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Abstract 
Under ideal weather conditions, each en route 

sector in an air traffic management (ATM) system 
has a certain maximum operational traffic density 
that its controller team can safely handle with 
nominal traffic flow.  We call this the design capacity 
of the sector.  Bad weather and altered flow often 
reduce sector capacity by increasing controller 
workload.  We refer to sector capacity that is reduced 
by such conditions as dynamic capacity. 

When operational conditions cause workload to 
exceed the capability of a sector’s controllers, air 
traffic managers can respond either by reducing 
demand or by increasing design capacity.  Reducing 
demand can increase aircraft operating costs and 
impose delays.  Increasing design capacity is usually 
accomplished by assigning more control resources to 
the airspace.  This increases the cost of ATM. 

To ensure full utilization of the dynamic capacity 
and efficient use of the workforce, it is important to 
accurately characterize the capacity of each sector.  
Airspace designers often estimate sector capacity 
using microscopic workload simulations that model 
each task imposed by each aircraft.  However, the 
complexities of those detailed models limit their real-
time operational use, particularly in situations in 
which sector volumes or flow directions must adapt 
to changing conditions. 

To represent design capacity operationally in the 
United States, traffic flow managers define an 
acceptable peak traffic count for each sector based on 
practical experience.  These subjective thresholds—
while usable in decision-making—do not always 
reflect the complexity and geometry of the sectors, 
nor the direction of the traffic flow. 

We have developed a general macroscopic 
workload model to quantify the workload impact of 
traffic density, sector geometry, flow direction, and 
air-to-air conflict rates.  This model provides an 
objective basis for estimating design capacity.  

Unlike simulation models, this analytical approach 
easily extrapolates to new conditions and allows 
parameter validation by fitting to observed sector 
traffic counts.  The model quantifies coordination and 
conflict workload as well as observed relationships 
between sector volume and controller efficiency. 

The model can support real-time prediction of 
changes in design capacity when traffic is diverted 
from nominal routes.  It can be used to estimate 
residual airspace capacity when weather partially 
blocks a sector.  Its ability to identify dominant 
manual workload factors can also help define the 
benefits and effectiveness of alternative concepts for 
automating labor-intensive tasks. 

Introduction 
We define the design capacity of a sector as the 

maximum operational traffic density that a controller 
team can safely handle in clear weather with nominal 
traffic flow.  We have extended an existing 
macroscopic workload model to estimate sector 
design capacity.  The result is an analytical model 
that quantifies the workload impact of sector 
geometry, flow direction, and air-to-air conflicts.  
Unlike simulation models, this analytical approach 
easily extrapolates to a range of conditions.   

The capacity of an en route air traffic sector is 
limited more by controller workload than by aircraft 
separation standards.  The capacity of a volume of en 
route airspace based solely on international 
separation standards is much larger than the design 
capacity of an air traffic control sector of the same 
volume [1, 2, 3]. 

Bad weather, altered flow patterns, and other 
conditions can increase controller workload and 
reduce capacity below its design value.  The resulting 
reduced capacity is the dynamic capacity of the 
sector, and by analogy a weighted combination of 
traffic density and other controller workload 
determinants is sometimes referred to as “dynamic 
density” [4].  
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When dynamic density grows such that workload 
exceeds the capability of the controller team assigned 
to a sector, air traffic managers can either reduce 
traffic demand or reconfigure the system to increase 
the design capacity of the airspace.  Reducing 
demand tends to increase aircraft operating costs and 
impose delay.  Reconfiguring to increase capacity 
tends to reduce air traffic management efficiency by 
employing more controller resources per aircraft.  
The most common operational means of increasing 
design capacity in today’s manual system is to 
partition a sector into two smaller sectors, each with 
an independent controller team. 

A number of studies have addressed the process of 
quantifying the air traffic management complexity 
factors that influence controller workload [5, 6, 7].  
Others have demonstrated the feasibility of predicting 
future workload changes based on extrapolation of 
flight plan and trajectory data [8, 9].  Research is also 
under way to quantify and forecast the effects of 
hazardous weather on airspace capacity [10].  
Weather can reduce capacity in two ways.  It can 
simply reduce the available volume of safe airspace 
in a sector, or it can increase control complexity.  A 
focus of current weather capacity research has been 
on predicting airspace blockage [11]. 

