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ABSTRACT 

This report presents the results of the Convective Storm Flight Deviation study, funded by the 
National Aeronautics and Space Administration (NASA) Strategic Airspace Usage (SAU) project under 
Air Force Contract No. FA8721-05-C-0002. A quantitative model to predict pilot deviations around 
convective weather in enroute airspace was developed. The model is based on the analysis of planned and 
actual flight trajectories and the weather encountered along them in two different Air Traffic Control 
“super-sectors” (geographical regions that include several adjacent ATC enroute sectors) on five different 
days in the summer of 2003. One super-sector encompassed southern Indiana, southwestern Ohio and 
northern Kentucky (ZID); the other was located in northern Ohio, along the southern shore of Lake Erie 
(ZOB). 

A deviation distance threshold for each super-sector was determined by analyzing the differences 
between planned and actual trajectories during a 24-hour period in which no significant weather was 
present in either super-sector. A method was developed to detect automatically planned and actual flight 
trajectories that encountered significant weather and to determine which of these encounters were 
weather-related flight path deviations. The results of the automatic detection algorithm were verified by 
an analyst, and the verified detection results (weather-related deviations and penetrations) and associated 
weather statistics provided input to statistical classification algorithms that were used to generate the 
deviation model. 

More than 800 flights whose planned trajectories encountered significant weather were analyzed in 
the study. The weather was characterized by the Corridor Integrated Weather System (CIWS) high-
resolution precipitation (VIL) and radar echo tops products, which are more accurate than weather 
products used in earlier storm flight deviation studies. ‘Significant’ weather was defined as either 
precipitation greater than or equal to VIP level 2 or echo top height greater than or equal to 25 kft. 

The study also presents an analysis of several “avoidance distances” associated with deviations. The 
avoidance distance is defined as the minimum distance between the deviating flight trajectory and the 
boundary of a particular weather feature (for example, the 30,000 foot echo top contour). Avoidance 
distances were calculated for 24 different weather feature boundaries from more than 200 deviations 
selected by an analyst. 

Finally, weather penetration statistics are presented for all five case days studied. 

In the ZID super-sector, where convective cells were generally characterized by high VIL, high 
echo tops and clear boundaries, and clear air routes showed little variation, deviation detection and 
prediction results were as follows: 
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1. The automated deviation detection algorithm achieved approximately 90% probability of 
detection and 10% false alarm rate for both deviations and non-deviations when planned 
trajectories encountered significant weather. 

2. The best predictor of weather-related deviation is deltaZ (the difference between flight 
altitude and radar echo top) along the planned flight trajectory. Deviation prediction models 
based on deltaZ and VIL or deltaZ and lightning counts encountered along the planned 
trajectory performed equally well, with prediction error rates of approximately 22%. 

3. More than 70% of pilots whose planned flight trajectories encountered convective cells 
with tops at least 6 kft below flight altitude flew over the top of the cells and did not 
deviate. 

4. Pilots deviating around convective cells flew within 25 km of cell boundaries (VIP level 3 
contour around the convective cell) in approximately 75% of deviations analyzed. 

In the ZOB super-sector, where the weather was generally characterized by low-topped, weak 
convection and clear air routes showed greater variation, neither the automated deviation detection 
algorithm nor a human analyst could easily identify weather-related deviations. As a result, a deviation 
prediction model could not be developed for ZOB. 
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1. INTRODUCTION 

Aviation weather systems such as the Corridor Integrated Weather System (CIWS) provide weather 
products and forecasts that aid enroute traffic managers in making tactical routing decisions in convective 
weather. However, enroute traffic managers need tools to aid them in the significant effort required to use 
the weather information to develop and execute a comprehensive plan to route traffic through the weather. 
Critical tasks – such as determining the impact of weather on existing traffic, devising a tactical response 
to mitigate the impacts of weather, predicting the effects of a particular routing strategy, predicting arrival 
times for flights traversing regions of convective weather – significantly increase controller workload and 
are often executed in a suboptimal manner due to the complexity of the tasks. Furthermore, different 
decision makers may reach very different conclusions about weather impact, because the subjective 
judgment of the decision maker is the primary ‘tool’ used to perform these tasks. A comprehensive 
decision support system that provides automated tools to integrate flight information, trajectory models 
and weather forecasts should help air traffic personnel make better and more pro-active decisions while 
reducing workload during convective events. 

An important component in an integrated decision support system is the ability to predict when 
pilots in enroute airspace will choose to deviate around convective weather and how far they will deviate 
from their planned path. The FAA Aeronautical Information Manual suggests that pilots avoid 
thunderstorms characterized by “intense radar echo” in enroute airspace by at least 20 miles (32 km). 
However, a recent study (Rhoda, et al., 2002) suggests that pilots fly over high reflectivity cells in enroute 
airspace and penetrate lower reflectivity cells. Recent operational experience with CIWS in enroute 
airspace (Robinson, et al., 2004) supports the observations of (Rhoda, et al., 2002). 

This study presents initial results of a study to develop a quantitative statistical model that predicts 
pilot deviation behavior in enroute airspace owing to convective weather. Data used in this study came 
from five different days in the summer of 2003 with significant convective weather in two different 
‘super-sectors’ (regions defined by a small group of adjacent Air Traffic Control enroute sectors). An 
automated analysis process extracted enroute flight trajectories from the Enhanced Traffic Management 
System (ETMS) and calculated the planned trajectory corresponding to each actual flight trajectory 
extracted. A second automated analysis, the deviation detection algorithm, identified planned trajectories 
that encountered significant weather and determined if the aircraft significantly deviated from the planned 
trajectory. The results of the automated deviation detection algorithm were reviewed and edited by a 
human analyst. The edited deviation detection results and several statistical measures of the weather 
encountered along the planned trajectories (automatically extracted from CIWS weather data) provided 
the inputs to the deviation prediction model. 

In addition to the deviation prediction model, this study presents an analysis of deviating flight 
trajectories and statistics that provide insight into deviation strategies. The avoidance distance (the 
distance from the boundary of the weather feature around which the pilot is deviating) was calculated for 
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each deviating trajectory. The importance of deviation distance as a key factor in assessing ATC impact is 
illustrated graphically in the studies of  “convectively constrained areas (CCAs)” that have been carried 
out in the context of validation of the Collaborative Convective Forecast Product (CCFP) (Mahoney, et al, 
2004). The Figures in (Mahoney, et al., 2004) show that assuming aircraft will seek to stay at least 10 nmi 
away from any individual storm cell results in a very significant reduction in the usable airspace. 

