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Applications of a Macroscopic Model for En Route Sector 
Capacity 

Jerry D. Welch1, John W. Andrews2, Brian D. Martin3, and Eric M. Shank4  
M.I.T. Lincoln Laboratory, Lexington, MA  02420-9108 

Airspace capacity estimates are important both for airspace design and for operational 
air traffic management.  Considerable effort has gone into understanding the complexity 
factors that reduce sector capacity by increasing controller workload.  Yet no analytical 
means is available for accurately estimating the maximum capacity of an en route sector.  
The Monitor Alert Parameter (MAP) values that determine the operational traffic limit of 
en route sectors in the United States account only for workload from inter-sector 
coordination tasks.  We propose a more complete sector capacity model that also accounts 
for workload from conflict avoidance and recurring tasks.  We use mean closing speeds and 
airspace separation standards to estimate aircraft conflict rates.  We estimate the mean 
controller service times for all three task types by fitting the model against observed peak 
traffic counts for hundreds of en route airspace volumes in the Northeastern United States.  
This macroscopic approach provides numerical capacity predictions that closely bound peak 
observed traffic densities for those airspace volumes.  This paper reviews recent efforts to 
improve the accuracy of the bound by replacing certain global parameters with measured 
data from individual sectors.  It also compares the model capacity with MAP values for 
sectors in the New York Center.  It concludes by illustrating the use of the model to predict 
the capacity benefits of proposed technological and operational improvements to the air 
traffic management system. 

Nomenclature 
F = daily fraction of sector aircraft with altitude change ≥ 2000 ft 
G = workload intensity 
Gb = background workload intensity 
Mh = horizontal miss distance 
Mv = vertical miss distance 
Mvmax = vertical miss distance when all aircraft have vertical rates 
N = sector aircraft count 
Nb = sector aircraft count predicted by model 
Np = peak measured sector aircraft count 
P = recurring task period 
Q = sector volume 
S = mean speed of sector traffic 
T = mean transit time for sector traffic measured when N = Np 
τc = mean service time for conflict tasks 
τr = mean service time for recurring tasks 
τt = mean service time for transit tasks 
V21 = mean pair-wise closing speed of sector traffic 

                                                           
1 Senior Staff, Surveillance Systems Group, S2-527G, non-member. 
2 Senior Staff, Surveillance Systems Group, S2-527H, non-member. 
3 Assistant Staff, Weather Sensing Group, S1-670, Member. 
4 Staff, Surveillance Systems Group, S2-509, non-member. 

AIAA Guidance, Navigation and Control Conference and Exhibit
18 - 21 August 2008, Honolulu, Hawaii

AIAA 2008-7221

Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc.
The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes.
All other rights are reserved by the copyright owner.



 
American Institute of Aeronautics and Astronautics 

 
 

2

I. Introduction 
Knowledge of airspace capacity is needed to mitigate delay from storms, demand peaks, and operations growth.  

Capacity estimates are also key tools for airspace design and for guiding the development of controller decision 
support tools.   

There is broad agreement that controller workload is the main determinant of en route sector capacity.1-9  Many 
studies have focused on understanding the dynamic complexity factors that reduce sector capacity.1-14  These have 
largely been efforts to identify and rank all sources of complexity that can increase controller workload. 

There has been little focus on accurately determining inherent, un-reduced sector capacity.  As a result, Federal 
Aviation Administration (FAA) air traffic managers do not have an accurate means for estimating the safe traffic 
limit of en route sectors in an operational environment.  The current FAA Monitor Alert Parameter (MAP) rule for 
determining maximum operational sector loading considers only the inter-sector coordination component of 
controller workload.15  The rule sometimes allows what would be dangerously high traffic densities in small sectors 
because it does not account for separation assurance workload.  It also arbitrarily limits peak sector counts to 
eighteen aircraft.  This tends to underestimate the actual safe capacity of many large sectors.  

We previously reported16 a method of estimating maximum capacity by extending and inverting an established 
queuing model17 that accounts not only for workload from inter-sector coordination but also from efforts to assure 
safe aircraft separation.  The model uses mean closing speeds and effective separation standards to estimate aircraft 
conflict rates.  The capacity of a given airspace sector is reached when the sum of the products of the event rates and 
service times approaches unity, indicating that the controller team is fully occupied. 

