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ABSTRACT

of closely spaced dielectric spheres is considered as a boundary value prob-
lern, The solution to this problem is obtained in a series form using partial
spherical vector waves. An approximate solution is also obtained for spheres
separated suificiently far for waves scatlered by one sphere and incident on
another to be considered plane waves with an amplitude given by the solution

to the single scattering problem., The use of both solutions is discussed.
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Cooperative Scattering by Dielectric Spheres

PART I - THEORY

INTRODUCTION

The solution to the problem of multiple scattering by an ensemble of
dielectric spheres is important to the understanding of the propagation of
millimeter electromagnetic waves through a rain environment, Attempts at
solving the problem have been made usi
physical o

using a coherent, full-wave treatment as applied to scalar fields by Fikioris

h
.
"]

dable, This study is an investigation of the conditions under which a physical

results of both a full-wave and a physical-optics computation of the bistatic
scattering cross section for a fixed configuration of a small number of spheres,
The examples chosen for analysis were picked to be compared with the results
of the experimental bistatic scattering cross-section measurements published
by Moe and Angelakos (1961).

The problem of computing the backscatter cross section of a pair of

spheres using a full-wave formalism has been considered by Trinks (1935)



for small spheres and by Liang and Lo (1966} for spheres of the order of a
wavelength in diameter. The results of Liang and Lo compare favorably with
the experimental data.

The physical optics technique for solving the multiple scattering problem
consists of using the bistatic scattering cross sectic;n (far-field value) to re-
late the incident and scatiered waves and of assuming that the incident fields
can be represented by plane waves, The full-wave technigue refers to methods
that use the full solution to the boundary value problems of multiple scattering.
This technique as referred to above and as used in this study entails the ex-
pansion of the incident and scattered waves in partial spherical vector waves
(PSVW). The expansion coefficients are determined so that the boundary con-
ditions on the multiple spheres are satisfied, The basic difficulty in the use
of this technique is in handling the translation addition formulas required for
expressing the wave scattered by one sphere in the coordinate system of
another,

This report is devoted to the derivation of the full wave and physical
optics solutions to the multiple scattering problem for a fixed configuration
of scatterers. Either solution is obtained in terms of a set of simultaneous
equations for the determination of the coefficients of an infinite PSVW series.
The conditions for obtaining a solution of the infinite set of equations by trun-

cating the set of equations are investigated. The results show that for the



physical optics case a solution is always possible using a truncated set of
equations, The solution by truncation is also always possible for the full-
wave case if only two spheres are used, For the full-wave case and more
than two spheres the solution may not be possible, This case must be investi-
gated further using the computer.

Review of the Mie solution for a single sphere

Time harmonic electromagnetic fields in source free space may be re-

présented by 2 summation of partial spherical vector waves (Stratton, 1941)

with the time dependence taken as Elr,t)= Elr) elwt,
JN i~ JN -t
The partial vector wave expansion is given by
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in the j coordinate system using the notation given in Appendix A The partial

vector waves are related to those used by Stratton by
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where ime
qJ(v) = z(v) (kr,)Pm (cosd.)e J, z v) are spherical Bessel
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functions and P;n are associated Legendre functions of the first

kind.
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For the source free problem the jxmn PSVW form a complete orthogonal set.

The fields

=
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expansion coefficients
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and E can be formally represented by a column matris
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is found as a diagonal matrix relating the matricies for the incident and
scattered fields.

The problem of scattering by sphere "'j" is.solved by using the boundary
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where pj = radius of sphere j, the super prefix i represents the incident field
with a radial function denoted by (1) that is finite at the origin, the super pre-
fix s represents the scattered field with a radial function denoted by (4) that

represenis outgoing waves as required by the Sommerfeld radiation condition,



The internal field is given in a similar way by

n 2
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with a radial dependence that is finite at the origin. The boundary conditions

for the fields at the surface of the sphere are given by

,x(.iiE—!-_E—— E)=10 (5)

where_ﬁj is the unit outward normal to the surface of the sphere at coordinate

{ 4 m)
A H

N a
P ¥y Wars i MLANA A

I8 4

amplitudes.
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where the 1, 2 subscripts on v denote the wave number required for use in the

radial function, kl exterior to the sphere and k2 interior to the sphere. Using
the orthogonality properties of v as given in Appendix B, the boundary condition

equations can be reduced to a set of algebraic equations
. L3
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The boundary conditions for ,H yield identical equations with a replaced by b.
j=
The equations can be further reduced by the relationship between j},% and jI:I.,'

