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I.  INTRODUCTION

This report examines a variety of issues related to the accuracy of
hyperbolic multilateration systems.
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that position is estimated from differential arrival times of a pulse trans-
mitted over several distinct paths. Thus no absolute time reference is
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Hyperbolic multilateration systems can take many different forms.
Figure 1.1 depicts an example of a system that could be utilized for aircraft
surveillance. The system operates as follows. The aircraft transmits a
pulsed signal which is received by a constellation of satellites. The
pulse time of arrival (TOA) at each satellite depends upon the distance
between the aircraft and the satellite. Upon receipt of the pulses, the
satellites re-transmit the pulse to a ground station. The ground staticn
then utilizes differences in the TOA's and the known positions of the
satellites to calculate the position of the aircraft.

The accuracy of such a system is limited by the accuracy with which
the satellite positions are known, by propagation disturbances in the atmos-
phere and by noise disturbances in the satellite receiver. More specifically
the atmospheric and receiver disturbances are translated into TOA errors.
The ground station then translates the TOA errors and the satellite position
errors into corresponding aircraft position errors.

Considerable previous work [1-5] has been done on calculating the accuracy
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ment of a transmitter and receivers, it is straightforward to calculate the

resulting rms positional error.

The present report compiements previous accuracy work by establishing
some useful general principles. Specifically the report asks and answers
questions such as the following.
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What are the tradeoff's between accuracy and the

number of receivers (satellites)?

What are the tradeoffs between accuracy and the
deployment of the receivers?

How do the errors depend on direction? (e.g. in an
aircraft surveillance system it is desirable that
altitude errors be smaller than horizontal errors.
Is this the case?)

What are the smallest rms errors that can be attained
using a fixed number of receivers? How should the
receivers be deployed to achieve minimum error?

How is accuracy impaired by dropout of a single
receiver? Dropout of which receiver most impairs
accuracy?



I1. SUMMARY OF RESULTS

Although the present work has been motivated by satellite based sur-
veillance systems like that shown in Figure 1.1, the work is reported in
more general terms to make the results available to other applications as
well. Thus, it is assumed that a hyperbolic multilateration system
consists of a number N of beacons (e.g., satellite receivers), and a B
subject (e.g., an aircraft). The subject transmits a pulse that is received
at different times by the beacons. (Or equivaleht]y, the beacons simulta- .
neously transmit a pulse that is received at different times by the subject).

Due to disturbances of various kinds, the TOA's are somewhat in error.
Differences in the TOA's then are used to estimate the subject position by
means of the conventional least squares priﬁcip]e [5].

It should be noted that the assumption of fixed beacon position ignores
the effects of motion in satellite based systems. Thus with regard to
such systems, the results reported apply to a single instant of time.

AL VELEA R L )

Both two dimensional and three dimensional hyperbolic systems are treated.
Two dimensional systems are included not only because of their inherent
interest, but also because they provide valuable insight into three dimen-
sional systems.

In some cases no geometrical constraints are placed upon the beacon
locations. In other cases the beacon constellations are assumed to be con-
fined to a "viewing sector" (two dimensions) or to a "viewing cone" {three
dimensions) , or to a plane.

The primary results for three dimensional systems are as follows. Results .
1-7 assume that the TOA errors are uncorrelated and have equal variance.
Bracketed section and/or example numbers indicate where the results can be -
found. '

1. It is shown that the inverse of the error covariance matrix
corresponds to the moment of inertia matrix for a simple mass
configuration. The insight provided by this fact makes it



possible to answer many questions relating to
accuracy [Section IV].
For reasonably uniform cone restricted beacon con-

stellations, it is shown that typical error measures

are not highly sensitive to the number N of beacons.
Specifically typical error measures are proportional

to 1//M. Thus, for example, to double system accuracy
by the expedient of adding beacons, it is necessary

to increase the number of beacons by a factor of four
[Section VII].

It is shown that accuracy is highly sensitive to cone
angle. Thus for example, increasing the half angle

of the viewing cone from 40° to 60° can double system
accuracy, an improvement that otherwise would require

a fourfold increase in the number of beacons [Section
VIII].

For cone restricted beacon constellations it is shown
that altitude errors exceed horizontal position errors,
typically by a factor of three [Section IX].

Expressions are derived for the minimum attainable

RMS errors given N beacons confined to a cone. The
expressions are useful for evaluating candidate

beacon constellations [Sections X, XIJ.

For cone restricted beacon constellations, system accuracy
is most sensitive to dropout of a single beacon either
directly overhead or on the cone horizon. If most beacons
are directly overhead, then accuracy is most impaired by
dropout of a beacon on the horizon. If most beacons are
near the horizon, then accuracy is most impaired by
dropout of a beacon directly overhead [Section XII].



7. In ground based hyperbolic systems altitude errors
substantially exceed ranging errors. Moreover the
altitude discrimination provided by such systems is
due almost entirely to the beacon nearest the subject
[Section VII].

8. The conventional estimate of subject position which
assumes uncorrelated equal variance TOA errors is
generalized to the case of correlated TOA errors with
unequal variances. One practical result is a method
for incorporating differences in the received signal
to noise ratios into the position estimate [Section XIV].

9. The moment of inertia method for calculating the
covariance matrix for positional errors is valid
whenever the TOA errors are uncorrelated. Thus many
of the results obtained herein for uncorrelated TOA
errors having equal variances apply with minor modifica-
tion to the case of unequal variances [Section XIV].

10. The moment of inertia method for calculating the inverse
of the error covariance matrix is generalized to accommo-
date an independent (e.g., barometric) altitude measure-
ment [Section XV].

Analogous results are obtained for two dimensional problems.

The report is written utilizing an example format. Some examples
draw major conclusions. Other examples serve to amplify earlier results,
or provide a basis for subsequent ones.



ITT. EQUATIONS FOR ACCURACY MEASURES

The basic accuracy measures for a hyperbolic multilateration
system are derived in this section. The derivation follows that given in
References [2,4,5]. The derivation is carried out for the three dimensional
case. A1l equations apply with obvious modifications to the two dimensiocnal
case as well.

A typical hyperbolic system is shown in Figure 3.1. The equations
relating the pulse times of arrival to the distances dl’ d2,...dN are as
follows.

8 W= T, + d]/C {(3.1)
TN'EN NN + dN/C
where
T4 = The recorded time of arrival (TOA) of the pulse at
the jth beacon
€5 = the error term which accounts for disturbances in
the medium through which the pulse propagates, and
noise disturbances in the receiver
T47ey = the time at which the pulse would arrive at beacon
j where no disturbances present
T4 = the time at which the pulse is transmitted
dj/C = the ideal pulse transit time from the subject

to beacon j (¢ denotes the pulse velocity)

It is assumed that the T are corrected for all known biases so that the sj
have zero mean.
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Equations (3.1) are non-linear when expressed in terms of any convenient
coordinate system. For example, use of a cartesian coordinate system replaces
the distance d, by a quantity of the forn /(xj-xo)z’ ; (YJ.-YO)Z s (zj-zo)z.

Thus Equations (3.1) are difficuit to solve for the subject coordinates,

*
The approach selected here for placing (3.1) into a tractable form consists
of linearizing (3.1) about a convenient reference point as shown in Figure 3.2.
The equations then take the form

LR T T ry/e + 1, - aR/c
(3.2)
TNCEN T T, + rN/c + iy - AR/C
where
** . 3 » [} . »
AR = a vector specifying subject position with respect
to the reference point

jﬁ = a unit vector pointing from the subject to beacon j

It is assumed that the vector 4R is expressed in terms of some convenient
cartesian coordinate system (X', Y ', 79,

Except for the corrections L Equations (3.2) comprise a system of
N linear equations in N unknowns, the unknowns being A and the three components
of aR. The equations can be simplified by subtracting each equation from
its predecessor; this serves to eliminate the {unknown} quantity Ty The

resultant equations take the form

(T'I - Tz) + (E'] = 32) (Y‘] - rz)/c + (i] - _lz) . AB_/C
(3.3)

(yoqmoyd + (egoqmey) = (myymeyd /e + (i y=igy) - oR/e

*This step follows that in References [2,4,5].

*k
An underbar "—" is employed throughout to designate vector or
matrix quantities.



Because the correction terms €5 are unknown, it is impossible to solve

(3.3) exactly for the subject position aR. The best that can be done is to
* . .
derive from (3.3} a meaningful estimate aR of the subject position AR.

The system {3.3) comprises N-1 linear equations in three unknowns. One
method of estimating AR 1s to

i) select three of the equations and ignore the
remainder

ii) set the correction terms €5 equal to zero
(i.e., their mean values) in the selected
equations

iii) solve the resulting set of three equations in
three unknowns for the estimate éﬁi_of AR,

While this approach is conceptually simple, it discards valuable information,
and eliminates the possibility of error cancellation.

A more profitable approach consists of

i) averaging the N-1 equations together to obtain
three equations

i1} setting the €5 equal to zero in the averaged
equations

iii) solving the resultant system of three equations
in three unknowns for an estimate éﬂf of 4R,

For purposes of averaging Equations (3.3) together, it is convenient

to re-write (3.3) using matrix notation. The matrix counterpart of (3.3)
is

it

bl -He

o | —
1=

R+ 1 HEF R (3.4)

where

10



AT = an N-1 element vector the jth element of which equals

the TOA difference Tj --3+]

|
n

an N element vector the jth element of which equals

e
J

R = an N element vector the jth element of which equals rj"

F = an N x 3 matrix the jth row of which contains the three
components of the unit vector ij pointing to the jth
beacon

i = an N-1 x N matrix of the form

-
-1 0 0 ]
0 1 -1 0
Y N-1 rows
0 0 0 0 1 -1
e Y_ J
N columns

The averaging procedure selected here consists of pre-multiplying (3.4)
by the 3 x N matrix F' H' (ﬁ_ﬂf)'l where the prime denots matrix transposition.
*
The resulting equation for the estimate aAR s given by

-l —} - 1 1 |‘.| *
HR = F'H'(HH') HFaR (3.5)

_E' ﬂ_'(ﬁ_}i')- AT" Fl Hl(ﬂﬂl)

This averaging decision follows References [2,4,5,8] and amounts to
selecting the position estimate éﬂf as that position which requires the
smallest total squared error ¢' ¢ to account for the observed data (i.e.,
the 1. dr.).

T an J)

"



In the case where the e; can be represented as uncorrelated Gaussian
random variables with equal variances, the averaging decision is equivalent
to use of a maximum 11ké1ihood estimate since the multivariate probability
density function p_ then takes the form

o T o (- el g2e) (3.6)

]
= 2n0
T

*
The resulting position estimate AR is given by

1 =1

*

aR = ¢ [f'

7 HF)

pm
—
==
==

(3.7)
= [f_' ﬁl(ﬂﬂl)".l _H_ ]'] _E_l Hl(ﬂﬂl)—]

HR

A relatively straightforward calculation shows that the position errors
that result from use of the estimate (3.7) are

1 1

(R" - k) = c[F' M (WH) T HFT E WK T he  (3.8)

Consequently the covariance matrix EAR for the. position error is given by

X ¥ T
E—aR (A_R_ - .QB.)(.QB - .‘}E)

= o P HEEY T R

T

(3.9}

The quantity o, in (3.9) denotes the rms error in the TOA recorded at a

typical beacon [i.e., OT2 = (ej)2 for j = 1,2,...N]. Thus the factor.(ch)z

denotes the mean squared ranging error implied by the TOA error,

It is convenient to express the covariance matrix (3.9) as follows

PaR ° (OTC)Z r (3.10)

12



[ Txx rxy rxz.I

_ V4
= (oTc) Tyy Tyy Tys (3.11)

Tyz Fyz T2z

This formulation is useful because it places in evidence the elements of the
matrix

1

FUH wu) T hErt ey (3.12)

A11 of the conventional measures of accuracy are directly available
from {3.11). For example, the mean squared errors in the X, Y and Z directions
are given respectively by

2 2
oy = {0 )" 1y (3.13)
oyz = (OTC)Z Tyy (3.14)
2
oy = (o) 1, (3.15)
Similarly the total mean squared error 02, and the so-called "geometric
dilution of precision" {GDOP) are given by
2 2 2 2 2
o T oy + 9y + o, = (UTC) (Txx + Fyy + FZZ) {3.16)
and 1/2
= 9 . o
GDOP s (rxx + Pyy + rzz) (3.17)

Equations (3.13-3.17) show that the elements of the T matrix in (2.10)
posses a simple interpretation. Specifically the elements can be interpreted
as errvor magnification factors. For example, Equation (3.13) asserts that
the mean squared error in the X direction equals the mean squared ranging

13



Fyy + TZZ). Accordingly the matrix

I henceforth is called the error magnification matrix.

error magnified by the factor (Fxx +

14



IV. THE INVERSE ERROR _MAGNIFICATION MATRIX

To deduce useful properties of the various measures of positional error,
it is necessary to relate the error magnification matrix r or some function
of it to the beacon-subject geometry. The present section shows that the
inverse of r possesses two extremely simple interpretations in terms of
system geometry. It is these interpretations that lead to the conclusions

suymmarized in Section II.