The model is “macroscopic” in the sense that it assumes a common global controller service time for all inter-
sector coordination tasks and another global service time for all aircraft separation tasks.  The analytical nature of 
the model facilitates the process of inferring controller service times for these tasks by fitting against peak traffic 
counts from large numbers of actual en route sectors.  The result is a formula for estimating peak allowable sector 
aircraft count based on aircraft speeds, sector geometry, and airspace separation standards.   

We first used the model in its original workload context to study the variability of controller workload in a free-
flight environment.18  In Ref. 16 we inverted the workload equation to determine capacity and extended the task 
types to include background and recurring tasks, thereby providing a complete set of workload generating events. 

We compared the resulting model capacity values with peak, clear-weather operational traffic counts from 425 
sectors in the Corridor Integrated Weather System (CIWS) airspace domain in the Northeast United States.19  We 
obtained the coordinates of the CIWS sectors from the FAA’s Enhanced Traffic Management System (ETMS) 
graphical plotting database.  Many of these “ETMS/CIWS” sectors are smaller in airspace volume than actual 
operational sectors because the two-dimensional ETMS plots include only one sub-module from each sector. 

The comparison of the model with peak traffic was unaffected by this size discrepancy because we based the 
model capacities and the peak sector traffic counts on consistent airspace coordinates.  We found that the model 
capacity values closely bounded the peak operational traffic counts.  However, the ETMS/CIWS volume 
discrepancy prevented us from comparing the model capacity with the operational FAA MAP value for each sector.  
We have thus begun a comparison of operational MAP values with model capacity values based on accurate sector 
coordinates.  We include initial comparison results in this paper for sectors in the New York Air Route Traffic 
Control Center (ZNY). 

We also describe recent efforts to improve the model by using traffic measurements from individual sectors to 
replace what were originally global assumptions.  We originally estimated transit time based on sector length and an 
assumed constant aircraft transit speed.  Observing actual flight times in each sector in peak traffic periods allows us 
to determine transit time directly.  We originally assumed that all aircraft were in level flight.  Observation of the 
fraction of tracks with significant vertical motion in each sector allows us to account for increased workload caused 
by climbing and descending aircraft.  Both of these improvements increase the number of sectors whose observed 
traffic peaks agree with the capacity bound. 

We conclude with an illustration of the use of the model to estimate the expected capacity benefits of 
hypothetical technological, automation, and operational improvements to today’s air traffic management system. 

II. The Capacity Model 

A. Model Structure 
The model is based on a simple queuing principle: the product of the occurrence rate of a task and the time 

required to complete that task is the task’s “workload intensity” or the fraction of the available time in which the 
controller team is busy executing that task. 
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The model aggregates controller tasks into four types differentiated according to occurrence characteristics.  This 
allows any controller activity to be uniquely assigned to one task type.  The four types are background, transition, 
recurring, and conflict.   

Background tasks cause a constant workload intensity Gb without respect to the aircraft count in the sector.  
The rates of transition tasks, which occur when aircraft enter or exit the sector, and recurring tasks, which occur 

repeatedly for each aircraft in the sector, are both proportional to the sector traffic count.  Transition tasks occur at a 
rate 

 λt = N/T, (1) 

where N is the number of aircraft in the sector, and T is the average transit time through the sector.  Recurring tasks 
occur at a rate 

 λr = Ν/P, (2) 

where P is the mean task recurrence period per aircraft.   
Conflict workload occurs when potential aircraft separation violations arise.  For uniformly distributed traffic, 

the conflict rate as perceived by the sector controller team increases as the square of the sector traffic count.  The 
mean conflict rate is 

 λc = (2 N2/Q) Mh Mv V12, (3) 

where Q is the sector volume, Mh and Mv are the horizontal and vertical miss distances that define a separation 
violation, and V12 is the mean of the pair-wise closing speeds of the aircraft in the sector. 

The total workload intensity G is the fraction of the controller’s available time devoted to all four of these task 
types: 

 G = Gb + τtλt + τrλr + τcλc, (4) 

where τt, τr, and τc are the mean times required to service transit, recurring, and conflict tasks, respectively.  There is 
a critical total workload intensity, typically 0.8, beyond which a controller team cannot safely accept additional 
traffic.  This queuing limit defines the traffic capacity of the sector.  For each sector, we equate G to 0.8 and solve 
the resulting quadratic equation for N to determine its traffic capacity. 