Finally, the study provides additional statistics about the weather that pilots actually encountered in 
enroute airspace. The study concludes with recommendations for follow on studies. 
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2. ANALYSIS METHODS 

There were five steps in the deviation data analysis and model development: 

1. Filter ETMS flight data to extract enroute flights and their actual and planned trajectories 
2. Define operationally significant flight path deviation based on analysis of  flight trajectories in 

clear weather 
3. Calculate statistics that characterize weather encountered on planned and actual trajectories 
4. Detect trajectory encounters with significant weather and weather-related deviations 
5. Develop statistical model to predict deviations as a function of the input weather statistics 

 

A flight was considered to be enroute through a super-sector (step 1) if its planned trajectory spent 
at least 15 minutes inside the super-sector boundaries and maintained an altitude greater than 25 kft for 
the complete trajectory. The planned trajectory was determined by applying the actual trajectory ground 
speed to the path defined by connecting the flight plan fixes from ETMS. 

We defined deviation (step 2) as a flight trajectory whose mean deviation distance is greater than 
some deviation distance threshold. The deviation distance is the distance from each point on the planned 
trajectory to the nearest point on the actual trajectory. The deviation threshold, which represents the limits 
of normal operational variation in flight trajectories along the planned routes, was determined for each 
super-sector by an analysis of planned and actual trajectories on a single clear-air day: after trajectories 
with obvious short-cuts and re-routes were removed, the deviation threshold was defined as the 90th 
percentile of the mean deviation distance for the remaining trajectories. 

Three CIWS products were used to characterize the weather (step 3): 

1. Vertically Integrated Liquid (VIL): CIWS uses VIL as a measure of precipitation (see 
Robinson, et al., 2002 for a discussion of why VIL is preferred). VIL is mapped to an 
equivalent 6-level Video Integrator and Processor (VIP) scale of precipitation intensity (Troxel 
and Engholm, 1990). In this study, a higher resolution CIWS VIL product (the precursor to the 
6 level display product) was used, so fractional VIP levels could be resolved. 

2. High resolution radar echo tops: measure of storm cell height (Smalley et al., 1999) 
3. Cloud-to-ground lightning strikes: measure of convective activity 

 

For each trajectory (both planned and actual), weather statistics were calculated from two different 
sized neighborhoods, centered on the trajectory: 16km (approximating the clear-air route width) and 
60km (approximating the 20 nm convective storm avoidance guidance given to pilots in the FAA 
Airman’s Information Manual). Figure 1 illustrates the different route width scales. 
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Figure 1. Illustration of different neighborhood scales used in the extraction of weather data and calculation of 
weather statistics for weather encounters along planned and actual flight trajectories (example shows a planned 
trajectory neighborhood and weather encounter). Figure at left shows echo tops field, at right is VIL, cyan dots 
indicate cloud-to-ground lightning strikes. Solid line of each trajectory indicates the weather encounter. 

The weather statistics included mean, 90th percentile and maximum values for VIL, echo tops for 
and deltaZ (the difference between flight altitude and the echo top height, using different measures of 
echo top height) for both neighborhoods. For the 60km neighborhood, we calculated several additional 
statistics, including percentage of area covered by VIL levels >= level 3, 4 and 5; echo tops heights >= 
flight altitude, 30, 40 and 50 kft; and lightning counts in 6 minute time periods. A total of 31 statistical 
measures of weather characteristics were calculated. See Appendix A for a description of the complete set 
of weather statistics. 

A weather encounter (step 4, Figure 1) was defined as the portion of a trajectory that passed through 
either VIL level 2 or greater or echo tops of 25 kft or greater for at least 2 minutes. The choice of VIL, 
echo top height and thresholds was based on a prior analysis of deviations around convective storms in 
enroute airspace (Rhoda, et al., 2002). Note that the weather encounter is not intended to be an a priori 
definition of convection or weather hazard. Rather, it is the definition of the minimum level of weather 
significant enough to be analyzed. 

A planned trajectory weather encounter was flagged as a weather-related deviation if the mean 
deviation distance during the encounter was greater than the deviation threshold calculated in step 2. This 
set of automatically detected weather encounters and deviation flags were reviewed by an analyst and the 
deviation flags were edited when necessary. 

The weather statistics and edited deviation flags from 595 weather encounters on 5 different 
summer days in 2003 provided the inputs to the deviation prediction model (step 5). Twenty different 
models were developed using the LNKnet pattern classification software developed at Lincoln Lab 

VIL echo tops 

planned trajectory 

actual trajectory 

16km scale 
60km scale 
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(Lippmann, et al., 1993). In each model, a set of 5 weather statistics for each weather encounter (chosen 
from the complete set of 31) provided the inputs: two measures of VIL (one from the 16km 
neighborhood, the other from the 60km neighborhood), two measures of echo top height or deltaZ, and 
lightning counts from the 60km neighborhood. In order to test the assertion that both VIL and echo tops 
play a part in pilot decision, we developed twelve additional models with a set of 3 inputs: lightning and 
either echo tops or VIL from both neighborhood scales. In all models, we were careful to select sets of 
input variables that showed relatively low levels of cross-correlations. See Appendix B for a complete 
description of the weather model inputs. 

We compared two different pattern classifiers: k-nearest neighbors, with several different values of 
k, and Gaussian. The Gaussian classifier proved to be the better of the two, and all models presented were 
based on Gaussian classifiers. In addition to predicting the output class (in this case, deviation or non-
deviation), LNKnet also evaluates the explanatory power of each input variable by calculating the 
reduction in output classification error due to each input variable. A weather statistic that has high 
explanatory power in a deviation prediction model with a small output classification error is deemed to be 
an important factor in pilot decision. 

In order to describe deviation strategies for the verified deviations, an analyst reviewed the actual 
trajectories flown and the weather encountered for 218 weather-related deviations. Each deviation was 
characterized by an avoidance distance from 24 different weather features (the minimum lateral distance 
between the deviating plane and the boundary of the weather feature that the pilot is avoiding). Weather 
features included VIL level 2, 3, 4 and 5 contours, echo top height of flight altitude, 30, 40 and 50 kft 
contours, and all VIL and echo top combinations. Avoidance distances were determined from a single 
characteristic cross-section chosen by the analyst to represent the weather encounter. The characteristic 
cross section is a line connecting the planned and actual trajectories that span the aviation hazard 
responsible for the deviation, in the analyst’s judgment (see Figure 10 below). Statistics describing 
avoidance distances are presented. 