Thus let L denote L'l. That is, let

1
=1

L= FrH (HH) HE
= i (HY T HE R HE
= WHE)T HR I )T
= KK (4.1)
where
K = HHE)T HE (4.2)

Straightforward multiplication shows that

B N R
HUO(HHD)Y T H = L-g |1 1.1 (4.3)
1 1.1

where 1 denotes the identity matrix., Thus

Fi i\ r~ -
. ' _
]‘I.u‘l l-l'-i
11 T
ko= (r-% |l fre [Ri1 (4.4)
11..1 ~
it T
_-_.N -

15



nit vector in row format, and

~ 1 N
_'_l__ = H Z i, (4-5)

To interpret the matrix L, assume that the following construction is
carried out.

Construction of Beacon Images on Unit Sphere

i) draw a sphere of unit radius with center at
an origin 0

ii) draw the vectors iy jef"iN from the origin 0

111) place unit masses at the points Pys p2""pN
where the unit vectors terminate in the sphere
(see Figure 4.1)

The vector T specified by (4.5) can be interpreted as pointing from the
origin 0 to the center of mass CM of the mass configuration as shown in Fiqure
4.1. Likewise the vector difference j& - T'contained in the jth row of the
matrix K can be interpreted as a vector pointing from CM to the unit mass
at point pj. Thus if X,Y,Z denotes a cartesian coordinate system centered
at CM, and differing from the system{X', Y', Z'Yonly by a translation, then
the elements of the jth row of K are simply the coordinates %j’ Yj and Zj
of the point Pj in the system (XsY.2),

That is,
~ 7
1 1 1
K = e 2 2 (4.6)
_XN Yy |

16
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The desired formulation of L follows directly from (4.1) and (4.6}, namely

e Ly )
X, . X, 7.7
j=1 J i=1 JJ j=1 J
Loy LovE g (0.1)
L = XY, . Y, 4.7
- j=1 JJ j=1 J 32 JJ
N N N 9
R Y )L,
j=1 J ] §=1 JJ j=1 J
In some cases it 1s useful to re-write (4.7) as follows.
i N 2 N )
J 2 LR 1
A I DA F R RAL
N N N
1 1 2 1
L =N ¥ L OXY. VY TR A (4.8)
N i=1 JJ Nj=1 J Nj-"l JJ
N N N
1 1 ] 2
¥ L %I, w1 vz =) 2
j=1 J J NJ'=.| 37 NJ’='| ZJ ]

Equation (4.7) asserts that the entries in L are simply the moments and
products of inertia of the unit mass configuration about its center of mass.

By contrast Equation (4.8) asserts that the entries in L can be regarded
as averages of the second order products XZ, Y, Z etc. over the set of

points P], P2""PN‘

Both interpretations are highly valuable as they make it possible toapply
insights gained from the fields of mechanics and statistics to the accuracy
problem,

18



The two dimensional counterparts of (4.7) and (4.8) are as follows.

]§ X2 % X v
Lo NI
=1 - =1 <~
L = (4.9)
N N,
_-21 xiY' -Z'\ Yj
_J"l J=1 ]
par N N e
] 2 1
Ty X, Loyoxy
N j=1 J N j=1 JJ
= N (4.10)
1A ? XY, 1 g X

In formulating (4.9) and {4.10) the sphere of unit radius is replaced by a
circle of unit radius. Otherwise points P1, PZ""PN and CM are constructed
as before. Again the quantities Xj, Yj denote the coordinates of point Pj
measured from CM.

The interpretations of Equations (4.7) and (4.8) apply without change
to (4.9) and (4.10).

19



V.  CALCULATION OF THE ERROR MAGNIFICATION MATRIX

Five examples are given in this section to illustrate the ease with
which the error magnification matrix r and typical error measures can be
tculated.

A review of Sections III and IV will show that the orientation of the
coordinate system (X,Y,Z) can be chosen freely. Accordingly the coordinate
systems here are selected to produce a diagonal r. This choice further
simplifies the calculations.

Example 5.1 Consider a two dimensional constellation of four beacons
having equal ninety degree azimuth separations from the subject.

The unit vectors
J 18-4-15143

. + N y
iy..1, and the points
P-‘..P4 for the con- P UNIT CIRCLE
stellation are shown ,?.-_
: [ Cc o1 /, 4 =
M rig. o.1. ) . ~
;S \
Clearly the center / - \
of mass CM of points ! i \p
Py Py i he origi tle 4 x
1°+%4 1s at the origin. \ i3 0 /
Thus \ : /
\\ ] //
) X2=ZY?=2 \4—’ (5.1)
J J P
4
X.Y. =
z J 0 Figure 5.1 (5.2)
Accordingly the inverse of I is given by
2 0
L = (5.
0 2

20



Inversion of (5.3} gives

. []/2 0] (5.4)
L 0 1/?]

A1l error measures of interest are immediately available from (5.4) as
indicated in Section III. For example

=
f
1

sz = cyz = %‘(COT)E (5.5)
. (cOT)2 (172 + 1/2) = (ccT)2 (5.6)
GDOP = 1 (5.7)

END OF EXAMPLE

Example 5.2 Consider a two dimensional constellation of three beacons
having equal one hundred twenty degree separations from the subject.

The unit vectors ' y li8-4-15144]
iy-+1; and the points 'ﬁ._-‘ UNIT
- CIRCLE
P;..P; for the con- e ‘\‘///
. % N
stellation are shown / i \
in Figure 5.2. )

Figure 5.2

21



Once again the CM is at the origin. Therefore

—x2=-—'Y'2_3
IR A (5.8)
T XY =0 (5.9)
L7373
Consequently
3/2 0 1 2/3 0 (5.10a)
L= and r =L = (5.10b)
0 3/2 0 2/3

Thus, for exampie

12)

(53]

oop = (5 + 5 = 3 (

END OF EXAMPLE

Example 5.3 Consider a (degenerate) two dimensional constellation con-
sisting of three beacons in a straight line with the subject. Assume
the subject is located between the extreme beacons.

.. “liee-isies]
The vectors 1,..14
. UNIT CIRCLE
and the points P,..P,
1] . (v -—— —'--_J
for the constellation //" ‘\\
are shown in Fig. 5.3. / Yy N

In thic race the ranter
Fnl Wil b A o LA RAYY N e | T W

’
!
C = .,
g’
of mass CM is not at the \ is 5———3;~——:*
\
\

I . it
origin 0. Instead CM is N /
/
a distance 1/3 to the right N R4
1 ~ e ) \\ /I
of 0 as shown. -
Figure 5.3

22



Note:

The second moments about CM are as follows

A AMTIAN

r +1
bUHDCun”LIJ

so that

2 2
2 .52 Ht oo

I 4 =23 + (3 24/9 (5.13)

) vjz = 0 (5.14)

] XYy =0 (5.15)

24/9 0 . 9/24

L = and T =L = (5.16a)
0 0 . . (5.16b)

0o f = o (o) (5.17)

2

= oo 5.]8

oy ( )
GDOP = o (5.19)

It is easy to see that the matr1x contains infinite elements
whenever the beacon images P. lie in a straight line (two
dimensions) or in a plane (t%ree dimensions). The reasoning

is as follows. In such cases the center of mass CM of the points
P is located on the same line as P {two dimensions) or
1n thg same plane as P,..P, (three d1me%s1o”s Thus the coordinate
system at CM can be se1ected so that one axis, say the Y axis, is
normal to the line or plane defined by P,..P,.. The entries in the
Y vow and Y column of L then are zero so tha@ L is singular and T
contains infinite elements. Since the r matrix for any other
cartesian coordinate system centered at CM is identical to that
just discussed except for an orthogonal transformation, the I
matrices for all such systems contain infinite elements.

END OF EXAMPLE

23



Example 5.4 (See Appendix I, Reference [5]} Consider a three
dimensional constellation consisting of four beacons positioned

within a cone as shown in Figure 5.4.

Figure 5.5 depicts

the unit vectors 1;.-1,
and the points P]--Pq.

A straightforward calcula-
tion shows that the center
of mass CM is a distance
3/4 {1-cos ¢) from point
P4 as shown.

The L matrix is made diagonal
by selecting a coordinate
system (X,Y,z) at CM such
that the z axis coincides . Figure 5.4
with Igs and the Y axis is

425147

co-planar with 1, and i,. s

3 1-cos ¢)
The element L., of L is I

given by %'“°“¢“\\\\

Z7z

{1-cos ¢)

n
=fw

o]
Figure 5.5

The results of Example 5.2 can be used to calculate the remaining
diagonal ements LXx and Lyy if it is noted that the projection of
the vectors jq, 12 and 13 onto a plane normal to 14 is identical to

Figure 5.2 except for a scale factor of sin ¢. Specifically

2

,_
]
—

"
Mo Lo

24

sin” ¢ (5.21)



3 2 i
5 sin"¢ 0 0
L = 0 3 sin’y 0
0 0 g-(]-cos ¢)2
bt 4 ’ -~

g 4
2 1
3 7 0 0
3 sin~ ¢
? 1
I = 0 3 T 0
- 3 sin b
|0 0 93‘—*‘]‘“"2
(1-cos ¢)7]

A1l error measures are immediately available from (5.23). For
example

1 1/2
GDOP —
sin® ¢ (1-cos ¢)

1
—
-
2%
o
wro
-RJA
+
w| -~

3{(1-cos ¢)2 (1+cos ¢)

END OF EXAMPLE
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Example 5.5 Consider a fifteen beacon constellation having images
P]""P15 on the unit sphere as shown in Figure 5.6

The X' and Y' coordinates of CM are zero due to symmetry. The Z'
coordinate of CM can be determined by examining the Z' axis dis-
tribution of mass as shown in Figure 5.7. A straightforward cal-
culation shows that CM is located a distance

' = .35 (5.25)

from the-origin 0.

Selection of the (X, Y, Z) coordinate system to coincide with the {y',
y',2') system except for an upward translation to CM produces a
diagonal L matrix.

