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ABSTRACT 

Due to wake turbulence, aircraft operating in the terminal area must maintain minimum 
separations on instrument approaches. This can be a significant constraint on the airport arrival 
rate. NASA’s Aircraft Vortex Spacing System (AVOSS) project was undertaken to develop the 
technology to dynamically change aircraft arrival separations based upon atmospheric conditions 
and an understanding of vortex behavior. 

As part of this effort, a collection of meteorological sensor systems were deployed by Lincoln 
Laboratory and NASA at the Dallas/Fort Worth International Airport (DFW). These sensors, 
along with existing FAA and NWS systems, are used to create profiles of the atmosphere at the 
DFW airport. Scientific concept prototypes of the AVOSS was operated at Dallas/FT. Worth in 
the summer of 1997-2000. 

The greatest challenge in preparing a single atmospheric profile for the wake vortex behavior 
models is merging data from sensors yielding different measurements of the same atmosphere. 
To meet this challenge, the AVOSS Winds Analysis System (AWAS) was developed to perform 
the data quality editing and fusion of sensor data. 
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1. INTRODUCTION 

The hazard that wake turbulence presents to following aircraft while operating in the terminal 
area requires the use of minimum separations between aircraft on final approach in weather that 
requires instrument approaches. This can be a significant constraint on the airport arrival rate. 
The National Aeronautics and Space Administration (NASA) Langley Research Center is 
developing the Aircraft Vortex Spacing System (AVOSS), designed to dynamically change 
aircraft arrival separations based upon atmospheric conditions and an understanding of vortex 
behavior [l, 21. 

As part of this effort, a collection of meteorological sensor systems were deployed by Lincoln 
Laboratory and NASA Langley at the Dallas/Fort Worth International Airport [3[4]]. These 
sensors, along with existing FAA and NWS systems were used to create profiles of the 
atmosphere at the DFW airport. A scientific concept prototype of the AVOSS were operated at 
Dallas/FT. Worth in the summer of 1997. MIT Lincoln Laboratory set up an extensive suite of 
meteorological sensors, using two SODARs, a Doppler radar profiler, an instrumented 150 foot 
tower, and shorter towers in order to estimate the required atmospheric profiles. In addition, 
algorithms were developed to use the two FAA Terminal Doppler Weather Radars (TDWR) in 
Dallas as high resolution wind profilers, and to combine the wind data from the various sensors 
into a single wind profile. 

The greatest challenge in preparing a single atmospheric profile for the wake vortex behavior 
models is merging data from sensors yielding different measurements of the same atmosphere. In 
post-processing, a human can interpret all of the data and create a profile based upon known 
sensor limitations and analysis of the data. However, the wake behavior models in the AVOSS 
system require real-time atmospheric profiles representing the state of the atmosphere [S]. To 
meet this requirement, an automated algorithm was developed to perform the data quality editing 
and fusion of sensor data. This algorithm, known as the AVOSS Winds Analysis System 
(AWAS), employs technology being used by the Integrated Terminal Weather System (ITWS) 
[6]. The final AWAS configuration provided atmospheric wind profiles representing thirty- 
minute means and variances at an update rate of five minutes. The AWAS processing was 
performed continuously at the AVOSS DFW field office. 





2. WIND MEASUREMENT SYSTEMS 

Atmospheric wind data are obtained in real-time by the AWAS from several data sources. 
These include a 150-foot instrumented tower, a Radian LAP-3000 profiler, two Remtech PA-2 
sodars, and two nearby Terminal Doppler Weather Radars (TDWR). Most of these sensor 
systems are configured to operate at their optimum data collection parameters for wake vortex 
prediction and analysis. 

The 150-foot instrumented tower is located on the south side of the DFW airport. The tower 
has five sensor packages that measure the wind speed and wind direction at a one-hertz rate, 
producing one-minute means every minute. The sensors are located on the tower at a height of 3, 
10, 20, 32, and 43 meters. The tower data are of a very high quality and require very little data 
quality editing. 

The Radian profiler, a 915MHz Doppler radar, is located on the north side of the DFW 
airport. It is operated at a 25minute averaging period, with a 30-minute update rate. Because of 
the long averaging periond, the data from the profiler is on average 12.5 minutes old when it is 
received, and many small scale wind features that may affect individual wake behavior have 
been removed by the time averaging. The 25 minute wind averaging window allows for a five- 
minute Radio Acoustic Sounding System (RASS) averaging period prior to operation of the 
profiler wind mode. The profiler is configured to provide winds at a 97-meter vertical resolution 
from 145 meters to a maximum height measurement of 4,881 meters. The profiler performs quite 
well in the airport environment, except on days that are exceptionally clear, and requires very 
little data quality editing. 