 

 

7 

3. RESULTS 

3.1 CASE ANALYSIS 

Flight trajectories in two ‘super-sectors’, ZID and ZOB, were analyzed. The ZID super-sector 
consisted of ATC sectors ZID66, ZID82 and ZID83; ZOB included ATC sectors ZOB28, ZOB46, ZOB48 
and ZOB77. Figure 2 illustrates the super-sectors, showing the major enroute jetways and fair weather 
traffic in each. The majority of ZOB routes and traffic flow are carried along several parallel and closely 
spaced East-West oriented jetways. ZID traffic, by comparison, is evenly distributed among several 
jetways with different orientations. Demand, jetway orientations and spacing between jetways all impact 
the way in ATC manages flow and may constrain the deviation options in convective weather. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Jetways and clear day traffic in super-sectors ZOB and ZID. Thickness of red lines indicates traffic load.
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A total of 472 enroute trajectories in ZID and 539 in ZOB during a clear 24-hour period (July 25, 
2003) were analyzed to determine the deviation threshold. Figure 3 illustrates the deviation threshold 
analysis. It illustrates some examples of planned and actual trajectories extracted from the ETMS data. It 
also shows scatter plots of the mean deviation distance vs. the standard deviation of the deviation distance 
for each trajectory analyzed in each super-sector. A standard deviation threshold for each super-sector, 
selected by an analyst, was used to eliminate short cuts, reroutes and other intended deviations from 
deviation threshold analysis (vertical red lines in Figure 3). Trajectories whose mean deviation distance 
standard deviation was less than the threshold were assumed to be following the planned trajectory and 
the distribution of mean deviation distances among these trajectories represented the normal operational 
variation of pilots flying along their intended paths in the super-sector. The deviation threshold was 
selected as the 90th percentile of mean deviation distance of these ‘normal’ trajectories (horizontal 
magenta lines in Figure 3). 

The deviation thresholds were 12 km for ZID and 24 km for ZOB. We found the difference in 
deviation thresholds between the two super-sectors somewhat surprising and cannot readily explain it 
using the available data. 

Figure 3. Deviation threshold analysis in ZID and ZOB super-sectors. Column at left illustrates examples of 
planned and actual trajectories. 

Table 1 presents a summary of the case dates and times, the number of flights analyzed, the number of 
flights whose planned trajectories encountered significant weather, the total number of weather 
encounters detected and analyzed and the median and 90th percentile of VIL and echo tops measurements 
(based on the 16 km neighborhood) from the weather encounters. In general, convection in ZID was 
stronger, with echo tops and VIL levels significantly higher than what was observed in ZOB. Storm cells 
in ZID were also more clearly defined, with sharp boundaries between convective cells and areas of clear 
weather.

planned

actual Short-cuts, other 
operational 
deviations

outliers Total: 472 enroute trajectories Total: 539 enroute trajectories

Deviation threshold = 12 km Deviation threshold = 24 km

planned

actual Short-cuts, other 
operational 
deviations

outliers Total: 472 enroute trajectories Total: 539 enroute trajectories

Deviation threshold = 12 km Deviation threshold = 24 km
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TABLE 1 

Summary of Weather Encounters for Planned Trajectories 

Case 
start: 
finish 

Sector Trajectories 
Trajectories 
with weather 
encounters 

Weather 
encounters 

VIL 
(median 

/ 90th 
pct.) 

Echo 
tops 

(median/ 
90th pct.)

2003/05/10 0500 : 
2003/05/10 1900 

ZID 
ZOB 

130 
168 

95 
62 

106 
69 

5.9 / 4.9 
4.5 / 2.9 

45 / 36 
33 / 26 

2003/06/14 1500 : 
2003/06/15 0000 

ZID 
ZOB 

134 
279 

67 
24 

66 
21 

5.6 / 5.0 
4.9 / 4.6 

37 / 31 
31 / 28 

2003/06/26 2000 : 
2003/06/27 0500 

ZID  
ZOB 

142 
220 

120 
151 

128 
122 

4.9 / 4.0 
4.5 / 3.4 

30 / 38 
29 / 24 

2003/07/09 1600 : 
2003/07/10 1300 

ZID 
ZOB 

219 
531 

168 
41 

220 
36 

5.8 / 4.8 
4.5 / 2.8 

46 / 37 
33 / 26 

2003/07/31 0800 : 
2003/07/31 1800 

ZID 
ZOB 

74 
223 

52 
1 

75 
0 

5.0 / 3.9 
N/A 

32 / 27 
N/A 

Totals (ZID/ZOB/both) 699/1421/2120 502/279/781 595/248/843   

 

Figures 4 and 5 illustrate typical storm deviations identified by the automatic detection algorithm. 
The panels at the left of the figures show weather fields (VIL on top, echo tops on bottom) with planned 
(magenta line) and actual (blue line) trajectories over laid. Solid portions of the trajectories indicate the 
weather encounter identified by the algorithm. The panels at right show the VIL (top) and echo tops 
(bottom) that the flight would have encountered (magenta plot) and actually encountered (blue plot) along 
its trajectory. 

In these examples, convective storm cells are characterized by high VIL, echo tops well above the 
flight level and lightning activity. Cell complex boundaries are readily evident, and flight trajectories 
clearly deviate around vigorous convective activity. Many weather encounters and deviations in the ZID 
super-sector exhibited similar characteristics. 
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Figure 4. A typical storm cell deviation in the ZID super-sector. 

Figure 5. A typical storm cell deviation in the ZID super-sector. 
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Weather encounters in ZOB were not so easily characterized. In the five cases studied, the weather 
was largely stratiform precipitation with embedded weak convective cells. Flight path deviations were 
also less predictable, which might be expected given the wider distribution of clear air deviation 
distances. Figures 6 and 7 illustrate examples. 

 

Figure 6. A typical weather-related deviation in the ZOB super-sector.
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Figure 7. A typical weather-related deviation in the ZOB super-sector. 

The automated deviation detection algorithm classified planned trajectory weather encounters as 
weather-related deviations or non-deviations, using the methods, definitions and thresholds described 
above in section 2. The results of the automated deviation detection algorithm were reviewed by an 
analyst, who inspected every weather encounter (both deviations and non-deviations) that was identified 
and classified by the detection algorithm. The analyst reviewed planned and actual trajectories and VIL, 
echo tops and lightning strike maps in the vicinity of the weather encounter to determine if the detection 
algorithm was correct. 

The automated algorithm detected and classified 595 weather encounters in ZID and 248 in ZOB. 
The analyst was able to verify the deviation flag for 490 of the encounters in ZID and 176 in ZOB. The 
probability of detection and false alarm rate was calculated for the automated deviation detection 
algorithm using the verified encounters. The performance of the deviation detection algorithm is 
summarized in Table 2. 

