the Z-directed

moment arms are strongly

disadvantaged. Thus Lzz

is smal1, and the error

magnification factor rZz

is correspond ng large,

This observation can be

quantified as follows.

BEACON

z ]18-4-1S21SI

RE

CO NFINEO HERE

Figure 13.1

By reasoning as in Appendix II it is easy to show that ~ is bounded

as follows

~ < -7 (sin 6 + 7)— (13.1)
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so that

FL Maximum - qi+ sin 6)

O“<T<-sind--

sin2 6
---T---

Therefore

L
7

=NZ
22

sin2 6
< Nr—

(13.2)

(13.3)

It follows from Eq. (Al.3) of Appendix I that

r
1

zz~~

4> (13.4)—
N sin2 6

Conwquently the RMS altitude error (oz) and the R14Sran!iinq error

(co+) satisfy

(13.5)

Thus for example with N=4 beacons and & = 10° the RMS altitude error

exceeds the RMS ranging error by a factor of more than 5.75.

E~UlOF EXAMPLE
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Example 13.2* Assume that one beacon B, is in

aircraft, but that all
BEACON IMAGES

other beacons B2..BN are P,..Pw CONFINED

far removed from the air- ;OT;E EQUATOR

craft. In this case the

images P1. .PN of the

beacons on the unit sphere

are as shown in Figure 13.2.

Let the coordinate system

(X,Y,Z) be selected as

shown.

The Z coordinate of the

center of mass is given by

the vicinity of the

18-4-152$0
?.

t UNIT SPHERE

Figure 13.2
~..~sjne

consequently

= N-1~ sin2 e

< sin2 o

It follows that

*
Result suggested by J. Evans
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—

so that the RMS altitude and ranging errors satisfy

17+)‘ ~

= distance from aircraft to B1
altitude (13,9) - -.:

Inequality (13.9) “shows that only the beacon B1 nearest to the aircraft

is effective in providing altitude discrimination. Moreover the

effectiveness of B, decreases rapidly as the beacon to aircraft distance

exceeds the aircraft altitude.

El~DOF EXAMPLE
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XIV. THE EFFECT ON ACCURACY OF CORRELATED NOISE

The estimate of position (3.7) is a useful one when theTOA errors can be

assumed to be uncorrelated and of equal variance. Often, however, the errors

have different variances and may be correlated. In such cases the estimate

(3.7) may not be the best one.

It is a relatively straightforward task to modify the derivation of
..

(3.7) to take account of TOA errors that are correlated and have unequal

variances. The

which minimizes

Q=

key is to select the estimate of position to be that pos

the quadratic form

tion

14.1)

rather than that which minimizes ~’ ~, where ~g denotes the correlation

matrix for the noise vector ~ (see Section 111;. In the case of Gaussian

noise, this decision amounts to a maximum likelihood estimate of position.

The resulting estimate is given by

@* = c[F’H’(~P H’)-l E!]-’ _ __c _ u~’H’ (H P }1’)-1—— —E —

-[um’t+)-’ E!]-’ E’H’ (H<tl )-’ HE (14.2)

where c, ~, ~, ~and ~ are as in Section 111.

The estimate of position (14.2) shares an important attribute with the

previous estimate (3.7); namely both estimates are insensitive to a common

additive noise tenr So in the noise sources Ei. This conclusion follows most

directly from an examination of Eq. (3.3). Clearly pairs of E. terms cancel

in the left hand members and consequently do not influence the estimate of

position. The same conclusion can be drawn from (14.2)by noting that a

common noise term has the effect of adding an increment of the form
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P = 0.2
–o

11 ..1

11 ..1

. .

1ii.. i

to the correlation matrix EC. But

[ .111 ..1

11 ..1~,cou’=ll

. .

(14.3)

(14.4)

111.. lJ
so that PO does not impact the estimate (14.2).

Use of the estimate (14.2) in a satellite surveillance system would

require that the matrix ~ be updated periodically to reflect changes in

orbital uncertainties, changes in atmospheric conditions etc. Consequently,

apart from occasionally updating ~, the computational effort required to

calculate the estimate (14.2) is identical with that required for the previous

estimate (3.7).

An

account

This is

fading.

attractive feature of (14.2) is that it provides a way of taking

of the power levels of received signals when estimating position.

desirable to minimize the effects of scintillation and/or channel

The basic idea is to use the power levels of the received pulses to

formulate the correlation matrix ~to be used in (14.2)

correlation matrix ~ can be separated into two parts as

P =qr+qo
-e

where

P = a diagonal matrix
~r

mean squared time

Specifically the

fol1Ows

(14.5)

-.

the elements of which are the

of arrival (TOA) errors that

result in the receiver

embedded in noise.
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P = a correlation matrix taking account of TOA errors
+0

external to the receiver.