From Maxwell's equations for a source free space,
P
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From this, four sets of simultaneous equations are available for determining

the Mie scattering matrix elements, Using the equations for jh’ find
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These equations can be

solved for jat

p by Cramer's rule with by = B
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The matrix equation for the single sphere is formed from the Mp {ky» k., Pj)
elements.
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The Mie scattering matrix can be used for any incident field ;_a}_ to generate

5 , s s 53 S s ;
the scattered field ji' ‘This relationship holds only in the coordinate system

j for any azimuthal index, The values-of M}e) given above are related to those

of Vande Hulst (1957, Chapter 9) by

1
M =-b
p p
2
M = —a .
p p
Multiple Sphere Boundary Value Problem

a configuration of spheres, CTonsider a fixed configuration
of J spheres. Let the scattered wave from each sphere be expressed in par-
tial spherical vector waves in a coordinate system centered on that sphere.
The total electromagnetic field exterior to each sphere is given as a sum of

the incident wave and the waves scattered by each sphere.

A
g
o

4651

j A
=1

s
J 1
This total exterior field must obey the boundary conditions on each sphere
simultaneously. The solution is obtained by identifying the waves scattered
by all spheres other than j with the incident wave on sphere j. In the region
exterior to the scattering sphere, the scattered wave can be represented

using partial vector waves in another coordinate system since the scattered

wave satisfies the source free vector wave equation.

10
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This relationship called a partial spherical vector wave addition theorem is
given by Cruzan {(1962) and by Stein (1961) and is valid for radial distances in
the new coordinate system less than the translation distance. The addition
theorem may be decomposed into two parts, a rotation as given by Edmonds
{1957} and a transformation of the coordinate system along the 4= 0 azis,

These two specialized operations can be combined to give the general one

above
eqp(v) _ eqp Joespv) tsn _
ﬂctmn S\ R- ( 'Bs O)Egts (kd} R (0 Bo o)
where —~ps<s<pand—ng s <n and the summation is over all allowed

Py
YaAalucs UL o,

JRZEP (o, B, Y) describes a rotation of the coordinate system with origin at j
P

through the Euler angles o, 3,y and gﬂf::(v) (kd) describes a translation of the

coordinate system through a distance d along the direction Jj = 0, The two
addition theorems are given in Appendix C. The transformation can be con-

sidered as a matrix operation as

i1
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where the interchange of summation is justified by Friedman and Russek

(1954)., The boundary value problem then reduces to

= jg(;?—*‘ Z ig__i‘fg) i= 1, 2,...0. (12)
=1

The solution is obtained by a simultaneous solution of the J matrix equations

5
to determine the J scattered waves given by ji'
The final solution to the multiple sphere, fixed configuration scattering

problem is best given by the jsg all expressed in a single coordinate system

12



so that the bistatic scattering cross section can be readily identified. The
?3 can be converted back to a single coordinate system using the PSVW addi-

tion theorem for radial distances greater than the translation distance

@D n

e(V) 5 z Z Jeqp(l) Vt(V)
i‘~qp s 1 tmn j~mn

n=0m=-nt=1

which as for C above can be reduced to a rotation and a translation. Using

addition theorems

s J
2:

i

g
. a
j—

The solution to the scattering problem then is given by

J
Z e % (13)

a single column matrix representing the total scattered field of the configuration
of spheres,

Solution of the Boundary Value Equations — Two-Sphere Case

The solution of the multiple scattering problem depends upon the simulta-
neous solution of the J matrix equations. The elements of these equations
form semi-infinite matrices since they represent the coefficients of infinite
sets of partial spherical vector wave solutions to the vector wave equations.

These equations must be solved by approximate techniques. The criterion

13



for obtaining a solution by truncating the matrices and solving the truncated
linear equations using algebra is given in Appendix D, To apply this technique
of reducing the problem to an algebraic one which can be solved on a large
scale computer, the behavior of the elements of the matrix equations must be

ascertained,

For the two sphere scattering problem, the simultaneous matrix equations

(12) are given by

s i 1 s
2% 2¥(23+ 22 13) '

These equations can be combined to give

2 1.s i 2 i
= 1M 122¥ 29:1§+ 1¥ at 11\=/I 19-:2M 22
2 i s i 2 i
— - 4
(.1.. (M e M 2&) 2 = (1."’1 1< M 23)
or
1=3
(L— 1§) 12= 1_B . ' {14)

This set of equations may be solved by using a truncated set of equations if
the conditions on Sij and Bi' as specified in Appendix D, are met. To examine

the applicability, the behavior of the il\=’1 ‘:9__: matrix elements must be deter-

14



mined.