~120 km

Echo tops

VIL

~120 km

Echo tops

VIL
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TABLE 2 

Summary of Automated Deviation Detection Algorithm Performance 

Case Sector Deviations 
POD / FAR 

Non-deviations 
POD / FAR 

2003/05/10 
ZID 
ZOB 

93.9 / 7.5 
90.0 / 30.8 

80.0 / 16.7 
92.7 / 1.9 

2003/06/14 
ZID 
ZOB 

86.7 / 10.3 
NA / 100.0 

90.9 / 11.8 
80.0 / 0.0 

2003/06/26 
ZID  
ZOB 

69.6 / 38.5 
71.4 / 48.3 

88.6 / 8.2 
86.1 / 6.5 

2003/07/09 
ZID 
ZOB 

94.9 / 3.7 
100.0 / 40.0 

90.2 / 13.2 
81.0 / 0.0 

2003/07/31 
ZID 
ZOB 

87.5 / 33.3 
NA / NA 

86.0 / 4.4 
NA / NA 

All cases 
ZID 
ZOB 

91.2 / 10.8 
81.1 / 44.4 

87.9 / 10.0 
87.2 / 4.1 

 

Deviation detection error rates were significantly higher in ZOB than in ZID. Several factors may 
have contributed to the difference in performance: clear air routes appeared to be flown much tighter in 
ZID1, making the difference between deviation and non-deviation more obvious; convective cells in ZID 
were stronger and more clearly defined in ZID than in ZOB; ATC may employ different weather 
avoidance strategies in the two super-sectors. Further study is required to establish a better definition of 
operationally significant deviation, a clear description of the failure modes of the deviation detection 
algorithm and to devise improvements to address them. 

3.2 DEVIATION PREDICTION MODEL 

Inputs to the deviation prediction model consisted of 490 planned trajectory weather encounters 
from super-sector ZID whose classification (deviation or non-deviation) could be verified by the analyst. 
ZOB weather encounters were not considered because of the difficulty in detecting and identifying 
weather-related deviations, the relatively small number of encounters that deviated (32 of 176, or 18%) 
and the significant difference between the two super-sectors in weather characteristics and clear-air 
deviation thresholds. 

                                                      

1 This difference seems counter intuitive given the respective route structures in ZOB and ZID.  
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Several general trends appeared in the results of the modeling experiments: 

1. Overall prediction errors (combined deviation and non-deviation) ranged from 19% 
to 26%. However, models differed significantly in the differences between deviation 
and non-deviation prediction errors (ranging from 2% to 28%). The better models 
were characterized by both low overall prediction errors and a small difference 
between the deviation and non-deviation prediction errors. 

2. In 19 of the 20 modeling experiments that included both VIL and echo top 
measurements as inputs, the most powerful explanatory input was a measure of echo 
top height.  

3. In the 11 modeling experiments with the lowest overall classification error rate, the 
most powerful explanatory input was a measure of deltaZ (flight altitude – echo top 
height), based on a 90th percentile measure of echo top height within the analysis 
neighborhood (either 16km or 60km). The second explanatory input was a measure 
of VIL. 

4. Models that used 90th percentile weather measurements as inputs yielded results at 
least as good as or better than average measurements in all cases. 

5. Lightning appears to add little value as a predictor when both echo top height and 
VIL measures are available. 

These general trends indicate that the primary factor in weather-related deviations is the height of 
the storm relative to the flight altitude, with VIL or precipitation measurements reducing the difference in 
prediction errors for deviation and non-deviation, in some cases. Furthermore, spatial averaging of 
weather data measurements (either echo top height or VIL) appears to reduce the explanatory power of 
the data. 

The results from the twelve additional models, in which lightning and only VIL or echo top 
measurements provided the weather inputs, were consistent with these findings. Error rates for the echo 
top-only models were lower than those from VIL-only models. 

Modeling results for all 32 models are summarized in Figure 8. The blue boxes show the overall 
error in predicting both deviations and non-deviations, the red show the error in predicting deviations, the 
green show the error in predicting non-deviations for a given model. 
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Figure 8. Summary of deviation prediction model errors. Figure (a) shows results for models with VIL, echo top 
height and lightning inputs, (b) shows results for echo top and lightning inputs, (c) for VIL and lightning inputs. 
Appendix B describes the predictors that correspond to each model index (x-axes). 

a.a.

b. c.b. c.
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Figures 9 - 11 provide a more detailed look at the prediction model inputs and results for one of the 
models (model index 9, from Figure 8a). Figure 9 shows four 2D histograms: deviation counts, non-
deviation counts, observed probability of deviation (percentage of flights in each histogram bin that 
deviated) and a smoothed probability density function derived from the statistics. The histograms axes are 
the two best predictors of deviation according the to the deviation model: the percentage of the pixels in 
the 60 km neighborhood whose VIL is level 3 or greater (x axis) and deltaZ, using the 90th percentile echo 
top height from the 16 km neighborhood (y axis). 

 

 

Figure 9. 2D histograms of deviation counts (a), non-deviation counts (b), observed probability of deviation 
(percentage of flights in each histogram bin that deviated) (c) and a smoothed probability function derived from the 
observed probabilities (d). 

b.

c.

ZID Deviations ZID Non-deviations

ZID Deviation Percentages ZID Deviation Probability

a.

d.

de
lta

Z
(9

0th
pc

t. 
16

km
 e

ch
o 

to
ps

)

de
lta

Z
(9

0th
pc

t. 
16

km
 e

ch
o 

to
ps

)

de
lta

Z
(9

0th
pc

t. 
16

km
 e

ch
o 

to
ps

)

de
lta

Z
(9

0th
pc

t. 
16

km
 e

ch
o 

to
ps

)

Percent coverage VIL Precip >= Level 3 Percent coverage VIL Precip >= Level 3

Percent coverage VIL Precip >= Level 3 Percent coverage VIL Precip >= Level 3

b.

c.

ZID Deviations ZID Non-deviations

ZID Deviation Percentages ZID Deviation Probability

a.

d.

de
lta

Z
(9

0th
pc

t. 
16

km
 e

ch
o 

to
ps

)

de
lta

Z
(9

0th
pc

t. 
16

km
 e

ch
o 

to
ps

)

de
lta

Z
(9

0th
pc

t. 
16

km
 e

ch
o 

to
ps

)

de
lta

Z
(9

0th
pc

t. 
16

km
 e

ch
o 

to
ps

)

Percent coverage VIL Precip >= Level 3 Percent coverage VIL Precip >= Level 3

Percent coverage VIL Precip >= Level 3 Percent coverage VIL Precip >= Level 3



 

 

17 

Figure 10 shows the relationship between the weather inputs and the result (deviation or not). 
Figure 10a is a table that ranks the inputs in order of their predictive power, and the cumulative output 
classification error as each input is added to the model. In this model, the addition of the third, fourth or 
fifth inputs (percentage of pixels in the 60 km neighborhood with echo tops >= 40kft, 90th percentile VIL 
level in the 16 km neighborhood and lightning counts) resulted in a small increase in classification error. 
Figures 10b and 10c show four histogram plots. The upper plots show the distribution of the deltaZ and 
VIL level 3 percentage measurements, partitioned into deviations and non-deviations. If the deviations 
and non-deviations are well separated, the input will be a good predictor of deviation; if there is 
considerable overlap, it will not. The bottom histogram is the distribution of correct and incorrect 
classifications of deviation and non-deviations. Correct classifications are above the x axis, incorrect ones 
are below. Note that the majority of classification errors occur for trajectories whose weather 
characteristics fall in the interval where deviations and non-deviations overlap. 