The elements of F& are a (known) function of the signal to noise ratio
. .. in the receiver, and the detection algorithm used. Thus P can be re-

— er
computed every time the power level of one of the received signals changes

,... significantly. ~co need be updated only when conditions external to the

receiver change. The resultant correlation matrix (14.5) then can be used

in the estimate of position (14.2)

The positional error covariance matrix for the estimate (14.2) is given

(14.6)

(lL.7)

where C is the velocity of light, and 002 is a reference variance.

In the case of uncorrelated noise sources with unequal variance, the

interpretation of the matrix ~ -1
given in Section IV applies with only

one change; namely masses of value (oo2/oi2) rather than unit masses are

placed at the points Pi. The entries in r-’ then are the various second—
moments of the mass constellation about its center of mass. That is,
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P2 ● (ao2/a22 )

(u:/&,2 )
(%2 p:)

●

I
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Figure 14.1



. .

,..

where Xi, Y,, and Zi are the coordinates of the points Pi with respect to the

center of mass as shown in Figure 14.1. The derivation of (14.8) parallels

that of (4.7) and, accordingly, is omitted.

The results of Sections V-XII apply with only minor modifications to

the case of uncorrelated noise sources with unequal variances. The primary

modifications are noted below

Section

Section V
(calculation of ~ )

Section VI
(Approximations)

Sections VII-IX
(Accuracy Dependence)

Sections X,X1
(Error Minimization)

Section XII
(Sensitivity)

.

Changes

Replace unit masses by masses of value

ao2/ai2.

The notion of approximating discrete
averages by continuous, averages still
applies. A weighting factor must be
introduced into the integrals to account
for unequal masses.

No changes.

The results hold with only one change;
namely the fractions representing the pro-
portions of the total number of beacons
to be placed in key locations now represent
the proportions of the total & to be
placed in the same locations.

Use the following value for a in place
of N/N-l

2
;. <

a=
i=l ‘i

>N

(2)

CT2

i I ~-;>
i=, .
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xv. INDEPENDENT ALTITUDE MEASUREMENT—

The results of Sections IX and XIII show that altitude errors typically

exceed horizontal errors for cone restricted or ground based beacon con-

stellations. One method for improving altitude accu.r.acyis to utilize an

independent measurement of altitude. For examFle an independent altitude

measurement can be obtained from a barometric altimeter. The present Section

shows how the results of Sections 111, IV and XIV can be extended to accom- ..

modate such a measurement.

Thus let (X’,Y’,Z’) denote a three dimensional coordinate system selected

so that measurement along the Z! axis corresponds to altitude. The independent

altitude measurement can be represented by the equation

Z1-c = 7.1r+ [0,0,-1] . AR
z ((15.1)

where

z’ =

‘z =

Z’-cz=

Z’r =

@=

the actual altitude

the error made in measuring Z’

the measured altitude

the Z’ coordinate of the reference point
(see Figure 3.2)

a vector specifying subject location with
respect to the reference point (see
Figure 3.2)

The equations for the measured quantities now are given by Equations

(3,3) and (15.1). l“hese equations are collected below for convenient

reference, with Equation (15.1) divided by c.
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.

(T, - T2) + (c, - E2) : (r, - r2)/c + (1,

(TN-,-TN)+-(GN-,-.Fi)= (rN-, -rN)/c+ (~.

i2) “ WC

15.2)

-& ) “ A~/c

Z’lc - EZlc = Zrlc + [0,0,-1] . A~/c

Equations (15.2) can be re-written as the single matrix equation

1 __AT- Hc=C HR+~H FAR (15.3)— —— —— —

understandings that

.

.

.

.

.

an N element vector the first N-1 elements of which

equal the TOA differences Ti - Ti+l, and the Nth

element of which equals Z’/~. “

an N+l element vector the first N

equal Cj (l~j~N), and the (N+l)th

equals ez/c

an N+l element vector the first N

(15.4)

elements of which

element of which

(15.5)

elements of which

are the rj (l~j~N), and the (N+l)th element of which

equals Zr (15.6)

an (N+l)x 3 matrix the first N rows of which each

contain the three components of

pointing to the jth beacon, and

of which consists of the vector

an Nx(N+l) matrix of the form

the unit vector i
‘J

the (N+l)th row

[0,0,-1]. (15.7)
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1 -1 0 . . . f! 0

0 1 -1 00

. .~ I
10 0 0 0 1 -1 0

0 0 0 0 0 01
1

N+l columns

II rows

(15.8)

The least squares estimate of subject position can he found from (15.3)

exactly as in Section XIV. Equation (14.2) continues to express the result

with ~, ~, Land ~given by (15.4)-(15.R) and

P = Expected Value of [g_~’I (15.9)
-z

with ~ given by (15.5).