The Mie coefficients can be investigated using the forms given above
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The behavior of Mn for large n and fixed k, p, kzp can be estimated from the

1

asymptotic forms of the spherical Bessel function,
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(2)

’k2‘> ki' the terms in ‘]n(kip) and hn+1 (kip) contribute most to the asymptotic

form of M1
n
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In a similar fashion, the asymptotic form of M

. s given as
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In both cases, for large n the Mie coefficient terms decrease as
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The elements of the C matrix can be estimated using the formulas given

in Appendix C. For two spheres, the only addition theorems to consider are
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The dependence of §2 can best be studied using T as

ntu
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For all other cases, this product is less, The resultant T then is given by
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By using the asymptotic expansion for hn+u (kid) for ntu>>1 and taking the ex-

pression for m=0 since, for a fixed maximum n and u this gives the largest

4
value, the estimate of magnitude of the elements of TLY:’ ) can be given by

, u
{m, 4) - {ntu)e 1 n 2nt2u\" .
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The expressionfor 2 has the same order of magnitude as T, therefore the

asymptotic expression for the C elements for large order can be given by
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The elements of the S matrix are less than or of the order of Ssrn;;l given

by
SZmn: z Z Micimthctmv
pmn n tmv v pmn
v

2nti 2nt1

e (2p1) (ﬁ) (21)
7 \d 3

The elements of the S matrix show that, for large separations between the

two spheres, the elements decrease rapidly due to the factors in Zpl/d and
szld. If both spheres are of equal size and touch, these ratios are unity
and the decrease in magnitude of the S elements with increasing n is much
slower. This indicates that the multiple scattering contributions are much
stronger for closely spaced spheres than for widely separated spheres, For
the worst case of two equal touching spheres, the values of S elements will
decrease with increasing n and, with a large scale computer the problem can
be solved,

The analysis to be complete must also consider the Bn elements hefore a

firm estimate of the behavior of the solution is obtained, The B matrix depends

20
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C product and the standard Mie solution, The values for J-El are
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clusion about the validity of the solution is unchanged.

he above considerations show that the requirements for solution by
truncation of the multiple scattering matrix equations for two spheres are met
for all possible sphere separations, Both the Mie coeificient and the translation
matrix elements depend on the azimuthal index as a parameter only. This is
due to the azimuthal symmetry of the problem when the translation is along

the + = 0 direction, The matrix equations can be partitioned into sub-matrix
equations one for each allowed value of m, the azimuthal index. The equations
for each value of m can be solved independently of those for the other values of

m, The reduced matrix equations then can be represented as
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where the index m represents the parameter m and N is the
largest n used in the truncated matrix and m, n are the indices
of the -a element Sa,é .

i— 1 mnp

The solution then is found by solving 2N + 1 sets of simultaneous equations,

one for each value of m, For a plane wave incident along the axis of symmetry,
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only two sets with m = £ 1 are required.

Solution of the Boundary Value Equations — Multiple Sphere Case

The multiple sphere case is solved in the same manner as the two-sphere
problem., The set of matrix equations must be reduced to a single equation
with one unknown set of scattering coefficients. Unless the configuration of
spheres has azimuthal symmetry, the general vector addition theorem for

translation must be used,

.
J=1

g}

n
I
=

The addition of more spheres doubly complicates the problem, one by requiring
a simultaneous solution for all the n, m elements of the matrix instead of only
n elements for a given value of m as in Eq. (22), and, two by increasing the

number of matrix products required to specify ,S and ,B. For three spheres,
P Yy & B P

1

these matrices are given by

,S=AMECBM§C+ _M,ZC,_M_{C'I' .M?C,MEC
3 2 1 2 3 1
: M
* M C MG M G¥ MIC M C MG
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2 3 2 1
- 3—-1"‘_1I 32 2¥ zg 1¥ 1g 2—1\_—4 zg (23)
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and
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For more spheres, the number of matrix products increases as 37 with J the

total number of spheres.