To represent the design capacity of en route sectors 
in today’s operational conditions, traffic flow 
managers currently define instantaneous aircraft 
count thresholds based on operational experience.  
While usable in the context of overall decision-
making, these subjective “monitor alert” thresholds 
cannot be extrapolated to dynamic situations because 
they do not always accurately reflect actual sector 
characteristics.  (High aircraft count thresholds are 
sometimes assigned to small sectors, even though the 
resulting aircraft density would become 
unmanageable if the count were to approach the 
assigned number.) 

Airspace designers often employ microscopic 
workload simulations to estimate sector capacity 
[12].  These simulations account for every task 
imposed by a specific set of individual aircraft and 
flow conditions.  The complexities of those detailed 
models limit their use as tactical tools in situations 
where flow conditions can change in real time or in 
which airspace boundaries may adapt dynamically to 
changing conditions. 

Unlike simulation models, an analytical model can 
be quickly extrapolated to a wide range of conditions.  
Extrapolation also allows one to validate the model’s 
parameters by fitting its capacity predictions to peak 
traffic observations for large numbers of sectors.  The 

model quantifies the magnitude of coordination and 
conflict workload and explains observed operational 
relationships between sector volume and controller 
efficiency. 

This model has important potential operational 
applications.  It could support real-time estimation of 
changes in design capacity when traffic must divert 
from nominal routes and it could allow real-time 
estimation of residual airspace capacity when 
weather partially blocks a sector. 

Because the model separately quantifies 
coordination and conflict workload intensity, it can 
help define the benefits and effectiveness of proposed 
future air traffic management automation concepts 
such as those of the Next Generation Air Traffic 
System (NGATS).  NGATS is expected to allow 
more dynamic use of routes and airspace, and to 
apply automation to the reduction of workload.  As 
the NGATS program prioritizes its research efforts, it 
will be essential to understand which types of 
workload dominate in particular situations. 

Task-based Workload Models 
Many of the attributes of a sector and its traffic can 

be expressed in terms of the ways those attributes 
generate tasks for the controller.  If there are J 
distinct tasks, we could express the workload metric 
as 

j

J

j
jG λτ∑

=

=
1

. 

Here τj is the time required to complete task j, and 
λj is the rate of its occurrence.  The model provides a 
physical starting point by viewing the tasks as 
distinct segments of the timeline.  The metric G can 
then be considered “workload intensity” or the 
fraction of the available time in which a sector 
controller is busy executing tasks.  There is a certain 
value Gm at which a controller will feel 
uncomfortable accepting additional traffic.  This 
maximum comfort level defines the capacity of the 
sector. 

Detailed simulation models, such as Eurocontrol’s 
Reorganized ATC Mathematical Model Simulator 
(RAMS) [12], MITRE’s Collaborative Routing 
Coordination Tool (CRCT) [13], or NASA’s 
Center/TRACON Automation System (CTAS) [14] 
define multiple distinct tasks, each with its unique 
weighting time.  Such microscopic models can, in 
principle, provide rich insight into sector design 
considerations and the sources of workload.  
However, their results are difficult to validate and 
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interpret.  A proliferation of task types requires 
regression to generate clear relationships for 
operational use.  One can simplify modeling and 
validation by aggregating all the distinct tasks into 
only a few general types [15, 16].  This macroscopic 
approach provides less detailed information, but is 
appropriate for examining broader design and 
operational issues.  Aggregating the tasks also makes 
it easier to determine model parameters using 
experimental or operational data.  We estimate most 
occurrence rates from the known characteristics of 
the airspace and traffic.  This leaves only a small set 
of unknown task times to be determined by fitting the 
model to peak sector traffic throughput observations. 

Components of the Workload 
Model 

Our aggregated model employs four task types, 
differentiated according to their occurrence 
characteristics.  Most defined controller activities can 
be uniquely and unambiguously assigned to one of 
the four task types. 

The four task types are defined as background, 
transition, recurring, and conflict tasks.  