The covariance matrix for the positional error continues to be qivcn

by (14.6), (14.7).

In the case where P.11measurement errors are uncorrelated it can ix

shown that the inverse of the errGr maqnificat.ion matrix ~ in (14.7) is

given by

,-1 =—

xx

XY

L
x2

where L denotes
me

expected value of

L L
XY Xz

L
YY ‘Y~

L L
yz Zz

the ct-E+ entry

+[: ; ,:,OC;,‘110)

(CZ)2.That” is: :Y ‘tr’x ‘14”8) and ‘Z2 ‘~not”es ‘he1s computed exactly as In SectIon XIV

.,
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except that the quantity (Ooc)2/uz2 now must he added to the Z-Z element
-1

of~ . Thus the ef~ct of the independent altitude measurement is to increase

the Z-Z element of ~ and correspondingly to reduce r
22”

The effect of a highly accurate altitude measurement can be assessed

by examining the limiting form of L as OZ+O. It is clear from (15.10)

that
,.

the

Lim L
~z+o

Thus the error

expressions

-1

II]L L o
xx Xy

. L L o
XY YY

o 0 0

(15.11)

magnification factors rxx and r
YY

can be found from

L
r=
xx LXXLYY - (LXY)2

L

‘YY=LL
xx yy -x~Lxy)2

where Lxx, L
XY

and LYy are calculated by the method

For small but non-vanishing a. it can be shown that
L

factor rzz is given by

rxx = ~z2/(uoc)2

as expected,

(15.12)

(15.13)

of Section XIV or IV.

the error magnification

(15.14)
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APPENDIX I

The inequalities required in Sections

sequences of the following theorem.
,..

Theorem: Let

. .

1
’11

~. ’12

;,N

’12 ‘“” ‘lN

’22 “““ ‘2N

‘2N “““ ‘NN

be a syrunetric positive definite matrix. Let

VII, X and XI are direct con-

1~I
’11 ’12 ““” ‘lN

’12 ’22 “““ ‘2N
~=

‘lN ‘2N ‘NN

denote the inverse of ~. Then

i = 1,2,..N

.

Moreover equality holds if and only if

. . r..
lJ

=0 forj#i

or equivalently

L
ij

=0 forj#i .

(All)

(A1.2)

(A1.3)

(A1.4)

(),1.5)
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Proof: The proof starts from the identity

1°0

[Lil, Li2>... LiN] rl, r,2 . . . rlN

‘12 1’22 “o“ ‘2N

L=
. .

ii
. .

‘1N ‘2N o“o ‘NN.I
L.11

Li2

LiN.

(A1.6) ..-

Decompose the column vector [Lil , Li2~o ..LiN1’ into two vectors ~ and &

where ~ is null except for the ith entry which is Lii, and ~ which is

identical to [I-il, Li2 ,...LiN]’ except that Lii is replaced by zero. Equation

(Al.6) then takes the form

Lii = (~+ Lo)’ ~(~+~)

‘z~~(b
+q)-~’d~q + L’o Lq

Direction calculation shows that

~’d~ (~ ‘~) = Lii

~’d ~ql
= rii(Lii)2

Use of (A1.8) and (A1.9) in (A1.7) shows that

104

(A1.7)

(Al,8)

(A1.9)

(A1.1O) . “

(A1.11)



The second term in (A1.1O) equals zero if and only if I.. = O since ~ is

assumed positive definite. Consequently equality in (Al.3) holds if and

only if (A1.5) is satisfied.

Q.E.D.

-. .
,.

“

1-““”. .

I
. .
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APPEIJDIX II

Proof* That ~ ~ (1-~)(~ - COs 0)

The quantity of interest

can be interpreted as the sum of the ordinates of the points shown in

Fiqure A2.1. The line L given by

z = (Y--COS 4)2+ (Y-1)*- (T-cos $)2
1-Cos +

(y-cos 4.)