The entry LZZ can be calculated directly from Figure 5.7. Specifically

15

2
L, = J_)jz] ()
= 1 (.65)2 + 6(.357)% + 8(.35)°
= 2.16 (5.26)

The entries LXX and Lyy can be evaluated most easily by taking
advantage of symmetry and the pythagorean theorem for the typical
point Pj' The pythagorean theorem asserts that

(X2 & (YD) o+ (29)% = 7 (5.27)

Summation of (5.27) over all fifteen Pj yields
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15 5 15 2 15 2
Lo(K)T 4 (Y% + 7 @ZH)f = 15 (5.28)
j=1 =1 =1
Because the (X,Y,Z)} and (X',Y',Z') coordinate systems differ only
by a translation in the z direction.
Lot o= T o (5.29)
X! = X, = L 5.29)
\EE =1 xx
15 2 15 2
2 (Y3 TS =L, (5.30)
J’:] v J:] J JJ
Moreover straightforward calculation from Figure 5.7 shows that
15 2 2 2
I ()7 = 6(.701)° + 1(1)° = 4 (5.31)
J=1
Use of (5.29), (5.30) and (5.31) in (5.28) shows that
Lxx + Lyy = 11 (5.32)
But LXX = Lyy by symmetry. As a result
Lxx = Lyy = 5.5 (5.33)

Consequently the inverse error magnification matrix is given by
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EXE o |

L = 0 5.5 0 (5.74)

0 0 2.16
L -
so that

*.182 0 0 1

T = 0 .182 0 (5.35)
|0 0 463

Thus for example the error measures ozzl(ccT)2 and GDOP are given by

"

.463 (5.36)

o
ja
<o
o
n

(,182 + .182 + .463)1/2

= .910
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VI. APPROXIMATE CALCULATION OF r

Approximate expressions for error measures are very useful for as5essing
trade-offs between accuracy and other system parameters. This section con-
tains five examples that show how approximate expressions can be derived.

The basic idea behind calculating approximate error neasures is to
approximate the L matrix (4.8) or (4.10), and then extract error measures

-1 . e e e
fromT = L ° as described in Section lll.

The approximation of the L matrix simply involves replacing all discrete

averages in (4.8) or {4.10) by corresponding continuous integral averages.

In two dimensional problems the resulting integrals represent averages of

the products X2, X,Y and v? over a sector of a unit circle centered at the
subject. In three dimensional problems the resulting integrals represent
similar averages over a portion of a unit sphere centered at the subject.

The quantities X,Y,Z continue to be measured from the center of mass {rather
the origin 0).

Unce again the coordinate systems in the examples are selected to produce

a diagonal L matrix.

Exampie 6.1 (Circular Consteilation) Consider a two
beacon constellation consisting of N beacons equally spaced in azimuth.

The array of vectors o
C . , “18-4-15149
LERIIY and points

UNIT CIRCLE

P]"PN for case N=8 i
are shown in Figure
6.1. Clearly the CM
is at the origin 0.

The X-X element of
the matrix (4.70)

can be approximated

as follows
Figure 6.1

30



=|—

Similarly

e

=[—

Consequently

|~

Thus for example

¢ £ ds

X,2 ~ unit circle
J ﬁ ds
unit circle
= 1/2
¢ XY ds
Xy, = unit circle - 0
J J é ds
unit circle
§ ¥eds
Y2 = unit circle = 1/2
J § ds
unit circle
1/2 0 1 )
I * q
0 1/2 0
1/2
e .

(6.1)
(6.2)
(6.3)
0
2 (6.4)
(6.5)

END OF EXAMPLE
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Example 6.2 (Spherical Constellation):

Consider a uniform spherical

constellation of N beacons centered at the subject.

The beacon images

distributed over the

unit sphere as shown in
UNIT

R R TR B 8 SPHERE ™=,
at the center of the .
sphere. .
The L matrix is diagonal »
as a result of the symmetry
of the points P1"PN' More-
over

I ST R A N

S Nojz
Consequently

1/3 0 0
L=N 0 1/3 0 s

| o 0

Thus, for example,

1/3J

1

(OTC) V37N

GDOP

n
——
o
+
(5]
+
Lo
o

32

1=

n

Tie-4-750]

POINTS P..- P,

N
$7? UNIFORMLY OISTRIBUTED

| ]

[ J

Figure 6.2

N X2 da

5@ y2 . Unit sphere _ 1

-1 £ da 3

unit sphere
(6.6)
3 0 0
r]\r 0 3 0| (6.7,8)
o0 o 3]

(6.9)
(6.10)

END OF EXAMPLE



In some cases it simplifies calculations to determine the moments
) X2 etc. relative to some point other than the center of mass, and then
translate the moments to the center of mass by using the "parallel axis
theorem" of elementary mechanics. The translation step involves use of
the relationships

@ - (X% - ()2 , XY = XYV - X ¥ (6.11,12)
;2- = (Y )2 - (W”)z s X2 = X2 - X .7 (6.13,14)
—_—5- “___-_T.? -g-.-? —_— bret e o e o —i fr AP 1r
= (L))" - (L) s Yz = YZ7I' - ¥ 7 {6.15,16)

X Y, Z denote coordinates measured in a cartesian coordinate
system (X,Y,Z) set up at the center of mass

X',Y,Z' denote coordinates measured in a second coordinate
system (X', Y', 2') that differs from (%, v, 7) by
a translation

hom— denotes the operation of averaging over the points

P], P2""PN'
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Example 6.3 (Conical Constellation): Consider a constellation of N
beacons uniformly distributed within a cone of half angle as shown
in Figure 6.3.

The array of vectors dqeedy and points P]..P
6.4.

N is shown in Figure

The basic computations required for L are most easily carried out
in terms of a cartesian coordinate system X', Y', {' centered at

the origin 0 and having its Z' axis coincident with the cone axis
as shown.

Straightforward calculation shows that

2
2 2 fi X" da %—[2-3 cos ¢ + cos’ ¢]
{(x") = (y")" = .“, da - = 21 11 - €05 ¢‘J
5

{(1-cos ¢)(2+cos ¢) ,
6 (6.17)

2 ? 3
o - 172 a _ 37 [1-cos™¢] _ 1+cos g+ c052¢ (6.18)
/A ([ da 2 n[1-cos 4] 3 '

(1+cos ¢) (6.19)
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Moreover by symmetry

= xtt =yt =0 (6.20)

Equations (6.11-6.16) can be used to transiate the moments (6.17), (6.1%)
and (6.20) to the center of mass. The results are:

e v o= (1-cos ¢)é2+cos ¢) (6.22)
™ - . 2
R A N (6.23)
X¥'= XY =VZ =0 (6.24)
Consequently the L and I matrices are:

(1-cos ¢)é2+cos ¢) 0 0

L= N 0 (1-cos ¢)é2+cos ¢} 0
(6.25)
2
0 0 {1-cos ¢)
L e
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[" -
6 0 0
{T-cos ¢)(2+cos ¢}
1 6
T 1
- N o (T-cos ¢)(2+cos ¢) 0
12
0 0 (1-cos ¢)2_
(6.26)
Thus for example the error measures 022 and GDOP are approximated as
follows.,
2 = 2 12
o * Ao.C) — (6.27)
z ! N(1-cos ¢)
: (6) 1/2
2(6 12
GDOP = < +
N (1-cos ¢)(2+cos ¢) (1-cos ¢)2
=/ 30 (6.28)
N{(1-cos ¢)“(2+cos ¢)

END OF EXAMPLE

Note that GDOP >0 as N » «in each of Examples 6.1-6.3. This reflects
the fact that the RMS positicnal error tends to zero when the results of a
large number of uncorrelated measurements are averaged together to calculate
position as described in Section III.

With regard to Example 6.3 it is interesting that GDOP » 0 as N » =
even for very small values of ¢.
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Many practical beacon constellations satisfy the conditions of Example
6.3; namely the constellations are {nearly) uniform and can be regarded as
confined to a cone. Thus results 1ike (6.26)-(6.28) are quite useful. The
51

annravimate ¢ matriv {6 26) produces error mea
approximate 1 omairix (0.£0) broduces or mea

=

ures that typically are
accurate to 40% for moderate values of N. The next two examples show how
the approximation (6.26) can be refined to produce error measures that

typically are accurate to 2-5%.

Example 6.4: Consider the use of (6.28) to approximate the exact
GDOP (5.24) for the beacon constellation shown in Figure 5.4,

Table 6.1 summarizes the values of (5.24) and (6.28) for typical
values of ¢.

Table 6.1
Exact GDOP Approx. GDOP
¢ Eq. (5.24) Eq. (6.28)
30° 8.92 13.2
T 45° 4.27 6.22
60° 2.67 3.79
90° 1.63 2.15

Clearly {6.28) approximates (5.24) to no better than 40%. Thus the
assumption that the four mass points in Figure 5.4 can be well approximated

by a uniform distribution of mass within the same area is not a particulerly o

good one.

A method for fmproving the approximation (6.28) consists of "smearing out"
the points P1"P4 on the unit sphere, and then using (6.28} to calculate
GDOP. The "smeared out" counterparts of Pl"Pn cover a larger portion of
the unit sphere than the circle defined by the half angle ¢. Thus the
approach entails use of a cone angle ¢' in (6.28) which is somewhat larger
than the actual angle ¢.
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A suitable value of ¢' can be obtained as follows. Spreading out
P]..P4 radially and uniformly about their centers, causes half each
of P],PZ,P3 and all of P4 to be within the circle ¢. Therefore the
density of points within the circle is

Density = 3(§-f !
dred
T 2w (?{gos ) I (]ﬁcos ) (6.29)
Thus the area consumed by all four points is
e - s
- gy © s (-cos ) (6.30)

If this area is confined to the portion of the unit sphere defined by
¢' [Area = 27 (1-cos ¢')] then 4' satisfies

5 (1-cos ') = 16 1(1-cos ¢) (6 371)

Lo L0 WL e B (A § 5 AVedi g
or

cos ¢' = 1 - %— (1-cos ¢) (6.32)

Thus the result of "smearing out" P]..Pa is to approximate GDOP by
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SDOP :V// ( 36 (6.33)
N

1-cos ¢')2(2+cos ¢')

where ¢' is determined by tquation [b.32).

Equation (6.32) can be used to express the approximation (6.33) directly
in terms of the cone half angle 4. Specifically substitution of (6.32)
into (6.33) yields

G = v// 9 (2/8)3 (6.34)
(1-cos 4} (%— + €c0S 4)

Table 6.2 compares the values of (5.24) and (6.34) for several values
of 4. '

Table 6.2
Exact GDOP Approx. GDOP
¢ Eq. (5.24) Eq. (6.34)
30° 8.92 8.38
45° “ 4.27 4.02
60° 2.67 2.53
90° 1.63 1.59

Clearly (6.34) provides an approximation to (5.24) accurate to within
a few percent.

END OF EXAMPLE
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Example 6.5: The basic approach used in Example 6.4 can be u

(P i AGIITp 1
.

to improve the more general approximation (€.26).

The reasoning leading to (6.31) in Example 6.4 shows that the
exagerated cone angle ¢' generally satisfies

2n (1-cos ') = - 2n (1-cos o) (6.35)
i
or
o N
cos ¢' = 1 - N, (1-cos ¢) (6.36)

1

where N; denotes the number of points P1..PN remaining inside the

circle after "smearing". Use of (6.36) in (6.26) with the latter
evaluated at the exagerated cone angle ¢' yields

[ ] 7
(1-cos ¢){A+cos ¢) 0 0
gL 0 6 0
NN {1-cos ¢) (A+cos ¢)
0 0 12
" (1-cos ¢)2
(6.37)
where
Ny
A = 3 (WT) - 1. (6.38)
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It can be shown that the following expression is a qood approximation
to Ni

Ny TR+ D - J-1) B+ () (€.39)
where
2
g = = )_sin ¢¢-] (6.40)
Lé sS1n ‘é‘J

Thus (6.37)-(6.40) comprise an improved approximation to r. Specifically
Equations (6.38)-(6.40) are used to calculate A and N,. The results
then are used in (6.37) to calculate .

As an illustration consider the uniform 15 beacon constellation of
Example 5.5. The exact p and GDOP are as follows.
182 0 0
r = 0 .182 0 (6.41)
0 0 .463
GDOP = .910 (6.42)
Moreover it is clear from Figure 5.6 that
N, o= 15-8 = (6.43)
; 5 . .

By contrast use of (6.31)-(6.33} yields the following approximations
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L= 0
0
GDbOP =~ .889
N, = 11.03

i

Clearly the quantitives (6.44)-(6.46) approximate (6.41)-(6.43) to

within 2-6%.