Background tasks occur without respect to the 
number of aircraft in the sector.  We consider them to 
occur at a mean rate λb and to require a mean time τb 
to complete.  Background tasks include routine 
activities such as configuring displays, coordinating 
with managers and supervisors, maintaining work 
areas, verifying surveillance performance, and 
examining weather forecasts.  These tasks absorb a 
small constant fraction of controller time Gb = τbλb. 

Transition tasks occur each time an aircraft passes 
through the sector.  They include tasks such as hand-
off acceptance, initial contact, familiarization with 
flight plan information, and initial route planning.  
We aggregate transition tasks by considering them to 
require a mean time τt to complete and to occur at a 
mean rate λt.  The occurrence rate of transition tasks 
is equal to the average number of aircraft in the 
sector E[N], divided by the average transit time 
through the sector T.  This rate is thus equivalent to 
the sector throughput: 

λt = E[N]/T. 

Recurring tasks occur repeatedly while each aircraft 
remains in the sector.  These tasks can also be 
aggregated to require a mean time τr to complete.  
They recur at a mean rate λr, where 

λr = Ε[Ν]/P. 

Here P is the mean task recurrence period per 
aircraft.  Recurring tasks include activities such as 
traffic scanning, restricted airspace and hazardous 
weather avoidance, flight plan changes, and status 
updates.  Recurring tasks also include activities 
meant to prevent conflicts, such as conformance 
monitoring and separation planning.   

Conflict tasks occur when there are conflicts 
between two aircraft.  (Although conflicts between 
three or more aircraft are of major concern to 
controllers, this concern is usually triggered by a 
pair-wise conflict.  The multi-aircraft conflict rate is 
too small relative to the pair-wise conflict rate to 
require separate handling.)  Conflict tasks include 
such activities as conflict detection, vectoring for 
conflict resolution, consideration of secondary 
encounters, and post-conflict route recovery.  We 
aggregate conflict tasks by considering them to 
require a mean time τc to complete and to occur at a 
mean rate λc.  For a sector with a particular aircraft 
count Ns, the conflict rate varies as the square of Νs  
divided by the sector volume Q.   

λc = BΝs
2/Q. 

In this equation B is a physical constant based on 
aircraft closing speeds and separation standards [17]: 

B = 2MhMvE[V12], 

where Mh and Mv are the horizontal and vertical miss 
distances that define a separation violation, and 
E[V12] is the expected value of the closing speed. 

In general, the sector traffic count Ν is a random 
variable [18], and λc is proportional to the expected 
value E[Ν2].  If N is Poisson distributed, the variance 
and mean of N are identical, and 

E[Ν2] = (E[Ν])2 + E[Ν]. 

If the local volumetric traffic density is κ, then 

κQ = E[N]. 

The Poisson assumption gives a mean conflict rate 

λc = Bκ(κQ+1). 

Total Workload Intensity 
The total workload intensity G is the fraction of the 

controller’s available time devoted to all four of these 
task types: 

G = τbλb + τtλt + τrλr + τcλc. 

This expands to: 

G = Gb + τt κQ /Τ+ τr κQ /P+ τcBκ(κQ+1). 
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We compute the rate-related terms (κ, T, B, and Q) 
directly from sector geometry and traffic parameters.  
The values (Gb, τt , τr , P, and τc) are all empirical.  
Some work time values have been measured in prior 
modeling efforts: (τc and τt) [16], and (τt) [12].  We 
have determined the remaining model parameters by 
adjusting them to fit the model’s capacity predictions 
to peak sector traffic observations.  This regression 
process is explained below. 

Figure 1 illustrates sample workload results based 
on our estimated and fitted model parameters for a 
typical 10,000 cubic nautical mile (nm3) sector with a 
floor-to-ceiling height of 10,000 ft.  The parameters 
in the figure legend are all defined above.  The mean 
encounter closing speed of 440 kt is based on an 
assumption of two opposing traffic streams with 
randomly located aircraft all flying at a common 
speed of 550 kt, with 72% of the aircraft flying in one 
direction and 28% in the other. 