B. Model Parameters 
Initially, we used global values for all of the sector workload parameters except T and Q.  We estimated the 

global constants Gb, P, S, Mh, Mv, and V12 based on data from dense en route airspace in the Northeast United States.  
We estimated the transit time T of each sector based on its maximum horizontal length and an assumed constant 
global aircraft speed S.  We computed the volume Q of each sector from its ETMS sector coordinates. 

C. Regression Fitting to the Bound 
We determined the values of the transit, conflict, and recurring work times by regression fitting the model to 

peak, clear-weather operational traffic counts for the ETMS/CIWS sectors. 
Because the model provides a capacity bound, we used an asymmetric scoring scheme for regression fitting.  

Figure 1 graphs the scheme.  It is a piece-wise linear scoring rule with parameters chosen to reward sectors with 
counts within plus or minus two aircraft of the bound and to strongly penalize those with counts that exceed the 
bound by more than 2 aircraft.  We assume that sectors with peak counts Np more than 2 aircraft below the integer-
rounded model bound Nb are limited by low demand or other capacity constraints and thus do not count against the 
score.  Each sector with Np = Nb increases the score by 3. Sectors with Np = Nb ±1 increase the score by 2.  Sectors 
with Np = Nb ±2 increase the score by 1.  Sectors with Np = Nb+j score 1-10(j-2) for all integers j>2.   We examined 
other combinations of rule parameters to adjust the location and tightness of the bound.  Most combinations 
produced similar τ values for the ETMS/CIWS sectors.   

To simplify the search, we stepped τt, τc, and τr in 1-second increments.  This quantization, plus the variance of 
the measured data, caused the rule to occasionally return multiple identical local scoring maxima.  The rule usually 
produced a distinct maximum score when fitting for τt.  However, as we refined the model to account for measured 
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sector transit times and fractions of aircraft with vertical rates, the increased variance of the model data caused the 
rule to return nearly identical scores over a wider range of τc values.  To minimize the number of sectors with counts 
that exceed the bound we chose the smallest τc value that maximized the score. 
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Figure 1. Rule for scoring a fit to the bound. 

D. Results for Model Which Uses Sector Length to Estimate Transit Time 
Figure 2 plots the model predictions of sector traffic capacity versus sector volume for each ETMS/CIWS sector 

when we use maximum sector horizontal length to estimate sector transit time T.  The scatter in the model capacities 
for sectors with nearly identical airspace volumes is caused entirely by variations in maximum sector length.  The 
figure also includes the observed peak traffic for each sector at its time of peak demand.  Figure 3 directly plots the 
model capacities and the actual peak sector traffic counts versus each other.  Low traffic demand and other factors 
caused many sectors to peak at densities below the modeled capacity.  However, the “frontier” trend for their 
maximum count is consistent with the model.  
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Figure 2.  Peak counts and model capacities vs. sector volume when transit time is estimated from sector 

length. 
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In Ref. 16 we reported that the recurring work time τr was 2 seconds.  This result was based on a preliminary 
regression analysis that identified a local maximum and failed to correctly fit τr.  When we refined the procedure for 
fitting the bound to the sectors, the best fit consistently occurred for τr = 0 s, indicating that recurring workload is 
insignificant relative to transit and conflict workload in those sectors.  Ref. 16 also used a mean conflict closing 
speed of 440 kt (based on an analysis of conflict rates in future unstructured airspace) and a horizontal miss distance 
of 5 nautical miles.  In busy regions of today’s structured airspace, closing speeds of 200 kt and horizontal miss 
distances of 7 nm are more appropriate.  With these changes, the transit and conflict work times that best fit the 
observed ETMS/CWIS peak sector counts are respectively 25 s and 104 s when the model capacity is determined by 
sector length. 
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Figure 3. Peak Count vs. model capacity when transit time is estimated from sector length. 

Using these values, sixteen sectors measured peak values in perfect agreement with the model.  The number of 
close-fit sectors (defined as those for which the model fits the measured peak within ±2 aircraft) was 115.  Two 
sectors had high peak counts (more than 2 aircraft above the bound) and 308 sectors (72% of the total) had low peak 
counts (more than 2 aircraft below the bound).  The overall quality-of-fit score was 155. 