D

179

Lo

433

(6.44)

(6.45)

(6.46)

With regard to (6.38), (6.39) note that Ni/N >1and A > 2 as N > o,

Thus as one would expect, the refined error nmagnification matrix

(6.37) approaches (6.26) as N + o,
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VII. DEPENDENCY OF ACCURACY ON NUMBER OF BEACONS

Equations (4.7) and {4.9) for the inverse of the error magnification
matrix r_indicate that each additional beacon causes a new moment or product

of inertia to be added to the elements of L. This fact suggests successively

that as the number N of beacons increases

1) the elements of L increase more or less in direct
proportion to N

2) the elements of I = gf] decrease roughly in proportion
to 1/N
3} the various measures of RMS error [e.g. o /(co J=(r )]/2,
172
= r r
GDOP (Fxx + vy + ZZ) ] decrease in proport1on to

1/ /M

XX

Examples 6.1-6.3, 6.5 confirm the foregoing hypothesis for the case of
uniform beacon constellations. The results of Examples 6.71-6.3 show exactly

the dependence described above. The {refined) results of Example 6.5 show
substantially the same dependence, the only departure being the slew bounded

growth of the quantities (Ni/N) and A.

Thus it is clear that for relatively uniform beacon constellations, the
various error measures are not highly sensitive to the number of beacons.
For example, to halve the RMS error measures it is necessary to increase

the number of beacons by a factor of four.

The following example shows that the 1//N dependence of RMS errors is
not unique to uniform beacon constellations.

Example 7.1: Consider an arbitrary three dimensional constellation of
N beacons. Let (%,y,z) denote any cartesian coordinate system at (M,

Cleariy each mass image on the unit sphere has a moment arm not longer
than the sphere diameter (i.e., 2). Thus

—
i
I~ =
——
>
—

™
| A

H~—1=

—
™
—

~o

1
£
=
—
et |
-
—
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Similarly

L

7.2,7.3
vy 4N and L__ < 4N ( )

ZZ7 —

|~

Appendix 1 shows that each diagonal element of r satisfies the inequality

1

r > T (7.4)
ac  — L
¢ 18
Use of (7.1)-(7.3) in {7.4) shows that
1 1
I‘XX > H‘N’ » I‘yy > m (7-5,7.6)
N (7.7)
Zz = 4N '

1t follows that the RMS error measures Oy cy,oz,g and GDOP are bounded
*
from below as follows.

a o
X > 1 y_ 2 1 (7.8,7.9)
COT 2 /N CO'[ 2 N
GZ > 1 (
Yy - = 7.10)
CUT 2 N
o ., 3 (7.12)
COT 2 i/ﬁ_
Goop > 3 (7.12)
2 N

*By utilizing the result of Appendix II with ¢= », the bounds (7.1)-
(7.3) can be sharpened to L <N. Thus the factor of 2 can be eliminated
from the bounds (7.8)-(7.12)%¢
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Inequalities (7.8)-(7.12) show that the RMS error measures cannot

decrease more rapidly than 1//N as N »+ =, For example, it is
impossible for GDOP to have a 1/N dependence for Tlarge N.

END OF EXAMPLE

Additional constellations for which the RMS error measures exhibit
an exact 1/v/N dependence are given in Examples 10.1, 10.2, 11.3 and 11.4.
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In many three dimensional hyperbolic systems the visible beacons
are confined to a "viewing cone". A1l accuracy measures normally are
very sensitive to the half angle of the viewing cone,

The sensitivity of accuracy to the half angle ¢ of the viewing
cone is apparent from Table 8.1. The table compares the actual angular
dependence of GDOP for five different beacon constellations. A1l entries
are normalized to unity at ¢ = 20°., The quantity GDOP4 denotes the
(normalized) GDOP for the four beacon constellation treated in Example 5.4.
The quantities GDOP15 and GDOP100 denote the GDOPs for uniform constellations
containing respectively 15 and 100 beacons, calculated by the method of
Example 6.5. GDOP denotes GDOP for the constellation of Example 6.3.

GDOPOpt denotes GDOP for an optimum beacon constellation treated in Example
10.2.

It is clear from the table that accuracy increases rapidly with
increasing half cone angle. For example, increasing ¢ from 40° to 60°
halves the rms error (i.e., GDOP) in all cases. Note that to obtain the

. s
m -in PNl - N k]

iC

v

Anma A ammitannyy ki Fha Aavnaddand AL adASw +bL 1 = ANO
Caosc 11 duiudrauy vy LIE CAPTUITIL Ul aduliny uealbuiis Wil g = 5y

v
M

a
t is necessary to increase the number of beacons by a factor of four
see Section VII).

j
(

The following example derives an approximate expression for accuracy
(i.e., GDOP), and "explains" why accuracy is so dependent on ¢.
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b

DOP, | BOOP
000 | 1.000
265 .270
131 137
.073 .084




Exanple 8.1: Consider a rotationally symmetric constellation of N

beacons confined to a cone of half angle ¢.

The images P]"PN of

the beacons on the unit

sphere are shown in Figure

8.1. Because of the i
rotational symmetry, the A
indicated coordinate system
produces a diagonal L

matrix.

Clearly the mean moment

arm in the x direction

for the unit masses is

roughly proportional to -

the x-extent of the spherical
section. A reasonable estimate
for the mean moment arm is ¢/2.
Thus to a rough approximation

p
Ly = N (6/2)
By symmetry
L~ N (o/2)°
vy ¢
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{—

n-..,... b R I
211 anr

l.ﬂ

y the mean moment arm in the z direction for the nit masse!
is roughly proportional the z extent of the spherlca] section
reasonable estimate of the z directed moment arm is ;Fr'( ":EQE"Q'}
4 /4#2. Consequently

L, = N(s2/avm)2 = Mo 32 (8.3)

i~
[

Thus to a rough approximation

> -
4274 0 0
L= W G ¢2/4 0 (8,43
0 0 o4 /30
- -
4/4° 0 0
PR )
= L t 0 4/4 0 (8.5)
4
u 0 0 3274 |

Equation (8.5) indicates that the RMS error measures depend upon angle

axf(ch): Ky/4 cy/(ch} -~ K/ (8.6,8.7)
ay/{Co )= Kylo (8.8)
g 172
0/(CUT) 5 (1/¢° + 4/¢7) (8.9)
2 5,'/2
GDOP = (V™ + A/¢7) {(8.10)

50



An indication of the quality of approximations (8.6)-(8.10) can be
obtained by comparing the angular dependence of GDOP predicted by
{8.10) with that exhibited by the constellations previously considered.
Reference to Table (8.1) shows that the angular dependence predicted

by (8.10) is quite reasonable considering the coarseness of approxi-
mations (8.1)-(8.3).

END OF EXAMPLE
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IX. DEPENDENCE OF ACCURACY ON DIRECTION

The errors that result from the minimum squared error estimate of
position (3.7) have a distinct directional dependence if the beacons are

Ao Eimnd FaA o a owvaladaaanTy omna
LUTIT HTIEU L0 d TeldlLlively tia

rrow secto
direction of the sector or cone axis dominate. This means that in many

three dimensional systems altitude errors dominate.

The following two dimensional example explains why this is the case.

Example 9.1: Consider a constellation of N beacons confined to a
sector of half angle ¢. Assume that the beacons are positioned so

that the center of T[4 i5isa]_
mass CM falls on the
vertical centerline as Py o P._.
[3 v Lo il §
as shown in Figure ﬁ‘//'(/, o ) e
9.1.
Mo dn dlaod o o
NOTE tndtL tne x ﬂv’

extent of the arc
greatly exceeds the

V o nvdamd ~F Ll FRPYN
T EALENL Ul Lo arc,

A———

This suggests that Figure 9.1

ro
X =
ro

or

XX vy

so that

XX
X XX yy

Q *(CI
~
i
<\\_
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In Appendix III it is shown that

—

XX > o4an? (Lo (9.4)
Cyy ? 7

so that
g
A tan Tt (9.5)
o (3 5)

Thus it is clear from (9.5) that gylgx > 1 whenever 4< /2.

For 4 = 45°, (9.5) shows that Tie-4-i5188] _

UNIT

/ARC
%y . tan 67.5° = 2.41 /_7\ (9.6)
Ox

The construction of Figure 9.2
provides a simple intrepretation
of the condition (9.5). In
particular the ratio Uy/gx exceeds

s
v
o!cr

Figure 9.2
the ratio b/a shown in the figure.

END OF EXAMPLE

An entirely analoagous situation obtains for three dimensional constella-
tions confined to a cone. That is, errors in the direction of the cone axis
(or altitude errors) dominate. The following examples illustrate this point.

Example 9.2: Consider a constellation of 20 beacons uniformly
distributed within a cone having half angle ¢. Let (X,Y,Z) denote
a coordinaté system origined at the center of mass of points
P]’PZ""PN’ and oriented so that the 7 axis coincides with the
cone axis.
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The ratios Lzz/Lxx’ oz/c and oz/cv can be calculated for different cone

X
angles using the result of Example 6.5. Results for a representative

set of angles are given in Table 9.1,

Table 9.1

LZZ _ I_ZZ 02 I122 XX a

i o VT,V =
) XX Yy X XX 22 o
10 3.71 x 107° 164.19 .9999
30° .0344 5.38 .97
45° .0806 3.52 .93
60° 1508 2.57 88
90° 387 1.6 75

Note that errors in the z direction dominate for cone angles less than
90°. For angles typical of synchronous satellite constellations
{(i.e., 45°-60°) Lxx is an order of magnitude larger than Lzz’ and a,
exceeds Oy by a factor of 3 so that total rms error o is due almost
entirely to rms error in the z direction.

END OF EXAMPLE
Example 9.3: The results of Example 9.1 can easily bte extended o the
case of three dimensional beacon constellations confined to a cone.

-

[ S [ TP (EROTS R T T [ a)
2peCITICal Y a pound ald 1uyvus L0 (3.0

AL
) d
constellations is derived in Appendix III. The bound is as follows.

ppiicabie to three diiensional
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S tan

[ph]
™~

The bound is applicable to any constellation of N beacons confined

to a cone of half angle ¢, provided that the center of mass CM of
points PT’ Pzg...PN 1ies on the cone axis. The X,Y,Z axes are assumed
to be centered at CM and oriented so that the Z axis coincides with
the cone axis, and so that Lx = 0.

A
In the case of a constellation rotationally symmetric about the cone
axis cxz = Uy2 so that (9.7) reduces to
cz2 1 - ARPL I
> L M
7 73 tan (2 2) (9.8)
X

tan (% - %’h 1 (9.10)
or

4 < 70.6° (9.11)

Note that the interpretation of Figure 2.2 is directly applicable to
condition (9.9) if ¢/2 is replaced by ¢/v/2 and Y is replaced by Z.

END OF EXAMPLE
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The dominance of altitude errors is unfortunate from the point of view
of aircraft surveillance systems that rely entirely upon satellite beacons.
In such system it is desirable to know altitude more accurately than transverse
position. The results of this section show that the opposite is the case.



X.  ERROR MINIMIZATION 1

The following questions appear to be basic ones from the viewpoint of
designing hyperbolic systems.

1)  What is the minimum error that can be achieved from
a given number of beacons?

2)  How should the beacons be deployed to achieve minimum
error?

This section and the following one answer questions of this kind.

Two error measures appear to be appropriate for hyperbolic systems.
These measures are as follows,

1}  The mean squared axial errors for beacon constellations

restricted to a planar sector or to a cone; i.e., 022
2) The total mean squared error; i.e., UXZ + oyz + 022
1

2
T ERY]

[=Yal a orm
cyuiva

i1 1]

c+

+a EDNEY
LU Guur )

The present section identifies constellations that minimize mean
squared axial error for constellations restricted to a planar sector, and
to a cone. The following section identifies beacon constellations that
minimize total mean squared error for four geometries of interest.