Once the B matrices are evaluated, the solution proceeds as above,

1_S___ and n
The effect of the general rotation matrix elements on the magnitude of the C

elements must however be considered before the truncation procedure can be

applied. From Appendix C, the rotation addition theorem is given by
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The magnitude of R can be readily estimated for particular values of m, p
n
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A special case of interest occurs when m or p ~ 0 since, for this case the

QM element is largest,
ep v
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The C elements depend upon both the values of the R and §I elements. The

largest possible products come from the following combination

enn nn eln n0
1C ‘RnO’ lﬂtOn' ’RnnI

2n
. 2n ~-2n e i 4n 2n
2(4n sin3/2) e “Trn k (2k1 (cosB/2) (25)

The dependence of this element on the index n increases much too fast to be
compensated by the dependence of jge on the same index, This means that
the use of the truncated matrix for solving the full problem of many spheres
using the partial vector wave formalism is in doubt. The study of this problem
can be continued on a large-scale computer using two spheres not along the
4 = 0 axis, The result of truncating the rotation matrix then can be directly
compared with a solution that does not require a general rotation operation.

The Eqgs, (23) and (24) for these spheres illustrate the difficulty encountered
in using the full-wave solution for more than three spheres in a configuration,
For more than three spheres the matrix equation is far too cumbersome for

use on present computers. A reasonable method of solution must do away
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with representing each of the possible coordinate transformations with separate
matrices. Approximate techniques must be applied to solve the many sphere
problems such as described in the next section or by Mathur and Yeh (1964).

The Physical Optics Solution

The physical optics solution to the multiple scattering problem is based
on the approximations that the scatterers are far enough apart both for the
use of the far-field solution to the single scattering problem and to consider
that the scattered wave incident on a second scatterer can be represented as
a plane wave. The region of validity of these assumptions can be checked by
comparing the physical optics formulation of the problem with the full-wave
formulation as developed above. The far-field solution to the single scattering
problem is found by examining the asymptotic expansions for the radial func-

tions valid at large values of kr with k = k1 (see Appendix B).
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The representation of the scattered field in cartesian coordinates is given by:
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sphere and the Cartesian represen-
tation of this field is taken as an incident plane wave on the other sphere. The

plane wave amplitude is evaluated by taking r = d and 4 = 0, For this case,

only terms in Yp o @re non-zero,
?
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The wave given above incident on another sphere is represented as

in the coordinate system of the new sphere. This expression may be expanded

in a PSVW series (see Appendix 2) as

- w n 2 -
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n=0 m=-n

where
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The incident waves scattered by the first sphere can be expressed using the

operator notation as

P -
i e _ § z Z jpemn s t
0T [ £ tqp jqp (28)
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The coordinate translation matringor the physical optics case is far
simpler than that for the full wave case,-;__@ . The only azimuthal terms that con-
tribute to the multiple scattering solution are for m = £ 1 as required by the
assumption of a plane wave incident on the second sphere., The translation

theorem in this form is useful for comparison with the full wave case but is

still cumbersome for use in the many sphere multiple scattering problem,
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The elements ofg__z vary inversely with kd and are nearly independent of n
and p for both large. This means that the combination of the g elements with
the M elements as required for the multiple scattering problem always yield
a matrix equation that can be truncated for solution, This holds true for the
general case where rotation operations as well as translation operations are
used to generate the multiple scattering equations,

The physical optics solution can be made more useful by reformulating it
in terms of plane wave amplitudes. A plane wave incident on sphere j of a
multiple sphere configuration as shown in }ig. 1 is represented by its PSVW
coefficients

©
£

P4 0
R o .a
Z P (a0 Y) |
KL==-p

t
(%

where ?a;p are the PSVW coefficients for a plane wave traveling along

the 4 = 0 axis,

0t .
Using the expression for ,a  given in Appendix B,
- ) J Bp
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it _ i @prl)) ey P
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Feet (Gt i) R (a.B.v)]
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where (1 kl) is the coordinate system of the incident wave and

g ey
o, B,y relate the incident wave coordinate system with a Cartesian
systern with the z axis along 4 = 0 as shown in Fig. L.