E. Adding Measured Transit Time Data 
We subsequently examined the tracks in each ETMS/CIWS sector and measured the the mean transit time T of 

the aircraft in each sector at the time of peak traffic.  Local variations in transit time can either increase or decrease 
sector capacity.  The use of measured T values increases the scatter in the model capacities for sectors with identical 
airspace volumes.  Fast traffic or traffic using short-cut routes across the sector decrease the mean transit time T.  On 
the other hand, speed reductions, holding patterns, S-turns, and vertical motion can temporarily increase T and hence 
sector capacity.   Accounting for these variations allows the model to explain sectors with either high or low counts. 

After adding measured sector transit times to the model, we re-ran the regression to determine the new global 
work times.  The best fit for transit work time τt and recurring work time τr remained essentially unchanged.  The 
increased variance of the model data caused the best fit for conflict work time τc to drop from 104 s per conflict to 
82 s per conflict.   

The use of measured transit time improved the model fit.  The number of sectors with peak counts in perfect 
agreement with the model increased from 16 to 22, and the number of close-fit sectors increased from 115 to 169.  
Two additional sectors had high counts, but the number of sectors with low counts dropped from 308 to 252.  The 
overall regression score increased from 155 to 229.   
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III. Sectors with Low Peak Traffic Counts 
Some sectors may not have experienced enough peak demand to reach the bound because of traffic flow 

management or airline schedule restrictions.  Others may have been affected by local workload factors that caused 
the model parameters for the sector to deviate from the global model values.  Speed, heading, or altitude changes in 
a sector can increase workload by increasing trajectory uncertainty.  Future positional uncertainty can increase the 
perceived conflict rate.  Intersecting and converging routes within a sector can increase the conflict rate by 
increasing the mean closing speed V21.  

Several studies have determined that the major cause of increased sector workload is a high incidence of aircraft 
with vertical rates.1,5,6,8,10  There is ample justification for this conclusion.  The least predictable aircraft maneuver is 
an altitude change.  The maximum climb rate is determined by factors that are often unknown to the controller.  The 
climb or descent profile may take many forms.  The start time or level-off time can vary.  Aircraft may overshoot 
target altitudes.  Thus, when aircraft move vertically, controllers must allow for increased altitude uncertainty in 
conflict planning, sometimes buffering all of the altitudes between current and planned cruise.    

Majumdar et al studied candidate complexity factors using Eurocontrol simulation data. 6,10  They used real-time 
simulations of a single European sector with traffic operating under a wide range of conditions and found a strong 
correlation between reduced sector capacity and the simple fraction of ascending and descending aircraft in the 
sector.   

We investigated this correlation for all 425 ETMS/CIWS sectors by comparing their observed peak traffic counts 
with predictions of the capacity model modified to account for the measured fraction of ascending and descending 
aircraft in the sector.   

A. Measuring Vertical Motion 
To estimate the operational effect of vertical rates on our capacity model, we examined tracks in the 

ETMS/CIWS sectors to determine a daily fraction of ascending and descending aircraft for each sector.  We counted 
aircraft with altitude changes within a sector by identifying the entry and exit reports for each aircraft ID.  We 
counted each track through a sector as one aircraft.  If the entry and exit reports differed by more than 2000 feet, we 
counted the aircraft as having changed altitude.  If an aircraft (using aircraft ID as the track identifier) remained in a 
sector for some period of time, then left for at least 5 minutes and subsequently reappeared, we considered the 
reappearance as a separate trip through the sector.  We counted all aircraft that appeared in the data within the 
geographic boundary of each sector.  According to this measure, 94% of the ETMS/CIWS sectors had some aircraft 
with vertical rates.  The largest vertical rate fraction observed within an individual sector was 0.85. 

B. Modeling Vertical Motion Data 
The model allows us to directly incorporate a particular mechanism by which vertical motion can increase 

workload.  Workload grows when altitude uncertainty leads controllers to perceive a greater risk of air-to-air 
conflict.  The model parameter that most directly reflects this uncertainty is the vertical separation threshold Mv used 
for calculating the mean conflict rate. 