The Remtech PA-2 sodar is a Doppler sodar that operates at a range of frequencies near 
22OOH.z. There are two sodars operating at the DPW airport. The first is located on the north side 
of the airport, approximately 200 feet from the Radian LAP-3000 profiler. The second sodar is 
located on the south side of the DPW airport, approximately 200 feet from the 150-foot 
instrumented tower. The two sodars are operating at a 50-meter vertical resolution from 50 
meters to a maximum height measurement of 600 meters, with an update rate of ten minutes. The 
actual maximum altitude does not always extend to 600 meters, for example when there is a 
strong temperature inversion below 600 meters. The 10 minute averaging period results in an 
observation that is in some sense 5 minutes old, and the averaging removes small scale wind 
features that may affect individual wake behavior. 

The Remtech sodars perform better than expected in the high, airport noise environment; 
however, there are several phenomena that affect the performance of the sodars that require 
careful data quality editing. The sodars generally perform well between 100 and 400 meters. 
Ground clutter affects the data quality below 100 meters, and noise pollution affects 
measurements made above 400 meters. The most difficult data quality editing problem for the 
sodar is the occasional “ringing” that can occur when electromagnetic fields drown out the return 
signal. This causes the sodar to report winds much stronger than the real winds. 1 

3 



The TDWR is an operational FAA Doppler radar used to detect hazardous wind shear at the 
major airports in the US. In Dallas, there are two TDWRs: one providing coverage for the 
Dallas/Port-Worth International Airport (DFW) and one covering the Dallas Love Airport 
(DAL). The DFW radar is located 22 kilometers to the northeast of the DFW airport. The DAL 
radar is located five kilometers to the northeast. 

Since the TDWR data are not processed into vertical profiles by the ITWS, an algorithm was 
developed at Lincoln Laboratory to create vertical wind profiles for the the AVOSS program 
using the Gauss-Markov Theorem [7]. Profiles were created at the end of each volume scan 
from the TDWR, nominally every five minutes. The profiles have a 50-meter vertical resolution 
from 50 meters to 1,400 meters. The averaging period results in an observation lag of 2.5 
minutes. The spatial smoothing is similar to a temporal smoothing of at least 30 minutes’, again 
removing small scale wind features that may affect individual wake behavior. 

The TDWR profiles provide consistent data during times of homogenous winds with 
numerous clear air reflectors. However, the TDWR can provide erroneous winds in a number of 
conditions. First, during times of nonhomogeneous winds, the radar can be influenced by wind 
fields not affecting the DFW airport. This is especially true during times of thunderstorm activity 
near the airport. Second, the TDWR performs poorly during times when there are few clear air 
reflectors. Finally, ground clutter can negatively affect the performance of the profile software, 
especially during periods of light winds. 

The data collection varies from a minimum of 20km x 2Okm, to a maximum of 120km x 12Okm, 
depending on altitude and data, density, with smaller windows at lower altitudes and when data are 
plentiful. Data towards the center of the data window are weighted more heavily. 
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3. SYSTEM OVERVIEW 

The data from the different sensors provide information of different type, vector or single 
component, of different scale, of different quality, and for different vertical regions. No one 
sensor provides wind measurements of sufficient resolution, accuracy, or vertical extent in all 
weather conditions. To account for these differences, a statistical technique based on the Gauss- 
Markov Theorem is used to compute the profile of wind values. The mathematics of this 
technique are discussed more fully in [8]. This technique is used on each Doppler radar 
individually to generate wind profiles for each radar from the radial wind components measured 
by a Doppler radar. The technique is used again, this time on full wind vector data, to build the 
final wind profile from the measurements from the various sensors. 

The requirements for the real-time AVOSS Winds Analysis System (AWAS) are as follows: 
l The system will produce a profile for: 

- mean headwind and mean crosswind ’ 
- standard deviation of headwind and crosswind 
- d(crosswind)/dz, or change in crosswind with altitude 

l Each profile will provide these estimates from the ground up to 1400 m AGL. 
l Each profile will have vertical resolution of 15 meters to 150 meters, and a vertical resolution of 50 

meters above 150 m. 
l Each estimate will represent a regional average (nominally equivalent to a 30 minute running 

average). 

Figure 1 provides a high level overview of the process flow and the primary data flow for the 
AWAS. The various sensors are shown across the top along with their update rates, vertical 
resolution, and the maximum altitude of their data. The TDWR data are processed to construct 
profiles of mean wind, error variance of the mean wind, and wind field variability. The wind 
information from the TDWR processing, along with the wind information from the other sensors 
feed into a data buffer. The data buffer holds all the information for the previous 30 minutes. 
Data from the buffer collectively feed into the remaining processing functions every five 
minutes. The processing modules depicted in Figure 1 are: 
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Figure 1. Process flow and primary datajlow for the AVOSS winds analysis system. 

1. Resampler: The resampler processes the radial wind components measured by a 
TDWR. The data are smoothed using a median filter to remove outliers. Additional data 
quality editing takes place to remove ground clutter contamination. Finally, the data are 
resampled onto a 2 km horizontal resolution, 50 m vertical resolution Cartesian grid. 