The graph shows the four individual workload 
intensity components as a function of aircraft count.  
The sum of background, transition, recurring, and 
conflict tasks reaches a nominal Gm comfort limit of 
80% when the sector traffic count reaches 16 (a 
density of 16 aircraft per 10,000 nm3).  A count of 16 
aircraft is typical of the observed peak instantaneous 
traffic count for an en route sector of that volume in 
US airspace.  When this sector operates near 
capacity, conflict workload is the largest workload 
component.  This information can help focus and 
prioritize activities intended to automate the air 
traffic management process. 
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Figure 1. Model workload intensity vs. aircraft 

count for a sector volume of 10,000 nm3. 

Determining the Model Parameters 
The four-component model is an extension of an 

early model by Schmidt [15, 16], which was used by 
the FAA Technical Center to predict sector staffing 
and console requirements resulting from anticipated 
en route traffic growth.  Schmidt’s workload 

simulations suggested a mean τc of 55s of aggregated 
activity for each conflict event and a transition τt 
ranging from 28s to 46s depending on sector type.  
His simulation experiments also indicated that when 
G equaled 80% of the total time available, controllers 
reported that the sector had reached its maximum 
loading Gm.  (Others [12] consider Gm to be closer to 
0.7.) 

The original Schmidt model did not include a 
general means of estimating conflict rates, nor did it 
distinguish recurring tasks from transition tasks.  We 
previously extended the model [17] to allow direct 
computation of conflict rates based on assumptions of 
unstructured flow and Poisson-distributed arrivals.  

We have now added recurring tasks to allow us to 
study the relationship of workload to sector size.  
Understanding this relationship is important when 
validating the model parameters based on measured 
sector traffic data. 

It is not possible to uniquely determine empirical 
model parameters that fit all sector workload 
conditions.  Some important practical conditions that 
can increase workload are not explicitly addressed by 
the model.  We address the more constrained problem 
of determining the traffic count bound Nm that causes 
workload to equal the intensity limit Gm under ideal 
conditions.  Using parameters and traffic flow 
assumptions that minimize workload, we set the 
expression for workload intensity G equal to Gm, and 
invert the quadratic equation to solve for the design 
capacity Nm. 

Analytical Relationship between Design 
Capacity and Sector Volume 

For a region of constant airspace density, the 
recurring and conflict workload components depend 
directly on sector volume.  The transition workload 
component is proportional to the sector volume and is 
inversely proportional to the mean transit time 
through the sector.  Transit time depends on the 
length of the sector.  In fact, en route sectors are often 
elongated in the direction of predominant traffic flow 
with the express purpose of reducing the transition 
workload component.  We exploit this fact to derive 
an informative approximation of the design capacity 
of a sector directly from its volume and shape. 

In a set of sectors of the same floor-to-ceiling 
height, we can relate the longest sector dimension to 
the sector volume by assuming a two-dimensional 
rectangular shape.  Many high-capacity sectors 
approximate rectangles, sometimes elongated by 
length/width ratios as great as four to one.  If we 
assume that all sectors are rectangular, have known 
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lengths, and that flow is entirely longitudinal, we can 
calculate a sector’s capacity directly from its volume 
and its length-to-width ratio.  For a given volume, 
square sectors have less capacity, and elongated 
sectors have greater capacity, but the general 
dependence on volume is identical. 

Figure 2 illustrates the relationship between design 
capacity Nm and sector volume for the same set of 
model parameters used in Figure 1, except that here 
the transit time T varies with sector volume.  The 
figure is based on 10,000 ft high rectangular sectors 
and plots design capacity separately for three 
rectangular length-to-width ratios, 1:1 (square), 2:1, 
and 4:1.  For a sector volume of 10,000 nm3, the 
modeled design capacity increases from about 13 
aircraft for a square sector to about 16 aircraft for a 
sector with a 4:1 length-to-width ratio.  

Capacity does not grow as fast as sector volume.  
Thus, for a sector operating at design capacity, the 
peak volumetric traffic density that the sector can 
handle decreases as the sector grows. 
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Figure 2. Modeled design capacity for 10,000 ft 
high rectangular sectors with length-to-width 

ratios of 1:1 (square), 2:1, and 4:1.  