We previously used a global Mv of 1000 ft for all sectors.  We now model the effect of vertical motion on 
capacity by defining an increasing linear relationship between the vertical motion fraction and the effective 
separation standard.  When all aircraft in a sector fly level, the vertical separation threshold is 1000 ft.  When aircraft 
in the sector change altitude, the effective vertical separation standard for the sector grows linearly.  When all 
aircraft in the sector change altitude, the effective separation standard is Mvmax.  Given the fraction F of aircraft in the 
sector with vertical motion of either type (F ranges from 0 to 1), the effective vertical separation threshold for the 
sector is 

 Mv = 1000 + F (Mvmax – 1000).   (6) 

We determined Mvmax by searching for the value that gives the best agreement between model and measurement 
using the scoring rule described above.  We found Mvmax  to be about 2700 ft.  Although the data allowed us to 
distinguish between ascending and descending aircraft, we did not make that distinction in the model. 

The result of adding Eqn. 6 to the model is shown in Figures 4 and 5.  As before, these figures plot the model 
capacities and the peak sector traffic counts, respectively as functions of sector volume, and then versus each other. 



 
American Institute of Aeronautics and Astronautics 

 
 

7

T  and F  Measured

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000

Sector Volume, nm3

Se
ct

or
 T

ra
ffi

c,
 a

irc
ra

ft 
co

un
t

Model Capacity
Observed Peak Count

 
Figure 4. Peak counts and model capacities vs. sector volume when transit time T is measured directly and Mv 

is based on measurements of F. 
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Figure 5. Count vs. model capacity when transit time T is measured directly and Mv is based on 

measurements of F. 

The variable Mv correction increased the conflict rate and thereby reduced the capacity estimate relative to the 
original model for the 94% of the sectors that had climbing or descending aircraft.  Consequently, it had the desired 
effect of decreasing the error for those whose peak traffic counts were lower than predicted by the original model.  
Conversely, it increased the error for a few sectors whose peak traffic counts were higher than predicted by the un-
corrected model.  The regression value for τc dropped from 82 s to 62 s to compensate for the growth in conflict rate. 



 
American Institute of Aeronautics and Astronautics 

 
 

8

Table 1 summarizes the quality-of-fit metrics for the three versions of the model.  The model with measured T 
and variable Mv achieved the best overall fit.  The addition of the simple linear growth factor appears to be a good 
predictor of sector capacity reduction relative to a model with a fixed vertical separation standard.  

 
Table 1. Quality-of-Fit Metrics for Three Models. 

Metric 
Case 

Perfect Fits 
Np = Nb 

Close Fits 
|Np-Nb| ≤  2 

High Counts 
Np > Nb+2 

Low Counts 
Np < Nb–2 

Score 
see Fig. 1 

Estimate T from length 16 115 2 308 155 
Measure T 22 169 4 252 229 
Measure T and vary Mv 38 195 6 224 267 

C. Heading and Speed Variance 
We have also observed, in agreement with others,9,12 that sectors with high peak counts tend to have more 

uniform flow.  Organized flow results in lower closing speeds and hence lower conflict rates.  In the limit, perfectly 
organized flow would eliminate all conflict workload, and sector capacity would be determined entirely by transit 
workload. 

Given an appropriate measure of the organization of the flow, the model can account for this by reducing V12.  
We have begun to evaluate candidate metrics based on the variance of the sector aircraft headings at the time of 
maximum demand.  Preliminary results indicate that accounting for organized flow will reduce the number of 
sectors with high counts and further improve the model’s quality-of-fit metrics. 

D. Summary of Model Parameters for ETMS/CIWS Sectors 
Table 2 summarizes the values of the global constants for the ETMS/CIWS sectors using the model with 

measured values of T and with Mv corrected to account for aircraft with vertical rates.  These are preliminary results 
based on unofficial sector volumes.   We intend to refine these results based on operational sector volumes for the 
entire NAS with measurements of traffic count, transit time, vertical rate fraction, heading distribution, and mean 
closing speed.   

Table 2.  Global Capacity Model Constants for ETMS/CIWS Sectors. 

Constant Value 
Gb 0.1 
τc 62 s 
τr 0 s 
τt 28 s 
P 300 s 

Mh 7 nautical miles (nm) 
Mv 1000 ft 

Mvmax 2700 ft 
V12 200 kt 

IV. Monitor Alert Parameters 
FAA Order 7210.315 defines the nominal MAP values as shown in Figure 6.  The MAP rule explicitly defines 

maximum allowable operational sector loading based on “average sector flight time”.  It thus directly limits transit 
(i.e., inter-sector coordination) workload.  According to the rule, “Average sector flight time will be calculated using 
data indicating functional position operations for a consecutive Monday through Friday, 7:00 AM – 7:00 PM local 
time frame.” 