2. Doppler Profile Analysis @PA): The DPA takes in a set of wind component estimates 
from a single resampler and produces a profile of estimates of the horizontal winds, 
estimates of the error variances for the wind estimates, and estimates of the wind field 
variability. The estimates of headwind and crosswind are extracted from the radial wind 
components using the Gauss-Markov Theorem, as are the estimates of the error 
variances. The wind’ field variability estimates are computed by comparing the radar 
measured radial velocities to the corresponding radial component of the estimated mean 
wind. The size of the’ region over which data are collected varies between 20 km and 60 
km, depending on profile altitude when data are plentiful. When data are sparse, the 
window sizes can grow to a maximum of twice as large. At a range of 10 km from the 
radar, the beam width for a TDWR radar is 87 m, and the beam width scales linearly 
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with distance from the radar. However, the effective resolution of the profile is greater 
than the beam width of the most distant data, since the data nearer the radar are more 
heavily weighted. The DPA is only run at a given altitude, if there are at least a 
minimum number of observations on that level, nominally 40 observations. 

3. Data quality edit: Each data value is judged by factors such as continuity in time and 
consistency with other sensors. The various factors are combined to give a final quality 
value, and a threshold is then applied. 

4. Wind variability: The original wind variability module took in the various wind 
measurements and estimated the variation of the wind about the mean wind by simply 
computing the RMS difference between the various measured winds and the wind 
profile. The DPA wind variability estimates were not used, as their accuracy has not yet 
been verified. Because the sensor variance does not measure the variability in the fine 
scale winds, the final configuration simply used the tower variances of the one minute 
mean wind and extrapolated upwards. 

5, Compute vertical windows and vertical shear: The compute vertical windows 
module computes the vertical extent of the data window to use for each analysis level. 
A byproduct of this is the vertical shear in the wind. At each analysis level, the data 
values in a vertical window are examined to see if they exhibit nearly linear shear by 
fitting a line to the data and checking the resulting fit to the data. The window is 
increased from a minimum to a maximum extent to find the largest extent over which 
the data show a linear shear. This extent is then the vertical window used for the given 
analysis level, and the slope of the associated line is the shear. 

6. Data fusion: The data fusion module is based on the Gauss-Markov Theorem. 

It is important to the AVOSS performance that the wind estimates, plus or minus the 
reported errors, represent the range of wind conditions that a wake may encounter over 
the following 15 minutes or more. There are two factors that affect the reported errors 
in the mean wind. The first is the error in the estimate of the mean wind. The second is 
the wind variability, or more precisely, the variance of the wind about the mean. The 
measure of the standard deviation in the wind estimate as experienced by AVOSS is the 
square root of the sum of the error variance in the reported mean wind and the variance 
of the wind about the mean wind. 

In general, the DPA profiles and AWAS profiles are of high quality, although their 
accuracy has not yet been quantified. Figures 2 through 4 show examples of the AWAS 
data and profiles on three days. Separate profiles for the u and v wind components (east 
or crosswind and north or headwind, resp.) are given. The legend in the upper left 



comer of each figure shows the symbols used for the different sensors. The frequently 
updated tower data appear as a smear at the bottom of the profiles. 

In Figure 2 all the measurements are in good general agreement and the output profile 
has good resolution,’ capturing several changes in the wind at different altitudes. In 
Figure 3 the profile again has good resolution, but the measurements are not in as good 
general agreement. In particular, the sodars provides erroneous values in the u 
component. These sodar wind values have been discarded by the data quality editing 
indicated by their being displayed as black. This sort of behavior by the sodars is 
common, especially above 400 m. For this reason, sodar data above 400 m are always 
removed. The profile in Figure 4 also shows good resolution, but the observations show 
a greater spread in values than in Figures 2 and 3. The DPA values from the two 
separate radars are in very good agreement, but show a u component a few m/s stronger 
than the profiler. Again, the sodars are providing poor quality data (u component). 
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Figure 2. Measurements and the A WAS Profile on April 13, I999 at 14:19:35Z. 
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4. THE GAUSS-MARKOV ANALYSIS 

The Gauss-Markov Theorem states that given the unbiased measurement vector d, and a 
linear transformation A from the unknown data vector x to the data vector d of the form Ax = d, 
the linear minimum variance estimate of x is given by: 

(1) x = (AtC-‘A)-‘@‘At , where C is the positive definite error covariance matrix. 
Further more, the error covariance of the estimate x is given by: 

(2) (At-‘A)-’ 
We take the error covariance matrix C to have the form S + D, where S is the sensor error 

matrix and D is the displacement error matrix. The sensors are assumed to be independent of 
each other so S is diagonal, with the (i,i) entry set to the sensor error variance and the other 
entries set to zero. In the original AWAS each sensor value was used only once and persisted 
through a feedback of the last profile as an initial estimate, in which case the (ij) entry in the 
matrix S is zero, the error correlation for two independent observations. In the final AWAS, this 
was changed so that the data are explicitly stored in a buffer for 30 minutes, so that in general 
more than one observation from a given sensor is used. In this case the (ij) entry, where 
observation i and observation j are from the same sensor should, not be zero. The error due to 
this discrepency is that sensors with rapid updates carry more weight than war-rented. To account 
for this, the sensor error for the observations from a given sensor are divided by the nominal 
number of observations from that sensor in the 30 minute time window. This is approximately 
the same as assuming the error correlation from consecutive observations from the same sensor 
have correlation equal to one. A more rigorous treatment of this error could be had by modeling 
the correlation in errors from repeat observations. 