 

 

Figure 10. Relationship between weather inputs and deviation / non-deviation result. Table (a) ranks the weather 
inputs in order of explanatory power, with the cumulative deviation prediction error. Histogram (b) shows 
distribution of deltaZ for all weather encounters (blue), deviations (red) and non-deviations (green). Histogram (c) 
shows the same for VIL level 3 percent coverage. 
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Figure 11 is a scattergram of the two best predictor values (VIL level 3 percentage on the x axis, 
deltaZ on the y axis) for each weather encounter plotted on top of the decision half-planes (deviation in 
gold and non-deviation in red) determined by the deviation prediction model. The deviation prediction for 
an input data point (i.e., a planned trajectory weather encounter) is determined by the decision region in 
which it falls. Decision region boundaries may be suspect in regions where data is sparse – a model 
performs best where there is sufficient data! 

 

 
Figure 11. Deviation decision plot, as a function of weather input variables. X axis is percent of VIL pixels in the 60 
km route region that are level 3 or greater. Y axis is deltaZ, (flight altitude – 90th percentile echo top height from 
the 16 km route region). 
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Finally, Figure 12 shows the histograms of lightning counts for all weather encounters, partitioned 
into deviations and non-deviations, for both ZID and ZOB. It is evident from the histograms that lightning 
counts in the 60 km neighborhood may provide some predictive skill, if data such as echo tops or VIL are 
not available. 

 

 

Figure 12. Histograms of lightning counts within the 60km encounter neighborhood box in the 6 minutes 
immediately prior to weather encounters in ZID and ZOB. 

 

3.3 AVOIDANCE DISTANCE ANALYSIS 

Avoidance distances were determined from a single characteristic cross-section specified by the 
analyst for each deviation. A second analyst reviewed the cross-sections, but the choice of a single cross-
section to characterize the deviation strategy is somewhat subjective. In some instances, the analyst could 
not make a sensible choice of cross-section. Of the 248 verified deviations in ZID, cross-sections were 
selected from 220. Appendix C describes in detail the process used to determine weather feature 
boundaries and presents the full set of avoidance statistics. 

The data automatically extracted from the VIL and echo top fields along the cross-section define 
avoidance distance curves, which show VIL and echo top height as a function of position along the cross 
section. Using the point of intersection between the cross-section and the actual trajectory, the avoidance 
distance from different weather feature boundaries may be calculated automatically from the avoidance 
distance curve. Figure 13 illustrates an example. 
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Figure 13. Avoidance distance analysis. Figure (a) shows the planned and actual trajectories from a deviation 
overlaid on the VIL field; figure (b) shows the echo top field; figure (c) shows the avoidance distance curves for VIL 
and echo tops along the characteristic cross-section. Arrows labeled (1) show the avoidance distance for echo top 
height equal to flight altitude, arrows (2) show avoidance of VIL level 3. 

 

Unfortunately, not all deviation strategies and avoidance distance determinations were as clear-cut 
as those illustrated in Figure 13. Figure 14 illustrates an example where neither the hazard nor the 
deviation strategy is clear. 

 

Figure 14. Illustration of an unclear deviation strategy. Pilot makes a large deviation in a region of benign weather, 
more than 100 km downwind from nearest convective cell. 
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Of all 24 avoidance distances calculated, those for VIL level 2, 3 and 4 features were the most 
consistent, implying that VIL level contours may provide the best hazard boundary for deviating pilots. 
Approximately 75% of all deviating aircraft (168 of 218) flew within 20 km of the VIL level 2 boundary, 
within 25 km of the VIL level 3 boundary and within 33 km of the VIL level 4 boundary. This suggests a 
two step process to create a ‘convective hazard field’: (1) use flight altitude, echo tops and VIL to find 
hazardous cells, (2) find the VIL level contours that bound the hazardous cells. 

It is important to note that one must use caution in interpreting the avoidance analysis data. Given 
the small data set analyzed, it is impossible to make a definitive statement about avoidance distances and 
deviation strategies used by pilots to avoid convective weather. Moreover, deviation strategies are not 
easily inferred from weather and trajectory data due to the complexity of convective weather and traffic 
patterns in busy airspace, the lack of concrete evidence about what information sources are used by the 
pilot and the fact that the deviation strategy may be imperfectly executed and therefore, the actual 
trajectory flown may not reflect the pilot’s intent. More research is necessary to understand the specific 
relationships between weather, traffic and deviation strategies. 

3.4 WEATHER PENETRATION 

Figure 15 summaries the penetrations in the ZID super-sector for all case days; Figure 16 does the 
same for ZOB. The figures indicate that while most of the ‘penetrations’ are actually over-flights, a 
significant percentage of pilots are willing to penetrate regions of high echo tops and VIL that would be 
characterized as a high avoidance region by the deviation prediction model. These results suggest VIL 
and echo top height alone are not sufficient to define completely convective regions that pilots wish to 
avoid. Other weather factors (e.g., storm growth or decay, direction of storm motion, etc.) or weather 
characteristics that the pilot sees (e.g., the presence or absence of thunderstorm turrets, radar reflectivity 
as sampled by the aircraft weather radar, etc.) are likely to play a part in pilot decision making. It is also 
possible that there is a significant range in pilots’ risk tolerance. 
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Figure 15. ZID penetrations. Scattergram at left shows plots deltaZ vs. VIL level for all actual trajectory weather 
encounters. Blue + indicate encounters where the neighborhood cloud to ground lightning count was <10; red + 
indicates counts >=10. Data points above the 0-line represent over-flights, where flight altitude > echo top height. 
Plot at right is the histogram of the weather encounter data. 

Figure 16. ZOB penetrations. Plots as in Figure 15. 
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4. SUMMARY, CONCLUSIONS AND ADDITIONAL WORK 

This study presents initial results of a model to predict enroute flight deviations due to convective 
storms. The model was developed by applying statistical pattern recognition techniques to: 

• high resolution VIL and echo tops data from CIWS and cloud-to-ground lightning strike 
counts from NLDN to characterize the weather, and 

• flight plan and trajectory data from ETMS to determine planned and actual enroute flight 
trajectories and deviations.  

