


ABSTRACT

The National Aeronautics and Space Administration (NASA) is developing the Center–TRA-
CON Advisory System (CTAS), a set of Air Traffic Management (ATM) Decision Support Tools
(DST) for en route (Center) and terminal (TRACON) airspace designed to enable controllers to in-
crease capacity and flight efficiency. A crucial component of the CTAS, or any ATM DST, is the
computation of the time–of–flight of aircraft along flight path segments. Earlier NASA studies show
that accurate knowledge of the wind through which the aircraft are flying is required to estimate
time–of–flight accurately. There are currently envisioned to be two sources of wind data for CTAS:

� The Rapid Update Cycle (RUC) for the Center airspace, a numerical model devel-
oped by the National Oceanic and Atmospheric Administration (NOAA) Forecast
System Laboratory (FSL) and run operationally by the National Weather Service
(NWS) National Center for Environmental Prediction (NCEP), and

� The Integrated Terminal Weather System (ITWS) Terminal Winds (TW) for the
TRACON airspace, developed at MIT Lincoln Laboratory under funding from the
Federal Aviation Administration (FAA).

The ITWS TW system takes in RUC data and refines the RUC forecasts with local measurements
of the wind.

This report presents a study based in part on the application of the TW algorithm to the Center
airspace as a value added improvement to the baseline RUC product. Terminal Winds generally does
not support the full Center airspace; the domain of the prototype MIT/LL ITWS TW system was
increased to cover the Denver Center airspace to support this study. The domain of the FAA opera-
tional ITWS TW may not extend more than 30 nautical miles beyond a given TRACON. This study
is part of a larger effort funded by NASA which includes the NOAA/FSL.

This study has three goals: (1) determine the errors in the baseline 60 km resolution RUC fore-
cast wind fields relative to the needs of en route DSTs such as CTAS, (2) determine the benefit of
using the TW algorithm to refine the RUC forecast wind fields with near real–time Meteorological
Data Collection and Reporting System (MDCRS) reports, and (3) identify factors that influence
wind field errors in order to improve accuracy and estimate errors in real time.

The errors in the 60 km resolution RUC wind fields and the RUC wind fields augmented with
near real–time MDCRS data via the TW algorithm are examined statistically over a one–year data
set. The addition of the recent MDCRS data is seen to significantly improve the RMS vector error
and the 90th percentile vector error (a statistic that captures extreme errors that may have a critical
impact on the acceptability of en route DSTs advisories). The addition of the MDCRS data also re-
duces the number of hours of sustained large errors and reduces the correlation among errors.

The errors in the wind fields are seen to increase with increasing wind speed, in part due to an
underestimation of wind speed which increases with increasing wind speed. The errors in the TW
wind fields are seen to decrease with increasing numbers of MDCRS reports. The TW system, as
part of its wind field estimation, produces an estimate of the error variance for each estimate of the
wind. A relationship is shown to exist between the magnitude of the actual errors in the TW wind
field and the TW estimates of the error variance. Different types of weather are also seen to influence
wind field accuracy.



EXECUTIVE SUMMARY

The National Aeronautics and Space Administration (NASA) is developing the Center–TRA-
CON Automation System (CTAS), a set of Air Traffic Management (ATM) Decision Support Tools
(DST) for en route (Center) and terminal (TRACON) airspace designed to enable controllers to in-
crease capacity and flight efficiency. A crucial component of the CTAS, or any ATM DST, is the
computation of the time–of–flight of aircraft along flight path segments. Early NASA flight tests
of the en route elements of CTAS discovered that variations in wind prediction error have a signifi-
cant impact on the accuracy and value of en route DST advisories for ATC clearances.

There are currently envisioned to be two sources of wind data for CTAS:

� The Rapid Update Cycle (RUC) for the Center airspace, a numerical model devel-
oped at the National Oceanic and Atmospheric Administration (NOAA) Forecast
Systems Laboratory (FSL) and run operationally by the National Weather Service
(NWS) National Center for Environmental Prediction (NCEP), and

� The Integrated Terminal Weather System (ITWS) Terminal Winds (TW) for the
TRACON airspace, developed at MIT Lincoln Laboratory under funding from the
FAA.

The ITWS TW system takes in RUC data and refines the RUC forecasts with local measurements
of the wind.

In light of the earlier NASA results on the effect of wind prediction errors, NASA initiated a
collaborative effort with MIT/LL and NOAA/FSL to determine the variations in wind prediction
accuracy and the impact of these variations on typical en route ATM operations; explore methods
and algorithms to improve wind prediction accuracy (e.g., RUC improvements and real–time up-
dates of RUC with recent observations via the TW algorithm); and develop wind error prediction
models to support real–time ATM DST probabilistic analyses of trajectory/conflict prediction accu-
racy.

This report presents a study based on the application of the TW algorithm to the Center airspace
as a value added improvement to the baseline RUC product. Terminal Winds generally does not sup-
port the full Center airspace; the domain of the prototype MIT/LL ITWS TW system was increased
to cover the Denver Center airspace to support this study. The domain of the FAA operational ITWS
TW may not extend more than 30 nautical miles beyond a given TRACON.

The goals of this study are to (1) determine the errors in the baseline 60 km resolution RUC
forecast wind fields relative to the needs of en route DSTs such as CTAS, (2) determine the benefit
of using the TW algorithm to refine the RUC forecast wind fields with near real–time Meteorologi-
cal Data Collection and Reporting System (MDCRS) reports and identify factors that influence wind
field errors in order to improve accuracy and estimate errors in real time.

To determine wind field accuracy, the wind fields are compared to a data set of aircraft reports
from the MDCRS that are not included in the wind fields to which they are compared. More than
one million MDCRS reports collected from 1 August 1996 to 1 August 1997 are used. These
MDCRS reports are collected in a region approximately 1300 km on a side and centered on the Den-
ver International Airport. Wind vector errors of 7 m/s – 10 m/s (approximately 10 knots – 15 knots
of headwind error) are significant to CTAS.



Computed over the entire one–year data set, the RMS vector error for RUC is 6.74 m/s, which
is reduced to 5.18 m/s for TW. The median vector error for RUC is 4.99 m/s, while incorporating
recent MDCRS reduces these errors to 3.64 m/s, respectively. The 90th percentile RUC and TW vec-
tor errors are 10.18 m/s and 7.85 m/s, respectively. Also, it is seen that 11 percent of the RUC vector
errors are greater than 10 m/s and this is reduced to four percent by the addition of the recent MDCRS
data. The addition of recent MDCRS via the TW algorithm provides a significant improvement in
these on–average wind field accuracy statistics.

Large errors are especially detrimental to CTAS if they are sustained over a large portion of the
grid and over a long period of time. Examining the 50th percentile hourly vector error shows that
out of the 7023 hours in the data set there are 829 hours when the hourly median RUC vector error
is 7 m/s or more, and that adding recent MDCRS data to RUC reduces this number of hours to 124.
There are 46 hours in the data set when the hourly median RUC vector error is 10 m/s or more, and
adding recent MDCRS reduces this number of hours to 1. The addition of recent MDCRS data to
the RUC wind field data provides a very large reduction in large sustained errors.

Another factor in whether or not wind field errors are detrimental to CTAS is their correlation
in time and space. All else being equal, the wind field with the least correlation among errors will
provide the smallest trajectory errors. Examining the correlation of errors for level flight over 20
minutes at 400 knots shows that errors in the RUC winds have correlation coefficients of approxi-
mately 0.45, and the addition of recent MDCRS reduces these coefficients to 0.23. The correlation
of errors for a descending flight over 10 minutes at 400 knots shows that errors in the RUC winds
have correlation coefficients in the range of 0.29 – 0.39, and the addition of recent MDCRS reduces
these coefficients to 0.11.

United Airlines increased the frequency of their MDCRS reports from May through August of
1997 to support this study. This allows the study of TW wind field errors vs. number of MDCRS
reports, where the number of MDCRS reports is varied from less than the current normal to greater
than the current normal. The results show that relative to the current normal level of MDCRS, the
extra MDCRS reports reduce the TW RMS vector error by about 0.3 m/s and reduce the TW 90th
percentile vector error by about 0.5 m/s. This is considered to be a significant improvement.

The errors in both the RUC wind fields and the TW wind fields are seen to increase with increas-
ing wind speed, in part due to an underestimation of wind speed which increases with increasing
wind speed. A relationship is shown to exist between the errors in the TW wind field and the local
data density. These relationships to wind errors warrant greater examination.

Different types of weather are also seen to influence wind field accuracy. Altocumulus lenticu-
laris, indicative of mountain waves, is associated with a decrease in wind field errors, while preci-
pitation, towering cumulus, and thunder are associated with an increase in wind field errors. Preci-
pitation provides the best signal for increased wind field errors of the four simple weather types
studied. The combination of thunder and towering cumulus did not provide a significantly better
signal than thunder alone. The combination of thunder and precipitation provided the best signal of
increased wind field errors of all the weather types and combinations.
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1.  INTRODUCTION

The National Aeronautics and Space Administration (NASA) is developing the Center–TRA-
CON Advisory System (CTAS)[1][2], a set of Air Traffic Management (ATM) Decision Support
Tools (DST) for en route (Center) and terminal (TRACON) airspace designed to enable controllers
to increase capacity and flight efficiency. A crucial component of the CTAS, or any ATM DST, is
the computation of the time–of–flight of aircraft along flight path segments. Early NASA flight tests
of the en route elements of CTAS discovered that variations in wind prediction error have a signifi-
cant impact on the accuracy and value of en route DST advisories for Air Traffic Control (ATC)
clearances[3][4].

There are currently envisioned to be two sources of wind data for CTAS:

� The Rapid Update Cycle (RUC)[5][6] for the Center airspace, a numerical model de-
veloped at the NOAA Forecast Systems Laboratory (FSL) and run operationally by
the NWS National Center for Environmental Prediction (NCEP), and

� The Integrated Terminal Weather System (ITWS)[7][8][9] Terminal Winds
(TW)[10][11][12] for the TRACON airspace, developed at MIT Lincoln Laboratory
under funding from the Federal Aviation Administration (FAA).

The ITWS TW system takes in RUC data and refines the RUC forecasts with local measure-
ments of the wind. In light of the earlier NASA results on the effect of wind prediction errors, NASA
initiated a collaborative effort with MIT/LL and the National Oceanic and Atmospheric Administra-
tion (NOAA)/Forecast System Laboratory (FSL)[13] to determine the variations in wind prediction
accuracy and the impact of these variations on typical en route ATM operations; explore methods
and algorithms to improve wind prediction accuracy (e.g., RUC improvements and real–time up-
dates of RUC with recent observations via the TW algorithm); and develop wind error prediction
models to support real–time ATM DST probabilistic analyses of trajectory/conflict prediction accu-
racy.

This report presents a study based on the application of the Terminal Winds algorithm to the
Center airspace as a value–added improvement to the baseline RUC product. Terminal Winds gener-
ally does not support the full Center airspace; the domain of the prototype MIT/LL ITWS TW sys-
tem was increased to cover the Denver Center airspace to support this study. The domain of the FAA
operational ITWS TW may not extend more than 30 nautical miles beyond a given TRACON.

The RUC is a mesoscale numerical weather prediction model that incorporates aircraft mea-
surements from the Meteorological Data Collection and Reporting System (MDCRS)[14], balloon
soundings, and other sensor data and solves equations of atmospheric physics to predict the evolu-
tion of various atmospheric parameters. The RUC data in this study use a grid with a horizontal
resolution of 60 km and a vertical resolution of 50 mb. The RUC is run every three hours, and each
run produces a set of hourly forecasts. A new version of the RUC that uses a 40 km horizontal
resolution and runs every hour is in development. In this study, RUC always refers to the opera-
tional 60 km resolution model. The timing of the RUC data collection and the running of the mod-
el results in the forecasts usually being available about three hours after the model run time, al-
though occasionally it is later. The post–processing of the RUC data in this study used the
assumption that the RUC data are always available by three hours after the run time; the forecasts
used in this study are always the three–, four–, and five–hour forecasts. The data used to initialize



each model run are collected in a three–hour period starting two hours prior to the nominal run
time and ending one hour after the nominal run time. This results in the measurement data in the
initialization of the model being at least two hours old by the time of the three–hour forecast, in-
creasing to being five hours old at the time the next forecast cycle is available.

The ITWS TW is a data assimilation system that uses a RUC wind forecast as an initial esti-
mate and refines the initial estimate using recent local measurements of the wind. These local mea-
surements can come from surface observing systems, Doppler weather radars, and MDCRS. The
ITWS TW system produces two wind fields: one with a horizontal resolution of 10 km and an
update every 30 minutes and one with a horizontal resolution of 2 km and an update every five
minutes. The TW system has been running operationally in the Lincoln ITWS testbeds since 1991.
In particular, the ITWS system collects MDCRS that are not yet included in the RUC model and
uses them in the refinement of the RUC forecast fields. The data collection period for TW extends
up to the run time. In this study, the TW algorithm uses only these MDCRS reports to refine the
RUC forecast wind fields to the 10 km resolution grid every 30 minutes. The 2 km resolution anal-
yses are not examined in this study. While the terms TW and TW errors are used throughout this
study, no Doppler weather radar data are used. The term TW in this report is shorthand for ‘‘RUC
augmented with recent MDCRS reports via a limited version of the ITWS TW algorithm.’’

This study has three goals:

1. Determine the errors in the baseline 60 km resolution RUC forecast wind
fields relative to the needs of en route DSTs such as CTAS;

2. Determine the benefit of using the TW algorithm to refine the RUC fore-
cast wind fields with near real–time Meteorological Data Collection and
Reporting System (MDCRS) reports;

3. Identify factors that influence wind field errors to improve accuracy and
estimate errors in real–time.

To determine wind field accuracy, the wind fields are compared to a data set of independent
wind measurements. These independent measurements of the wind come from the MDCRS reports.
More than one million MDCRS reports collected during a one–year period starting 1 August 1996
are used. These MDCRS reports are collected in a region approximately 1300 km on a side and cen-
tered on the Denver International Airport. This is roughly the Denver Center airspace. All MDCRS
reports are independent of the RUC three–, four–, and five–hour forecasts since they have not yet
been included in these fields. The MDCRS reports are also not included in any TW field generated
before the MDCRS are taken, so the TW fields are independent of the MDCRS as well. The differ-
ence between each MDCRS report and the most recent prior TW field and the difference between
each MDCRS report and the RUC forecast used in that TW field are computed and kept in a table,
along with the location and time of the report. The resulting values in the table are then used to com-
pute the desired statistics.

The viewpoint taken in this study is that the distribution of errors in the wind fields is not
directly at issue. Rather, it is important to model the errors expected to be encountered by CTAS in
computing aircraft time–of–flight as opposed to modeling random errors throughout the entire air-
space. This is done by simply assuming that each MDCRS report is independent from any other
MDCRS report; the distribution of MDCRS in this study is the likely distribution of aircraft for
which CTAS will have to compute time–of–flight. This means, for several reasons, that the re-



ported accuracy statistics are not direct measures of the overall accuracy of RUC or TW. For ex-
ample, this study shows that wind field errors are greater at higher altitudes. Since there are more
MDCRS reports at higher altitudes, this tends to elevate the estimates of the RMS error in the wind
fields relative to the RMS error that would be computed if the evaluation uniformly sampled the
wind fields or if the evaluation corrected for the nonuniform sampling. On the other hand, errors
in regions of high aircraft density are also heavily represented in the statistics in this report, and
these errors are in regions where both RUC and TW have their densest input data. Therefore, these
regions can be expected to have smaller errors than the errors in otherwise similar regions.