The displacement error correlation matrix accounts for two errors. The first error arrises from 
the fact that observations are not located at the profile location, that is the observations have a 
displacement relative to the profile location. We take this error to have the form in equation 3, 
where the distance is between the observation and profile location. These values form the 
diagonal elements of D. 
(3) displacement error = Klx horizontal distance + K2 x vertical distance + K3 x age. 

The off-diagonal elements are formed from the diagonal elements using equation 4. 

(4) D(i,j) = ,/v correlation(i,j), 

where the correlation function is based on the distance between the two observations and is 
given by equation 5. 

(5) correlation(i,j) = exp-(Klx horizontal distance + K2 x horizontal distance + K3 x age) 
So the error correlation is one for observations that are colocated and decreases to zero as the 

observation move far apart. 
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4.1 THE DOPPLER PROFILE ANALYSIS 

The Doppler Profile Analysis @PA) takes in radial velocity data from a single radar and 
produces a vertical profile of (u,v) wind vectors with values every 50 meters. In the application 
of the Gauss-Markov Theorem, the unknown vector is (u,v) at a fixed altitude, and equation (1) 
has the form in equation 6. The initial estimate to start is (0,O) and is the value from the previous 
DPA after the algorithm is running. 

(6) 

1 0 
0 1 

cos(8, ) sin(8, ) 
l l 

l l 

l l 

cos(8, ) sin(8, ) 
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= 
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uinitid 

‘initial 

RadialVel, 
l 

l 

l 

RadialVel, 

The radial velocities are preprossesed through a median filter with approximately a 1 km x 1 
km footprint, and placed on a 2 km grid. For the grid level at altitude Z, all radial velocities with 
altitudes between Z-25 m and Z+25 m are used. The radial velocities are checked against the 
radial velocity as computed from the last profile. If these two values match to within a tolerance, 
the velocity is used. The tolerance is given by equation 7. 
(7) tolerance = min ( max( min tolerance, 20), max tolerance), 

where cr is the RMS of difference between the measured radial velocities in the last run of the 
DPA and the corresponding radial velocities computed from the last profile. That is, cr represents 
the variability of the radar data. The rnin tolerance value keeps the tolerance value from going to 
zero, in which case no data are kept, and the max tolerance value keeps the tolerance from 
getting so large during times of bad radar data that all data are kept. The profile of cs values is 
output, along with the profile of (u,v) and the profile of u and v variance (see equation 2). 
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5. DATA QUALITY EDITING 

Meteorologists familiar with the data use many factors to determine if an observation is valid. 
These include such factors as the vertical continuity of the data during a consensus period, the 
temporal continuity of a sensor’s observations, various parameters provided by the sensors such 
as noise level and number of returns, a visual inspection of the data in comparison with 
observations from other sensors at the same altitude, and the past performance of the particular 
sensor. Given this information, it was decided to use a fuzzy logic approach in the data quality 
editing scheme. 

To employ fuzzy logic, a series of “detectors” are defined for each sensor. For each 
observation, the detector performs a predefined set of operations and then applies a scoring 
function to the output of the operations. From the template function, a value between zero and 
one is produced that is representative of the quality of the observation, based upon a particular 
detector. Once each detector produces this value, known as an “interest” value, all of the interest 
values are averaged to produce a final interest value for an observation. The final step is to apply 
a threshold to each interest value, filtering out data with an interest value less than the threshold. 

Six detectors are used in determining the interest value for an observation. These detectors 
are: 

1) vertical continuity, 
2) temporal continuity, 
3) buddy check, 
4) previous AWAS comparison, 
5) historical performance, and 
6) anticipation. 
Detectors specific to particular sensors are also defined. For the TDWR data, a detector is 

defined to check the number of points used at each level. For the sodar data, three detectors are 
used. These are: noise value, number of validations, and number of spurious returns. By defining 
the detectors that best apply to individual sensors, an interest value is obtained. 

The “vertical continuity” detector assumes that all data from an individual sensor during each 
update should exhibit linear behavior in the vertical. At each observation, a vertical search 
window is defined that is sensor dependent. All data within the window are then fit to a line, and 
the root mean square (RMS) residual is computed using all of the observations. Using the line fit, 
an estimate is made of the wind at the altitude of the observation. Finally the difference between 
the observation and the estimate is computed. Dividing the difference by the fit residual produces 
the final value to be used in the interest function. The scoring function for the vertical continuity 
detector is shown in Figure 5. 
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Figure 5. Vertical Continuity Detector Scoring Function. 