The increasing region of the MAP curve is nearly linear and reflects queuing with workload intensity G=τt [N/T].  
The slope of the curve for flight times between 3 and 10 minutes is 1.714 aircraft/minute.  If maximum sector 
loading occurs when G reaches 0.8, that slope implies a transit service time τt of 28 s.  This is identical to the transit 
service time in Table 2. 

The inconsistency between the airspace volumes of the ETMS/CIWS sectors and actual operational sectors 
prevents a meaningful comparison between model capacities and actual FAA MAP values for the ETMS/CIWS 
sectors.  We have begun to compare operational MAP values with model capacities based on accurate operational 
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sector coordinates.  We obtain the counts and the associated MAP values from the FAA Performance Data Analysis 
Reporting System (PDARS).20 
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Figure 6. Monitor Alert Parameter density versus mean sector transit time. 

Figure 7 plots initial results of this comparison showing the peak counts on 21 January 2007 for twenty-five en 
route sectors in ZNY as a function of sector volume.  (We have omitted the four largest ZNY sectors for plotting 
clarity.)  Superimposed on these counts are the official FAA MAP values in use that day for the same sectors.  The 
Monitor Alert Parameters generally exceed the peak counts for smaller sectors and closely bound the peak counts for 
larger sectors.  The agreement for large sectors reflects the effect of the eighteen-aircraft MAP limit on the 
operational traffic flow management process. 
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Figure 7. Peak traffic on 1/21/07 and MAP values for 25 ZNY sectors. 
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Figure 8 compares the ZNY peak count data with the predictions of our capacity model when applied to the ZNY 
sectors.  We calculate model capacity using the parameters in Table 2.  We use PDARS summary data to estimate 
the mean transit time T for each sector in the 20-minute period following the occurrence of the peak traffic count.  
We are not able to include a vertical separation standard correction because the PDARS summary data does not 
provide altitude change information.   
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Figure 8. Peak traffic on 1/21/07 and model values for 25 ZNY sectors. 

We used the scoring scheme of Figure 1 to first quantify the quality of the fit between the PDARS peak data and 
the model, and then between the PDARS peak data and the MAP rule.  The overall model score and the MAP rule 
score are identical.  The model results in more close-fit sectors, but the MAP rule results in more perfect fits.  

For small sectors the model bounds the PDARS peak counts better than the MAP values because it accounts for 
growth in conflict workload with traffic density.  The model generally exceeds the PDARS peak counts for larger 
sectors.  The eighteen-aircraft MAP limit for sectors with long transit times tends to under-estimate the model 
predictions of actual safe capacity for large sectors. 

V. Model Applications 
The model provides a framework for understanding the capacity benefits of proposed new air traffic 

management technologies and operational procedures.  The success of the model in predicting observed airspace 
loading bounds validates the interpretation of controller workload as a task-based queuing process.  The model 
provides a structure for computing the capacity benefits of any proposed new technology or operational procedure.  
We take it as a fundamental postulate that future air traffic control procedures will continue to require human 
judgment for problem solving.  Thus, research intended to increase capacity can focus either on reducing the rate of 
occurrence of controller tasks, or on reducing the time required to safely complete those tasks.  Given a quantitative 
estimate of the rate or time reduction, the model can provide a numerical estimate of airspace capacity improvement. 

One approach to reducing conflict rates is to improve communication, navigation, surveillance, and flight control 
technologies.  Improving any one of these factors alone may provide some benefit.  However, it has been shown21 
that a combination of improved communication for negotiating trajectories, improved navigation and flight control 
for adhering to trajectories, and improved surveillance for monitoring trajectory conformance could reduce both the 
rate of conflicts and the ease of resolution when they occur. 

Considerable research is proceeding on decision support tools whose main goal is to reduce separation assurance 
service times.22-26  Associated simulation studies have demonstrated significant capacity improvements.  To 
maximize sector capacity, it is important to integrate such tools with technology and procedures that also reduce 
conflict occurrence rates. 

Research also continues on communication technology and decision support tools to reduce inter-sector 
coordination service times.27-29  Such technology might also facilitate intra-sector cooperation so that larger 
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controller teams could share responsibility within each sector.  This would allow the use of larger sectors, which 
would further reduce inter-sector coordination loads. 