This report provides several types of analyses. The errors in the MDCRS reports influence the
results. A study of the errors in the MDCRS is presented first so that the influence of these errors
on later statistics can be evaluated. Wind field accuracy statistics are given for on–average accura-
cy; for example, mean, RMS, and median values. For some of the on–average studies, the distribu-
tions of errors vs. magnitude of the error is also provided. Statistics for the tails of the error dis-
tribution are also given; for example the 90th percentile error. The statistics are provided for the
entire data set and some are provided for the data set subdivided in various ways; for example, by
altitude, by time of year, and by data density. Also given are statistics for the sort of sustained
errors for which CTAS might have trouble computing accurate time–of–flight estimates; for ex-
ample, hourly median error, and error correlation lengths. The third goal is addressed by examin-
ing the relationship between wind field errors and various wind field parameters; and by examin-
ing the relationship between wind field errors and different types of weather.

The impact of wind field errors on CTAS depends on aircraft speed and trajectory accuracy
requirements. The generation of meter times is less sensitive to wind errors than the generation of
conflict advisories and clearance advisories. Generating conflict and clearance advisories require
computing time–of–flight over approximately 20 minutes. For a ground speed of 420 knots
(7 nautical miles per minute), a constant along–track error of 10 knots results in a 29 seconds or
3.3 nmi error in estimated time–of–flight. En route separation minima are typically 5 nmi, and the
3.3 nmi is a significant fraction of the desired aircraft separation. When conflict calculations are
performed for aircraft converging from different directions, the errors tend to be of different sign;
one aircraft is earlier than expected and the other is later than expected, resulting in a combined
error which is larger than the error for a single aircraft. In this situation, a constant 10 knot along–
track error could significantly degrade the conflict prediction accuracy of en route DSTs (such as
CTAS) when generating ATC clearance advisories. Similarly, a constant 20 knot along–track error
gives rise to a trajectory error, even for a single aircraft, that is greater than the desired spacing.
Wind errors are rarely constant, or completely correlated, along a flight path, so along–track errors
will generally result in smaller time–of–flight errors than in this simple example. However, this
indicates that along–track errors with a magnitude of 10 knots are problematic, and along–track
errors with a magnitude of 20 knots are very serious.



2.  THE TERMINAL WINDS SYSTEM

This section describes the full ITWS TW system. Only a limited subset of this functionality
is used for this study. Terminal Winds generally does not support the full Center airspace. The
domain of the prototype MIT/LL ITWS TW system was increased to cover the Denver Center
airspace to support this study. The domain of the FAA operational ITWS TW may not extend
more than 30 nautical miles beyond a given TRACON.

2.1. Introduction to the TW Product

The Integrated Terminal Weather System acquires data from various FAA and NWS sensors
and combines these data with products from other systems (e.g., NWS Doppler weather radars
(NEXRAD) and numerical weather prediction forecasts from the RUC to generate a new set of
safety and planning/capacity improvement weather products for the terminal area and adjacent
en route airspace. Operational users of the ITWS products to date include pilots, controllers,
TRACON supervisors, terminal and en route traffic flow managers, airlines, Flight Service Sta-
tions, and terminal automation systems. The ITWS production system is currently being built by
Raytheon and will be deployed at 34 sites. These sites are generally the high–volume, heavily
weather–impacted TRACONs. As products are refined and new products developed, advanced
versions of ITWS are expected to be fielded.

The TW algorithm produces estimates of the horizontal winds in an airport region. The pri-
mary users of this data are CTAS and human  air traffic controllers. The TW obtains wind in-
formation from four types of sources:

� National scale numerical forecast model: RUC

� Doppler radars: TDWR [15] and NEXRAD [16]

� Commercial aircraft: MDCRS

� Surface anemometer networks: Low Level Wind Shear Alert System (LLWAS) [17] and
Automated Surface Observing System (ASOS) [18]

2.2. Design Considerations

There are a number of design considerations for a winds analysis system that will support
aviation systems and operate with information from sensors in the terminal area. Ideally, users of
the gridded analyses levy performance requirements for resolution, accuracy, and timeliness.
However, the aviation systems that rely on these analyses were under development as TW was
being developed and did not provide performance requirements. During development, the ap-
proach taken was to base resolution and timeliness on sensor characteristics, expected wind field
phenomenology, and knowledge of aircraft response to changing winds gained during the devel-
opment of the TDWR and LLWAS wind shear algorithms. The goal of minimizing the variance
of the wind vector error was also taken.

Meteorological Doppler radars provide estimates of the wind velocity component along the
radar beam (radial velocities) as well as measurements of return intensity (reflectivity). Doppler
radars can not directly measure the wind velocity component perpendicular to the radar beam.



They provide accurate and dense measurements in regions with sufficient reflectors. Due to the
highly non–uniform distribution of data, the errors in the Doppler data tend to be highly corre-
lated. The analysis technique must be able to estimate the horizontal winds from these single
component measurements. It also must account for the highly correlated errors and dynamic data
distribution inherent in the Doppler data.

The airspace covered by the TW grid extends from the surface to 100 mb (approximately
50,000 ft. mean sea level (MSL)) and is divided into two regimes. The planetary boundary layer
(PBL) contains the atmosphere near the earth’s surface, and it often contains wind structures
with spatial scales on the order of kilometers and temporal scales on the order of minutes. Above
the PBL, wind structures typically have spatial scales of 10s of km and temporal scales of hours.
Doppler radars provide high–resolution information in the PBL where small scale wind struc-
tures are expected. Above the PBL, Doppler information becomes more sparse, and RUC and
MDCRS are important sources of additional information. A cascade–of–scales analysis is used to
capture these different scales of atmospheric activity.

2.3. TW System Overview

The philosophy of the TW analysis system is that the national scale forecast model provides
an overall picture of the winds in the terminal airspace, although painted in very broad strokes.
The terminal sensors are then used to fill in detail and to correct the broad–scale picture. The
corrections and added detail can be provided only in those regions with nearby data. What
constitutes ‘‘nearby’’ depends on the spatial and temporal scales of the features to be captured in
the analysis. The refinement of the broad–scale wind field is accomplished by averaging the
model forecast with current data, using statistical techniques described later. This allows the
analysis to transition gracefully from regions with a large number of observations to regions with
very few observations or no observations at all. This also enables the analysis to cope gracefully
with unexpected changes to the suite of available sensors.

To account for the different scales of wind features and the differing resolution of the in-
formation provided from the various sensors, the analysis employs a cascade–of–scales. This
cascade–of–scales uses nested grids, with an analysis having a 2 km horizontal resolution and
five–minute update rate nested within an analysis having a 10 km horizontal resolution and
30–minute update rate;1 this in turn is nested within the RUC forecast with a 60 km horizontal
resolution and 180 minute update rate2 as shown in Table 1. The vertical resolution is currently
50 mb (about 400 m near the surface, increasing to about 1000 m at aircraft cruise altitudes).
The vertical resolution is expected to increased to 25 mb, which is the maximum vertical resolu-
tion the data will support. All of the data sources are used in the 10 km resolution analysis. Only
the information from the Doppler radars and LLWAS are suitable for the 2 km resolution analy-
sis.3

_______________________________
1. For this study, the domain of the 10 km analysis was increased from its nominal domain size of 240 km x

240 km.

2. RUC is scheduled to produce forecasts on a 40 km grid and with an update rate of 60 minutes in the near future.

3. ASOS data will also be included in the 2 km analysis when the ASOS update rates are increased as expected.



Table 1.
Scales of Analysis for RUC and Terminal Winds

Horizontal
Resolution Update Rate Domain Size 4 Max Altitude

RUC 60 km 180 min national 100 mb

TW 10 km 30 min 240 km x 240 km 100 mb

TW 2 km 5 min 120 km x 120 km 500 mb

4. The domain of the 10 km resolution grid was increased from its nominal size to 1300 km x 1300 km for this study.

This cascade–of–scales is appropriate for the scales to be captured in the analysis, the differ-
ent scales of information contained in the observations, and provides a uniform level of refine-
ment at each step of the cascade. The domain sizes are dictated by the domain of CTAS for the
10 km resolution grid and by the coverage of the Doppler radars for the 2 km resolution grid.

A conceptual picture of the TW system is provided in Figure 1. The two gridded analysis
modules are shown as gray boxes. The data shown entering each subalgorithm from the top are
used to produce each cycle’s initial estimate of the current wind field. The national domain fore-
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Figure 1.  Conceptual overview diagram for the TW System.
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cast model, RUC, provides national scale information for use in forming the 10 km resolution
initial estimate, and the 10 km resolution analysis provides coarse scale information for use in
forming the 2 km resolution initial estimate. Gridded information flows from the coarser scale to
the finer scale. In addition, each interpolation step is shown feeding back its previous output to
be used in producing the initial estimate of the current wind field. The observational data sources
used in the refinement of the initial estimate are shown feeding data into the subalgorithms from
the left. In each gridded analysis module, the refinement of the initial estimate in the least
squares analysis provides a refinement of larger scale information and a refinement of its pre-
vious output.

2.4. Analysis Overview

Figure 2 provides a high–level overview of the processing steps in the 10 km and 2 km reso-
lution analyses. Each analysis takes in wind information, computes grid–specific attributes of the
wind information, performs data quality editing, and interpolates the wind information to the
analysis grid to produce estimates of the wind field using a statistical technique (Optimal Es-
timation, described in detail below). Each analysis is triggered to run at specific times relative to
the ITWS system clock. The 2 km resolution analysis runs every five minutes and the 10 km
resolution analysis runs every 30 minutes. The following are the top–level functions in the anal-
ysis step:

1. Prepare initial estimate: This function provides an initial estimate of the current wind
field and is executed each time the analysis module is executed. If available, a large–
scale wind field, RUC for the 10 km analysis or the 10 km analysis for the 2 km
analysis, is bi–linearly interpolated to the analysis grid.5 The last analysis is smoothed
to remove transient wind features.6 If there is a large scale wind field, it is merged
with the smoothed last analysis to form the initial estimate of the current wind field;
otherwise, the smoothed last analysis is used as the initial estimate. The estimated
height above MSL of each grid point is adjusted to bring the RUC height field into
agreement with the pressure reported at the airport.7

2. Prepare radar data: This function maps all of the radial velocity data from one radar
to the analysis grid and performs the initial data quality processing. The reflectivity
information from the same radar is used in data quality editing. The radial velocity
values from each set of tilt data are passed through a median filter to remove data
outliers and to smooth the data appropriately for each grid resolution, resampled to
the projection of the analysis grid, and then linearly interpolated in the vertical to

________________________________
5. For example, RUC is available only on the hour; no RUC data are used directly in the initial estimate for the
analyses run on the half hour. The previous RUC data do get included through the last analysis, although averaged
with observations if they are available. The initial estimate is built point by point, and when a new RUC is available,
if the last analysis value at a given point is essentially the previous RUC value it is discarded in favor of the new
RUC value.

6. At start–up, there is no previous TW wind field, so only RUC (or a default wind field, if need be) is used to form
the initial estimate.

7. The adjustment of the height field is not done in this study due to the lack of surface observations.



form the final radial wind estimates. One instance of the prepare radar data function
runs for each radar.

3. Prepare vector data: This function processes the ASOS, LLWAS, and MDCRS data
into a standard data structure and assembles these data structures into a list. Pressure
is computed from the initial estimate height field for each observation having a mis-
sing pressure measurement. Both ASOS and LLWAS wind data are smoothed tempo-
rally using a weighted mean.

4. Data quality edit: This function provides data quality editing. Each wind observation,
vector or radial, is compared to a reference wind field, and observations dissimilar to
the reference wind field are discarded. The reference wind field is the interpolated
large–scale wind field if available; otherwise, it is the smoothed previous analysis.

5. Interpolate winds: This function refines the initial estimate field to agree with the ob-
servations in a least squares sense to produce the output wind field.

last analysis

Figure 2.  Data processing modules for the 10 km TW analysis. The 2 km analysis is
similar, except that the 10 km analysis replaces the RUC.
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2.5. TW Interpolation Technique

A state–of–the–art analysis technique for producing gridded fields from non–Doppler mete-
orological data analysis is Optimal Interpolation (OI)[19][20]. Optimal Interpolation is a statisti-
cal interpolation technique that under certain hypotheses gives an unbiased minimum variance
estimate. The idea is to use observations to perturb an initial estimate. Differences between the
observations and the initial estimate at the observation location are computed (�j  for the jth ob-
servation). The �j  terms are averaged in a least square sense to form a perturbation field which is
then added back to the initial estimate. If the observations, as has traditionally been the case, are
sparse relative to the desired resolution of the wind analysis, this provides a method to adjust the
overall wind field without smoothing over the detail, or pattern of winds, in the initial estimate,
which would occur if the sparse data are analyzed directly. This method ties the errors in the
output field to the errors in the initial estimate, which is a reasonable trade–off when data are
sparse. Standard OI applications require observations to provide both a u and a v wind compo-
nent, which Doppler radars do not provide.

In traditional multi–Doppler wind analysis, radars are sited so that they cover the region of
interest with significantly different viewing angles[21]. At a given location, each radar then pro-
vides an estimate of a different wind component. If two radars are used, a simple change of coor-
dinates to eastward and northward results in an estimate of the horizontal winds at that location
in standard form. If three or more radars are used, the resulting system of equations is overdeter-
mined and the horizontal wind can be estimated using least squares techniques. When the geom-
etry is good and each radar has sufficient return power, the resulting wind estimates are very
accurate. However, at locations without returns from at least two radars, this method cannot be
used. At locations where the radars are looking in nearly the same direction, the solution to the
equations is numerically unstable and the method again cannot be used. An operational system
using existing radars cannot count on good Doppler returns where they are desired, nor can the
system count on favorable radar siting.

We apply the Gauss–Markov Theorem[22] to develop an analysis to jointly analyze both
vector quantities and single component quantities and to provide for a smooth transition between
an analysis of differences from the initial estimate in data poor regions to a direct analysis of
data in data rich regions. It is the ease with which the Gauss–Markov Theorem allows for such
properties that motivated its use. This technique provides a new capability which is important
since increasing numbers of Doppler weather radars are being deployed.

The TW analysis accounts for the differing quality of the wind information as well as errors
arising from data age and using data at locations removed from the location at which the data are
collected (displacement errors). The analysis also accounts for correlated errors in a manner sim-
ilar to Optimal Interpolation. Highly correlated displacement errors arise frequently due to the
nonuniform distribution of data from the Doppler radars. If these correlated errors are not ac-
counted for, these data dominate the analysis to a degree greater than is warranted by their in-
formation content.

The TW analysis technique has the following properties:

1. Multi–Doppler quality winds are automatically produced in regions where multi–
Doppler analyses are numerically stable.