A method for determining the bounds of convective regions that deviating pilots wish to avoid and a 
statistical distribution of avoidance distances were presented. Statistics describing the penetration and 
overflight of convective weather were also presented. Weather and flight data from over 800 different 
trajectories on five different days in two different air traffic control ‘super-sectors’ (ZID and ZOB) were 
analyzed.  

A deviation prediction model could be developed only in the ZID super-sector, where the 
convective cells were generally strong and well-defined. A sufficient number of verified deviating and 
non-deviating flight trajectories were found and the difference between deviating and non-deviating flight 
trajectories was clear. The results of the modeling experiments were clear and consistent: 

1. Deviation prediction models with error rates for both deviations and non-deviations below 
25% were possible, using several different sets weather data measurements as inputs. 

2. In all modeling experiments (except those with VIL only), deltaZ (the difference between 
flight altitude and echo top height) was the most powerful predictor of deviation. The use of 
90th percentile echo top measurements in the calculation of deltaZ resulted in lower errors 
than average values of echo top height. 

3. Measurements of VIL, without echo top heights, proved to be relatively poor predictors of 
deviation, when compared to models with echo tops only or both echo tops and VIL. 
However, the combination of echo tops and VIL measurements in the input data set reduced 
the spread between errors in predicting deviations and non-deviations from that achieved by 
using echo tops and lightning alone. 

For all verified deviations, avoidance distances from 24 different weather features were calculated, 
where possible, based on input from an analyst. Avoidance distances for 220 deviations were analyzed. 
Seventy-five percent of deviating trajectories passed within 20 km of the VIL level 2 boundary, within 25 
km of the level 3 and within 33 km of the level 4 boundary. This suggests that a model for deviation 
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strategy may use echo tops and VIL together to predict where planned trajectories will encounter regions 
of weather that the pilot will wish to avoid, and best define the deviation distance. 

Weather penetration statistics were also gathered for more than 700 weather encounters in both ZID 
and ZOB super-sectors. The data suggest that pilots are willing to fly over level 4 and even level 5 VIL if 
they can clear the echo tops by 4 - 6 kft, and that a significant percentage of pilots will penetrate regions 
of high echo top and VIL that would be determined to be likely avoidance regions by the deviation 
prediction model. This indicates that VIL and echo tops alone are not sufficient to define regions of 
convective weather that pilots will seek to avoid and / or that there is a significant range in pilot risk 
tolerance. 

Finally, it must be noted that this is an exploratory study. The conclusions were limited by the 
small size of the input data set and the immaturity of the algorithms used to analyze trajectories and 
characterize weather encounters. We clearly need to examine many more convective weather cases in a 
number of different regions. For example, it is very important to determine if there are differences in pilot 
behavior in highly congested airspace where there are closely spaced routes going roughly in the same 
direction (e.g., ZOB , ZNY and possibly ZDC) versus ARTCCs where there is much greater distances 
between the routes (e.g. ZME) or where there are significant crossing traffic flows (e.g. ZID). ARTCCs 
that are principally transitional airspace (e.g., ZAU, ZTL, and ZFW) may also have significantly different 
pilot behavior. 

Several additional studies could provide key information that could improve deviation modeling: 

1) Improved definition and detection of deviation. More work is needed to develop a better 
operational definition of deviation that considers factors not accounted for in this study, including sector 
route structure, prevalent ATC routing strategies and characteristics of convective weather. 

2) Addition of other relevant weather data. Upper-level winds from RUC and storm motion 
vectors from CIWS provide information necessary to determine if a planned or actual trajectory is 
downwind or upwind of a convective cell, or in front of or behind the path of a moving storm. 
Information about cell growth and decay is also likely to be important. Operational evidence suggests that 
pilots may be more willing to penetrate regions with higher VIP levels on the trailing edge of a storm 
where cells are decaying, while avoiding lower VIP levels on the leading edge where cells are actively 
growing (DeLaura and Allan, 2003). PIREPs are also likely to affect pilot decisions in convective 
weather. 

Another important weather feature may be the nature of the convective weather. Having an accurate 
model to predict whether pilots will fly through gaps in squall lines is very important operationally as is 
the deviation distance around the ends of squall lines. It is also important to determine if there are 
differences in the pilot behavior with air mass thunderstorms versus other types of “disorganized” 
convection.  
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3) Improved hazard avoidance distance calculation algorithms. The hazard avoidance distance 
calculation used in this study is compact and easily analyzed. However, it was labor intensive, provided 
only a small sampling of the available data and could not be applied to approximately 15% of all verified 
deviations, where complicated weather patterns resulted in deviation strategies that could not be 
characterized by a single avoidance distance. 

4) Inclusion of more factors in prediction of deviation strategies. Deviation strategies most likely 
involve several factors not considered here: availability of clear airspace nearby, airspace constraints due 
to sector route geometry or traffic, etc.  





 

 

27 

APPENDIX  A 
WEATHER STATISTICS USED TO CHARACTERIZE CONVECTIVE 

WEATHER 

Three products were used to characterize the weather encountered by planned and actual flight 
trajectories in this study: Vertically Integrated Liquid (VIL), radar echo tops (18 dBZ reflectivity) and 
cloud-to-ground lightning strikes. VIL provides a measure of precipitation intensity, echo tops provide an 
estimate of the height of the storm and lightning generally indicates the presence of strong updrafts 
associated with convection. In CIWS, VIL is calculated from NEXRAD reflectivity data. VIL, which is 
defined as mass per unit area (e.g. kg/m2), is mapped to an equivalent radar reflectivity (dBZ) scale, 
which is, in turn, mapped to the 6-level Video Integrator and Processor (VIP) scale of precipitation 
intensity (Troxel and Engholm, 1990). The seven points on the VIP scale (the zero point and the 6 VIP 
levels) are assigned values on the CIWS VIL interest level scale, which ranges from 0 to 255 (see table A-
1). A piecewise inverse log function was used to interpolate intermediate VIL values to CIWS VIL 
interest level.  