The expression for the field scattered by sphere 1 and incident on 2 is given,

in this formulation by

0
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The elements of the rotation matrix used to express u are required for g=%1
only. These elements may be expressed in terms of the Jacobi Polynomial

p:la'B)(cosB) as shown in Edmonds (1957, pg. 58).
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The expression for u can then be simplified to

| c
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This expression can be expressed as

u 1 = -__,';A-(CY.B,Y) _éb ) (31)
$=0 , ik r
where the incident plane wave is given b g = (g’e -
P ¢ g ¥ i -ikr cosd,
s e J
and the scattered wave at the second sphere by JE = jé(a,B,y)j(go BT

In the coordinate system of the second sphere the incident wave scattered by the

first sphere is given by
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which is the first order scattered wave in a system of multiply scattered

waves, All higher order scattered waves from sphere 1 incident on sphere 2

would have originally come from sphere 2. This can be represented as

[=]
E = 5A(0,m,0) ;A(0,7,0) ;W

-ik(2d+rﬂcos&)

(ikd)?

where EW is the plane wave amplitude originally incident on
sphere 2 from the direction of sphere 1.

The multiple scattering problem can be solved directly by computing the
incident field for many higher ordered scatterings. This system eventually
terminates because each scattering returns less energy to the other sphere.
The problem can also be formulated in a '"self consistant' manner using un-
determined plane wave amplitudes for the path connecting the two spheres,

As was done for the PSVW matrices above. The solution can be formulated by
considering the plane waves incident on each sphere. If,W denotes the plane

wave amplitude of the plane wave incident on sphere 1

6 oikd
W= [(zé(o"“‘ﬁ'wzé t 20, O)ZW)] ikd (32)

e:'Lkd
Al (W AV SRV RORY) =
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which is analogous to Eq. (12} for two spheres. This has as its solution with
ikd

———

ikd
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For the incident plane wave, the plane wave amplitudes at each sphere are

related by

i

wik’e
&= 6 e -

o

The resultant equation for 1\1&_” is given by

7 r iy 1

-ik
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r 3 a
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which expresses a multiple scattering equation analogous to Eq. (14) above
but with only three dimensional vectors and matrices. The total

solution to the problem then is found using the solution W together with the
single scattering amplitude A for the angles given on Fig. 1 with the observa-

tion point at {r., 2., ¢.).
P RS
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where the angles depicted in the figure and required for the computations are
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and 1Y is arbitrary

Conclusions

multiple scattering problem as derived above are amenable to solution using
a large scale computer. The full-wave solution can be used for up to three

spheres whose single scattering solution lies in the Mie range. For more

optics solution suffers from the same problems of complication for more than
three spheres if used in the PSVW coefficient matrix form given above. This

solution can however be cast in a simpler form that can be used for more

The full-wave solution requires a consideration of all the azimuthal index
terms in the series for a general multiple scattering problem. The validity
of the truncated series solution is in doubt in the general case. To ascertain

1. -
L

~ A 1 - P ]
111G L

ralidity of such a solution, thesproblem must be considered using the com-
puter. For the two-sphere problem, a solution using the full-wave treatment

can always be obtained.
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The full-wave solution can be programmed to provide a check on the
simpler approximate solutions to the multiple scattering problem. A check
on the full-wave solution can also be found in the body of existing experimental
results for fixed configurations of two and three spheres. The physical optics
solution generated above has the advantages of directly using the single
scattering solution to the plane-wave problem and in providing an operator
equation that relates incident and scattered plane-wave amplitudes. The de-
tails of this approximate solution can be varied by using the full near-field
expression close to the scatterer or by taking the scattered wave from one
sphere incident on the Iother as a series or integral function of plane waves
propagating either in different directions or at different velocities. These
more complicated approximate solutions may be valid over more of the space
available to the scatterers and provide a better basis for solving the many
sphere multiple scattering problem., Each of these solutions can be prepared
for the two and three-sphere configurations for comparison with the full-wave
solution, The usefulness of the full-wave solution is not in providing a basis
for the solution of more complicated multiple scattering problems, but in

providing a yardstick against which approximate solutions can be compared,
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APPENDIX A

NOTATION

The partial spherical vector wave {(PSVW) functions and their coefficients

can be expressed in a compact form using the following notation.