2. TW is numerically stable in regions where multi–Doppler analyses are not numerical-
ly stable.

3. Small gaps in multi–Doppler radar coverage are filled to produce near multi–Doppler
quality winds in these gaps.

4. The analysis directly analyzes data in data rich regions and analyzes differences from
the initial estimate in data sparse regions.

5. The analysis produces smooth transitions between regions with differing densities of
data.

Throughout this section the following notation is used:

� r denotes a radial wind component

� u denotes an east wind component

� v denotes a north wind component

� superscript a denotes an analyzed quantity

� superscript i denotes a initial estimate quantity

� superscript o denotes an observed quantity

� subscripts denote location, o denoting an analysis location

To apply the Gauss–Markov Theorem, the problem must be posed in the form

Ax = d, where (1)

x = (ua
o, va

o)T, is the unknown horizontal wind vector

and d contains the initial wind estimate and information derived from observations in a window
centered on the analysis location. The size of the window adjusts dynamically based on local data
density. The form of the matrix A depends on the type of data, vector and/or radial, to be analyzed.
The Gauss–Markov Theorem states that the linear minimum variance unbiased estimate of
(ua

o, va
o)T is given by

(ua
o, va

o)T = ( ATC–1A)–1ATC–1d, (2)

if each element of d is unbiased and if C is the error covariance matrix for the elements of d. The
error covariance of the solution is

( ATC–1A)–1. (3)

When the data window contains m vector observations and n Doppler observations, equation
(1) has the form:
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The terms of the form (f i

m–f i
o)  are estimates of the displacement error in the variable f  that

arise from taking a measurement at location m and using that measurement as an estimate at
location o. This is just the change in f  between these two locations. The actual change is not
known, so it is estimated from the initial estimate of the field f. The initial estimate of the radial
wind component is computed from the initial estimates of u and v. The resulting estimates of the
form f o

m–(f i
m–f i

o) are unbiased estimates of the variable f at the analysis location provided the
observations are unbiased relative to the observation locations. This is true even if the initial
estimate has a bias, since differencing the initial estimate removes the bias.

In data rich regions, a small data window is employed which results in small displacement
distances. This coupled with the fact that the initial estimate is smoothed prior to applying the
Gauss–Markov Theorem causes the displacement error terms to be near zero in data rich regions:
the observations in data rich regions are analyzed directly. This allows the analysis to incorporate
the full richness of detail in the observations and largely decouples the errors in the output field
from the errors in the initial estimate. In data poor regions, large data windows are used and the
displacement terms come into full play. While the form of the analysis using the displacement
error correction is different from the form classical OI takes, it is equivalent: each is simply a
different method of solving the same least square problem, assuming a consistent set of error
models.

In practice, the error covariance matrix C is not known and must be estimated. There are
two types of errors to estimate. The first is the error that arises from imperfect sensors and an
imperfect initial estimate. The second is the error due to an imperfect correction of the displace-
ment error. Our error models are based on the following simplifying assumptions:

1. Observations are unbiased.

2. Sensor errors from different observations are uncorrelated.

3. Errors in u and v components, measured or initial estimate, are uncorrelated.

4. Displacement errors and sensor errors are uncorrelated.

5. Displacement errors are functions solely of the horizontal, vertical, and temporal dis-
tance of the observation from the analysis point.

These assumptions have been tested on our data set and are found to hold relatively well.



With these assumptions, the error covariance matrix C decomposes into the sum of a sensor
error covariance matrix and a displacement error covariance matrix. The sensor error covariance
matrix is diagonal, and the sensor error variances are reasonably well known. The remaining task
is the estimation of the displacement error covariance matrix.

The initial displacement error variance models are linear functions of the displacements,
horizontal, vertical, and temporal, between the observation location and the analysis location.
The initial displacement error correlation model for two like components is a decreasing expo-
nential function of the displacement between two observation locations. The displacement error
covariance model for two non–orthogonal, non–parallel components must take into account the
angle between the two components. The angle between the observed component and the u axis is
denoted by �, with east at 0°, and north at 90°, and the displacement error in observation j is
denoted by �o

j . Then the displacement error covariance for two observations is given by the fol-
lowing equation:

Cov(�o
1,�o

2) = cos(�������Var(�o
1)Var(�o

2)]1/2Cor(�o
1,�o

2) (4)

Unlike the multiple Doppler analysis, the TW analysis is always numerically stable due to
the inclusion of the initial estimate wind. The inclusion of a (u,v) data point provides two com-
ponent estimates at right angles, giving a maximum spread of azimuth angles. Since the Doppler
data are usually much more numerous than the other data, the TW solution closely matches the
multiple Doppler solution at locations where the multiple Doppler problem is well conditioned.
Otherwise, the analysis gives a solution that largely agrees with the radar observations in the
component measured by the radars. The remaining component is derived from the vector esti-
mates.



3.  METHODOLOGY

3.1. Data Collection

The data for this study are collected from a region roughly 1300 km on a side and centered
on the Denver International Airport (latitudes between 34.88 degrees and 44.82 degrees, longi-
tudes between –97.86 degrees and –112.00 degrees). This airspace encompasses the Denver Cen-
ter airspace. The data were collected for 343 days between 1 August 1996 and 1 August 1997.

The MDCRS data are collected at the NOAA Forecast Systems Laboratory and provided to
Lincoln Laboratory via the Internet. Each MDCRS report contains the wind speed and direction,
an aircraft ID, measurement location, the time the measurement was taken, and the time the
measurement was received. Also included are data quality flags.

The experimental RUC data are downloaded over the Internet from a server at NCEP short-
ly after the data are generated. These data are on the grid and in the variables that the 60 km
resolution RUC model uses to solve its equations of atmospheric physics. These variables are
transformed into the isobaric variables used in the study using software written by the developers
of RUC and made available to Lincoln Laboratory. After transformation, the RUC data variables
are those expected to be available through operational NCEP channels. These variables are on
the RUC 60 km horizontal resolution grid, with a vertical spacing of 50 mb. The RUC runs ev-
ery three hours, starting at 00Z, and produces a set of hourly forecasts. The three–hour, four–
hour, and five–hour forecasts are used. These forecasts represent the data that are usually avail-
able in time for use in ITWS.

The TW data are generated off line using archived RUC data and archived MDCRS data.
The TW is run at 10 minutes and 40 minutes after each hour. The TW grid has a horizontal
resolution of 10 km and a vertical resolution of 50 mb. The RUC data are fed into the TW sys-
tem at 10 minutes after the hour. The 10 minute offset is used in the real–time ITWS to allow for
RUC processing and transmission delays. Each MDCRS report is fed into the TW system based
on the time it was received. The 2 km resolution grid is not used in this study.

3.2. MDCRS Characteristics

The MDCRS measurements represent the winds averaged over a period of 0.1 seconds. The
vast majority of the MDCRS data come from four airlines: United Airlines (UA), Delta Airlines
(DL), United Parcel Service (UP), and Northwest Airlines (NW). The MDCRS data are col-
lected and disseminated using various strategies. For example, DL aircraft collect data every five
minutes, and the data are immediately transmitted. But NW aircraft collect data with temporal
separations that alternate between six and seven minutes, and the observations are held until six
observations have been taken before the data are transmitted. United Airlines and United Parcel
Service aircraft use less consistent strategies. Some of the UA and UP data are collected every
minute, and some of the UA and UP data are collected every eight or nine minutes. The UA and
UP data are usually, but not always, held by the aircraft until four observations are made before
being transmitted.



Starting 1 May 1997, a number of UA aircraft began collecting one–minute data in support
of this study. Before 1 May, the number of UA reports averaged about 1000 per day from about
10 aircraft in the 13,000 x 1300 km region of interest. After 1 May, the number of UA reports
averaged about 5000 UA reports per day from over 160 aircraft, with many of the additional
aircraft collecting data every minute. The number of reports per day from DL and NW is fairly
constant, at about 1400 per day for DL and about 500 per day for NW. The number of UP re-
ports per day varies greatly, from a low of about 50 to a high of about 1500.

The (approximate) maximum lag between the data collection time and the time the data
were received is 20 minutes for UA, 30 minutes for UP, and 20 minutes for NW. The DL data
have almost no lag between the time the data are collected and the time the data are received.

The MDCRS reports are available at all altitudes, but there are many more at cruise altitudes
than at other altitudes, as shown in Table 2. As can be seen in Figure 3 and Figure 4, the
MDCRS data are relatively uniformly distributed in the horizontal at cruise altitudes. Below
cruise altitudes, the MDCRS reports are largely restricted to standard descent and ascent corri-
dors into and out of Denver, although some descent and ascent corridors into other airports also
show up, most notably at Albuquerque and Salt Lake City.

Table 2.
Number of MDCRS, Binned by Analysis Level

Nominal Altitude MSL Number

Level (MB) Feet Meters (K)

100 53,190 16,210 0.0

150 44,760 13,640 0.1

200 38,770 11,820 501.5

250 34,000 10,360 317.2

300 30,070 9160 75.3

350 2,6630 8120 62.3

400 23,580 7190 27.5

450 20,810 6340 49.1

500 18,290 5580 26.0

550 15,960 4870 25.4

600 13,800  4210 25.5

650 11,780 3590 26.5

700 9880 3010 27.5

750 8090 2470 27.9

800 6390 1950 33.2

850 4780 1460 3.3

900 3240 990 0.1
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Figure 3.  Distribution of MDCRS reports for 1 April 1997. This day has 2904 MDCRS. This is prior
to United Airlines increasing their reporting rate.
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Figure 4.  Distribution of MDCRS reports for 1 May 1997. This day has 8125 MDCRS. This is after
United Airlines increased their reporting rate.

All MDCRS reports go through a simple validation process. First, each MDCRS arrives
with two or three quality control (QC) flags that are produced by FSL: an ‘‘error type’’ flag, a
‘‘corrected’’ flag, and a ‘‘roll’’ flag. The error type flag indicates if there is a known error in one
of the reported variables; for example, in the temperature or wind. The corrected flag indicates if
any correction to the data has been made; for example, some aircraft are known to provide re-
ports with the wind direction in error by 180 degrees, and these values are corrected for the
known error. The roll flag indicates that the aircraft is in a steep turn. Only reports with an error
type flag indicating no error are used. No corrected reports are used in this study. The roll flag is
not used to determine which reports are used. The second data quality step is to check the data



values to see if they are within acceptable ranges. For example, is the wind direction between
zero and 360 degrees? Finally, FSL keeps a list of aircraft ID for those aircraft that have pro-
duced suspect reports in the past. The data from these aircraft were examined. In all but one
case, the number of suspect observations is small enough to have negligible impact on the re-
sults, and these data are left in the data set. The data for one aircraft, N520UA, contained numer-
ous reports with significant errors, and all the data from this aircraft are removed from the data
set.

3.3. Table Generation

The differences between each MDCRS measured wind vector component and the corre-
sponding RUC and TW wind component estimates are generated and stored in tables. These dif-
ferences represent estimates of the errors in the wind fields at the aircraft locations. The perfor-
mance measures are generated from these tables. Each MDCRS report is matched to the most
recent previous TW wind field, provided that the most recent TW wind field is not more than 30
minutes old. Likewise, each MDCRS is matched to the RUC wind field for the previous hour,
provided RUC is available that hour. This RUC wind field is the one used as input in the TW
wind field that matches this MDCRS. Using this method, each MDCRS report is matched to
RUC and TW wind fields that do not yet contain the report. Thus, each MDCRS provides an
independent estimate of the accuracy of a RUC wind field and an independent estimate of the
improvement to that RUC wind field due to the addition of MDCRS. The differences between
the MDCRS and the TW and the differences between MDCRS and the RUC wind estimates are
then computed and stored along with auxiliary data in the table. Data for approximately 1.5 mil-
lion MDCRS reports are in the tables, although not all are used in generating the performance
statistics.

Two methods of computing the wind error estimates for each MDCRS are used. The first
simply uses the wind estimate at the TW grid point nearest the MDCRS location. The RUC data
are bi–linearly interpolated in the horizontal to the TW grid, so both RUC and TW are on the
same grid. The second method uses bi–linear interpolation in three dimensions to interpolate the
wind fields to the aircraft location. Temporal interpolation is not used in either case. The results
from both methods are included in the table.

The auxiliary data in the table for each MDCRS are the following: the aircraft ID, the mea-
sured u and v wind components, the time of the measurement, the latitude and longitude of the
measurement, the atmospheric pressure at which the measurement was taken, and the TW error
variance estimate at the grid point nearest the measurement. This later term is an estimate of the
quality of the TW data in the region near the aircraft, and it is generated as part of the TW analy-
sis process.

3.4. Generation of Statistics

The performance statistics are generated from the tables described above. Only data with
results for both RUC and TW in the tables are used. This ensures that both RUC and TW are
compared to a common MDCRS verification data set. The software to generate the statistics is
written in Statistical Analysis Software (SAS). A number of different types of performance mea-



sures are generated, and the data are subdivided into a number of different classifications; for
example, by altitude and by wind speed.

The statistics found in the results section are as follows:

1. Mean. The sum of the data values divided by the number of data values.

2. Root Mean Square (RMS). The square root of the sum of the squares of the data val-
ues divided by the square root of the number of data values.

3. Standard deviation. The RMS value of the differences between the data values and
the mean of the data values. This measures the spread of the data values about their
mean.

4. RMS Error (RMSE). The RMS value of the differences between the data values and
zero. This is similar to the standard deviation but measures the spread of the data
values about zero.

5. Variance. The standard deviation squared.

6. Percentile. The Nth percentile value, P, of a set of values is the smallest value for
which N percent of the values in the set are less than P.

7. Correlation. Correlation measures how nearly two sets of data are related linearly.
Correlation values range from –1 to 1. The absolute value of the correlation measures
how nearly the relationship is linear, with zero being no linear relationship to 1 when
the relationship is exactly linear. The sign gives the slope of the linear relationship.



4.  STATISTICAL RESULTS

There are three preliminary subsections before the bulk of the performance statistics are pres-
ented. The first subsection contains results of a study of the accuracy of the MDCRS wind measure-
ments. The values of (MDCRS–wind field) are used to estimate the errors in the modeled wind
fields. However, the MDCRS have their own errors, and these errors contaminate the estimates of
the errors in the modeled wind fields. Following this are two subsections comparing performance
results for two restrictions of the data in the table containing the (MDCRS–wind field) error esti-
mates. Section 4.2 compares results when all error estimates are used to results when only error esti-
mates in which TW has at least some data in addition to RUC are used. An important goal of this
study is to determine the benefit of adding recent MDCRS to RUC via the TW system. Including
error estimates when TW is merely a pass through of RUC does not support this goal. After this sec-
tion, the results are for error estimates only when TW had a least a minimal amount of MDCRS to
work with. This comparison provides information on how the results of the remaining subsections
might differ if the error estimates were included for cases when TW is a pass through of RUC. Sec-
tion 4.3 compares results using two different methods to generate the wind field estimate that is
compared to the MDCRS measured wind. In method one, the TW wind field value is the value at
the TW grid point nearest the aircraft location, and the RUC wind field value is generated by bi–lin-
ear interpolation in two dimensions to the TW grid point nearest the aircraft location. In method two,
each wind field value is generated by bi–linear interpolation in three dimensions to the aircraft loca-
tion. The extra complication of the second method provides a significant increase in accuracy and
is used exclusively in the other subsections.