TABLE A-1 

VIL to Interest Level Mapping 

VIL (kg/m2) Reflectivity (dBZ) VIP Level CIWS VIL Interest Level 
0.05 <18 0 0 
0.14 18 1 42 
0.7 30 2 84 
3.5 41 3 128 
6.9 46 4 170 

12.0 50 5 212 
32.0 57 6 255 

 

We examined 31 different statistical measures of these products on two different spatial scales (16 
km and 60 km route widths) in an effort to determine which weather characteristics were most important 
in the pilots’ deviation decision. Table A2 lists the statistics. 
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TABLE A-2 

Weather Statistics Used to Characterize Weather Encounters along Planned and Actual 

Flight Trajectories 
Statistic 16 km name 60 km name Comments 

Maximum VIL vilmax_16 vilmax_60  
90th percentile VIL vil90_16 vil90_60 90th percentile used as lower noise surrogate 

for max. value 
Average VIL (>= level 3) vil3avg_16 vil3avg_60 Average of all VIL pixels >= VIL level 3 

encountered along trajectory  
VIL ‘pain’ vilpain_16  Time integral of VIL pixels >= VIL level 3 

encountered along trajectory 
Average VIL  vilavg_60 Average of all VIL pixels encountered along 

trajectory  
VIL standard deviation (>= 
level 3) 

 vil3std_60 Standard deviation about mean of all VIL 
pixels >= level 3 

VIL standard deviation  vilstd_60 Standard deviation about mean of all VIL 
pixels 

% VIL pixels >= level 3  l3pct_60  
% VIL pixels >= level 4  l4pct_60  
% VIL pixels >= level 5  l5pct_60  
Maximum echo top etmax_16 etmax_60  
90th percentile echo top et90_16 et90_60 90th percentile used as lower noise surrogate 

for max. value 
Average echo top (>=30 kft) et30avg_16 et30avg_60 Average of all echo top pixels >= 30 kft 

encountered along trajectory  
Echo top ‘pain’ etpain_16  Time integral of echo top pixels >= 30 kft 

encountered along trajectory 
Average echo top  etavg_60 Average of all echo top pixels encountered 

along trajectory  
Echo top standard deviation 
(>= 30 kft) 

 et30std_60 Standard deviation about mean of all echo 
top pixels >= 30 kft 

Echo top standard deviation  etstd_60 Standard deviation about mean of all echo 
top pixels 

% echo top pixels >= 30 kft  et30pct_60  
% echo top pixels >= 40 kft  et40pct_60  
% echo top pixels >= 50 kft  et50pct_60  
deltaZ using echo top max dzetmax_16 dzetmax_60 deltaZ calculated using maximum value of 

echo top encountered along trajectory 
deltaZ using 90th percentile 
echo top 

dzet90_16 dzet90_60 deltaZ calculated using 90th percentile value 
of echo top encountered along trajectory 

Lightning  lght_60 Six-minute count of cloud-to-ground lightning 
strikes 
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It is important to note that VIL, echo tops and cloud-to-ground lightning by themselves are not 
sufficient to identify regions of intense convective activity and potential convective hazards with 
complete accuracy. For instance, high VIL and high echo tops may be present in decaying storm cells that 
pilots appear willing to penetrate. In these cases, the VIL is concentrated at lower altitudes in the 
collapsed storm core, but sufficient liquid remains aloft to result in high (but relatively benign) echo tops. 
Better measures of vertical reflectivity structure (e.g. reflectivity at higher altitudes, echo tops based on 
different reflectivity values, etc.) provide additional information about the weather that may help to better 
identify regions of vigorous convection. 

The use of cloud-to-ground lightning is also less than ideal; cloud-to-ground lightning is often 
associated with decaying convection (Williams et al., 1989; Cary and Rutledge, 1996). Intracloud 
lightning is more often associated with growing, vigorous convection, but data is more difficult to collect. 
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APPENDIX  B 
DEVIATION MODELING 

The data set used in the deviation prediction modeling consisted of 490 flights from the ZID super-
sector whose planned trajectories encountered significant weather. Flights whose mean deviations (mean 
distance between the planned and actual trajectories) exceeded the deviation threshold were classified as 
deviations; flights whose mean deviation was less than or equal to the deviation threshold were classified 
as non-deviations. Several modeling experiments were run to determine which weather characteristics 
best predicted deviation. Each experiment used a different subset of the input weather statistics described 
in Appendix A as deviation predictors. 

In building each prediction model, several subsets of the 490 flights were randomly selected for use 
as the model training data set. Flights in the training data set were partitioned in deviations and non-
deviations, and the distribution of the input predictor values for both deviations and non-deviations were 
approximated by Gaussians. The ability of a predictor to discriminate between deviations and non-
deviations is related to the degree of overlap between the two distributions; where the two distributions 
overlap, there is considerable uncertainty in predicting the result (see Figure B1). When multiple 
predictors are used, it is important that they be as uncorrelated as possible, since highly correlated 
predictors provide redundant information. 
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Figure B-1. Illustration of predictor strength. Figure (a) illustrates a good predictor. The distribution of predictor 
data values for deviations and non-deviations is widely separated, so there is only a small set of predictor values 
where there is uncertainty about the outcome so the prediction error is small. Figure (b) illustrates a poor predictor, 
where there is significant overlap between the two distributions. 
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Three sets of deviation modeling experiments were performed. Table B1 lists the predictor inputs 
and best predictors (the combination of predictors that resulted in the lowest prediction error, in order of 
predictor strength) for 20 experiments that included VIL, echo top and lightning inputs; Figure B2 is the 
corresponding error output plot (repeated from Figure 8a in the main text). Note that the best predictor in 
the 11 models with the lowest prediction errors is deltaZ, using a 90th percentile measurement (from either 
the 16 or 60 km scale) of echo tops. (Predictors are defined in Table A2.). 

 

 

Figure B-2. Deviation prediction errors corresponding to Table B1. 

Table B2 and Figure B3 summarize the models from the 6 echo top and lightning experiments. 
Note that the performance of the best of these models is comparable to the best models using both echo 
top and VIL predictors. However, there is a larger difference between the prediction error for deviations 
and non-deviations in the echo tops-only model. 
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Table B3 and Figure B4 summarize the VIL and lightning experiments. The best VIL-only models 
have prediction error rates that are approximately 25% higher than those from echo tops and VIL or echo 
tops-only models. 

TABLE B-1 

Summary of deviation prediction model experiments, using VIL, echo top and lightning 

as predictors 

VIL inputs Echo top inputs Plot 
index 16 km 60 km 16 km 60 km 

Lightning 
(60 km) 

Best predictors (in order of 
predictive power) 