The quadratic dependence of conflict rates on traffic density results in a synergistic relationship in which the 
total capacity increase from multiple technological or operational improvements can exceed the sum of the capacity 
increases from the individual improvements. 

In Figure 9 we illustrate this synergy by computing the effect of hypothetical changes in conflict and transit 
workload on the capacity of the total ETMS/CIWS en route airspace.  Here we define capacity as the sum of the 
model capacities for all of the ETMS/CIWS sectors.  This definition is a simplification that does not account for 
regional throughput constraints from network flow.  However, it serves as a useful illustrative construct. 

The bottom curve shows the effect of a postulated reduction in conflict workload.  Specifically, halving conflict 
workload would increase the total ETMS/CIWS capacity by 17%.  The middle curve shows the effect of a 
postulated reduction in transit workload.  Reducing transit workload by 50% would cause the total ETMS/CIWS 
capacity to grow by 32%.  That, plus a halving of the conflict workload, would increase the total ETMS/CIWS 
capacity by 67%, as shown in the upper curve.  The quadratic workload relationship makes this exceed the sum of 
the two individual capacity increases, which is only 49%.  This illustrates the importance of addressing both conflict 
and transit workload. 

An ability to forecast capacity changes under changing operational conditions could help reduce aircraft 
operating costs and improve the efficiency of the controller workforce.  Airspace planners often estimate capacity 
using microscopic workload simulations.  However, the cost and complexity of those models limit their use in 
tactical airspace planning.  The analytical nature of the model allows rapid computation for real-time operational 
airspace redesign.  It has been noted30 that dynamic capacity estimates could help re-route aircraft when storms or 
other disturbances change effective sector volumes, when controllers vector traffic, or when vertical motion 
increases conflict workload.  The model can account for these effects by modifying transit times, airspace volumes, 
closing velocities, and separation standards.  The model results show quantitatively that today’s aircraft count in 
more than half of the ETMS/CIWS sectors peaks at capacity during high-demand summer periods.  This explains 
the disruptive delays that occur when summer storms reduce sector capacities during busy periods. 
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Figure 9. Effect of workload reduction on total capacity increase for all ETMS/CIWS sectors. 

The model also allows us to examine individual workload components for en route sectors.  Figure 10 is a plot of 
the transition and conflict workload components for the ETMS/CIWS sectors when operating at capacity.  The 
scatter is caused by local variations in sector transit time T and vertical separation standard Mv.  
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Figure 10 ETMS/CIWS Sector workload components at capacity. 

These data series have complementary trends because, at capacity, the workload equation is a fixed-sum 
calculation.  Transit workload dominates in sectors larger than about 2,000 cubic nautical miles.  As sector volume 
increases, the conflict workload component decreases, and the transition workload component increases.  High 
traffic densities cause conflict workload to dominate in very small sectors.  This is contrary to conventional wisdom, 
which identifies inter-sector coordination workload as the main barrier to reducing sector size. 

VI. Conclusion 
The Monitor Alert Parameters used to define the peak allowable traffic in en route sectors in the United States 

account only for workload from inter-sector coordination tasks.  We have shown that a more complete model that 
also accounts for workload from conflict avoidance provides a numerical bound for capacity in close agreement with 
peak observed sector traffic.  The analytical nature of the model allows us to infer mean controller service times for 
coordination and separation tasks by fitting against peak traffic counts from large numbers of en route sectors.   

One can improve the model fit by replacing global model parameters with sector-specific parameters based on 
traffic measurements from individual sectors.  We first obtained an exact value for mean transit time by direct 
observation of tracks in peak traffic periods.  We then accounted for increases in conflict workload caused by 
altitude uncertainty by measuring the daily fraction of aircraft tracks with vertical motion.  Both of these metrics 
improved the agreement between observed traffic peaks and the model bound.  We anticipate that a measure of 
traffic flow uniformity will further improve the model fit. 

The agreement between model and measurement proves the hypothesis that workload limits capacity.  The model 
provides quantitative insight into the tradeoff between operational capacity benefits and efficiency costs of changing 
sector sizes.  We have illustrated the use of the model to predict the capacity benefits of hypothetical air traffic 
management technology and operational improvements.  The results indicate that technology and automation aids 
should focus on reducing both transit and conflict workload. 
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