The on–average behavior of the errors, such as measured by mean and RMS, provide standard
measures of performance. While these standard measures are important, for the purposes of under-
standing errors relative to the needs of ATM DSTs they need to be used in conjunction with addition-
al measures such as error correlation length. The results for u and v components largely tell the same
story as the results for vector errors. The results for the mean, standard deviation, RMS, and median
errors likewise each tell largely the same story. The usual practice in this report will be to provide
the results for the RMS vector error, except as noted. The individual RMS u and v wind component
errors can be estimated very closely by dividing the RMS vector error by the square root of two; that
is, the square of the individual RMS errors is nearly the square of the RMS vector error. However,
this does not hold for the outliers; for example, the 90th percentile errors. Errors in m/s can be con-
verted to knots by multiplying by 1.9438, or converted approximately by doubling. Thus, an RMS
vector error measured in m/s can be converted, approximately, to an RMS headwind error in knots
by multiplying by 1.4 (approximately the square root of two). When considering these results it is
useful to keep in mind that a sustained headwind error of about 10 knots (roughly corresponding to
a vector error of about 7 m/s) is problematic for CTAS.

Perhaps more important than on–average performance for a fielded FAA ATC system is the
number of times when the system provides incorrect guidance. The ATC personnel are very quick
to simply walk away from a system that is not extremely reliable, and with good reason; it takes very
few go–arounds or other problems to negate the benefits gained otherwise. For this reason, measures
of large errors are also provided. A human evaluation of the MDCRS data that is used for confirma-
tion of the accuracy of the wind fields reveals that some small percentage of reports, probably less
than one percent, are not credible. For this reason, percentile errors are reported only up to the 95th
percentile. The 90th percentile value is generally chosen for the figures to represent ‘‘worst case’’



systematic errors. The 90th percentile error is both robust to the errors in the MDCRS data set and
represents a level at which errors are still numerous enough, if large, to cause CTAS problems; very
large but very rare errors may not affect CTAS trajectory calculations.

Results are also given for various breakouts of the data set; for example, by wind speed, by data
density, and by altitude. The goal is to determine what variables might be used to estimate the errors
in a modeled wind field in real time. These results show that wind speed and data density are related
to wind field errors, but the exact nature of the relationship is difficult to see as the wind speed and
data density tend to move in concert; in the data set, the regions of high winds tend to be the regions
with the least data, and vice versa. A detailed analysis of the relationship between these variables
and the errors is beyond the scope of this report.

Even if errors are small on average, there are expected to be periods of time and regions of space
where errors are large. Errors sustained over time or space are more likely to lead to incorrect CTAS
guidance than are sporadic errors. Error correlation length is another way to quantify sustained er-
rors and plays an important role in determining how errors affect CTAS performance. Errors that
are correlated tend to add together when computing aircraft time–of–flight, and errors that are un-
correlated tend to cancel; all else being equal, the wind field with the shorter error correlation length
will lead to better time–of–flight estimations. Error correlation length is not directly related to RMS
errors. Given two wind fields, one can have the larger RMS error but also have the shorter error cor-
relation length.

The addition of recent MDCRS to RUC improves the mean errors and their standard deviation
as well as the RMS errors. It also reduces the number of large errors in each study performed for
this report. The improvements are generally operationally significant to CTAS.

4.1. Aircraft Accuracy

The goal of this study is to determine statistical parameters of the wind field accuracy. The
MDCRS reports that are not yet included in the wind fields provide an independent source of con-
firmation of the correct winds at the locations of the aircraft. However, one problem in comparing
MDCRS to modeled wind fields is that errors in the MDCRS become enmeshed with the errors in
the wind field. Since the MDCRS used in the comparisons are independent of the wind fields, the
variance of (MDCRS–model) is the sum of the error variances of each term:

var(MDCRS–model) = var(MDCRS–truth) + var(model–truth) = �2
AC + �2

f (5)

where the terms �AC and �f are the standard deviation of the error in the aircraft reports (MDCRS)

and the standard deviation of the error in the modeled wind (RUC or TW), respectively. The term
var(MDCRS–model) can be estimated directly from the large set of (MDCRS–model) values. The
term var(MDCRS–truth) can be estimated indirectly, as described below. The desired term,
var(model–truth), can then be estimated from the first two terms.

Here it is important to be careful to define what is meant by truth, or the true wind. The wind
can be considered to be composed of wind features with various length scales. Features that are very
small relative to the response of a sensor or the needs of a particular user of the information may
be considered noise despite the fact that in some other sense they may be real. In this case features
that are so small that they do not affect the computation of aircraft trajectories are considered to be



noise. The error variance in the MDCRS reports is the sum of the sensor error variance relative to
the scales MDCRS intends to measure (0.1 sec average winds) and the variance in the wind due to
features that are sub–scale relative to CTAS. The error variance of the MDCRS relative to the needs
of CTAS is estimated. Some information on the contribution to that error from wind features that
are real, but sub–scale to CTAS, is also provided.

Given a large set of pairs of aircraft observations, with each aircraft in the pair at nearly the same
location and time, the variance in the difference between the two nearly coincident random measure-
ments is estimated by:

var(ac1 – ac2) = var(ac1 – truth + truth – ac2) = var(ac1–truth) + var(ac2–truth), (6)

provided that the errors in the two aircraft reports are uncorrelated. The issue of correlated error is
addressed later.

Assuming that on average any random aircraft is no better or worse than another random air-
craft, the last equation is:

var(ac1 – ac2) = 2*var(ac – truth), or

var(ac–truth) = var(ac1 – ac2)/2 (7)

Given a large set of aircraft observation pairs, the value var(ac1 – ac2) can be estimated, and
from this value, the value var(ac–truth) can be estimated. Using this process, both measurement er-
rors and wind features smaller than the separation of the aircraft used to make the pairs are included
in the error variance estimate.

Error variance estimates are computed for two sets of separation limits. The first set allows a
maximum separation of one minute; 10 km in the east and north directions and 5 mb in the vertical
(at cruise altitudes 1 mb is about 24 meters). The second set allows a maximum separation of five
minutes; 20 km in the east and north directions and 5 mb in the vertical. The temporal and spatial
separation limits are linked by the speed of the aircraft: at cruise speeds, one minute of flying time
is approximately 10–15 km. In practice, due to preferred aircraft altitudes and the search method
used to find aircraft pairs, the average separations in time and in the vertical are much smaller than
the maximum limits, as seen in Table 3 and Table 4.

The set of tighter separation limits used in the results presented in Table 3 represents the finest
separation limits that gives a usable number of aircraft pairs, and thus gives results that are as close
as possible, given the MDCRS data set, to the actual measurement errors uncontaminated by small–
scale wind features. The results from the second set give a set of error estimates better coupled to
the scales of wind features that affect trajectory analyses. However, even these separations may be
smaller than the features that affect CTAS. If so, the reported MDCRS errors are an underestimate
of the errors relative to CTAS. The second set also has the benefits of more stable error estimates
due to the greater number of aircraft pairs and of having approximately the same number of same–
aircraft pairs and different–aircraft pairs. The difference in the two estimates for the two separation
criteria provides information on the portion of the error variance due to small–scale wind features;
in principle, these two estimates can be used to extrapolate back to a separation distance of zero, so
that the error estimate is devoid of contamination by sub–scale winds.



Table 3.
Statistics for Maximum Separation of 1 Minute, 5 mb, 10 km

Separation Statistics for Pairs of Aircraft:

all pairs same AC different AC
variable mean+/–std mean+/–std mean+/–std  
number of pairs: 23,303 15,272 8,031
�time (minutes): 0.47+0.50 0.33+0.47 0.72+0.45
�pressure (mb): 1.07+1.39 1.42+1.56 0.42+0.53
�east distance (km): 3.27+2.92 3.03+2.93 3.71+2.86
�north distance (km): 2.27+2.49 1.55+1.93 3.63+2.84

Variance Estimates of ac1–ac2 Components, (m/s) 2:

u variance 3.41 1.74 6.59
v variance 3.35 1.76 6.37

RMS Error Estimate for Single Aircraft, m/s:

u RMS error 1.31 0.93 1.81
v RMS error 1.29 0.94 1.78
vector RMS error 1.84 1.32 2.55

Table 4.
Statistics for Maximum Separation of 5 Minutes, 5 mb, 20 km

Separation statistics for pairs of aircraft:
all pairs same AC different AC

variable mean+/–std mean+/–std mean+/–std  
number of pairs: 44,123 21,869 22,254
�time (minutes): 0.80+0.83 0.57+0.62 1.01+0.95
�pressure (mb): 0.76+1.16 1.09+1.48 0.44+0.55
�east distance (km): 6.89+5.79 6.25+5.83 7.52+5.68
�north distance (km): 5.02+5.18 2.56+3.16 7.44+5.62

Variance Estimates of ac1–ac2 Components, (m/s) 2:
u variance 4.78 2.12 7.38
v variance 5.16 2.15 8.11

RMS Error Estimate for Single Aircraft, m/s:
u RMS error 1.55 1.03 1.92
v RMS error 1.61 1.04 2.01
vector RMS error 2.23 1.46 2.78

Equation (6) is an equality if and only if the errors in the two aircraft observations are indepen-
dent. This is expected to be the case if the two observations come from different aircraft. If the ob-
servations come from the same aircraft, any bias is in each measurement and the errors are not inde-
pendent. In differencing the values from the same aircraft, the biases cancel, leading to a low
estimate of the error variances. Given the increased reporting frequency of the United and UPS air-
craft, the data set contains a large number of closely spaced observations from the same aircraft.

The maximum, mean, and standard deviations of the aircraft separations used in estimating the
MDCRS error variance are given in Table 3 and Table 4. The corresponding variance estimates for
(ac1–ac2) and the resulting estimates for the error variance of the MDCRS reports are also given
in Table 3 and Table 4.



The effect of the MDCRS errors on RMS error estimates based on differences between MDCRS
and the modeled winds depends on the the magnitude of the errors in the wind fields. The amount
that should be subtracted from a raw RMS error estimate to correct for MDCRS errors for a given
raw estimate is given in Figure 5. These corrections are based on equation (5) and apply only to RMS
error estimates. The smaller the errors in the wind field, the greater the correction to account for the
MDCRS errors. Since TW is more accurate than RUC, the RMS error estimates for TW are over
estimated to a greater extent in the statistics than are the RMS error estimates for RUC. For this rea-
son, the actual improvement due to the inclusion of MDCRS is greater than shown in the uncorrected
results. Because there is some uncertainty in the exact value of the MDCRS errors relative to the
needs of CTAS and because the corrections apply only to RMS errors, the results in this report are
for uncorrected errors unless otherwise specified.
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Figure 5. Correction to RMS error estimates due to errors in MDCRS vs. RMS error.
The correction using a MDCRS error of 2.78 m/s is shown in gray and the correction
using an MDCRS error of 2.55 m/s is shown in black.
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Equation (8) gives the relationship between the variance estimate derived from pairs of the same
aircraft and the variance estimate derived from pairs of different aircraft, where the term correlation
is the correlation in errors in the same–aircraft pairs.

var_same = var_diff*(1–correlation) (8)

Table 5 shows the results from applying equation (8) to the data in Table 3 and Table 4. In each
case, the resulting correlation coefficient is slightly larger than 0.7, showing that a very large portion
of the errors in the MDCRS reports are biases that persist at least as long as the separations used in
forming the aircraft pairs used in the analysis.

The above analysis is concerned with the statistical properties of the errors in the MDCRS re-
ports, or on average errors, and assumes that the MDCRS reports are reasonable measurements with
errors distributed about zero or at least distributed about some offset or bias. Examining the reports
by hand shows that some small subset of the reports have other types of errors. Occasionally, re-



Table 5.
Correlation Coefficients for Errors

in Same Aircraft Pairs

variable from Table 3 from Table 4

correlation in u error: 0.736 0.713
correlation in v error: 0.724 0.735

ported altitudes have very large discontinuities: an aircraft drops hundreds of mb for a moment and
then jumps back to its original altitude. These are clearly erroneous reports. Large discontinuities
in the wind values are also occasionally seen. It is difficult to know whether or not these are incorrect
measurements or are due to strong, small–scale wind features. An automated search though the data
set of MDCRS reports has not been done, but it appears that these sorts of problems affect well under
one percent of the reports. The small fraction of reports that do not fit the statistical models underly-
ing the analyses should not adversely affect the results.

4.2. Restriction to Locations and Times when TW is not a Pass Through of RUC

An important goal of this study is to understand the value of adding recent MDCRS to RUC via
the ITWS Terminal Winds algorithm. For this reason, statistics are computed only for those aircraft
observations where TW is not merely a pass through of RUC data unless specifically noted. Table 6
gives a comparison of vector errors using all aircraft and vector errors using only those aircraft at
locations where TW is not a pass through of RUC. The first thing to note is that about 11 percent
of the aircraft are at locations where TW is a pass through of RUC. The RMS vector error in TW
is increased by about 0.2 m/s if all aircraft are included, and the 90–percentile vector error increases
by about 0.3 m/s. This should be kept in mind when considering overall vector errors in TW, since
after this point the only results reported are for aircraft where TW is not a pass through of RUC,
except where explicitly noted. This restriction has almost no effect on the RUC performance results.

Table 6.
Comparison of Results Using All Reports vs. Using Reports When TW

Has at Least a Minimal Amount MDCRS Reports. Values are in m/s
number of reports used: all = 1,387,776, restricted = 1,228,588,

dropped = 159,188 or 11.5%

variable mean+/–std RMSE 50% 75% 90% 95%

TW vector error
    all 4.42+3.12 5.41 3.76 5.74 8.17 10.04
    restricted 4.26+2.95 5.18 3.64 5.54 7.85 9.61
 
RUC vector error
    all 5.69+3.69 6.78 4.99 7.39 10.22 12.39
    restricted 5.67+3.64 6.74 4.99 7.38 10.18 12.31



4.3. Interpolation to Aircraft Position vs. Nearest Value

There are two approaches used to compute the modeled wind vector that is matched to each air-
craft observation once a wind field is matched to the aircraft time. The simplest approach is to take
the wind vector at the Terminal Winds grid point nearest the aircraft. In this approach the RUC wind
field is interpolated to the TW grid using bi–linear interpolation so that both wind fields are on the
same grid. A more sophisticated approach uses bi–linear interpolation in 3–D on the surrounding
eight grid points to interpolate the winds to the aircraft position. The value of the extra complexity
was not known. Table 7 shows the results on the entire year database. The benefit to TW is about
a third of a m/s for the RMS vector error and slightly less for RUC, and the benefit is greater for the
larger percentile errors. Given the substantial benefit relative to the modest increase in complexity
of the second approach, the 3–D interpolation is justified for use in CTAS. For this report, only re-
sults using the 3–D interpolation are given, except in Table 7.