The resultant interest value for one standard deviation from the estimate would be a value of 
1.0, indicating the observation is of good quality. The resultant interest value for two standard 
deviations would be 0.5, indicating no opinion, and three standard deviations would yield a value 
of 0.0, indicating invalid data. 

The “temporal continuity” detector uses the same method described in the vertical continuity 
detector; however, the data used in the detector and the scoring function are different. For the 
temporal continuity detector, a sensor-specific time history of data is used in the linear fit, 
typically on the order of the last six consensus periods. For the sodars, operating at a ten-minute 
average, the last sixty minutes of data will be used. The interest function is shown in Figure 6. 
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Figure 6. Temporal Continuity Detector and Buddy Check Detector Scoring Functions. 
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The “buddy check” detector begins by collecting all sensor data within a specified altitude 
and time range of an observation, excluding observations from the same sensor. Then the same 
method as in the vertical and temporal continuity checks is applied to produce an interest value. 
The buddy check detector scoring function is also shown in Figure 6. 

The “previous AWAS comparison” detector determines the nearest AWAS altitude to the 
observation of interest and compares the last AWAS profile at that altitude with the observation. 
This detector uses the simplistic statistical approach previously mentioned to determine the 
number of standard deviations from the mean that the current observation lies. The scoring 
function shown in Figure 7 is then applied to produce the interest value. The previous AWAS 
comparison detector scoring function allows for a greater error in the observation due to errors 
that may have existed in the last AWAS profile. 

012345 

Number of Standard Deviations 

Figure 7. Previous A WAS Comparison Detector Scoring Function. 
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Figure 8. Historical Detector Scoring Function. 

The “historical” detector uses sensor-specific scoring functions that provide an interest value 
that is representative of the subjective analysis that meteorologists would apply about knowledge 
of past sensor performance. For instance, Figure 8 shows the historical detector scoring function 
for the two sodars. Between 100 and 300 meters, an interest value of 0.8 is assigned to the 
detector. This can be thought of as setting the interest value to 0.8, because 80% of the time the 
sodar produces good quality data at this altitude for this sensor. From 500 to 600 meters the 
sodar produces valid data only 30% of the time, hence the low interest value of 0.3. All sensors 
are configured with different historical detector scoring functions. For instance, the 150-foot 
instrumented tower has a flat interest template of 1.0 for all altitudes. 

The final general-use detector is the “anticipation” detector. This detector assumes that the 
performance of a sensor at each observation is unlikely to change with time. For this detector, the 
interest value is set to the final interest value for this sensor at this altitude from the last 
observation. 

The sensor-specific detectors use information provided by a sensor that are related to data 
quality. For the TDWR sensors, this information is the number of data points used in the 
observation. Figure 9 is the scoring function for the TDWR. For the sodars, this information is 
the noise level, the number of validations, and the number of spurious returns on each beam. 
Figure 10 is the scoring function for the sodar noise detector. The sodar number of validations 
and spurious return detectors are not shown. 
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6. PERFORMANCE ISSUES 

A detailed comparison of the AWAS profiles to independent observations was not performed. 
The system was observed carefully, and in general performed the job of producing accurate 
profiles. The use of the Gauss-Markov Theorem for winds analysis in another application is 
validated in[B]. However, there are several performance issues that were noted. 

I 

The DPA profiles generated from data from the two independent TDWRs generally agree 
very closely. Since the data are independent, agreement is taken to imply that the profiles 
accurately represent the wind profile at the scales that are captured by this product. The 
agreement breaks down when there is convective weather within the data collection range due to 
the fact that the uniform horizontal wind hypothesis does not hold. This is expected behavior. It 
is expected that AVOSS will not operate with convective conditions within 15 nmi. of the airport 
because it is known that the wind conditions will not be persistent enough to count on persistent 
wake behavior. Nonetheless, it would be helpful for the system to recognize convective 
situations so that improved data quality editing of the DPA can be performed. This recognition 
could come from the TDWR reflectivity data, from a co-located ITWS, or from the TDWR 
velocity field by directly measuring the degree to which the uniform wind hypothesis holds. 

The orginal AWAS updated the profile by using new observations to modify the existing 
profile. Generally, this results in a set of observations where each is from a different sensor, so 
the error covariance matrix uses the assumption that observational errors are uncorrelated. Late 
in the experiment, the AWAS was changed to average observations in an explicit 30 minute time 
window. Now sensors provide multiple observations, and for best performance the software 
should be updated so that observations from the same sensor are assumed to have correlated 
error. The issue is that without this change, observations from rapidly updating sensors are given 
too much weight. This is currently addressed in an ad hoc way by simply increasing the assumed 
sensor error variance for rapidly updating sensors. This ad hoc method does not result in a true 
minimum error variance solution. 

The wind profile tended to have a kink at the top of the tower, as the profile transitions from 
great amounts of tower data to the more sparse data aloft. This is due to the fact that the tower 
,data are not considered to have correlated errors. Again, modifying the error matrix to account 
for the error correlation in measurements from the same sensor should help. 