PSVW function: vV

where

PSVW coefficient: ja

where

e{x)
jmnft

e refers to the vector wave function with e = 1 specifying m and e = 2
specifying n (Stratton notation)

k refers to the radial function used with « = 1 specifying the spherical
Bessel function and « = 4 specifying the spherical Hankel function of
the second kind.

j refers to the coordinate system centered on sphere j.

m refers to the azimuthal index of the spherical harmonic function
Ynmw' @) = P:](cos&) eimqo; m—n<m<n,

n refers to the polar index of the spherical harmonic function,

f refers to the wave number to be used in computing the wave function,

e
mn

j» &, m, n have the same meaning as above

s refers to the part of the electromagnetic field represented by the
product of the coefficient and the partial vector wave function. The
letter s is used for a scattered wave, i for an incident wave, t

for a transmitted wave, and 0 for a plane wave directed along the

4 = 0 axis,
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With this notation, the position of the index is important. When the particular

index is not important as with a discussion about v for any sphere, the index

is omitted.
Matrix operator element: ’ZQ emn
}- ugp
where j, e, m, n refer to one set of PSVW coefficients with the meanings
above and £, u, q, p refer to a second set of PSVW coefficients. The
matrix operator is used to transform one set of coefficients to another

as for the coordinate transformation formulas.
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APPENDIX B
PROPERTIES OF PSVW FUNCTIONS
Vector fields with zero divergence may be expanded in two types of partial

spherical vector waves, the m and n waves of Stratton,

Let Y (=Y (50 = PPcossie ™ —nsmsn; 0Snsow
o =" s 0= ey
where z(“ = js z(z) = n, 2(3)= h“), and z(4) = h(z)
n n’ "n n’ "n n n n

are spherical Bessel functions

Then the partial spherical vector waves are defined as

imY (r)
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The PSVW functions have the following orthogonality properties
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The asymptotic properties of the PSVW functions depend upon the form of the
radial function used, For scattered waves, the spherical Hankel function of

the second kind is used to represent spherical outward traveling waves
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The expansion of a plane wave incident along the 4 = 0 direction is expressed

as
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APPENDIX C
PSVW ADDITION THEOREMS

The general addition theorems required for a combined translation and
rotation operation are given by Curzan (1962) and Stein (1961), The general
addition theorem may be decomposed into two special operations, one a rota-
tion of coordinates and the second a translation of coordinate system center
along the special, 4 = 0 axis, Both addition theorems use as a start the
addition theorems for scalar spherical harmonics. The rotation addition

theorem for scalar spherical harmonics is given by Edmonds (1957) as

n
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@, 3,y are the Euler angles describing the rotation as shown in Fig. 1,

m .
Ynm(&, @} = Pn (cosd’)elm(p are unnorralized spherical harmonics.
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Using this additional theorem
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A special case of the rotation matrix is useful in problems with a trans-

lation axis along 4 = m.
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The rotation of coordinate system transformation affects only the azimuthal
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{m, )

The evaluation of Tvn (d) starts with the properties of the Wigner 3-j sym-
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(m) - (mp 1)
Upn {d) Tpn (d) . {C-15)
The PSVW addition theorems are found using the definition of xii) as

X:r(;) = V' x [(g+ ') Z) Tf,‘:’“)npf,z (5')]
ve
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@

L T [5' s k) l.].l(m’ 1 (5‘)1 +

J""mn =0 rm vm
w
S L r.:l Y (m' K) (i) £ 1) —l
Tl L Tvn m'~ "’ |
- v=0

from Stein, the expansion for the second term on the right-hand side is given

as
{m, k}_, (1) , (m, «) | kdim 2(1)
20 Tvn v x[g e¢vm(~ )jl - ZO Tvn [v(v+1) 1% m *
v= v=

kd (v+m 1) | vemtl  1(1) ”

+
v\ v t%v-f,m  vtl  2%4i,m/ |

o o{m, k) (m, K) (m, «)
=Z Tvn kdim 2(1)+ (kd)T (vtm -H)+ de An {(v~m) 1(1)
vw+l) 2%vm (2v+3)(v+1) (Zv-l) | #%vm
y=
1(|<) {m, x} , kd{vtmtl) , (m, k), kd (v-m),  (m, k) 1{1)
3~mn ZO [Tvn * (2v+3) (v+1) Tv+1n * v(2v-1) Tv-in ] ﬂxvm+
v=
(mn K)
ikd T v 2(1)
vivtl) {~vm
0 P 2
=) ) ) Sarntua et (C-16)
~ap
p=0q=-pe=1
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where

e imn(x) [ (m, )} | kd (ptmt1)
L2 kd) = | T
iPigp K9 (2pt3) (pH1)
(m, «)
e imn{k) ikd pn
Q kd) =
j 2gqp (kd) plpt1}
From Curzan find that
c.aQZmn(K) - (::Qimn(x) (kd)
j 1qp i 2pg
and
e 2mn{k) e_1imn{k)
2 kd) = @ kd
} 2qp (ka) j iagp (ka)