In all cases bounding arguments are used to identify the minimum mean
squared error. This is, a lower bound on the mean squared error is esta-
btished. Then it is shown that certain select constellations achieve the
bound.

With respect to ‘the first error measure, let o denote a coordinate
axis parallel to the sector or cone axis of interest. The mean squared
error o in the o direction is given by

4
) oo
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where o and ¢ are as in Section III, and Toa is the o-a element of the
matrix 1. Clearly to minimize (10.1) it is necessary to minimize the
magnification factor
2
a

-——'q'—z' =T (10.2) )
(UTC) oo

The following bound* is used as the starting point in the examples
of the present section

T > [J*— (10.3)

oo
oo

where the equal sign holds if and only if LaB =0 for 8# «. The bound is
useful in that it facilitates use of coordinate systems with one axis

parallel to the sector or cone axis rather than coordinate systems that

diagonalize the L matrix.
The examples employ the " _%_nota%ioy to deggte averaging over the
set of points P1,P2,...PN; e.g., Y~ = N-j=1 (Yj) .

Example 10.1 (Planar Sector) Consider the problem of placing N

beacons on a plane within a sector of half angle ¢ so as to minimize
the axial squared error. l1-4-15186]

29 Q

Let C denote an arbitrary UNIT ARC

constellation of N beacons --—_—-u].

confined to the sector.

Let the coordinate system !
(X,Y) be selected at the Cit

of the beacon images P]"PN
with the Y axis parallel to

the sector axis as shown 1in

Figure 10.1

*
See Anpendiy 1
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Figure 10.1. Let (X'.Y') denote a parallel coordinate system at
the center of the unit circle as shown. Let Y' denote the Y'

coordinates of the CM in the system (X',Y').

It follows from (10.2), (10.3) that the mean square axial error

Vd .
satisfies
%

. 2
_y_? > EL )
(coT ’ Yy
~ 1
= (10.4)
Y2

Intuition suggests that the denominator NY2 of (10.4) can be increased
by removing the points P.|,P2,...PN from the center of mass Y' as far
as possible while maintaining Y'. Appendix Il shows that this is the
case, and that the enhanced value on2 is (1-Y")(Y'-cos ¢). More pre-
cisely Appendix II shows that

vl
<

Yo < (0-V')(Y'-cos ¢) (10.5)
with equality holding if and only if P1,P2,...PN are distributed
between the minimum Y and maximum Y positions of the unit arc as shown
in Figure 10.2., Use 18-4- 15187
of {10.5) in (10.4) P\ o B, ONLY
ShOWS that ALLOWED HERE

2 .
Yy 1 1
(co ) 7 N (17 (Tecos o)
(10.6)
-1 ¢
Thus to find the minimizing

constellation it is only
Figure 10,2
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necessary to examine all constellations of the type shown in Figure.,10.2,
and select the one that minimizes oyz. That is,

2 .
o 1 M
2 N cos112%¥11 J- 1 —L
(cor) " L aF @ cos o) |
1]
TN A g (10.7)
sin 7

The minimizing calculation shows that the minimum is obtained for ¥
equidistant between the 1imits cos ¢ and 1.

. [1g-4-15158:

A straightforward cal-

N, POINTS
HERE

culation shows that any

constellation of the e . e
type shown in Figure 10.3 L//////H E\\\\\
achieves the bound (10.7) - //f
provided '//

NZ * N3 = Nz (10.9) Figure 10.3

Moreover a careful review of the inequalities (10.4)-(10.7) shows that

hat
these constellations are the only ones that achieve the bound (10.7).
Thus the minimizing constellation is that shown in Figure 10.3 with
(10.8), (10.9) satisfied. The corresponding squared error is given

by

2 2 1 1
(co )" = 7 (10.10}
Y t N sin

Q
1

robe-

END OF EXAMPLE
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Example 10.2 Consider the problem of placing N beacons within a cone

of half angle 4 so as to minimize mean squared axial error at the vertex
of the cone. lis-euisiss]

l.et C denote an
arbitrary constella-
tion of N satellites
confined to the cone.
The system of vectors
iy51,...1, and points
P1,P2..;PN are shown
in Figure 10.4. Let
the coordinate system
(X.Y.Z) be set up at the
center of mass CM so
that the Z axis is
parallel with the cone

Figure 10.4

axis as shown.

It follows from (10.2), (10.3) that

°%f
(CUT)Z - Lzz
- { )
= 10.11
Nz2

The argument leading from (10.4) to (10.7) applies once again.
Consequently

022

=|—

5 (10.12)
(COT) N siﬁ!

rope-
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with equality holding only if the beacons are distributed equally
between the pole and ring as shown in Figure 10.5.

T18-4-18160]_
A straightforward calculation
shows that the constellation :E;%ACONS :%:EACONS

of Figure 10.5 indeed achieves
the bound (10.12) provided

Ny = N2 = N/2 (10.13)

Thus the minimizing constella-
tion is that shown in Figure
10.5 with N1=N2=N/2. The

corresponding minimum value

: ~1
of sz 18 /\

o 2 . (co )2 1 ~—~Il——— (10.14) Figure 10.5

The minimum value of 022 given by (10.14} represents a clear improve-

ment over that for a uniform constellation. As an illustration, consider
the vniform fifteen beacon constellation shown in Figure 5.6. Exanple 5.5
shows that

o /(coT) = ,463 (10.15)

By contrast an optimum fifteen beaccn constellation for the same half
cone angle (4=n/2) exhibits the following mean squared error

°z2 ] ]
7 T I T & (10.16)
(COT) sin’ 7

= .266 END OF EXAMPLE

62



XI. ERROR MINIMIZATION 11

This section identifies beacon constellations that minimize total mean
squared error (02) or, equivalently GDOP. Four different beacon geometries

mian dinadnd
arg Liaigcu.

i) unconstrained two dimensional constellations

ii) unconstrained three dimensional constellations

iii) two dimensional constellations confined to a sector
iv) three dimensional constellations confined to a cone

The total mean squared error 02 is given by the sum of the diagonal
elements of the covariance matrix (3.11). That is,

two dimensions:

s = (co Jor 4T ) (11.1)

three dimensions:

2 2
= {c r.+r.  +T
a ( OT) ( XX yy zz)

Thus the quantity od js minimized by minimizing the magnification factors
in (11.1)3 namely

two dimensions:

cle(o_[c)Z T Tyx + F.‘;’}’
three dimensions (11.2)
2 2 _
o /(UTC) = Ty Ty tr,,
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*
The following bound s used as a starting point in each example

two dimensions:

. 1 ]
1 + T — 4
XX VA b Lxx Lyy (]]-3)

three dimensions:

r + T + T > L + ._]_ + _1_ (11.4)
XX - '
vy Zz Lyx Lyy 77
where the equal sign applies if and only if L is diagonal. The bound is
Y I | [ W VST T S TR . SO B (R I T < S L e I O T Y O e Ry
useTul 1N tndl 1L TdClli1LdlEed uUsSe 0T COOrdindLe HysLEllls> Lhdl U0 Tul Nneceessdrily

diagonalize L,
The examples employ the following notation.

1) X', ¥ {or X',Y',Z' in three dimensional examples)
are cartesian coordinates measured with respect to
the origir 0 of the system of unit vectors i,,i,,...
RERRE

L~

T

2) X, Y (or X,Y,Z in three dimensional examples) are
cartesian coordinates measured with respect to the
center of mass of the points P]’PZ""PN' It is
assumed that the coordinate system X,Y (or X,Y,Z)
differs from X',Y' (or X', Y',2') by a translation

so that Fquations (6.11)-(6.16) can be used.

d 050 T et las

3) The "—" notation again is used to denote averaging
over the set of points P],Pz,...PN.

Example 11.1 (Unconstrained Planar Constellation): Consider the
problem of positioning N beacons in a plane so as to minimize the

total mean squared error 02 at a point in the plane.

*see Appendix 1
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Let C denote any constellation of beacons in the plane. According
to (11.2), (11.3)

2
1 1
—*—-“—3; > T+ (11.5)
(co.) Lxx Lyy

It follows from (4.10), (6.11) and (6.13) that the diagonal elements
of L are given by

R T B (TP L LS B (11.6)
Ly = M) = N[0 - (M), o (11.7)

Moreover geometry imposes the constraint

(X')% 4+ (v1)° = 7 (11.8)

since (X%)2 + (Y1!)2 = 1 for each point P, on the unit circle. Thus
the bound {11.5) can be rewritten

.
D ]
(co )" [ X Y
T
= —[.\IT .I + _1“]
'{XI)Z_ {XI)Z :?J
= %{ ] -7 ¢ L (11.9)
AR A A
- L 1 -l (11.10)
=002 P ey - P



The denominators in {11.10) are bounded by

HY')E 1-(Y')2 —W)Zg,o (11.11)
(Y')2 > (Y')E -T2 >0 (Mm.2)
Consequently
) "
c 1 1 1
7 = R E— + (11.13)
(o) |- @2 o - o
i o,
2 N — —
L 1-(Y") (Y')"~
1 Minop 1, L
z N 0<’Y<1 - :|-Y ' Y"
= 4/N (11.14)
where equality holds if and only if
L = diagonal {(11.75)
Xr=Y"=0 (11.16)
(x")%= (v')? =172 (11.17)

It is easy to demonstrate constellations of N beacons that achieve
the Tower bound (11.14).
of 02/(ch)2. It follows that the minimum mean squared error is

Thus the bound represents the minimum value

4/N (11.18)}
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The corresponding value for GDOP is

GDOPmin = 2/ (11.19)

Moreover Equations (11.15), (11.16) and (11.17} represent necessary
and sufficient conditions for a beacon configuration to minimize 02

Tha ranctnl
e Cudiiaued

-t

at+innc nedd
[T U

~n nd in F
T LD | [O [

of minimizing (or optimum) constellations for N=3 and N=4. More
generally it can be shown that a constellation consisting of N beacons

separated by 360°/N in azimuth is optimum.

It should be noted that beacon constellations other than "equally
spaced” constellations also satisfy (11.15-11.17) and therefore are
optimum. For example it is easy to show that superposition of the
optimum N=3 and M=4 constellations considered in Examples 5.2 and 5.1
produces an optimum (non-equally spaced) constellation for N=7,

END OF EXAMPLE

Exampie 11.2 {(Unconstrainted Three Dimensional Consteilation): An

analysis similar to that of Example 11.1 shows that for a 3 dimensional
constellation of N beacons

a/N (11
and

—
—

—

Moreover equality in (11.20), (11.21) holds if and only if

L = diagonal {11
Y= Y =7"=0 (11
(x)2 = (v)% = (2% = 1/3 (1
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UNIT SPHERE

Figure 11.1
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It is easy to show that the minimizing conditions (11.22-11.24) are
satisfied for N=4, 6, 8 if the points P1,P2,...PN are placed at the
vertices of the appropriate regular solid inscribed within the the
unit sphere. For example, the "tetrahedral" constellation in Figure
11.1 satisfies (11.22-11.24). Furthermore the results of Example
6.2 show that the minimizing conditions are approximately satisfied
for any value of N, if P1, P2...PN are "uniformly distributed" over

the unit sphere.

Consequently (11.20) and (11.21) represent the minimum values of
02 and GDOP for N=4, 6 and 8. For other values of N (11.20) and
{11.21) can be regarded as lower bounds which are very nearly
realized by uniform distributions of beacons.

Once again uniformly distributed constellations of beacons are not
the only constellations that satisfy (11.22-11.24). For example it
is easy to show that superimposing the (uniform) optimum constellations

= = £ \ +n1TA+4
for N=4 and N=8 produces an optimum {but non-uniform) constellation
for N=12

END OF EXAMPLE

Example 11.3 (Planar Sector Configuration): Consider the problem of
placing N beacons on a plane within a sector of half angle ¢ so as to

minimize total mean squared error 02 at the vertex of the sector.