Monitor Alert Thresholds 
This non-linear dependence of capacity on volume 

is not reflected in current FAA traffic flow 
management sector overload thresholds.  Figure 3 
provides the ETMS Monitor Alert threshold values 
for a subset of en route sectors in the Northeastern 
United States where the Corridor Integrated Weather 
System (CIWS) has been implemented [19]. 
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Figure 3. ETMS Monitor Alert thresholds for 

CIWS sectors 

The threshold values are first-order invariant to 
sector volume.  The most common thresholds are 15 
or 16 aircraft per sector, and these values apply to 
sectors over the entire range of volumes.  It will be 
shown below that a total of 16 aircraft in a small 
1000 nm3 sector would produce an aircraft density 
more than an order of magnitude larger than the mean 
density in the average size en route sector in the 
CIWS airspace.  While this may be of little 
consequence in current traffic planning, it is clear that 
Monitor Alert thresholds are not reliable indicators of 
design capacity.  They over-estimate the design 
capacity of small sectors and under-estimate design 
capacity in large sectors. 

Modeled Design Capacity for CIWS 
Sectors 

Figure 4 plots the model’s capacity estimate Nm for 
each of the sectors in the CIWS domain.   
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Figure 4. Modeled design capacity of individual 

CIWS sectors. 

Variations in sector geometry are responsible for 
the observed variation in modeled values for sectors 
of similar volume.  For example, the model capacities 
vary from 13 to 16 aircraft for those sectors that have 
volumes of approximately 10,000 nm3.  The figure 
shows the shapes of two of those sectors in plan 
views drawn to a common scale.  The elongated 
high-altitude sector ZDC32 (Q = 10,684 nm3, H = 
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9,900 ft, L ~ 170 nm) has a modeled design capacity 
of 16.3 aircraft.  The more nearly square low-altitude 
sector ZTL45 (Q = 10,297 nm3, H = 13,800 ft, L ~ 80 
nm) has a modeled design capacity of 12.9 aircraft.   

Comparing the Model with Peak 
Sector Traffic Measurements 

Our approach to estimating actual design capacity 
is to directly analyze historical sector traffic in clear 
weather.  We have measured traffic counts for all of 
the 455 CIWS en route sectors.  To obtain peak 
traffic counts we average the number of aircraft in 
each sector for each 5-minute period during three 
clear-weather weekdays and select the period with 
the largest count.  Most of the peak counts lie in a 
range between 6 and 14 aircraft (the average is 9 
aircraft).  Many of these counts are less than the 
design capacity because of insufficient traffic 
demand. 

Figure 5 is a color-map of the peak observed traffic 
counts for the low en route sectors in the CIWS 
domain.  An abnormally high 18-aircraft count 
occurred in the Toronto sector.  This sector is unique 
among low sectors in that it extends from ground to 
24,000 ft and includes Toronto’s Pierson 
International Airport. 
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Figure 5. Peak clear-weather aircraft counts for 

CIWS low sectors. 

Figure 6 maps the corresponding sector peak 
aircraft densities in aircraft per cubic nautical mile 
for the same low-altitude en route CIWS airspace.   

There are a number of sectors of higher density 
than Toronto, mainly in the New York and 
Washington Centers.  Although they have lower peak 
traffic counts than Toronto, they have higher 
densities because they have smaller heights. 
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Figure 6. Peak clear-weather traffic densities 

(aircraft/nm3) for CIWS low sectors. 

If the model is correct, the peak traffic count in a 
sector should not exceed the computed design 
capacity for that sector.  To test this hypothesis, 
Figure 7 is a plot of traffic count versus sector 
volume which superimposes the observed peak traffic 
counts on the calculated capacities (From Figure 4, 
above) for all of the CIWS sectors.  

Although most of the sectors operate at peak levels 
well below the modeled design capacity, the 
“frontier” trend for the maximum count at each 
volume is consistent with the model predictions in 
the sense that few sector counts exceed the bound.  
We intend to extend this analysis to other airspace 
regions to verify its generality. 
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Figure 7. Peak traffic counts and modeled design 
capacity versus sector volume in CWIS airspace. 