Table 7.
Comparison of Results Using Interpolation of Wind
to Aircraft Position vs. Using Nearest Wind Value

Results are for 1,228,588 aircraft reports. Values are in m/s.

variable mean+/–std RMSE 50% 75% 90% 95%

TW vector error
    nearest 4.53+3.21 5.55 3.82 5.91 8.47 10.44
    interpolated 4.26+2.95 5.18 3.64 5.54 7.85 9.61

RUC vector error
    nearest 5.85+3.76 6.96 5.14 7.62 10.52 12.73
    interpolated 5.67+3.64 6.74 4.99 7.38 10.18 12.31

4.4. Performance Results Over All Reports

A number of statistics are computed over the entire year. These results provide information on
the sorts of errors encountered by the aircraft. Since the aircraft are not uniformly distributed in space
and time, these results are not necessarily an accurate or full account of the quality of the wind fields.
Since a goal of this study is to determine the accuracy of the wind fields relative to CTAS, it is impor-
tant to study the errors encountered as opposed to studying the fields in general. For example, the
results are dominated by the aircraft at cruise altitudes, except for the results broken down by alti-
tude. There are also more aircraft after May due to United Airlines turning on many of their aircraft
in order to provide more numerous data on ascent and descent.

The results for the entire year are provided in Table 8. Over 1.2 million MDCRS are used on
343 days. Since the statistics are for (MDCRS – Model), a negative value for u error, v error, or speed
error indicates that the model wind is larger than the MDCRS wind. The results show that RUC has
small biases and the addition of recent MDCRS data reduces these biases. Both RUC and TW have
a slight high bias in speed, –0.6 m/s and –0.4 m/s, respectively. However, these small biases are mis-
leading, as seen in Section 4.5. The wind over the year averaged a little over 20 m/s from west south-
west. By all measures, adding recent MDCRS to RUC improves performance both in the on–average
measures and in the reduction of outliers.



As noted earlier, the errors in the MDCRS reports enter into the errors in Table 8. Table 9 pro-
vides the uncorrected RMS error estimates in RUC and TW, along with values that are corrected to
remove the effects of the MDCRS errors. Both of the estimates of the MDCRS errors are used to
show the effect of differing estimates of the MDCRS errors. For CTAS applications, 5 m/s is a signif-
icant headwind error. The RMS component errors for RUC are fairly close to 5 m/s even after correc-
tion, while the RMS component errors after adding recent MDCRS, at about 3.1 m/s, are well below
5 m/s.

In addition to bulk statistics, it is useful to consider the distribution of errors. Figure 6 provides
a histogram of percent of MDCRS and count of MDCRS vs. vector error. The addition of recent

Table 8.
Comparison of 60 km RUC and 10 km TW

Results are for 1,228,588 aircraft reports.
(1,131,373 reports for % Speed Errors and Direction Errors)

Values are in m/s, except for % speed error, which is unitless,
and direction, which is in degrees.

variable mean+/–std RMSE 50% 75% 90% 95%

TW u error –0.25+3.62 3.63 –0.27 1.84 4.03 5.59
TW v error 0.09+3.69 3.69 0.15 2.18 4.25 5.71
TW vector error 4.26+2.95 5.18 3.64 5.54 7.85 9.61
TW % speed error –0.40+22.9 22.9 0.9 11.3 23.2 33.0
TW direction error –0.01+16.1 16.1 –0.27 5.78 13.8 21.0

RUC u error –0.22+4.61 4.62 –0.38 2.51 5.45 7.48
RUC v error 0.40+4.90 4.91 0.56 3.35 6.04 7.86
RUC vector error 5.67+3.64 6.74 4.99 7.38 10.18 12.31
RUC % speed error –0.60+28.9 28.9 2.1 15.4 29.2 39.6
RUC direction error –1.03+22.5 22.5 –1.24 6.78 17.29 27.36

wind speed 21.5+13.8 25.6 19.0 29.8 40.6 47.8
wind direction 252.6+67.9 261.5

Table 9.
Comparison of 60 km RUC and 10 km TW RMS Errors

After Correction for MDCRS Errors
Corrected values using MDCRS RMS errors of 2.55 m/s and 2.78

m/s are given. Results are for 1,228,588 aircraft reports.
Values are in m/s.

corrected corrected
variable raw (2.55 m/s) (2.78 m/s)

TW u error 3.63 3.14 3.08
TW v error 3.69 3.23 3.09
TW vector error 5.18 4.51 4.37

RUC u error 4.62 4.25 4.20
RUC v error 4.91 4.58 4.48
RUC vector error 6.74 6.24 6.14



MDCRS is seen to reduce many of the vector errors greater than 5 m/s to less than 5 m/s. The number
of very large vector errors also drops. The counts of vector errors in each bin above about 8 or 9 m/s
is reduced by approximately half with the addition of recent MDCRS. Given the possible sensitivity
of user acceptance to occasional incorrect CTAS guidance, the reduction in these very large errors
due to the addition of recent MDCRS is very important.
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Figure 6. Histogram of the percent and number of MDCRS reports vs. RUC (black bar) and TW
(gray bar) vector errors. Each bin labeled n contains errors between n–1 and n, except bin 21
which contains all errors 20 m/s and greater.
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Another approach to examining these data is via a cumulative probability plot as in Figure 7.
Here the percent of vector errors less than a value are plotted vs. that value. This allows the reader
to set any vector error threshold and then to determine how often the vector errors are larger or small-
er than this threshold. In Figure 7, RUC is seen to have 50 percent of its vector errors less than 5 m/s.
Terminal Winds is seen to have 70 percent of its vector errors less than 5 m/s, or conversely, TW
has 30 percent of its vector errors greater than 5 m/s. Terminal Winds has about half the number of
errors as RUC for any threshold which is greater than about 6 m/s, again showing that the addition
of recent MDCRS not only improves overall performance but also greatly reduces the potentially
problematic outliers.

4.5. Performance Results vs. Wind Speed

Wind speed is one of the primary indicators of error magnitude. Figure 8 shows the RMS and
90th percentile vector error for various wind speeds. The errors rise monotonically with wind speed.
For wind speeds of zero to about 60 m/s, the rise in error is roughly linear, especially for TW. The
increase in RUC error with wind speed is more nearly linear if the errors are corrected for the
MDCRS errors since the correction is larger for smaller errors. The errors rise more rapidly for wind
speeds above approximately 60 m/s. However, this may be due to sampling error; there are hundreds
of thousands of samples from 5 m/s to 30 m/s, tens of thousands of samples from 35 m/s to 60 m/s,
and dropping by about 50 percent for each bin thereafter to only 160 samples at 85 m/s.
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Figure 7. RUC and TW cumulative probability vs. vector error.
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Figure 8. Vector error vs. wind speed. Both the RMS vector error and the 90th per-
centile error are shown. The TW estimate of the standard deviation of the vector
error is shown by the dashed line.
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Also plotted in Figure 8 is the mean of the TW estimates of the standard deviation of the vector
error for each speed bin. These values are computed in the TW system for use in the interpolation,
and these values are largely a function of data density at a given location. The relationship between
these values and the actual computed vector errors is considered in the next section. Errors are ex-
pected to rise as these TW error estimates rise. Given that low wind speeds generally occur near the
ground and high wind speeds generally occur aloft and that the data density may vary with altitude,
the apparent relationship between vector errors and wind speed may reflect the influence of data den-
sity changes with altitude. However, as Figure 8 shows, there is very little change in the TW error



estimates with mean wind speed, although the change has the same trend as the vector errors vs. wind
speed plots.

It is important to understand the nature of the error vs. speed results in Figure 8. Figure 9 shows
the ratio of speed error to wind speed, with a change in sign so that a negative value indicates an
underestimation. RUC underestimates the wind speed more than half the time for winds over 15 m/s
and the underestimation grows with wind speed. This means that the errors in strong winds are not
only very large but are systematic. The addition of recent MDCRS to RUC reduces the amount of
underestimation by about half. When winds are strong, even the 90th percentile errors are negative,
indicating that virtually all reported winds are too light. These results are especially problematic
since they indicate that during strong winds the errors in RUC are large and highly correlated; these
two attributes can interact to cause large errors in time–of–flight estimates. The addition of recent
MDCRS to RUC greatly reduces both the magnitude of the errors and their correlation.

Figure 9. Speed error/wind speed vs. wind speed. Both the median and the 90th percentile
percent speed error are shown.
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4.6. Performance Results vs. TW Estimates of Error Variance

The TW algorithm uses a statistical interpolation technique. The interpolation technique pro-
vides error variance estimates for each wind component, and these estimates are used to derive TW
estimates of the RMS vector error. These TW estimates of RMS error depend on error models for
errors in RUC and in the MDCRS, as well as how these errors grow with distance and how these
errors are correlated; they are a direct measure of information density. If the error models are perfect
and the hypotheses underlying the theorems applied held, there would be perfect statistical agree-
ment between the measured RMS vector errors and the TW estimates of RMS error. The achieved
relationship between the measured estimates of the RMS vector error vs. the TW estimates of the
RMS error is given in Figure 10 along with the mean wind speed vs. the TW estimate of RMS error.
All the measures of error grow with the TW estimate of error for small values of the RMS error, but
unfortunately so does the wind speed. This presumably occurs because these points are near the air-



port where air traffic is most dense and wind speeds lowest. After a TW estimate of RMS error of
about 3 m/s, the mean wind speed is nearly constant. The RUC RMS error is also nearly constant,
indicating that the wind speed is no longer a factor in the measured TW errors. In this region the TW
RMS and 90th percentile errors continue to grow, indicating that the measured errors do grow with
increasing TW estimate of RMS error or with decreasing data density. This relationship is stronger
for the 90th percentile errors than for the RMS error. As expected, as the data density decreases, the
TW errors converge to the RUC errors.

0
1
2
3
4
5
6
7
8
9

10
11
12
13

2 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

RUC 90%

TW rms

Figure 10. Vector error vs. TW estimate of the RMS vector. Both the RMS vector error and
the 90th percentile error are shown, as is the mean wind speed vs. TW estimate of the
RMS vector error.
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The MDCRS errors partly obscure the relationship between TW vector errors and the TW esti-
mates of the vector error in Figure 10. Figure 11 shows the measured RMS vector errors for RUC
and TW corrected for the MDCRS errors (assuming a MDCRS error of 2.78 m/s) vs. the TW esti-
mate of the RMS vector error. The horizontal and vertical scales in the figure are matched to high-
light the relationship between the measured RMS vector errors and the TW estimates of the RMS
vector error. The light gray line on the diagonal in Figure 11 gives the ideal relationship between
the two values being plotted. There is some noise evident in the graph due to small sample sizes when
the TW vector error estimates are above about 5 m/s. The dependence of the vector errors on wind
speed is clearly evident at both ends of the graph. In the middle range of TW estimates of the RMS
vector error, where the mean wind speed is fairly constant, the measured TW RMS vector error rises
with the TW RMS vector error estimate, i.e., error increases with decreasing data density. Interest-
ingly, RUC also shows a slight relationship with the TW data density. A conjecture is that regions
where TW had many MDCRS reports in the recent past, RUC also had dense data somewhat farther
back in time when the model was run, and thus RUC performs better in the same regions that TW
performs better. The TW error models that underlie the TW estimates of the RMS vector error do
not account for the wind speed. Accounting for the wind speed in the error models may or may not
give much improvement in wind field accuracy, but it should improve the the TW estimates of the
errors.
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Figure 11. RMS vector error corrected for MDCRS errors vs. TW estimate
of the RMS vector error. The mean wind speed vs. TW estimate of the
RMS vector error is also shown.
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4.7. Performance Results vs. Altitude

Another useful way to break down the error distribution is by altitude. The results over the year
are dominated by the MDCRS at cruise altitudes so that important variations in the results, as aircraft
descend to an airport, may be obscured. The RMS and 90th percentile vector errors for each of the
50 mb wind field levels are given in Figure 12. The vector errors are largest at cruise altitudes and
near the ground. At both altitude extremes the RUC 90th percentile errors are well above the level
at which en route DSTs may expect to have trouble (a vector error of 7 m/s or a headwind error of
10 knots). The addition of recent MDCRS to RUC greatly reduces the 90th percentile error; the 90th
percentile error is improved by nearly 5 m/s at 750–800 mb. In the TRACON airspace, altitudes with
pressures roughly greater than 500 mb or below approximately 18,000 ft. MSL, the addition of re-
cent MDCRS to RUC brings the 90th percentile error down to about 7 m/s or lower. The addition
of recent MDCRS to RUC is especially useful in the lower atmosphere; the RUC errors grow as the
altitude drops while the TW errors are nearly constant in the lower atmosphere. 

The errors above 300 mb dominate the error analyses performed over the entire data set due to
the abundance of MDCRS reports at those altitudes. The wind speeds are greater at higher altitudes
and decrease steadily towards lower altitudes, so the larger errors at higher altitudes are expected.
Winds speeds are lower in the lower altitudes which does not explain the larger RUC errors there.
The large RUC errors in the lower atmosphere may reflect difficulties in modeling the more compli-
cated physics there. Errors can also be expected to vary with data density. The TW estimate of the
RMS vector error stays between about 3 m/s and 4 m/s, and the measured TW RMS errors closely
track the changes in the TW estimates of the RMS vector error across the entire spread of altitudes.
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Figure 12. Vector error vs. altitude. Both the RMS vector error and the 90th percentile
error are shown.
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4.8. Performance vs. Month

The RMS and 90th percentile errors for RUC and TW for each month of the study are shown
in Figure 13, along with the monthly mean wind speed and TW estimate of the monthly RMS vector
error. The errors closely track the movements of the mean wind, with some minor exceptions. There
is a slight dip in the errors in November that is not matched by a dip in wind speeds and a slight in-
crease in the errors in April not matched by an increase in wind speeds. Given that the TW estimate
of the RMS vector error changes very little over the year, the expectation is that the variation in the
measured errors is driven by the changes in the wind speed.

4.9. Performance vs. Day

The mean vector error with error bars of one standard deviation are shown in Figure 14. The
gaps are missing days. The results show that the addition of recent MDCRS to RUC improves both
the mean error and the standard deviation. An analysis of each day shows that the addition of recent
MDCRS to RUC provides an improvement in the mean error and in the standard deviation on all
343 days. There are many days where the RUC mean vector error plus one standard deviation is well
above 10 m/s (nominally equivalent to a 14 knot headwind error), and there are three days where
it is above 15 m/s (nominally equivalent to a 20 knot headwind error). Given that averaged over the
year the RUC mean vector error plus one standard deviation is 9.31 m/s, this is not surprising, but
this indicates that on some days the RUC errors can be expected to be large enough to have a signifi-
cant operational impact on CTAS. The addition of recent MDCRS reduces the RUC mean vector
error plus one standard deviation so that only on several days this value is above 10 m/s, and it is
well below 15 m/s on all days.
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Figure 13. Vector error vs. month. Both the RMS vector error and the 90th percentile
vector error are shown.
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4.10. Performance vs. Weather Type

The statistical performance of RUC and TW are broken out for different types of weather. This
part of the study is designed primarily by FSL and is adopted here for consistency of results. The
weather classifications are as follows:

� Altocumulus (standing) lenticularis (ACSL), which is associated with moun-
tain waves in the lee of the Rocky Mountains.