The current error variance values are estimated from the tower observations. Since wakes live 
on the order of a 30 seconds to two minutes, transient features that exist for only a few seconds 
will not significantly affect wake transport, and these features should not influence the wind 
variance estimates. Features that last approximately one minute or longer should influence the 
wind variance estimates. Unfortunately, with the exception of the tower data, the wind 
observations do not contain wind features that exist for less than several minutes to tens of 
minutes, depending on the sensor, and so the observations above the tower can not be used in the 
wind vaiance estimates above the tower. In principle the Doppler radar data could be used, but 
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we found that the TDWR data contain too much noise to provide reliable estimates. We did not 
have time to fully investigate the Doppler profiler data. 
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APPENDIX A 
NOMINAL AWAS PARAMETER VALUES 

INTEREST-THRESH 0.70 # qc-control threshold applied to combined quality value 

TIMER-INTERVAL 300 # time between analyses (seconds) 
# 
ANALJES 6 # number of different analysis (vertical) resolutions 
ANALRESl 15 # analysis resolution (meters) 
ANAL-RIB2 15 
ANAL-RES3 15 
ANALREs4 15 
ANALREs5 15 
ANAIJCSS6 50 
# 
START-WINDOW1 15 
STOP-WINDOW1 45 
START-WINDOW2 60 
STOP-WINDOW2 60 
START-WINDOW3 75 
STOP-WINDOW3 90 
START-WINDOW4 105 
STOPWINDOW4 120 
START-WINDOW5 135 
STOP-WINDOW5 135 
START-WINDOW6 150 
STOP-WINDOW6 1400 

MIN-VERT-DIST-THRESH1 30.0 # starting vertical window size (m) to consider an obs for a given 
analysis level. 
MAX-,RT-DISTTHRESHl 30.0 # maximum vertical window size. (m) 
VERT-DIST-STEP1 10.0 # how much to increase vert window with each pass . . . 
MINJERT-DIST-THRESH2 40.0 # starting vertical window size (m) to consider an obs for a given 
analysis level. 
MAXJERT-DIST-THRESH2 40.0 # maximum vertical window size. (m) 
VERT-DIST-STEP2 10.0 # how much to increase vert window with each pass . . . 
IvTINJERT-DIST-THRESH3 80.0 # starting vertical window size (m) to consider an obs for a given 
analysis level. 
MAX_vERT_DIST_THRESH3 80.0 # maximum vertical window size. (m) 
VERT-DIST-STEP3 10.0 # how much to increase vert window with each pass . . . 
MINJ’ERT-DIST-THRESH4 100.0 # starting vertical window size (m) to consider an obs for a 
given analysis level. 
MAXJERT-DIST-THRESH4 100.0 # maximum vertical window size. (m) 
VERT-DISTSTEP4 10.0 # how much to increase vert window with each pass . . . 
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MIXVERT-DIST-THRESH5 130.0 # starting vertical window size (m) to consider an obs for a 
given analysis level. 
MAX-VERT-DIST-THRESH5 130.0 # maximum vertical window size. (m) 
VERT-DIST-STEP5 10.0 # how much to increase vert window with each pass . . . 
MIN_vERT_DIST_THRESH6 100.0 
MAX-WRT-DIST-THRESH6 200.0 
VERT-DIST-STEP6 50.0 
# 
VERT-COEFl 0.1 # distance weighting coefficient 
HORIZ-COEFl 0.000075 # distance weighting coefficient 
AGE-COEFl 0.003 # age weighting coefficient 
WRT-COEFB 0.1 
HORIZ-COEF2 0.000075 
AGE-COEFB 0.003 
VERT-COEF3 0.1 
HORIZ-COEF3 0.000075 
AGE-COEF3 0.003 
VERT-COEF4 0.1 
HORIZ-COEF4 0.000075 
AGEXOEF4 0.003 
VERT-COEF5 0.1 
HORIZ-COEF5 0.000075 
AGE-COEF5 0.003 
VERT-COEFG 0.1 
HORIZ-COEFG 0.000075 
AGE-COEFG 0.003 
VERT-COEF7 0.1 
HORIZ-COEF7 0.000075 
AGE-COEF7 0.003 
VERT-COEF8 0.1 
HORIZ-COEF8 0.000075 
AGE-COEF8 0.003 
VERT-COEFS 0.1 
HORIZ-COEFS 0.000075 
AGE-COEFS 0.003 
VERT-COEFlO 0.1 
HORIZ-COEFlO 0.000075 
AGE-COEFlO 0.003 
VERT-COEFll 0.05 

H0RIZ~C0EF110.000075 
AGE-COEFll 0.003 
VERT-COEF12 0.05 
HORIZ-COEF12 0.000075 
AGE-COEF12 0.003 
VERT-COEF13 0.05 
HORIZ-COEF13 0.000075 
AGE-COEF13 0.003 
VERT-COEF14 0.05 
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HORIZ~COEF140,000075 
AGE-COEF14 0.003 
VERTwCOEF15 0.05 
HORIZ~COEF150.000075 
AGE-COEF15 0.003 
VERT-COEF16 0.05 
HORIZ~COEF160.000075 
AGE-COEF16 0.003 
VERTmCOEF17 0.05 