1 vilpain_16 vil90_60 dzet90_16 et40_60 lght_60 dzet90_16, vil90_60 
2 vilpain_16 vil90_60 et30avg_16 dzet90_60 lght_60 dzet90_60, vil90_60, 

et30avg_16, lght_60 
3 vil90_16 l3pct_60 et30avg_16 dzet90_60 lght_60 dzet90_60, l3pct_60, lght_60, 

et30avg_16 
4 vil3avg_16 l3pct_60 et30avg_16 dzet90_60 lght_60 dzet90_60, l3pct_60, lght_60, 

et30avg_16 
5 vilpain_16 l3pct_60 et30avg_16 dzet90_60 lght_60 dzet90_60, lght_60, 

et30avg_16, l3pct_60 
6 vilpain_16 vil90_60 etpain_16 dzet90_60 lght_60 dzet90_60, vil90_60, 

etpain_16 
7 vil3avg_16 l3pct_60 etpain_16 dzet90_60 lght_60 dzet90_60, vil3avg_16, 

etpain_16 
8 vil90_16 l3pct_60 etpain_16 dzet90_60 lght_60 dzet90_60, vil90_16, 

etpain_16 
9 vil90_16 l3pct_60 dzet90_16 et40_60 lght_60 dzet90_16, l3pct_60 
10 vil3avg_16 l3pct_60 dzet90_16 et40_60 lght_60 dzet90_16, l3pct_60 
11 vilpain_16 l3pct_60 dzet90_16 et40_60 lght_60 dzet90_16, l3pct_60 
12 vil3avg_16 l3pct_60 et30avg_16 et40_60 lght_60 et40_60, et30avg_16, 

lght_60, vil3avg_16 
13 vilpain_16 l3pct_60 et30avg_16 et40_60 lght_60 et40_60, et30avg_16, 

lght_60, vilpain_16 
14 vilpain_16 vil90_60 et30avg_16 et40_60 lght_60 et30avg_16, et40_60, 

lght_60, vilpain_16 
15 vil90_16 l3pct_60 et30avg_16 et40_60 lght_60 lght_60, et30avg_16, et40_60 
16 vilpain_16 l3pct_60 etpain_16 dzet90_60 lght_60 dzet90_60, lght_60 
17 vil3avg_16 l3pct_60 etpain_16 et40_60 lght_60 etpain_16, vil3avg_16 
18 vilpain_16 vil90_60 etpain_16 et40_60 lght_60 etpain_16, vil90_60 
19 vil90_16 l3pct_60 etpain_16 et40_60 lght_60 etpain_16, vil90_16, et40_60 
20 vilpain_16 l3pct_60 etpain_16 et40_60 lght_60 etpain_16, et40_60 
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Figure B-3. Deviation prediction errors corresponding to Table B2. 

TABLE B-2 

Summary of deviation prediction model experiments, using echo tops and lightning as 

predictors 

Echo top inputs Plot 
index 16 km 60 km 

Lightning 
(60 km) 

Best predictors (in order of predictive power) 

1 et30avg_16 dzet90_60 lght_60 dzet90_16, lght_60, et30avg_16 
2 dzet90_16 et40_60 lght_60 dzet90_16, lght_60 
3 dzet90_16 dzet90_60 lght_60 dzet90_16, lght_60 
4 etpain_16 dzet90_60 lght_60 dzet90_60, lght_60 
5 et30avg_16 et40_60 lght_60 et40_60, et30avg_16 
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6 etpain_16 et40_60 lght_60 et40_60, lght_60 
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Figure B4 Deviation prediction errors corresponding to Table B3. 

TABLE B-3 

Summary of deviation prediction model experiments, using VIL and lightning as 

predictors 
VIL inputs Plot 

index 16 km 60 km 
Lightning 
(60 km) 

Best predictors (in order of predictive power) 

1 vil3avg_16 vil90_60 lght_60 vil3avg_16, lght_60 
2 vil3avg_16 l3pct_60 lght_60 vil3avg_16, lght_60 
3 vil90_16 vil90_60 lght_60 vil90_16, lght_60 
4 vil90_16 l3pct_60 lght_60 vil90_16, lght_60 
5 vilpain_16 vil90_60 lght_60 lght_60, vilpain_16 
6 vilpain_16 l3pct_60 lght_60 lght_60, vilpain_16 
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APPENDIX  C 
CONVECTIVE FEATURE BOUNDARIES AND DETERMINATION OF 

AVOIDANCE DISTANCE 

Table C1 defines the weather features referenced in the avoidance distance distribution box plot 
(Figure C1). The box plots in Figure C1 show the minimum, 25th percentile, median, 75th percentile and 
maximum avoidance distance observer for each feature in the 220 deviations examined. Note that all the 
weather features examined were not present in all the convective cells presumed to cause the deviations. 
For example, only 129 cells contained a region where VIL >= level 2 and echo tops >= 40 kft (weather 
feature index 3). 

Figure C1 indicates that the avoidance distances for VIL level 2, 3 and 4 convective cell boundaries 
(weather features 1, 6 and 11, respectively) are the most consistent; that is, the spread between the 25th 
and 75th percentiles is the smallest. This suggests that one may be able to identify convective cells that 
pilots wish to avoid using the deviation prediction model, define the boundary of the convective cell(s) as 
the VIL level 2 or 3 contour that encloses them and determine acceptable trajectories using the avoidance 
distance. However, it must be stressed that these results are very preliminary and based upon a very small 
sampling of flights. More research is needed to validate and refine these concepts.  
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TABLE C-1 

Weather features contour boundaries used to define avoidance distances for deviating 

trajectories 
Weather 
feature 
index 

Feature contour Weather 
feature 
index 

Feature contour 

1 VIL = level 2 13 VIL = level 4 & echo top = 40 kft 
2 VIL = level 2 & echo top = 30 kft 14 VIL = level 4 & echo top = 50 kft 
3 VIL = level 2 & echo top = 40 kft 15 VIL = level 4 & echo top = flight altitude 
4 VIL = level 2 & echo top = 50 kft 16 VIL = level 5 
5 VIL = level 2 & echo top = flight altitude 17 VIL = level 5 & echo top = 30 kft 
6 VIL = level 3 18 VIL = level 5 & echo top = 40 kft 
7 VIL = level 3 & echo top = 30 kft 19 VIL = level 5 & echo top = 50 kft 
8 VIL = level 3 & echo top = 40 kft 20 VIL = level 5 & echo top = flight altitude 
9 VIL = level 3 & echo top = 50 kft 21 echo top = 30 kft 
10 VIL = level 3 & echo top = flight altitude 22 echo top = 40 kft 
11 VIL = level 4 23 echo top = 50 kft 
12 VIL = level 4 & echo top = 30 kft 24 echo top = flight altitude 
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Figure C1. Distribution of weather feature avoidance distances. Numbers at the top of each box plot indicate how 
many convective cells associated with pilot deviations included the weather feature whose avoidance distance is 
plotted in the box plot. So, for example, 129 out of 220 convective cells contained a region where VIL >= level 2 
and echo tops >= 40 kft (plot index 3); the median avoidance distance from the boundary of that region was ~40 km 
(red line inside the box). 
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GLOSSARY 

ATC  Air Traffic Control 

CCA  Convectively Constrained Area 

CCFP  Collaborative Convective Forecast Product 

CIWS  Corridor Integrated Weather System 

ETMS  Enhanced Traffic Management System 

FAA  Federal Aviation Administration 

NEXRAD Next Generation Weather Radar 

SAU  Strategic Airspace Usage 

VIL  Vertically Integrated Liquid 

VIP  Video Integrator and Processor 
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