[re-a-1si52}

Let C denote a con-
stellation of N beacons

ARC OF UNIT

/ CIRTLE

confined to the sector. g T
The system of vectors P
jq,jg,...iN is shown in
Figure 11.2. Llet the
coordinate system (X',Y')}
be selected as shown.

———

Figure 11.2
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The reasoning leading to the bound {11.9) again is applicable. Con-

sequently
o > %, f 1 + L 1
(co ) \- TR R ]

1 [ , ] 1
N ——
I Ao L S j
-;% { + —L‘\ (11.25)
m—r\z w3
L1- Y©

where equality in (11.25) applies only if X' = 0, and L is diagenal.

As discussed in Example 10.1, ;? satisfies the inequality

-
ve <« (1- V) {V -cos ¢) (11.26)

with the egual

u

ign applying conly if the points P1,P9, ..P, are con-

fined to the minimum Y' and maximum Y' position of the unit are as
shown in Figure 11.3. Given that 7' o<1, it s a simple exercise

to deduce from {(11.26) QLENCHE
that there exists an POINTS #,, Py, Py DNLY ALLOWED
angle ¢' satisfying _ﬁ,/fFEHN_
. i ™
0co' 2o (11.27) / F-om

such thatl

2 . (1-T) (T -cos &')

{11.28)

F;gure 11.3

“See Appendix IV for an interpretation of (11,27} and of the subsequent
inequality manipulations that Yead t6 the final bound {(11.33-11. 34).
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Consequently (11.25) can be rewritten

e

o? 1 1 1
— > ¥ +
(coy) = N i 1-(1-Y") (Y -cos ¢')—(VT)2 (1-Y")Y(Y"-cos 3')
1 1 . ]
N | (T+cos ¢)(1-T7) (Y- cos ¢')(1-Y7)

It follows straightforwardly from (11.29) that

] (11.29)

. L r
g I Minimum 1
2. N cos ¢)l_<_YT-5_.| : +

2] ]
= I T T
N 16 cos2 %?- S'in4 QE'
1 Minimum e L e
2 N O'cy [16cos” & sin' &
t 1
N 16 c052 %— s*in21 % for ¢ 5_—%?
=9
4 2n
N for ¢ > 3

*
For ¢ < 2n/3 the constellation C (¢} of points P],Pz,...P

Figure 11.4 achieves the Tower bound (11.33) provided

N[ 1-2 (Sin /4 ¢/4) 1 (11.35)

N] } sin ¢/2
sin 6/4,2
N2 = N3 = N (ETE_%7§) {11.36)

—

~J

shown i
N n

(1+cos ¢'){(1-Y") (YT-cos ¢')(1-Y")

(1

——

—
-
-

.32)

L]
L]
—

.34)



e aisied

Ni POINTS
HERE
N, POINTS

Moreover a careful review of HERE
the inequalities (11.25-11.33)
shows that C*(e) is the only
constellation that does achieve
the bound. ¢

Ny POINTS
HERE

|

Thus for 4 < 27/3 the minimum squared error is 0
Figure 11.4

2
(cq )2 !

1
L 1 (11.37)
min v N 46 cos? %—sinq &

The corresponding value of GDOP is

1

1
— . 7 ¢
N 4 cos %— sin ]

GDOF’m-n = (11.38)

The minimizing constellation is that shown in Figure 11.4.

For ¢ » 2n/3 any optimum constellation of Example 11.1 that is consistent
with the sector constraint achieves the bound (11.34). For example the
"equal angle" constellation shown in Figure 5.2, and multiples of it,
achieves the bound (11.34).

Thus for ¢ > 24/3

o L= (e )t A (11.39)
and
6o = 2/l (11.40)

72




In this case, the constellation shown in Figure 5.2 and multiples of
it, among others are optimum.

mmd mnd S e (o8
UL UL TN . na

~ e o

+aTT1nd
LulistLciliatl

that shown in Figure 11.4,

LT
(R 15

It is interesting to note that for ¢< 2743 the "uniformly spaced"
t 1

The values of N1 and N2=N3 for several values of ¢ are summarized in
Table 11.1.

Table 11.1
r N, /N (NZ/N) = (N3/N)
1° .50 .25
10° .50 .25
30° .50 .25
45° .48 .26
60° .46 27
9n° .41 .29
120° .33 .33

It is clear from the table that the optimum values of N]/N and N2/N =
N3/N are almost identical to those in Example 10.1 for 25?/2. This is
a consequence of the fact that the mean squared error ¢~ is dominated
by oyz over this range of angle.

END OF EXAMPLE
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Example 11.4 {Cone Configuration): Consider the problem of placing

N beacons within a cone of half angle ¢ so as to minimize total mean

squared error 02 at the vertex of the cone, e
RIS I

Let C denote a constella- SECTION OF
. . UNIT SPHERE
tion of N beacons confined

to the cone. The system of

e ohetn
1o OSTIVWIEI

u\ -|

vectors ‘1,.2, ..*
in Figure 11.5. Let the
coordinate system (X',Y',Z%)

be selected as shown.

An analysis similar to that
leading to Equation (11.25)

in Example 11.3 shows that Figure 1} %_—’!
’
1 1 1 !
ey —-1. s ,
(co ) -0l (2 (vt - (2 2
. %[ ! DU B (11.47)
Lo Z - w2

with equality holding in (11.41) if and only if L = diagonal and X' =
Y = 0.

The results of Appendix Il show that E?‘satisfies the inequality
2 < (1-1')(T'-cos ¢) (11.42)

with the equal sign applying if and only if the points P]’PZ""PN
are confined to the minimum Z' and maximum Z' positions of the spherical
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sector as shown in ERELS
Figure 11.6. It HERE AND HERE

follows from (11.42)

that there exists an

angle ¢' satisfying

0 <¢' <4 (11.43) \ 4
such that iy
—_2— = = 1
25 = (1-7'Y(7'-cos ¢"')
11.44)
Consequently (11.41) can be rewritten Figure 11.6
02 S l 1 i + ] .
— 7 Z N -
(ca,) 1-(Y1)2-(1-T7) (T-cos ¢')-(T7)? (v)?
1
+
(1-7' (2" -cos ¢')J
= %. ! + 1, 1

(1+cos ¢ ) (1-TT)-(Y')? (v (-I)(ZT-cos ¢')
(11.45)

It follows from (11.45) that
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s 1 1 1
2 = N Minimum + -
(co ) _ 2 ?
T cos ¢<Z'<] (1+cos ¢')Y(1-77)-(Y") (Y")
(y' 2 ¢ (1+cos ¢')(1-72")
. 1
(V-7 -cos ¢') (M
= 1 16 (1]
N (1+cos ¢'){/T+cos ¢' - V5-3 cos ¢')2
X 1 Minimum 16
= N 0<¢1'<¢ 1 T e
=7 = {1+cos ¢')(V/T+cos ¢ - v5-3 cos ¢)
(4 16 (1
L 2
N {1+cos ¢){VT+cos ¢ - vh-3cos ¢)
= for ¢ < cos_]’- L )
h‘ - A 3
2 for ¢ > cos (- x) m
LN ¥ \ 3! \
For ¢ 5_cos'](— %J the constellation C*(¢) of points shown in Figure 11,
achieves the bound provided
T e - {1+
1 N] - %. [/11 €0S ¢) (5 %?iog)a {1+cos ¢) ] (11,
_ N (5-3cos ¢) - V{1+cos ¢){5-3cos ¢) -
2 NZ 4 [ 1-cos ¢ J (.
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“Tis_azeic1]
|'IO_Q_I|JIUI|
N, POINTS
AT POLE
N, POINTS
AROUND RING

Figure 11.7
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3. L = diagonal (11.52)
X'=YV'=0 (11.53)

. 2
(x)? = (y)f= sin e (11.50)

The conditions (11.52-11.54) are identical to the optimizing conditions
(11.15-11.17} for unrestricted planar arrays, except for the factor
sin2 6. Thus (11.52-11.54) assert that the projection of the ring of
the N2 points into the X',Y' plane comprises an optimum two dimensional
array, except that the points are distributed along a circle of radius

sin' rather than the unit circle.

A careful review of the inequalities shows that the constellations
satisfying (11.50-11.54) are the only constellations that achieve the
bound {11.48).

Thus for:pg_cos'1(- %J the minimum attainable mean squared error is

given by
ol = (e )} 16 . (11.55)
(1+cos ¢)(V/T+cos ¢ - V3-5cos o)
The corresponding value of GDOP is
GDOP . = 1 4 (11.56)

N VT+cos ¢ (/T+cos ¢ - /3-5cos ¢)2

The minimizing constellation is that shown in Figure 11.7 with (11.50-
11.54) being satisfied.

_ -1, 1. ] e . e ,
For ¢> cos (- §J any optimum constellation of Example 11.2 that is
consistent with the cone restriction achieves the bound (11.49). For

example, the optimum N=4 (tetrahedral) constellation achieves the
bound (11.49),

78



Thus for ¢ 3_cos'.I (- %J the minimum achievable mean squared error is
2 _ 2
Smin (CUT) 9/N {(11.57)

The corresponding value of GDOP is
GDOPmin = 3N (11.58)

The tetrahedral constellation, and multiples of it, among others are
optimum.

Representative values of N1 and N2 for the optimum constellation are
given in Table 11.2.

Table 11.2
& N]/N N2/N
1° .500 .500
20° .485 515
40° 447 .553
60° .395 .605
90° .309 6917
100° .279 .721
109.5° .250 750
Note as ¢ approaches the "tetrahedral" angle 109.5° (= cos'][- %]) that
N.I and N2 approach values consistent with the optimum tetrahedral con-
stellation in Figure 11.1 of Example 11.2.
The angular dependence of (E.DOPW.n is shown in Figure 11.8. In principle

high positional accuracy can be obtained for small values of ¢ by using
a sufficient number of satellites. Figure 11.8 shows that the price for
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GDOP X + N

10

[18-4-15041-1]

20

Figure 11.8
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*
such accuracy is high, however. For example, approximately 24 beacons
are required to obtain the same value for GDOP at ¢ = 40° as can be
obtained with only six beacons at ¢ = 60°.

Tahlne 11 2 17 A and 11 £ ~nmnaw +hn nnmatvisr Adlatinne n¥f row
1AM T2 LI IV '™ Gl LI B bUl“'Jul [F1 0 ) - U VE T WL iVl wi 1

[ ]

"uniformly spaced" constellations [Example 6.5] with the corresponding
values for an optimum consteflation for N = 15,100 and infinity. It is
clear from the tables that the optimum constellation is modestly better
(approx. 10%) in the case of fifteen beacons, is significantly better

(approx. 33%) in the case of one hundred beacons, and is substantially

better (up to 50%) in the case of larger numbers of beacons.

END OF EXAMPLE

*
Also see Section VIII
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Table 11.3

GDOP FOR OPTIMUM AND UNIFORM CONSTELLATION

CONTAINING MN=15 BEACONS

GDOP x /N GDOP x /T

¢ {optimum) (uniform)
20° 34.16 38,17
40° 8.506 10.51
60° .05 5.44
90° 3.24 3.44

Table 11.4
GDOP FOR QOPTIMUM AND UNIFORM CONSTELLATINNS
CONTAINING N=100 BEACONS

GDOP x VN GDOP x VN

¢ (optimum) {uniform)
20° 34.16 48,79
40° §.56 13.20
60° 5.05 6.62
an° 3.24 3.87
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Table 11.5

GDOP FOR OPTIMUM AND UNIFORM CONSTELLATIONS
CONTAINING N=o BEACONS

GDOP x /N GDOP x VN
(optimum) (uniform)
34.16 58.02
9.56 15.42
5.05 7.58
3.24 4,24

les)
LS




XIT. SENSITIVITY OF ACCURACY TO SINGLE BEACON DROPOUT

An important consideration in the design of beacor constellations is
the sensitivity of system performance to single beacon dropout. In a
satellite based surveillance system, dropout can result either from failure
of on-board equipment, or from jamming. This section derives relatively
simple formulae for calculating the effect on accuracy of such beacon dropout.