= (Y-cos0)2 + (l+COS $-*T) (Y-m *)

(A2.1)

(A2.2)

2 2
connects the points (cos o ,[COS o -~ ) and (1, [1-~~] ). Clearly L over-

bounds the parabola z = (Y-7)2 on the interval cos 4 s-y s- 1” ‘hat ‘s’

(Yi-Y)* : (Y-cos $)* + (l+COS $-2Y)(Yi-cos $) (P2.3)

for COS * < Yi ~ 1, with the equal sign applying only if—

Yi = COS+ OrYi = 1 (P,2.4)

Consequently

p
= ~ ! (yi-Y)2 < ~ ~, (Y-cos $)2 + (l+COS + -2Y)(Yi-cos 0)

i=l

= (1-T) (T-COS $)

with equality holding if and only if (A2.4) is satisfied for i = 1,2,. ..N

*Proof suggested by I. G. Stiglitz
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THE PARABOLA Z= (y-j’)*i

I

I

L

Cos +

Figure A2.1
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APPENDIX III

Proof of Inequality (9.4)

Let C be a constellation of N beacons confined to the sector shown in

Figure 9.1. Assume C is such that the center of mass of P,,P2,. ..PN lies on

the sector centerline. That is, assume X’ = O. ‘.,

The reasoning leading to (11.6)

L
xx

= N [1-(7]

L
YY

= N~

‘N[

(11.7) shows that

,

- F -(T)2] (A3.1)

(A3.2)

in Section XI. Thus the ratio of interest is

given by

L
.&k _ l+ r_,
L

—

YY ‘t’- Cos $

Clearly

L Minimum

& cos$~v<l

= Tan2 (~ - f)

(A3.3)

Use of inequality (A2.5) in (A3.3) shows that

(A3.4)

.
. .

. .

(A3.5)

Q.E.D.
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Proof of Inequality (9.71

Let C be a constellation of N beacons confined to the cone shown in

Figure 10.4. Assume C is such that the center of mass CM of points P, ,P2,

...PN lies on the cone axis. That is assume, ~’ =~’ = O. Assume further

that the coordinate system X,Y,Z is set up at CM so that the Z axis coincides

with the cone axis, and so that

L =0
XY

The ratio5 ~ 2,0 2 and ~ 2,0 2
Zx z Y

satisfy the conditions

Addition of (A3.7) and (A3

The reasoning leading

8) shows that the quant

L +L
xx Y

L
Zz

(A3.6)

(A3.7)

(A3.8)

ty of interest satis’ ies

to Equations (11.6) and (11.7) shows that

(A3.9)
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L
xx

= N[l-~-~-(7’ )2]

L --2
YY

=NY

L
22

= N~

~he,e ~, ~ ~nd ~

are as in Section XI . Use of (A3.1O), (A3,11) and

(A3.12) in (A2.9) produces an expression analagous to (A3.3); namely

2 2
‘z ~ 1-(T)2
7+” ~% -– -1
‘x aY 22

The reasoning leading from (A3.3) to (A3.5) shows that

2 2...

y+%>
2 2– Tanz (~ - -$)

‘x “Y

(A3.1O)

(A3.11)

(A3.12) ‘:”

(A3.13)

(A3.14)

O.E.D.

. .
. .
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APPENDIX IV

The following notes are helpful in interpreting the sequence of steps

leading from Equation (11.27) to Equations (11.33), (11.34) in Section XI.

In these notes the I!lf!!!?!l

term “end point constel la-
POINTS ~ , P, , PN ARE RESTRICTED

tion” is used to denote a TO THESE LOCATIONS

- “ ‘,.

constellation for which ,,..

the points P,,P2...PN are ‘“>

restricted to the center &
and the extreme ends of

a sector S as shown in

v

THE SECTOR S

+’

Figure A4. I.

Figure A4.1

Notes

1. In effect (11.26) asserts that there exists an end point constellation
:7

C, ($’) that has the same values of Y , X and ~ as C and which

(consequently) produces the same value of Oz

asserts that C, ($‘)(normally) is confined to

angle ~‘ smaller than ~.

2. In effect (11.30) says that since C produces

as C. Equation (11.27)

a sector S with a half

the same value of 02

as one end point constellation for S [namely Cl (o’)], it must produce

a value of 02 that is greater than (or equal to) that for the “best”

endpoint constellation C2($ ‘) for S. The right hand member of (11.31)

is the “best” value of ~2 for end point constellations in S.

3. The step involved in (11.32) amounts to saying that since C12 is greater

than (or equal to) that for the best end point constellation C2($’ )

available from the sector S, it must be greater than (’orequal to) 02

for the “best” end point constellation when all angles in the inverval

0:,$’ ~ o are considered. The right hand member of (11.33 and 11 .34)
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is the best value of U* for

interval O ~ ~’ ~ $.

4. A graph of the function

F= 1

4 cos ~ sin2 ~

end point constellations available in the

is shown in Figure A4.2. The lower bound (11.34) is a consequence

of the fact that the curve turns upward at @ = 2n/3,

. .
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