.I HORIZ~COEF170.000075 
AGEeCOEF17 0.003 
VERTSOEF18 0.05 

3 HORIZXOEF180.000075 
AGEsCOEF18 0.003 
VERT-COEF19 0.05 
HORIZ~COEF190.000075 
AGE-COEF19 0.003 
VERTwCOEF20 0.05 
HORIZ~COEF2O0.000075 
AGE-COEFBO 0.003 
VERTwCOEF21 0.05 
HORIZ~COEF210.000075 
AGE-COEF21 0.003 
VERTmCOEF22 0.05 
HORIZ~COEF220.000075 
AGE-COEF22 0.003 
VERTmCOEF23 0.05 
HORJZ~COEF230.000075 
AGE-COEF23 0.003 
VERT-COEF24 0.05 
HORIZ~COEF240.000075 
AGEwCOEF24 0.003 
VERTwCOEF25 0.05 
HORIZ~COEF250.000075 
AGEeCOEF25 0.003 
VERT.qCOEF26 0.05 
HORIZ~COEF260.000075 
AGEmCOEF26 0.003 

. VERT-COEF27 0.05 
HORIZ~COEF270.000075 
AGE-COEF27 0.003 

,. VERTeCOEF28 0.05 
HORIZ~COEF280.000075 
AGEsCOEF28 0.003 
VERTeCOEF29 0.05 
HORIZ~COEF290.000075 
AGEwCOEF29 0.003 
VERTwCOEF30 0.05 
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HORIZ-COEF3O 0.000075 
AGE-COEF30 0.003 
VERT-COEF31 0.05 
H0RIZ~C0EF310.000075 
AGE-COEF31 0.003 
VERTmCOEF32 0.05 
HOIXIZ-COEF32 0.000075 
AGEmCOEF32 0.003 
VERT-COEF33 0.05 
HORIZmCOEF33 0.000075 
AGEmCOEF33 0.003 
VERTmCOEF34 0.05 
HORIZ-COEF34 0.000075 
AGE-COEF34 0.003 
VERT-COEF35 0.05 
HORIZDCOEF35 0.000075 
AGE-COEF35 0.003 
# 
FIT-THRESHOLD 0.5 : 

&-~Bs-AGE 1800 # discard any obs older than 30 minutes... 
# 
TOWER-SURFACE-FACTOR 0.2 # surfaces factors deal with what weight to give observations.., 
PROFILER-SURFACE-FACTOR 0.2 # . . . based on the amplitude of the observation 
SODARJWRFACE-FACTOR 0.2 
DPA_SURFACE-FACTOR ‘0.2 
RADAR-SURFACE-FACTOR 0.2 
MIN-SIGMA-THRESH 1.0 
SIGMAJlULT~VAL 2.5 
DEFAULT-TOWERJAR 1.0 
DEFAULT-SODAR-VAR 1.0 
DEFAULT_PROFILER-VAR 1.0 
DEFAULT-DPA-VAR 1.0 
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APPENDIX B 
DPA PARAMETERS 

J 

wv-radarlyariance 4.0 
wv-radarl-qc-rms_multi 4.0 
wv-radarl-min-level-obs 50 
wv-radar!-min-quad-obs 10 
wv-radarl-cl-thresh-mult 0.20 
wv-radarl-cl-thresh-min 0.50 
wv-radarl-cl_thresh_max 3.00 