� Precipitation. Any type.

� Towering cumulus (TCU), which implies strong convection and strong verti-
cal motions.

� Thunder, which is also associated with strong convection and strong vertical
motions.

� Thunder and towering cumulus.

� Thunder and precipitation.

The determination of when the various weather phenomena exist in the Denver area is per-
formed by searching the Denver Aviation Routine Weather Report (METAR) surface observations.
The weather type classifications are treated as valid for a given hour and for the airspace within one
degree of latitude and one degree of longitude of the Denver International Airport (DEN). The deter-
mination of when the various weather types are present (or not) is provided by FSL. The weather
classifications are available for the year period, excluding the period of 12 October 1996 to 8 January
1997, for a total of 277 days. More than one type of weather can be present at the same time.

Although the weather observations are made at the surface, the effects of the weather may occur
at different altitudes. If precipitation is occurring without TCU or thunder, it is generally a low–level
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Figure 14. TW and RUC mean vector error + one standard deviation vs. day. Day 1 is
August 1, 1996.



event (below 2 km). ACSL clouds are middle– or possibly upper–level features from about 2–6 km.
Thunder and TCU are associated with convective activity, and each can cause strong wind shear up
to the tropopause or about 12 km.

The statistics for the single weather classifications are computed by dividing all the MDCRS
reports local to Denver into two sets for each weather classification: the set of MDCRS measure-
ments taken during times when a given type of weather exists and the set of MDCRS measurements
taken outside the times when a given type of weather exists. Note that possible altitude limits on the
weather in question are not used in dividing the MDCRS into these two sets. The standard perfor-
mance statistics are computed for these two sets. The performance is also computed for times when
there are both thunder and towering cumulus and for times when there are both thunder and preci-
pitation. In these two cases the MDCRS are divided into two sets: the set of MDCRS measurements
taken when both types of weather exist and the set of MDCRS measurements taken when neither
weather type exists. The MDCRS measurements taken when only one of the weather types exist are
not used in these cases.

The statistics of primary importance are the statistics for the general case (all) and the statistics
for a given weather classification. The statistics for the ‘‘no weather” case, for example, no precipita-
tion, are included for completeness. The comparison of the RMS error and 90th percentile error for
the general case vs. these statistics for a given weather case shows whether or not the weather type
has a significant impact on the wind errors and whether or not it may be a useful real–time discrimi-
nate of expected errors. Because the number of MDCRS in each weather classification is relatively
small, the ‘‘no weather” data sets are nearly the same as the full data set, and thus the statistics for
the ‘‘no weather” cases are very close to the general case. For this reason, the ‘‘no weather” statistics
are not particularly useful.

The results for each of the weather classifications, along with results for the entire data set, are
given in Table 10. For each weather classification, the data set is partitioned into two sets: data col-
lected during the time of the given weather and data collected outside the time of the given weather.
Because the MDCRS reports are in the Denver area, many of the aircraft are descending to or ascend-
ing from the Denver airport, so the aircraft are generally at lower altitudes than in the general case.
This results in lower average wind speed, which reduces the magnitude of the errors. Statistics for
wind speed and the TW estimate of the RMS vector error are also provided in Table 10. An increase
in wind speed is associated with an increase in wind field errors, as is an increase in the TW estimate
of the vector error. These two influences on the magnitude of the vector errors are included to help
discern whether a change in wind field accuracy for a given weather classification can be explained
by other, more readily available factors.

A synopsis of the results follows:

1.  Altocumulus (standing) lenticularis (ACSL) is associated with a modest decrease in
the vector errors, an increase in wind speeds, and no significant change in the TW
estimate of the RMS vector error. The decrease in errors is in opposition to the ex-
pected increase in errors due to the increase in wind speed. ACSL is a signal
associated with a moderate decrease in wind field errors.

The benefit of the addition of recent MDCRS to RUC in wind field accuracy
is about the same as in the general case.



Table 10.
Performance in Different Types of Weather

The basic weather categories are as follows: All reports, altocumulus
(standing) lenticularis (ACSL), precipitation, towering cumulus (TCU), and

thunder. Values are in m/s.

number RUC TW RUC TW wind wind TW �

Weather type MDCRS RMS RMS 90% 90% spd std RMS

All 216.1K 6.14 4.14 9.22 6.09 10.61 8.02 2.78

ACSL  2.4K 5.79 3.85 8.87 5.78 14.24 10.29 2.84
no ACSL 213.6K 6.15 4.15 9.22 6.10 10.57 7.98 2.79

Precipitation 12.6K 7.07 4.73 10.69 7.35 11.37 8.30 2.81
no Precip 203.4K 6.08 4.10 9.12 6.01 10.56 8.00 2.79

TCU 58.7K 6.27 4.22 9.62 6.48 8.74 5.59 2.56
no TCU 157.4K 6.09 4.11 9.07 5.95 11.31 8.65 2.86

Thunder 14.6K 6.96 4.65 10.59 7.17 9.13 5.32 2.50
no Thunder 201.5K 6.08 4.10 9.12 6.02 10.72 8.17 2.80

Thunder & TCU 13.6K 6.84 4.64 10.45 7.15 9.04 5.25 2.49
no Thun. or TCU 156.4K 6.08 4.11 9.05 5.94 11.31 8.66 2.86

Thun. & Prec. 3.9K 7.66 5.21 11.57 7.95 9.28 5.14 2.59
no Thun. or Prec 192.8K 6.05 4.08 9.07 5.97 10.64 8.11 2.80

2.  Precipitation is associated with a distinct increase in the vector errors, a slight increase
in wind speed, and no significant change in the TW estimate of the RMS vector error.
Given that the increase in wind speed is small, precipitation is a signal associated
with significant increases in wind field errors.

The benefit of the addition of recent MDCRS to RUC in wind field accuracy
is slightly greater, by about 0.2 m/s to 0.3 m/s, than in the general case, e.g.
for the 90th percentile: 10.69 m/s vs. 7.35 m/s for an improvement of 3.34
m/s vs. the general case improvement of 3.13 m/s in the 90th percentile error.

3.  Towering cumulus (TCU) is associated with a small increase in the RMS vector error
and is associated with a larger increase in the 90th percentile vector error. TCU is
also associated with a small decrease in wind speed and a small decrease in the TW
estimate of the RMS vector error. The effect of these later two influences largely can-
cel, so TCU is a signal associated with a moderate increase in wind field errors.

The benefit of the addition of recent MDCRS to RUC in wind field accuracy
is about the same as in the general case.

4.  Thunder is associated with a large increase in the RMS vector error and in the 90th
percentile vector error. Both the wind speeds and the TW estimate of the RMS vector
error are reduced during times of thunder, and their effects largely cancel. Thunder
provides a signal for significant increases in wind field errors.



The benefit of the addition of recent MDCRS to RUC in wind field accuracy
is slightly greater, by about 0.3 m/s, than in the general case.

5.  The combination of thunder and towering cumulus is associated with a large increase
in the vector errors, similar to the increase seen with precipitation. This combination
is also associated with a decrease in wind speed and a decrease in the TW estimate of
the RMS vector error. The combination of towering cumulus and thunder is a signal
for significant increases in wind field errors, but it is not a better signal than thunder
alone.

The benefit of the addition of recent MDCRS to RUC in wind field accuracy
is very slightly greater, by about 0.1 m/s to 0.2 m/s, than in the general case.

6.  The combination of thunder and precipitation is associated with much larger increases
in the vector errors than are seen for the other weather classifications. This combina-
tion is associated with a decrease in wind speed and is associated with a small de-
crease in the TW estimate of the RMS vector error. Of the weather classifications
studied, the combination of thunder and precipitation provides the strongest signal for
significant increases wind field errors.

The benefit of the addition of recent MDCRS to RUC in wind field accuracy
is significantly greater, by about 0.5 m/s, than in the general case.

4.11. Performance vs. Number of MDCRS

One goal of the study is to determine the optimal rate of MDCRS reporting. This is related to
the issue of errors vs. data density. In support of this study, after May 1, 1997 United Airlines in-
creased the rate at which some of their aircraft reported the winds. The increased reporting brings
the number of MDCRS reports per day from about 3500 to about 7800 per day. This gives the oppor-
tunity to run some days varying the number of MDCRS data from less than normal to greater than
normal to determine the variation in performance with the number of MDCRS reports. Rerunning
large numbers of days is time consuming, but some minimum number of days is needed for the re-
sults to be statistically significant. The 10 days, 97150–97159 (May 30 through June 8), are used
as a compromise. These days are used simply because they provide 10 consecutive days while the
United aircraft are providing data at a high rate. Recall that the wind speeds are lower than average
during this period, so these are not particularly challenging days. The results on these 10 days may
represent a conservative estimate of the benefits of the increase in the number of MDCRS reports.
In this section, the statistics are computed by comparing the wind fields to all available MDCRS
reports, even if the matched TW wind is a pass through of RUC.

There are four runs of TW in addition to the original run for each day. Additional runs of RUC
are not available due to the difficulty in rerunning the RUC processing. The MDCRS data for each
day are thinned in a naive way to remove observations from a time–ordered list of the MDCRS re-
ports, and TW is run using the thinned list. Runs with 20, 40, 60, and 80 percent of the MDCRS are
made. A percentage of 45 corresponds to the data rate without the increased United reporting. The
original runs provide the data for 0 percent of the MDCRS (RUC only) and 100 percent of the
MDCRS. The RUC data incorporated with the recent MDCRS by TW uses the full MDCRS data
set. The resulting RMS vector errors and the 90th percentile vector errors are shown in Figure 15.
The improvement in the RMS vector error is substantial up to 40 or 60 percent, and improvement



continues up to 100 percent. There is a substantial improvement in the 90th percentile error up to
60 or 80 percent, and the improvement continues up to 100 percent. Since the RUC data in this study
uses the full MDCRS data set, the improvement shown here as the number of MDCRS increases is
expected to be an underestimate of the improvement if RUC also used reduced MDCRS data sets.
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Figure 15. TW RMS and 90th percentile vector error vs. data density. The correspond-
ing percentage without the increased United Airlines reporting is 45 percent.
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4.12. Performance vs. Maximum Allowed Number of MDCRS per Analysis Point

In the TW algorithm, MDCRS near an analysis point are chosen for use in estimating the wind
at that analysis point. The algorithm estimates the error variance of each MDCRS relative to the anal-
ysis point based on distance and age and then selects the n best MDCRS. The tradeoff is that averag-
ing more data increases the accuracy if the data represent the wind at the analysis location, but gath-
ering more observations for a given location requires searching farther from the location, which
reduces the representativeness of the observations. The value of n for the run of the year’s data is
five. This is increased to 10 for the ten days used above. The results comparing the performance of
TW using up to five MDCRS per analysis point and using up to 10 MDCRS per analysis point on
these 10 days are given in Table 11. No improvement is seen from going from five observations per
grid point to 10 observations per grid point.

4.13. Performance vs. Separation in Time of MDCRS Reports and Wind Fields

The performance results are computed by comparing MDCRS reports to the wind field for the
most recent previous cycle, provided it exists. RUC wind fields are valid on the hour and TW wind
fields are valid at 10 and 40 minutes after the hour. So, the MDCRS observation time can be up to
59 minutes after the time at which the wind field is valid for RUC, and the MDCRS observation time
can be up to 29 minutes after the time at which the wind field is valid for TW. The (MDCRS–wind
field) values are binned every five minutes by time from the last hour, and the resulting RMS and



Table 11.
Comparison of TW with a Maximum of 5 Observations per Grid Point

and a Maximum of 10 Observations per Grid Point
Results are for 74,344 aircraft reports (66,485 for % speed error and direction

error).Values are in m/s, except for % speed error, which is unitless,
and direction, which is in degrees.

variable mean+/–std RMSE 50% 75% 90% 95%

5 obs/grid point:
TW u error –0.52+3.32 3.36 –0.45 1.39 3.30 4.67
TW v error 0.25+3.51 3.52 0.33 2.17 4.08 5.46
TW vector error 3.94+2.86 4.87 3.31 5.11 7.30 9.11
TW % speed error –0.60+25.0 25.0 0.2 12.9 27.1 37.4
TW direction error –0.56+18.9 18.9 –0.24 6.31 14.72 22.12

10 obs/grid point:
TW u error –0.50+3.34 3.38 –0.44 1.43 3.36 4.73
TW v error 0.24+3.54 3.55 0.31 2.19 4.12 5.52
TW vector error 3.97+2.87 4.90 3.34 5.13 7.35 9.14
TW % speed error –0.60+25.3 25.3 0.1 13.0 27.3 37.5
TW direction error –0.53+18.9 18.9 –0.19 6.39 14.87 22.55

90th percentile vector errors are shown in Figure 16. The errors in RUC rise slightly over the hour,
from a low of 6.48 to a high of 6.88 m/s for the RMS vector error and from a low of 9.79 m/s to a
high of 10.41 m/s for the 90th percentile vector error. The errors in TW show a similar rise between
cycles, with minima as expected at 10 and 40 minutes after the hour. The maxima and minima of
the TW cycle are 4.98 m/s and 5.34 m/s for the RMS vector error and 7.55 m/s and 8.21 m/s for the
90th percentile vector error. This indicates that there is some benefit to adding the recent MDCRS
more frequently than every 30 minutes and that interpolation in time between RUC forecasts may
be useful, as these modifications might reduce the errors by a couple tenths of a m/s. Wind speed
did not play a factor since the mean wind speed is nearly constant for each time bin. 

4.14. Performance vs. Separation in the Vertical of MDCRS Reports and Wind Field Lev-
els

The performance results are computed using interpolation in the vertical between wind field
levels to the MDCRS altitude. Both RUC and TW are available at pressure levels spaced 50 mb apart,
giving rise to a maximum difference of 25 mb between the MDCRS and the closest wind field level.
The MDCRS–wind field values are binned every five mb based on the separation of the MDCRS
from the nearest wind field level. The resulting RMS and 90th percentile vector errors are shown
in Figure 17. The mean wind in each bin is also shown and varies, presumably, because the distribu-
tions of preferred aircraft altitudes gives rise to a relationship between the bins and altitude. While
the errors grow as the separation between MDCRS and wind field level grows, the resulting increase
also closely follows the mean wind profile, making it difficult to separate the two effects. While there
is not a clear benefit shown to going to a vertical resolution finer than 50 mb, it is expected that there
is a benefit in sheared environments.
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Figure 16. Vector error vs. time after the hour. Both the RMS vector error and the
90th percentile errors are shown. RUC updates on the hour, and TW updates at 10
and 40 min. after the hour. The MDCRS reports are compared to the most recent
prior wind field.
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Figure 17. Vector error vs. vertical interpolation distance. Both the RMS vector error
and the 90th percentile errors are shown. The relationship to mean wind speed is also
shown.
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4.15. Analysis of Sustained Errors

For wind errors to have a deleterious effect on CTAS they must be sustained and well correlated
along the flight path. It would be useful to study this directly by looking at individual paths through
the airspace. However, looking at errors along the track of a single aircraft is problematic due to the
biases in the measurements from a single aircraft (as shown in Table 5). A detailed analysis of errors
along flight paths is left for another study. This study examines the distribution of sustained errors
without examining their correlation. It is implicitly assumed that sustained errors will tend to be cor-
related, but this is not directly shown.