(m, ) kd (E"m) (mn, K)‘lﬁ
ptin p(2p-1) p~-In | gm

(C-17)

(C-18)

The translation of coordinate system transformation affects only the polar

index n and the type index t of Vt(K).
~mn
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APPENDIX D

(1—8a=B n= 0,1, -

where a= {a_---} n,j= 0,1, ---
1= (6nj——-) n,j= 0,1, ---0
S$= (5_,---)

nj

This multiple scattering equation, to be solved must be truncated at some
n, j= N, The system of equations can be truncated only when the elements of
B and S satisfy certain requirements, These conditions may be determined

by considering a formal solution of the equations,

Let

li+n
1

=
|

1en
f

(.. iy j —
1)

If the system is truncated at i = j = N then the solution is given by Cramer's

rules as
N
N N
]f( )]a( )'“ Z Ff )B
n in i
i=1
N
where |f( )| is the determinant of the truncated matrix
N
an) is the cofactor of the element of the truncated matrix,
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This can be expressed as

N
Z rNp,
in 1
(IN) _ i=1

anrN

Z FN g
in “in
i=1
N
For afl ) to be a solution to the problem it must be related to a the exact

solution as

+
a = a(N) = a(N 1) = a(N+J) for some N,
n n n n

The criterion for truncation then can be expressed by considering the solution

aE\N 1 in terms of a(N).

"
ai hx

N+1

F_(N+1)B_

(N+1)_ i=1 " '
a =

n NFT

+
Y
R in in

=1
rs

now
N+1

(N+1) _ 2 (N+1)
Fin _ ifj N+1 Y N+, in
1=

F(N‘i'i)

where ik, in is the cofactor of j, k excluding rows i, n computed using
]

the N+ 1 extent matrix,
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In this form,

{N+1) _ ()
F N+ N+1, in Fin -
Therefore
N+1 +1
(N+1) B
JN+1 JN+1,in i
(N-H) i=1 j=1 j#i
n N+1 N+i (N+1)
Z S f1 N+1 FJ N+i,infin
i=1 n-LfJth

N N
(N) Z Z (N+1)
+
fntt ntt 2 Tin fin it By neg,intin
=1 =1 j#i

Now, if we requirethat{ . >f _ . f . >f . 1
* ‘ N+1 N+1 j Nt1® Nti1 N+1 N+1 j°
. < i ie
fij>fN+1, 5 fin>fj N+1 and bj>fN+1, j 0<i, js N

then the error in truncation is made evident,, Let the inequalities be expr'essed

as
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N;l N-’rl:@‘“) k, i, ns N
in
¥ ¥
N+ +
__}..if:_....._i .-.:@(g) ; _I;_I‘._._l_}i:@‘(g)
in in
and
F(N+1)
ntt N+1 in
Fin :@(e) then (N) @(s)
1n

: Nt s e
The equation for the a:I 1) element of the solution is given as

(N) 1 {N+1)
z Fin 017 7 £ N+t Fynet, inbi
1:

(N+1) _ i=1 N+1 N+1 3= 11 1 j#j
n =N N+1
Z F(N)f + z (N+1)
in “in T N+1 T j NHL, inin

= af]N) + @(52)

If the inequalities are obeyed by successive value of N, the system can be
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truncated at some value of N+ J with the error less than @‘(EZJ) or less than

some predetermined value. The matrices S and B obey these requirements if

S,. S., . B,

ijt it 3 i+1
—*— < g, —*<¢g and *— < ¢ for j= N,
Sij Sij Bj

If the conditions on Sij and Bj are met, the system of equations as truncated
represents the solution to the problem and the problem can be solved by the
classical techniques for a large number of simultaneous equations. Two basic
solutions are available, one the iterative technique that depends upon Si' <1

for all i, j and the basic matrix inversion technique. The iterative technique

is desirable if possible since the t;rrors that may occur in inverting large

matrices are minimized. The iterative solution is given by rearranging the

matrix equation as

a=B+t Ha

nen

and taking the interated solution as

U

E(i—i)

"N

and using successive i until the results converge. This system converges if

the scattering contribution is small compared with the rest, The criterion is

given as
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N g 1<
A Oijlﬂl .

=

N
l

—

If this criterion holds, the system of equations can be solved by iteration. If

not, the system must be treated by matrix inversion,
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