##################################################################### 
# 
# The following information is the information used by dpa to 
# determine the error coefficients for each level. 
# 
##################################################################### 
# 
dpa-levell-height 50 
dpa-levell-her-coeff 0.00004 
dpa-levell-age-coeff 0.003 
dpaJevell_min~window 5 
dpa-levell-max-window 10 
dpa-levela-height 100 
dpaJevel2-her-coeff 0.00004 
dpalevel2-age-coeff 0.003 
dpa-level2-minwindow 5 
dpa-levelZ_max-window 10 
dpaJevel3-height 150 
dpa-level3-her-coeff 0.00004 
dpa-level3-age-coeff 0.003 
dpaJevel3-min-window 5 
dpaJevel3-max-window 10 
dpa-levelri_height 200 
dpalevel4-her-coeff 0.00004 
dpaJevel4-age-coeff 0.003 
dpaJevel4_min_window 5 
dpaJevel4-max-window 10 
dpaJevel5-height 250 
dpaJevel5-her-coeff 0.00004 
dpalevel5-age-coeff 0.003 
dpaJevel5-min-window 5 
dpaJevel5-max-window 10 
dpa-levels-height 300 
dpalevel6-her-coeff 0.00004 
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dpa-level6-age-coeff 0.003 
dpaJevel6-min-window 5 
dpaJevel6-max-window 20 
dpa-level’l_height 350 
dpa-level7-her-coeff 0.00004 
dpaJevel7-age-coeff 0.003 
dpa-level7-min-window 5 
dpa~level7~max~window 20 
dpaJevel8-height 400 
dpa-level8-her-coeff 0.00005 
dpaJevel8-age-coeff 0.003 
dpaJevelS_mixwindow 5 
dpaJevel8_max_window 20 
dpa-level9-height 450 
dpa-level9-horsoeff o.oooci5 
dpalevel9-age-coeff 0.003 
dpa-level9-min-window 5 
dpaJevel9-max-window 20 
dpaJevell0height 500 
dpaJevellOhor-coeff 0.00005 
dpa-levellO,age-coeff 0.003 
dpaJevellO,min-window 10 
dpa~levell0~max~window 20 
dpa-levelllheight 550 
dpa-levelll-her-coeff 0.00005 
dpa~levelll~age~coeff 0.003 
dpaJevelll_min-window 10 
dpa-levelll-max-window 20 
dpa-levell2-height 600 
dpa-levell2-her-coeff 0.00006 
dpalevell2-age-coeff 0.003’ 
dpa-levell2-min-window 10 
dpa~levell2,max~window 20 
dpaJevell3-height 650 
dpaJevell3-her-coeff 0.00006 
dpa-levell3-age-coeff 0.003 
dpa-levell3,min-window 10’ 
dpa~levell3,max_window 20 
dpaJevell4,height 700 
dpaJevell4,hor-coeff 0.00006 
dpalevell4-age-coeff 0.003 
dpaJevell4_min&ndow 10 
dpa~level14~max~window 20 
dpaJevell5,height 750 
dpaJevell5-her-coeff 0.00006 
dpa-levell5,age-coeff 0.003 
dpa~levell5,min~window 10 
dpaJevell5-max-window 20 
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dpaJevell6-height 800 
dpa-levell6-her-coeff 0.00006 
dpalevell6-age-coeff 0.003 
dpa-levell6-min-window 10 
dpaJevell6-max-window 20 
dpa-levell7-height 850 
dpalevell7-her-coeff 0.00006 
dpaJevell7-age-coeff 0.003 
dpaJevell7-min-window 10 
dpa~levell7~max~window 20 
dpaJevellS_height 900 
dpaJevell8-her-coeff 0.00006 
dpaJevell8-age-coeff 0.003 
dpa_levell8_min_window 10 
dpa,levell8-max-window 20 
dpa-levellg-height 950 
dpalevell9-her-cqeff 0.00006 
dpalevell9-age-coeff 0.003 
dpa-levellg-min-window 10 
dpa~level19~max~window 20 
dpa-level20-height 1000 
dpalevel20-her-coeff 0.00006 
dpa-level20-age-coeff 0.003 
dpa-level20-min-window 15 
dpaJevel20-max-window 30 
dpa-level2Lheight 1050 
dpa-level21-her-coeff 0.00006 
dpalevel21-age-coeff 0.003 
dpa~level2l~min&ndow 15 
dpa~level2l~max~window 30 
dpa-level22-height 1100 
dpalevel22-her-coeff 0.00006 
dpa-level22-age-coeff 0.003 
dpaJevel22-min-window 15 
dpaJevel22_max_window 30 
dpaJevel23-height 1150 
dpaJevel23-horscoeff 0.00006 
dpaJevel%-age-u&f 0.003 
dpaJevel23-n&-window 15 
dpaJevel23-max-window 30 
dpaJevel24-height 1200 
dpa-level24-horscoeff 0.00006 
dpa,level%Lage-coeff 0.003 
dpaJevel24-m&-window 15 
dpaJevel24-max-window 30 
dpaJevel25-height 1250 
dpaJevel25~hor~coeff 0.00006 
dpaJevel25-age-coeff 0.003 
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dpaJevel25-min-window 15 
dpa-level25-max-window 30, 
dpaJevel264leight 1300 
dpalevel26-her-coeff 0.00006 
dpalevel26-age-coeff 0.003 
dpa-level26-min-window 15 
dpa-level26-max-window 30 
dpa-level27-height 1350 
dpalevel27-her-coeff 0.00006 
dpa-level27-age-coeff 0.003 
dpaJevel27~-window 15 
dpaJevel27_plax_window 30, 
dpaJevel28-height 1400 
dpa-level28-her-coeff O.OOOb6 
dpaJevel28-age-coeff 0.003 
dpaJevel28-min-window 15 
dpa~level28~max~window 30 
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GLOSSARY 

AVOSS 
DAL 
DFW 
DPA 
ITWS 
NASA 
RF&s 
l?MS 
TDWR 

Aircraft Vortex Spacing System 
Dalla? Love Airport 
Dallas Fort-Worth International Airport 
Doppler Profile Analysis 
Integrated Terminal Weather System 
National Aeronautics and Space Administration 
Radio Acoustic Sounding System 
root mean square 
Terminal Doppler Weather Radar 
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