To find errors which persist over time and space, the hourly 25th percentile vector error, the
hourly 50th percentile error or median, and the hourly 75th percentile error are computed. For exam-
ple, the hourly 25th percentile error is the value X for which 75 percent of all aircraft reports in a
given hour are reporting errors greater than X. The hourly 75th percentile error is the value Y for
which 25 percent of all aircraft in a given hour are reporting errors greater than Y. The data set con-
tains 7023 hours of data.

The distributions of the hourly Nth percentile vector errors are given in Figure 18, Figure 20,
and Figure 22. Each error bin labeled n m/s contains errors between n–1 m/s and n m/s. Both the
percent of hours with errors of given magnitude and the number of hours are given. Cumulative
probability plots are also given (Figure 19, Figure 21, and Figure 23). The cumulative probability
plots are especially useful in this context, as they let the reader estimate the number of hours with
errors above any threshold. The exact number of hours for which the sustained vector errors are
above 7 m/s (headwind error of approximately 10 knots), 10 m/s (headwind error of approximately
14 knots), and 15 m/s (headwind error of approximately 20 knots) are given in table Table 12.

Focussing on Table 12, it is seen that there are 42 hours during the year when 75 percent of the
RUC vector errors are greater than 7 m/s and that the addition of recent MDCRS reduces that number
to five hours. These 42 hours are evenly divided between nighttime and daytime and usually occur
as an isolated hour. There are no hours when 75 percent of the RUC vector errors are greater than
10 m/s. There are many hours during the year when 50 percent of the RUC vector errors are greater
than 7 m/s. The addition of recent MDCRS reduces the number of hours of such errors from 829
to 124. There are 46 hours during the year when 50 percent of the RUC vector errors are greater than
10 m/s, and the addition of recent MDCRS reduces the number of hours of such errors to one. These
46 hours are evenly divided between nighttime and daytime and usually occur as an isolated hour.
Since a 10 m/s vector error corresponds to about a 14 knot headwind error, this is a significant reduc-
tion in sustained errors. Having even 25 percent of the aircraft experiencing large errors is potentially
of operational concern for CTAS if the aircraft are concentrated along one or more flight paths as
opposed to randomly scattered about. There are 45 hours during the year when 25 percent of the RUC
vector errors are greater than 15 m/s, or a headwind error of approximately 20 knots. The addition
of recent MDCRS reduces this number of hours to eight. These 45 hours are evenly divided between
nighttime and daytime and usually occur as an isolated hour. Over the course of the year, 4160 hours,
or more than half the hours in the study, have 25 percent of the RUC vector errors greater than 7 m/s
or more. This number of hours is reduced to 1913, or by a factor of more that 50 percent, with the
addition of recent MDCRS data.
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Figure 18. Histogram of the percent and number of hours vs. RUC (black bar) and TW (gray
bar) 25th percentile hourly vector errors. Each bin labeled n contains errors between n–1 and
n, except bin 21 contains all errors 20 m/s and greater.
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Figure 19. RUC and TW cumulative probability vs. 25th percentile hourly vector error.
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4.16. Error Correlation Lengths

The computation of time–of–flight along a path requires computing a numerical integral. The
path is broken into small segments, and the time–of–flight for each segment is computed. Then the
times are summed to get the time–of–flight for the entire path. Each segment’s time–of–flight has
an error due to incorrect winds. Time–of–flight errors, which arise from correlated wind errors, will
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Figure 20. Histogram of the percent and number of hours vs. RUC (black bar) and TW
(gray bar) hourly median vector errors. Each bin labeled n contains errors between n–1 and
n, except bin 21 contains all errors 20 m/s and greater.
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Figure 21. RUC and TW cumulative probability vs. hourly median vector error.
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tend to be of the same sign, and when summed, these errors accumulate. Time–of–flight errors that
arise from wind errors that are not correlated will often vary in sign, and when summed, these errors
tend to cancel. Assuming the correlation in the wind errors decays exponentially, the correlation
length of the error is the distance over which the correlation in the wind errors drops to a value of
1/e. All else being equal, the wind field with the shorter correlation length will lead to more accurate
time–of–flight estimates.
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Figure 22. Histogram of the percent and number of hours vs. RUC (black bar) and TW
(gray bar) hourly 75th percentile vector errors. Each bin labeled n contains errors be-
tween n–1 and n, except bin 21 contains all errors 20 m/s and greater.
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Figure 23. RUC and TW cumulative probability vs. hourly 75th percentile vector error.
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The error correlation length is a very important parameter, along with some measure of average
error, in performing simulations of time–of–flight calculation accuracy. Often the wind error is set
to a constant value, perhaps the RMS error for an on–average scenario or 90th percentile error for
a worst–case scenario. Setting the wind error to a constant is equivalent to setting the error correla-
tion length to infinity, which allows no cancelation of errors. In reality, errors do cancel to some de-



Table 12.
Number of Hours with Hourly Nth Percentile Vector Errors

Above Given Thresholds
Results are for 7023 Hours.

variable >7m/s >10 m/s >15 m/s

RUC 25th percentile 42 0 0
TW 25th percentile 5 0 0
RUC 50th percentile 829 46 0
TW 50th percentile 124 1 0
RUC 75th percentile 4160 834 45
TW 75th percentile 1913 203 8

gree, and this can be modeled by using a wind error model that gives wind errors with the desired
mean error, RMS error, and correlation length.

The error correlation lengths are influenced by data density and the amount of data averaging
or smoothing in the data assimilation. For numerical models, the model physics plays an important
role. For TW, which uses RUC in forming an initial estimate, the error correlation lengths inherited
from RUC also play an important role. Large error correlation lengths can arise when the error in
a given observation is spread over a large region. In TW, the spread of a given observation is tied
to the local data density: in regions with numerous observations each observation influences a small-
er region. Large error correlation lengths tend to arise in wind fields generated by processes that
cause a region of grid point values to be correlated, such as forcing the wind and other values to strict-
ly follow equations of large–scale physics, in which case an error becomes a regional bias. Shorter
correlation lengths can arise from analyses where adjacent grid point values are more nearly inde-
pendent (This approach can lead to other problems from the point of view of numerical models; how-
ever, these problems are not a concern to ATM DSTs.)

To estimate the correlation of errors as a function of separation distance, the aircraft are paired
in much the same way as is done in the MDCRS accuracy study above. However, instead of requiring
that the pair of aircraft be very close together in all three dimensions, the pair are required to be close
together in only two dimensions. The data are then binned by the third dimension. To study the error
correlation vs. horizontal separation, the MDCRS are paired so that both aircraft are at nearly the
same altitude and time. The pairs are then sorted into bins containing pairs whose horizontal separa-
tion is a multiple of 20 km. The correlation among the wind field errors in each bin is then computed;
bins with small separations have errors which are strongly correlated while bins with large separa-
tions have errors which are only weakly correlated. Correlations are computed independently for
the u and v wind components. Correlations for vertical and temporal separations are computed simi-
larly. The separation and binning criteria are listed in table Table 13.

Table 13.
Separation Limits for the Generation of Correlations

variable h corr. p corr. t corr.

max horizontal, km 1500 20 20 km
max vertical, mb 5 600 5 mb
max temporal, minutes 2 2 2000
bin size 20 km 10 mb 15 minutes



After computing the correlations, a function of the form f(x)=a�exp(–x/b)+c is fit to the data.
The fit is done using least squares that accounts for the quality of the data. The value of sigma chosen
for each correlation value is 1/sqrt(number of pairs). This later point is important since for large
separations there are many fewer samples, and the resulting correlation values are noticeably noisier.
The x coordinate is chosen not to be the center of the bin but is chosen to be the mean of the
separations for the pairs in the bin. For most bins the mean of the separations in the bin is very nearly
the center of the bin, but for the zero bin the mean of the separations in the bin is about half the width
of the first bin. Using an x value of zero for the zero bin causes the fit to undershoot f(0), which is
an important value. Figure 24 through Figure 35 and Table 14 through Table 16 show the results of
fitting f(x)=a�exp(–x/b)+c to the correlations at specified separation distances for separations in the
horizontal, vertical, and temporal. The exponential decay fits the data very well for RUC and TW
for horizontal separations and also fits fairly well for TW for vertical separations. The fit to the RUC
error correlations vs. vertical separations is not as good. The RUC data for temporal separations
show a distinct harmonic signal superimposed on the exponential decay. A function of the form
f(x)=a�exp(–x/b)+c+d�cos(2�(x–e)/f) is fit in addition to the simple exponential decay for the
temporal correlations, and the results are in Figure 36 and Figure 37 and in Table 17.

The primary parameter desired in this analysis is b, the correlation length for wind field errors.
The correlation length is the distance at which the exponential decay portion of the error correlation
drops to 1/e. The parameter c accounts for correlations which are constant over all separations, and
if c is not nearly zero, it plays an important role in the correlation of errors. If the errors in RUC and
TW are known perfectly, f(0) would be exactly one; errors in precisely the same location are equal
and hence perfectly correlated. However, the values used to estimate errors (MDCRS–modeled
wind) have errors due to errors in MDCRS. Also, this analysis considers the pairs to have separations
in only one dimension. However, the remaining separations, while small, are not zero and they add
additional errors. Just as noted earlier, the more accurate the modeled wind field, the greater the ad-
justment to account for these errors; the value a+c=f(0) accounts for these errors.

The value f(0) is related to the variance of the errors in the modeled winds and the variance in
the errors in the MDCRS, where the errors in the MDCRS include the small–scale winds captured
due to the small aircraft separations which are treated as being zero. The relationship is given in
equation (9). The term f(0)/(1–f(0)) is sensitive to errors in the estimation of f(0), especially for val-
ues of f(0) that are near one. Solving for either error variance term also relies on the estimation of
the other error variance term. For these reasons, a direct measurement of the variance in the model
errors is preferred. Assuming aircraft errors and model errors are independent, equation (9) can be
rearranged, with some work, to give equation (10), which relates the variance in the model errors
with the variance of the values (MDCRS–model), which are directly measured.

var(model errors)/var(MDCRS errors) = f(0)/(1–f(0)) (9)

var(model errors) = f(0)�var(MDCRS–model) (10)

The correlation in errors, after accounting for the errors in the MDCRS and the errors from the
small separations that are treated as being zero, is then

f(x) = (1–c)�exp(–x/b) + c (11)



for separations in one dimension. Note that if c is not nearly zero, b alone does not give a good mea-
sure of how fast the correlation gets small.

In actual practice, CTAS computes time–of–flight along trajectories that exist over some time
period and extend over some horizontal distance and, generally, extend over some vertical distance
as well. Because of this, the errors will decorrelate as a function of all three separations. A three–di-
mensional fit to the data is not done, but the expected result is that the errors in the three dimensions
are not strongly correlated, and the product of the three correlation functions provides a good
approximation to the actual correlation function of all three separation variables. Conflict detection
and resolution require time–of–flight for trajectories over time periods of 10 minutes to 20 minutes,
or about 120 km to 240 km at a flight speed of 200 m/s (about 400 knots). Calculation of metering
requires time–of–flight over time periods of 20 minutes to 40 minutes. Flights descend from cruise
at approximately 300 mb to the TRACON at about 500 mb. Following the discussions of the correla-
tion lengths in each individual dimension, results for 4 three–dimensional trajectories are given: lev-
el flight of 10 minutes, descending flight of 10 minutes, level flight of 20 minutes, and descending
flight of 20 minutes.

As seen in Figure 24 through Figure 27, the fits of the exponential decay to the correlations as
a function of horizontal separation are quite good. The associated parameters are given in Table 14.
The correlation lengths for RUC are 311 km for u and 363 km for v. The addition of recent MDCRS
data reduces these values to 231 km for u and 241 km for v. The reductions in the correlation length
are substantial, averaging about 100 km, and the error correlation lengths for TW are approximately
the length over which CTAS computes metering. As expected, the increased accuracy of TW is evi-
dent in the lower value of f(0).  

As seen in Figure 30 and Figure 31, the fits of the exponential decay to the correlations as a
function of vertical separation are fairly good for the TW data, although the data are not as clean
as for the horizontal separations. The fits of the exponential decay to the RUC data are not as good
(Figure 28 and Figure 29). In particular, the data for the v component of RUC are roughly linear in
the range 0–300 mb where the data have the smaller error bars and the resulting fit has little curva-
ture, i.e., a long correlation length. The parameters associated with the fits are given in Table 15.
The correlation lengths for RUC are 153 mb for u and 273 mb for v. The addition of recent MDCRS
data reduces these values to 69 mb for u and 66 mb for v. These lengths are in the range of what is
operationally significant for CTAS, with the error correlation lengths for TW being much less than
the vertical distance over which CTAS computes time of flight. Again, the increased accuracy of
TW is evident in the lower value of f(0).

As seen in Figure 32 through Figure 35, the fits of the exponential decay to the correlations as
a function of temporal separation are quite good for the TW data. The fits of the exponential decay
to the RUC data are good, roughly in the range of 0–400 minutes, which covers the time domain of
interest for CTAS. After this range, a harmonic signal is seen in the RUC data. The parameters
associated with the fits are given in Table 16. The correlation lengths for RUC are 156 minutes for
u and 284 minutes for v. Unlike in the vertical separation case, the longer correlation length for the
RUC v component does not seem to be due to a poor fit of an exponential decay model. The addition
of recent MDCRS data reduced these values to 32 minutes for u and 43 minutes for v. CTAS com-
putes trajectories on time scales up to 40 minutes, so this reduction is also operationally significant.
The increased accuracy of TW is evident in the lower value of f(0), although f(0) is larger than in
the other cases.
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Figure 24. RUC error correlation vs. horizontal
separation. U component. Three parameters.

Figure 25. RUC error correlation vs. horizontal
separation. V component. Three parameters.

Figure 26. TW error correlation vs. horizontal
separation. U component. Three parameters.

Figure 27. TW error correlation vs. horizontal
separation. V component. Three parameters.

Table 14.
Fit Parameters for Error Correlation vs. Horizontal Separation

variable RUC u RUC v TW u TW v

a 0.75 0.91 .48 .58
b (km) 311 363 231 241
c 0.05 –.06 .07 –.02
f(0) 0.80 0.85 0.54 0.56

Given the harmonic signal evident in the RUC correlation as a function of temporal separation
data, a function of the form f(x)=a�exp(–x/b)+c+d�cos(2�(x–e)/f) is fit to the RUC and TW data
(Figure 36, Figure 39, and Table 17). While the harmonic signal is most evident at greater temporal
separations than are of interest for CTAS, the resulting fit is slightly better even at shorter time scales
and should give slightly better estimates of the RUC temporal correlation length. The harmonic sig-
nal is likely due to the diurnal cycle. However, the period f is not 1440 minutes (24 hours); although
the first peak in the RUC data is at about 1400 minutes. This may be due to not fitting an entire cycle
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Figure 28. RUC error correlation vs. pressure
separation. U component. Three parameters.