Thus let L denote the matrix (4.10) for a two dimensional constellation
C containing N beacons. Let Ci denote the constellation that results when
beacon Bi is removed from C. Assume a coordinate system at the center of
mass CM of C that diagonalizes L.

Removal of beacon B, from the constellation C changes the L matrix in
two ways. First the contribution of Bi to the elements of (4.10) must be
subtracted out. Second, the center of mass of the constellation changes so
that the elements of L must be adjusted through use of (6.11)-{6.16}. The
resultant matrix Lﬁ is given by

=L =K LYY ST A (12.1)
=1 = 117 - o i’
Y N-T |y
i i
[y T J L r -
subtraction of change of CM
Bi terms
v %]
=L - lYJ (%Y, (12.2)
i

where X_i anc Yi denote the coordinates of Bi with respect to the center of
mass of C.

If 02 and 012 denote respectively the total mean squared errors for the
constellations C and Ci’ then direct calculation shows that



.—r.2 = 02 = Th[|—]1 - Twll -].l
u,1 [ i_i 1 L 1
X2 v,°
i 4]
¢ L ) L 2
= X1X 2yy 'l 5 (12.3)
o -af Lox g ey,
[Lxx i Lyy 1 ]
where
_ N
o = N_-l (12.4)

Equation (12.3) can be rewritten in terms of an arbitrary coordinate
system (X',Y') centered at CM as follows

2
at, (L7 X
021 02 = Lt A (12.5)
1-ak (L7 X

Here L' denotes the matrix (4.10)

iy

[

1

o]

ulated in terms of X',Y' and X denotes

[~

a
a 2 x 1 vector the elements of which are the coordinates of 81 in the system
(X',¥").

An analogous derivation shows that for three dimensional systems

X.2 v.2 2.2
i + i, i
o ? ] 2 o2
g 2 ol _ L Fyxx Yy ‘2z |
i * X.2 Y? Z.? - (12.6)
1 -4 L1 + o L
XX vy zz |
where once again the coordinate system at CM is selected to diagonalize

)
&

——
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One expects the total mean squared error to increase when a beacon drops
out. Eguations {12.3) and {12.6) show that this is the case. The denominators

in both equations are positive since both represent the quotient of deter-
minants |L.[/ILl, and the matrices L, and L are positive definite. Consequently

>0 (12.7)
iilustrates use of

UsLrdies use v

Exemple 12.1 Consider the uniform distribution of beacons shown in

Figure 5.6. Assume it is desired to assess the effect of dropout of
the polar beacon (i.e. point P]).

One method of calculating the change in total mean squared error due -
to dropout is to calculate the mean squared error 02 for the constella-
tion of Figure 5.6, and that (012) for the constellation minus point
PT, and then take the difference. This method shows that

o? - 827 (12.8)
6.2 - 049 (12.9)
1
s - ot = 949 - 827 = 122 (12.10)

Equation {12.6) provides an alternate and faster method for calculating
the change 012 - 02. Specifically (12.6) shows that

2
z
a .l 2
7 15, , .65
2_ 2. (L))" 42 B39
. i ]
1 2,° L5y (65)°
1 - o 12 2.7
[
ZZ

= ez END OF EXAMPLE
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Often it-is desirable to know which beacon dropout will most impact the
total mean squared error od. Equation (12.6) provides a simple answer to
this question for the important case of a cone restricted beacon constellation
where

LZZ << LXx and LZZ << Lyy (12.12,13)

{see Section IX}. Here (12.6) reduces to
2
Z
R
L2 .2 L1 22 (12.14)

with

<1 (12.15)

Clearly the change (12.14) is maximized by th

of Zi’ that is, by the point Pi most removed in the Z direction from the center
of mass. Thus for a reasonably uniform cone restricted beacon constellation,

he point P, having the maximum value
i

accuracy is most impacted by dropout of a satellite either directly over-

head, or near the horizon. Clearly if most of the beacons are directly

overhead,then accuracy is most impaired by dropout of a beacon on the cone

horizon. On the other hand if most of the beacons are near the cone horizon,
*

then accuracy is most impaired by dropout of a beacon overhead.

The conclusion that accuracy is most sensitive to overhead and horizon
Jeacons complements the results on optimal beacon constellations obtained in

*
The objecti
as nearly planar

e I’t‘bUILHIq bEL U'I Ut‘_‘dLUH IllldgEb
mple 5.3.
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Examples 10.2 and 11.4. In effect the examples show that accuracy is most
improved by placing beacons directly overhead and on the horizon. Thus it
is quite reasonable that accuracy should be most impaired by removing beacons
from these same positions. )
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XITI. GROUND BASED MULTILATERATION SYSTEMS

In ground based hyperbolic multilateration systems the beacons tend to
lie in a plane; moreover the spacing between the beacons greatly exceeds the
altitude of the subject (aircraft) above the plane. These facts limit the
accuracy with which ground based systems can determine altitude.

The following examples utilize the results of Section IV to obtain
useful bounds on the ability of ground based systems to measure altitude.
Example 13.1 Assume that no beacons are in the immediate vicinity
of the aircraft so that the (N} beacon images lie within a band of

the unit sphere as z

shown in Fig. 13.1. ?

. UNIT SPH
Let the coordinate ERE

system (X,Y,Z) be
selected so that

the Z axis coincides
with the vertical as

shown,

Clearly the Z-directed

moment arms are strongly “uanmnﬂﬂﬂnuﬂﬂﬂﬂlﬂﬂmpy

disadvantaged. Thus LZz

BEACON IMAGES
CONFINED HERE

magnification factor T, Figure 13.1
is corresponding large,

is small, and the error

This observation can be
quantified as follows.

By reasoning as in Appendix Il it is easy to show that E?-is bounded
as follows

72 < 7 (sin¢ + I) (13.1)

89



so that

75 < Maximum - Z(7 + sin 38)
0<Z<-siné
a *
Therefore
_ 7
L22 = N 2Z
. 2
< NAE (13.3)

It follows from Fo. {A1.3) of Appendix I that

1
.. > +——
zz — LZZ
4
> {13.4)
N sin2 8

Conscquently the RMS altitude error (o?) and the RMS ranging error
(co,) satisfy

o 1/2 2

Z
= (r_.) T —— (13.5)
tcct) 2z /N sin s

Thus for example with N=4 beacons and § = 10° the RMS altitude error
exceeds the RMS ranging error by a factor of more than 5.75.

END OF EXAMPLE
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*
Example 13.2  Assume that one beacon B, is in the vicinity of the

aircraft, but that all
BEACON IMAGES 2
other beacons BZ"BN are P ..P CONFINED
. 2 N UNIT SPHERE
far removed from the air- TO THE EQUATOR

craft. In this case the
images P]"PN of the
beacons on the unit sphere
are as shown in Fiqure 13.2.

Let the coordinate system
(X,Y,Z) be selected as
shown.

The Z coordinate of the

mmdne A€ ma : 5 h
céeniey o7 mass 15 given oy

consequently
2 . 2

(N-l)[-% sine] + (1) !\(1—"@) sine]

—
I
o]

]

N-1 . 2
—N— S$In 9

fl

< sin” @ (13.7)

It follows that

] ]
P> > g (13.8)
zz Lzz sin_ ®

*Resu1t suggested by J. Evans
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5o that the RMS altitude and ranging errors satisfy

g
z > 1

{co,) sin Y
v

distance from aircraft to B)
altitude {(13.9)

Inequality (13.9) shows that only the beacon B, nearest to the aircraft
is effective in providing altitude discrimination. Moreover the
effectiveness of B] decreases rapidly as the beacon to aircraft distance

exceeds the aircraft altitude.
FND OF EXAMPLE
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XIV. THE EFFECT ON ACCURACY OF CORRELATED NOISE

The estimate of position (3.7) is a useful one when the TOA errors can be
assumed to be uncorrelated and of equal variance. Often, however, the errors
have different variances and may be correlated. In such cases the estimate
(3.7) may not be the best one.

It is a relatively straightforward task to modify the derivation of
(3.7) to take account of TOA errors that are correlated and have unequal
variances. The key is to select the estimate of position to be that position
which minimizes the quadratic form

Q0 = e ple (14.1)

rather than that which minimizes ' ¢, where EE denotes the correlation
matrix for the noise vector . (see Section III}). In the case of Gaussian
noise, this decision amounts to a maximum 1ikelihood estimate of position.
The resulting estimate is given by

1 1

R = clE'HH P B)TURETTEH (e b7 aT

HE R

1=

e w)T MR (14.2)

where ¢, R, aoT, F and H are as in Section III.

The estimate of position (14.2) shares an important attribute with the
previous estimate (3.7); namely both estimates are insensitive to a common

additive noise term ¢ in the noise sources £y This conclusion follows most
LY

directly from an examination of £q. (3.3). Clearly pairs of £, terms cancel
in the left hand members and consequently do not influence the estimate of
position. The same conclusion can be drawn from (14.2) by noting that a
common noise term has the effect of adding an increment of the form
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1T 1 1
- 2 11 1
Po = 9% _ (14.3)
11 1 J
to the correlation matrix P .. But
11 .01 X
H L IR (14.4)
11 .. iJ

so that P does not impact the estimate (14.2).

Use of the estimate (14.2) in a satellite surveillance system would
require that the matrix P. be updated periodically to reflect changes in
orbital uncertainties, changes in atmospheric conditions etc. Consequently,
apart from ocasionally updating Pg, the computational effort required to
calculate the estimate (14.2) is identical with that required for the previous
estimate (3.7).

An attractive feature of (14.2) is that it provides a way of taking
account of the power levels of received signals when estimating position,
This is desirable to minimize the effects of scintillation and/or channel
fading. The basic ided is to use the power levels of the received pulses to
formulate the correlation matrix Etto be used in (14.2) Specifically the
correlation matrix EE can be separated into two parts as follows

A (14.5)
where

a diagonal matrix the elements of which are the

(T!‘U
"

mean squared time of arrival (TOA) errors that
result in the receiver from detecting a signal
embedded in noise.

94



= a correlation matrix taking account of TOA errors
external to the receiver.

P
—£0

The elements of Ecr are a (known) function of the signal to noise ratio
in the receiver, and the detection algorithm used. Thus E-ar can be re-
computed every time the power level of one of the received signals changes
significantly. Rso need be updated only when conditions external to the
receiver change. The resultant correlation matrix (14.5) then can be used
in the estimate of position (14.2)

The positional error covariance matrix for the estimate (14.2) is given
by

Tyt (14.6)

1

2 1 1 1
P = CCIETH (P H)

|}

2
(o )™ (14.7)

where C is the velocity of light, and 002 is a reference variance.

In the case of uncorrelated noise sources with unequal variance, the
interpretation of the matrix g_"] given in Section 1V applies with only

[] " ’~ - F 2‘ 2\ L= _ P
one change; namely masses of value lo, /04 )} rather than unit masses are
placed at the points Pi' The entries in lf] then are the various second
moments of the mass constellation about its center of mass. That is,

i 2

Q
[av]
)

LI o =
NF
>
N
n o~ =
NF
-
-}

N
X.Y, ;o2 X2,

Q

i i i

™~
g}
no

- N a o J ()]
L=l R AP y L y.f s vz, | (14.8)
i=1 o, i=] o, i=1 o,
i i
N a 2 N g ? N ol 2
7, 0,2 o,
) RSV M S PSR Y I
| i=1 9y i=1 9y i=1 Oi |
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where Xi, Yi’ and Zi are the coordinates of the points P, with respect to the
center of mass as shown in Figure 14.1. The derivation of (14.8) parallels
that of (4.7) and, accordingly, is omitted.

The results of Sections V-XII apply with only minor modifications to
the case of uncorrelated noise sources with unequal variances. The primary
modifications are noted below

Section Changes
Section V Replace unit masses by masses of value
(calculation of T') o 2,02,
o' i
Section VI The notion of approximating discrete
(Approximations) averages by continuous averages still
applies. A weighting factor must be

introduced into the integrals to account
for unequal masses.

Sections VII-IX No changes.
(Accuracy Dependence}
Sections X,XI The results hold with only one change;
(Error Minimization) namely the fractions representing the pro-
portions of the total number of beacons
to be placed in key locations now represent
the proportions of the total mass to be
placed in the same locations.
Section XII Use the following value for 4 in place
(Sensitivity) of N/N-1
N & 2
Z. 0
02 02
o = 0 i=1_ "1
i z ] ___fO
a OW—?
i=1 i i
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XV. INDEPENDENT ALTITUDE MEASUREMENT

The results of Sections IX and XIII show that altitude errors typically
exceed horizontal errors for cone restricted or ground based beacon con-
stellations. One method for improving altitude accuracy is to utilize an
independent measurement of altitude. For example an independent altitude
measurement can be obtained from a barometric altimeter. The present section
shows how the results of Sections III, IV and XIV cean be extended to accom-
modate such a measurement.

Thus let (X',Y',Z') denote a three dimensional coordinate system selected
so that measurement along the 7' axis corresponds to altitude. The independent
altitude measurement can be represented by the equation

7' - €, = 2'r + [0,0,-1] - &R (15.1)
where
7' the actual altitude
€, the error made in measuring Z'
7' - €, the measured altitude
Z'r the Z' coordinate of the reference point
(see Figure 3.2)
AR a vector specifying subject location with

respect to the reference point (see
Figure 3.2)

The equations for the measured quantities now are given by Equations
(3.3) and (15.1). These equations are collected below for convenient
reference, with Equation (15.1) divided by c.
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Equations {15.2) can be re-written as the single matrix equation

T-He =

(1 = 1) * ey = ep) 2 vy - mpl/e + {3y - 3p) - aR/c

Crgoqm) * (eyoqmey) = (g qmryd/e + {3y -1p) © oR/c

'/¢c - az/c

fl

Zr/c + [0,0,-1] - AR/c

]
HR +— HF R

ol=

with the understandings that

[

|7

|

|

an N element vector the first N-1 elements of which
equal the TOA differences 5T T and the Nth
element of which equals Z'/c.

an N+1 element vector the first N elements of which

equal €5 (1<j<N),-and the {N+1)th element of which
T PR

I

eguais EZ/C

an N+1 element vector the first N elements of which
are the rj(1§j5N), and the (N+1)th element of which
equals Zr '

an (N41)x 3 matrix the first N rows of which each
contain the three components of the unit vector i,

pointing to the jth beacon, and the (N+1)th row
of which consists of the vector [0,0,-1].

an Nx{N+1) matrix of the form
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—
=}

2

)
el

o
-
L
o
-

H = ) ) ) ) ' > 1 rows
0 0 0 1 -1
0 0 0 0 1 )
\ -
Y
N+1 columns (1£.8)

The least squares estimate of subject -position can be found from (15.7)
exactly as in Section XIV. Equation (14.2) continues to express the result
with pT, R, F and H given by (15.4)-(15.8) and

EE = Expected Value of [¢ ¢'] (15.¢)

with ¢ given by (15.5).

The covariance matrix for the positional error continues to be given
by (14.6), (14.7).

In the case where 211 weasurement errors are uncorrelated it can be
shown that the inverse of the errcr magnification matrix r in (14.7) is
given by

L L L 0 0 0 |
] XX Xy XZ
r o= L + 0 15.10
T Xy Lyy Ly 0 , ( )
LLXZ Lyz L, | i 0 0 (0 e) /o, " |

"
where LNO denotes the a-g-entry in the matrix (14.8) and oz“ denotes the
expecteaﬂva1ue of (62)4. That is, gf' is computed exactly as in Section XIV
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except that the quantity (coc)zlcz2 now must he added to the Z-7Z element

=1 . . .
of I' ". Thus the effect of the independent altitude measurement is to increase
the Z-Z element of §f1 and correspondingly to reduce Fzz'

The effect of a highly accurate altitude measurement can be assessed
by examining the limiting form of T as oz-+0. It is clear from (15.10)
that

[ - '.] -
Lxx ny 0
Lim ¢ =||L L 0 (15.11)
02+0 Xy yy
0 0 0

Thus the error magnification factors oy and Fyy can be found from
the expressions

L
ro_ L (15.12)
XX LxxLyy - (ny)
L.,
) = A {15.13)
Yy LL . - (L )2
XXyy Xy

where LXx ny and Lyy are calculated by the method of Section XIV or IV.

For small but non-vanishing 9, it can be shown that the error magnification

I s 6 2/(s c)? (15.14)

as expected.
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APPENDIX 1

The inequalities required in Sections VII, X and XI are direct con-

sequences of the following theorem,

Theorem: Let

be a symmetric positive definite matrix.

—L1] Lo -+ L1N-
SV PIEER Y
L=, :
»Lm Lon LNN_
denote the inverse of 1. Then
P i=1,2,..

i1

Moreover equality holds if and only if

r.. = 0 for j # 1

L:.. = 0 for j # 1
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Proof: The proof starts from the identity

ire bigeeebid [T Tag oo
12 Tz
Lig =
LT Ten

NN

- -

L

Liz

L.

(A1.6)

Decompose the column vector [L11’ Li2""L1N] into two vectors Ld and Lo

where Ld is null except for the ith entry which is Lii’ and Lo which 1is

identical to [Li1’ L12"“L1N]I except that Lii is replaced by zero. Equation

(A1.6) then takes the form

—
|

—
A_l_'
+
—

O‘I_’
—
AE:
+

1

n

2L Tyt ) LTl

Direction calculation shows that

L'y Dyt Ly) = Ly
L', T L, = L. )2
LigZLle = Tyyllyy)

Use of (A1.8) and (A1.9} in (A1.7) shows that

Ty T 7 telk

| v
|
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The second term in (A1.10) equals zero if and only if Ly = 0 since I' is
assumed positive definite. Consequently equality in (A1.3) holds if and
only if (A1.5) is satisfied.

Q.E.D.
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APPENDIX TI

*
Proof That ;?- < (1-Y")(Y" - cos ¢)

The quantity of interest

N
v 1P (A2.1)

.
k-
]

can be interpreted as the sum of the ordinates of the points shown in
Figure A2.1. The line L given by

V-cos ¢)2 . (7?11? - (Y-cos ¢)2

s T-cos ¢ (y-cos ¢)

It

- 2 _ (A2.2)
(Y-cos ¢)° + (1+cos ¢-2Y) (y-cos ¢)

"

connects the points {cos ¢,[cos ¢ - '12) and (1, [1-7?]2). Clearly L. over-
bounds the parabola z = (y-Y')2 on the interval cos ¢ < ¥ < 1. That is,

(Yi—V)z < (Y-cos ¢)2 + (1+cos ¢ -2Y) (Y, -cos ¢) (A2.3)

for cos ¢ < ¥; < 1, with the equal sign applying only if

Yi = ¢c0os ¢ or Yi = (p2.4)
Consequently
— N
-2 T P B - 2 v
e g T N g iél (Y-cos ¢)° + (1+cos ¢ -2Y){Y -cos ¢)
i=1

= (1-Y")}(Y"-cos ¢)

with equality holding if and only if (A2.4) is satisfied for i = 1,2,...N.

*Proof suggested by I. G. Stiglitz
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(cos ¢p-y")

| _
1 Y, ¥4 :, ¥,
cos P ’ < ¥y

Figure AZ.1
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APPENDIY INT

Proof of Inequality (9.4)

Let C be a constellation of N beacons confined to the sector shown in
Figure 9.1. Assume C is such that the center of mass of P1,P2,...PN lies on
the sector centerline. That is, assume X' = 0.

The reasoning leading to (11.6}, (11.7) shows that

Y

ND1-(v2] =N - v

(V)] (A3.1)

—
1

XX

= N YO (A3.2)

L
Yy

where (Y'}E, ;? and Y' are as in Section XI. Thus the ratio of interest is
given by

L = 7 --r2 ban Vd
e le ¥ )7 1o (00 (13.3)
vy Ve ve
Use of inequality (A2.5) in (A3.3) shows that
L vT
2, ey (A3.4)
yy Y' - cos ¢
Clearly
Eﬁﬁ X Minimum.q“ 1477 o
|_y‘y = Cos P < Y 5_.1 YT-COS o
= Tan2 (Fé- - -g-) (A3.5)
Q.E.D.
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Proof of Inequality (9.7}

Let C be a constellation of N beacons confined to the cone shown in
Figure 10.4. Assume C is such that the center of mass CM of points P],Pz,
.-.Py 1ies on the cone axis. That is assume, X' =Y' = 0. Assume further
that the coordinate system X,Y,Z is set up at CM so that the Z axis coincides
with the cone axis, and so that

L = 0 (A3.6)

The ratios °z2/°x2 and ozz/cy2 satisfy the conditions

o T L L L
Z 2z o XX Yy XX
;_?_ - Fxx L., L.~ ngzr = “[;;— (A3.7)
X yy "zz Yz
o2t Lo L L
_z? - FZZ = XX__YY > EML (A3.8)
oy yy Lxx Lzz— sz Z2

Addition of (A3.7) and (A3.8) shows that the quantity of interest satisfies

2 2
o] [¢]
2 z L + L
;—§a_+ - 5 2 xxL yy (A3.9)
X % 22

The reasoning Teading to Equations (11.6) and (11.7) shows that

109



M
LY

L
Yy

LZZ

7

whera Y
wnere Yy

and
("R BAV Y

T va ae din ©
i TS da 1l J

The reasoning leading from (A3.3) to (A3.5) shows that

110

(A3.10)
(A3.11)
(A3.12)
llen AL fA9 1IN fan L T W |
use 01T (Ao.I1U), (A3.11) ana
lagous to {A3.3); namely
(A3.13)
{A3.14)

0.E.D.




APPENDIX IV

The following notes are helpful in interpreting the sequence of steps
leading from Equation (11.27) to Equations {11.33), (11.34) in Section XI.

lae-miTo
In these notes the [18-4-15170]
n )
term "end po1nt constella- POINTS R, P, , - Py ARE RESTRICTED
tion" is used to denote a TO THESE LOCATIONS

constellation for which o ] \“\\\
the points PysPy.. Py are ié://fﬂd—._hh\\\:éi
re he n

UNIT CIRCLE

and the extreme ends of
a sector S as shown in THE SECTOR $
Figure A4.1.

Figure A4.1

Nnotacg
T Wi

1. In effect (11.26) asserts that there exists an_.end point constellation
C1(¢') that has the same values of Y', E?-and ;?- as C and which
(consequently) produces the same value of 02 as C. Equation (11.27)
asserts that C](¢')(norma11y) is confined to a sector S with a half
angle ¢' smaller than 4.

2. In effect (11.30) says that since C produces the same value of od
as one end po1nt constellation for S [namely C,(¢')1, it must produce
a value of o that is greater than (or equal to) that for the "best"
endpoint constellation C2(¢') for S. The right hand member of (11.31)
is the "best" value of 42 for end point constellations in S,

3. The step involved in (11.32) amounts to saying that since 02 is greater
than (or equal to)} that for the best end point constellation C2(¢')
available from the sector S, it must be greater than {(or equal to} 02
for the "best" end point constellation when all angles in the inverval
0 <¢' < ¢ are considered. The right hand member of (11.33 and 11,34)
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is the best value of 02 for end point constellations available in the
interval 0 < ¢' < ¢.

A graph of the function

]
b eint &
4 cos 5 sin 5

is shown in Figure A4.2. The lower bound (11.34) is a consequence
of the fact that the curve turns upward at ¢ = 2v/3.
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