Figure 29. RUC error correlation vs. pressure
separation. V component. Three parameters.

Figure 30. TW error correlation vs. pressure
separation. U component. Three parameters.

Figure 31. TW error correlation vs. pressure
separation. V component. Three parameters.

Table 15.
Fit Parameters for Error Correlation vs. Pressure Separation

variable RUC u RUC v TW u TW v

a 0.96 1.25 0.55 0.53
b (mb) 153 273 68.7 66.0
c –.16 –.41 –.01 0.00
f(0) 0.81 0.84 0.54 0.53

in the data. This new function provides a slight reduction in the RUC temporal correlation lengths
to 141 minutes for the u component and 254 minutes for the v component; the TW temporal correla-
tion lengths are largely unchanged.

The results in Table 18 show correlations for different nominal trajectories that correspond to
conflict calculations performed by CTAS. The correlation of RUC u and v errors for horizontal sepa-
rations (�h) of 120 km are the same despite the fact that u and v have rather different values for b.
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Figure 32. RUC error correlation vs. temporal
separation. U component. Three parameters.

Figure 33. RUC error correlation vs. temporal
separation. V component. Three parameters.

Figure 34. TW error correlation vs. temporal
separation. U component. Three parameters.

Figure 35. TW error correlation vs. temporal
separation. V component. Three parameters.

Table 16.
Fit Parameters for Error Correlation vs. Temporal Separation

variable RUC u RUC v TW u TW v

a 0.76 0.79 0.69 0.67
b (minutes) 156 284 32.1 42.6
c 0.14 0.10 0.08 0.05
f(0) 0.90 0.90 0.77 0.72

They are also the same for a horizontal separation of 240 km. This is due to the fact that 120 km and
240 km are relatively small compared to the corresponding correlation lengths and due to the differ-
ing values of c. The TW values of b for horizontal separations are somewhat smaller than for RUC,
and the correlations for TW errors are about 0.10 less than for the corresponding RUC errors. The
RUC correlations for the nominal separations in the vertical are roughly the same despite the mis-
match in b for the two wind components due to the mismatch in the parameter c. Since the vertical
separations 100 mb and 200 mb are relatively large compared to the corresponding correlation
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Figure 36. RUC error correlation vs. temporal
separation. U component. Six parameters.

Figure 37. RUC error correlation vs. temporal
separation. V component. Six parameters.

Figure 38. TW error correlation vs. temporal
separation. U component. Six parameters.

Figure 39. TW error correlation vs. temporal
separation. V component. Six parameters.

Table 17.
Fit Parameters for Error Correlation vs. Temporal Separation

Using Six Parameters

variable RUC u RUC v TW u TW v

a 0.70 0.86 0.70 0.69
b (minutes) 141 254 32 38
c 0.14 0.10 0.08 0.04
d 0.06 0.05 0.01 .03
e (minutes) 97 447 204 208
f (minutes) 1275 935 626 1033
f(0) 0.90 0.91 0.77 0.74

lengths, the decrease in the correlation of errors is much greater for the nominal vertical separations
than for the other dimensions. The decrease in the correlation of TW errors for vertical separations
is much greater than for RUC. The correlations for RUC errors at the nominal temporal separations
are again nearly the same, 0.66 vs. 0.68, and 0.44 vs. 0.46, despite the largely different values of b



due to the fact that 10 or 20 minutes is very small relative to the corresponding correlation lengths.
The RUC errors are nearly completely correlated for a separation up to 20 minutes.

For a flight in the cruise phase, both the horizontal and temporal correlations apply jointly. For
a descending or ascending flight, all three correlations apply. The error correlation is assumed to be
the product of the two or three individual error correlations that apply. In level flight, the addition
of the extra MDCRS reduces the error correlation by about 0.20, or by 1/3 for a 10–minute flight
segment and by 1/2 for a 20–minute flight segment. The correlations are much smaller for both RUC
and TW for trajectories that are descending (or ascending). For a 10–minute descending flight seg-
ment, the RUC errors are moderately correlated while the TW errors are only slightly correlated.
For a 20–minute descending flight segment, the RUC errors are slightly correlated while the TW
errors are essentially uncorrelated.

Table 18.
Correlation of Errors for Nominal Separations Using Equation (11)
The �h, �p, and �t columns are for separations in one dimension only.

The next two columns are for level flight and for descending flight.

variable �h=120 km �p=100 mb �t=10 min level descending

RUC u 0.70 0.44 0.95 0.66 0.29
RUC v 0.70 0.57 0.97 0.68 0.39
TW u 0.62 0.23 0.75 0.47 0.11
TW v 0.60 0.22 0.80 0.48 0.11

variable �h=240 km �p=200 mb �t=20 min level descending

RUC u 0.49 0.15 0.90 0.44 0.07
RUC v 0.49 0.27 0.94 0.46 0.12
TW u 0.40 0.05 0.57 0.23 0.01
TW v 0.36 0.05 0.64 0.23 0.01

The RMS errors in the modeled winds can be estimated using equation (10), along with the esti-
mates for f(0) and the RMS error values from table Table 8 (which are uncorrected for MDCRS er-
rors). The resulting error estimates are thus corrected for the MDCRS errors. The model RMS errors
are estimated for the values of f(0) calculated for horizontal separations, vertical separations, and
temporal separations, and they are given in Table 19. Only the results for the three parameter fits
are shown; the results for the six parameter fits are very nearly equal to the results from the corre-
sponding three parameter fits. The estimates of the RMS errors are very close to those given earlier
(RMSE 2 in Table 9 and Table 19). The value RMSE 2 is chosen for inclusion here since it is com-
puted using the same separation limits and thus is an independent estimate of the same quantity. The
estimates of the RUC RMS errors are very close to each other, spanning a range of 6.12–6.39 m/s
for the vector error. The estimates of the TW RMS error are fairly close together, spanning a range
of 3.79–4.47 m/s for the vector error.



Table 19.
Comparison of 60 km RUC and 10 km TW

After Correction for MDCRS Errors Using Equation (10)
RMSE raw and RMSE 2 are from Table 9, RMSE h, RMSE v, and RMSE t are
from applying equation (10) using the f(0) values for horizontal, vertical, and

temporal separation, respectively. Only the three parameter fits are used.
Values are in m/s.

variable RMSE raw RMSE 2 RMSE h RMSE v RMSE t

TW u error 3.63 3.08 2.67 2.67 3.18
TW v error 3.69 3.09 2.76 2.69 3.14
TW vector error 5.18 4.37 3.84 3.79 4.47

RUC u error 4.62 4.20 4.14 4.15 4.39
RUC v error 4.91 4.48 4.53 4.50 4.65
RUC vector error 6.74 6.14 6.14 6.12 6.39



5.  CONCLUSIONS

5.1. Baseline Performance and Benefits from Adding MDCRS to RUC

Computed over the entire one–year data set, the RMS vector difference and median vector dif-
ference between RUC and the MDCRS reports is 6.74 m/s and 4.99 m/s, respectively. Incorporating
recent MDCRS via the ITWS TW algorithm reduces these values to 5.18 m/s and 3.64 m/s, respec-
tively. Correcting the RMS values for the errors in the MDCRS measurements gives estimates for
the RUC and TW RMS vector errors of 6.12 m/s – 6.39 m/s and 3.79 m/s – 4.47 m/s, respectively.
Given that vector errors of 7 m/s – 10 m/s (approximately 10 knots – 15 knots of headwind error)
are significant to CTAS, the addition of recent MDCRS via the TW algorithm provides a significant
improvement in the on–average wind field accuracy.

Perhaps more important than the on–average performance is the distribution of large errors.
This is addressed in part by examining the 90th percentile vector errors. The 90th percentile RUC
and TW vector differences with MDCRS are 10.18 m/s and 7.85 m/s, respectively. These values can-
not be corrected for MDCRS errors as done with the RMS errors. But the actual 90th percentile wind
field errors are expected to be somewhat smaller. The addition of the recent MDCRS reports to the
RUC wind field is seen to significantly reduce the magnitude of the 90th percentile vector errors.
The distribution of large errors is also examined via a cumulative probability plot. From this plot
it is seen that 28 percent of the RUC vector errors are greater than 7 m/s, and this is reduced to 14
percent by the addition of the recent MDCRS data. It is seen that 11 percent of the RUC vector errors
are greater than 10 m/s, and this is reduced to four percent by the addition of the recent MDCRS data.

Large errors are especially detrimental to CTAS if they are sustained over a large portion of the
grid and over a long period of time. As an initial investigation of this issue, the 25th percentile, 50th
percentile, and 75th percentile errors are computed on an hourly basis on the one–year data set. The
results for the 50th percentile hourly vector error show that out of the 7023 hours in the data set there
are 829 hours when the hourly median RUC wind vector error is 7 m/s or more. This means that if
CTAS were operating during these hours, half of the wind values that CTAS was using have vector
errors of 7 m/s or more. Adding recent MDCRS data to RUC reduces this number of hours to 124.
There are 46 hours in the data set when the hourly median RUC wind vector error is 10 m/s or more,
and adding recent MDCRS reduces this number of hours to 1. The 25th percentile hourly RUC vector
error is greater than 7 m/s for 42 hours (i.e., there are 42 hours when 75 percent of the MDCRS are
reporting winds that differ from RUC by 7 m/s or more), and the addition of recent MDCRS reports
reduces this to 5 hours. The 75th percentile RUC vector error is greater than 15 m/s for 45 hours (i.e.,
there are 45 hours when 25 percent of the MDCRS are reporting winds that differ from RUC by 15
m/s or more), and the addition of recent MDCRS reduces this to 8 hours. If these very large errors
are concentrated along one or more flight paths, they may represent a serious problem for en route
DSTs that generate clearance advisories. The addition of recent MDCRS data to the RUC wind fields
provides a very large reduction in large sustained errors.

Another factor in whether or not wind field errors are detrimental to CTAS is their correlation.
In computing aircraft time–of–flight along a trajectory, errors that are highly correlated tend to add
together when computing time–of–flight, and errors that are not highly correlated tend to cancel.
All else being equal, the wind field with the least correlation among errors will provide the smallest
trajectory errors. Examining the correlation of errors for level flight over 20 minutes at 400 knots



shows that errors in the RUC winds have correlation coefficients of approximately 0.45, and the
addition of recent MDCRS reduces these coefficients to 0.23. The correlation of errors for a descend-
ing flight over 10 minutes at 400 knots shows that errors in the RUC winds have correlation coeffi-
cients in the range of 0.29 – 0.39, and the addition of recent MDCRS reduces these coefficients to
0.11. Quantifying the effects of the differing error correlations on trajectories is outside the scope
of this study.

United Airlines increased the frequency of their MDCRS reports from May through August of
1997. This allows the study of TW wind field errors vs. number of MDCRS reports, where the num-
ber of MDCRS reports is varied from less than the current normal to greater than the current normal.
Ten days were chosen for this study. The results show that relative to the current normal level of
MDCRS, the extra MDCRS reports reduce the TW RMS vector error by about 0.3 m/s and reduce
the TW 90th percentile vector error by about 0.5 m/s. This is considered to be a significant improve-
ment.

5.2. Factors Useful in Real–Time Estimation of Error Magnitude

The errors in both the RUC wind fields and the TW wind fields are seen to increase with increas-
ing wind speed, in part due to an underestimation of wind speed which increases with increasing
wind speed. The relationship between the magnitude of the wind error and wind speed is seen by
computing wind field errors for different wind speeds and also by comparing the errors computed
by month with the monthly mean wind speed. The TW system, as part of its wind field estimation,
produces an estimate of the error variance for each estimate of the wind. A relationship is shown
to exist between the magnitude of the actual errors in the TW wind field and the TW estimates of
the error variance. This relationship is seen by plotting the RMS vector error vs. TW estimate of the
RMS vector error. It is also seen by comparing the errors computed by altitude with the mean wind
at each altitude and the TW estimate of the RMS vector error at each altitude. The TW vector errors
follow the trends in the TW estimates of the RMS vector error more closely than the trends in the
wind speed in this comparison.

Different types of weather are also seen to influence wind field accuracy. Altocumulus lenticu-
laris, indicative of mountain waves, is associated with a decrease in wind field errors while precipita-
tion, towering cumulus, and thunder are associated with an increase in wind field errors. Precipita-
tion provides the best signal for increased wind field errors of the four simple weather types studied.
The combinations of thunder and towering cumulus and thunder and precipitation are also ex-
amined. The combination of thunder and towering cumulus did not provide a significantly better
signal than thunder alone. The combination of thunder and precipitation provided the best signal of
increased wind field errors of all the weather types and combinations.

5.3. Possible Future Work

This study points to a number of possible improvements to the TW system. The RUC forecast
fields along with the current data can be used to produce short–term forecasts of the winds. Improv-
ing the error models improves the wind field accuracy and strengthens the relationship between the
TW estimate of the errors and the actual errors. The error models used in the TW interpolation can
be upgraded to incorporate wind speed. Other weather factors, such as wind field gradients, which
are related to measurement representativeness can be incorporated into the error models. Also, the



results on wind speed bias as a function of wind speed can be used to reduce or remove the wind speed
bias. The TW analysis or other ITWS algorithms, such as MIGFA[23] could be extended to explicit-
ly incorporate weather, such a frontal passage, which is suspected of being difficult for the current
wind prediction/analysis systems.

Further study of the current data set is warranted. An analysis of time–of–flight errors along
flight paths would provide a direct link to CTAS performance. The data set can also be used to devel-
op algorithms to predict wind field accuracy in real time. This study could be extended to include
other en route sensors such as Doppler wind profiler data. A more detailed study of the relationship
between weather phenomena and wind errors could be undertaken.

There are two primary weaknesses in the current study. First, the 60 km RUC will be replaced
by the 40 km RUC in the near future. Second, these results do not readily translate to terminal au-
tomation because the current study does not utilize Doppler data and because the current study does
not analyze the performance of the 2 km resolution TW wind field, both of which are very important
in the terminal airspace. These weaknesses will be addressed by extending this study to use the
40 km RUC data, Doppler data, and the full TW system in the Dallas/Ft. Worth (DFW) Center and
TRACON.



GLOSSARY

ACLS Altocumulus (standing) lenticularis

ATC Air Traffic Control

ATM Air Traffic Management

CTAS Center TRACON Advisory System

DEN Denver International Airport

DST Decision Support Tools

FMS Flight Management System

FSL Forecast Systems Laboratory

ITWS Integrated Terminal Weather System

METAR Aviation Routine Weather Report

mb millibar

MDCRS Meteorological Data Collection and Reporting System

MSL mean sea level

NASA National Aeronautical and Space Administration

NCEP National Center for Environmental Prediction

nmi nautical mile

NEXRAD NExt generation weather RADar

NOAA National Oceanic and Atmospheric Administration

NWS National Weather Service

OI Optimal Interpolation

PBL Planetary Boundary Layer

QC Quality Control

RMS Root Mean Square

RMSE Root Mean Square Error

RUC Rapid Update Cycle

SAS Statistical Analysis Software

TCU Towering Cumulus

TRACON Terminal Radar Approach Control

TW Terminal Winds
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