Complexity factors that are not explicitly related to 
sector volume can increase controller workload.  For 
example, workload may increase when the sector 
experiences a high incidence of ascents and descents 
caused by proximity to airports.  In principle, an 
increase in vertical rates could increase all three 
workload components.  Altitude clearances could 
increase recurring workload.  Transitions between 
higher and lower sectors could increase coordination 
workload.  Increased trajectory uncertainty could 
increase conflict workload.  The model allows one to 
adjust transit times and conflict thresholds on a 
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sector-by-sector basis to account for some of these 
effects. 

The scatter-plot of Figure 8 shows the information 
from Figure 7 in a different way.  Each point on this 
chart directly compares the peak clear-weather count 
and the modeled design capacity bound for a single 
sector.   
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Figure 8. Peak counts vs. modeled design capacity 

for each en route sector in CIWS airspace. 

Only ten sectors have peak clear weather traffic 
counts that exceeded their model design capacity.  Of 
these, only two had clear weather traffic counts that 
exceeded the design capacity bound by more than 2 
aircraft.  The three sectors flagged in the figure have 
high observed counts relative to their model 
predictions.  The count of ZYTC, the Toronto 
TRACON, exceeds the modeled design capacity by 8 
aircraft.  The others are ZOB29, whose count exceeds 
the design capacity by 4 aircraft, and ZDC32 whose 
count exceeds the design capacity by 2 aircraft. 

A number of geometric factors can affect sector 
capacity.  The capacity model accounts for sector 
height as well as length and volume.  Sector heights 
range from 1000 ft to more than 50,000 ft.  If Toronto 
were a normal high sector with 60 mile diameter it 
would have a transit time of about 6 minutes.  Its 
24,000 ft height results in 12 minutes of vertical 
transit time if we estimate a mean vertical rate of 
2000 ft/min.  Its lateral transit time is also increased 
relative to other en route sectors because a significant 
fraction of its aircraft fly below 10,000 ft within 60 
nm of the airport, and are thus limited to speeds 
below 250 kt.  If we assume the mean ground speed 
in the sector is 300 kt, the mean lateral transit time is 
also 12 minutes (60 nm at 300 kt).  A typical aircraft 
in this situation experiences nearly triple the nominal 
6-minute transit time for level flight in a normal en 
route sector. 

Another factor that can increase capacity relative to 
the model prediction is organized flow.  The model’s 
nominal conflict rate calculation provided earlier 
assumes a mean closing speed of 440 kt.  If we 
reduce the encounter closing speed parameter in the 
model from 440 kt to 300 kt and triple the 
TORONTO transit time, ZYTC and ZOB29 are the 
only CIWS sectors with peak counts that exceed the 
model bound, and each has a calculated design 
capacity that is within 2 aircraft of the observed peak 
count. 

Traffic Density of En Route Sectors 
Because design capacity does not increase in 

proportion to sector volume, large sectors cannot 
handle peak traffic densities as high as can small 
sectors.  In fact, the principal means of 
accommodating local traffic density growth in today's 
manual system is to reduce the size of the local 
sectors.  Although small sectors can handle high 
traffic densities, they are limited to small absolute 
aircraft counts.  Sectors of all sizes require 
comparable controller teams when operating at 
maximum sector workload.  Thus, small sectors 
experience lower productivity (peak aircraft handled 
per controller) than large sectors.  

The decreasing traffic density capability of large 
sectors is evident in Figure 9, which plots the 
observed peak densities of the CIWS sectors as a 
function of volume.  The solid line is the calculated 
achievable traffic density for a 10,000 ft high sector 
of rectangular cross section with 4:1 elongation.  The 
highest observed traffic density occurred in the 
smallest sector, which is ZBW33 whose volume is 58 
nm3.  Its peak count was one aircraft (resulting in a 
density of 172 aircraft/10,000 nm3).  This approaches 
an en route airspace traffic density defined solely by 
a 7-mile lateral and 0.2-mile vertical aircraft 
separation limit, which is one aircraft in a volume of 
approximately 30 nm3.  To provide additional 
context, the peak observed instantaneous traffic 
density of the entire CIWS high sector airspace 
volume was 749 aircraft in 2,050,893 nm3 or 1 
aircraft in about 2700 nm3.  This is a relatively low 
air traffic density. 
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Figure 9. Traffic density of en route sectors. 

Variation of Modeled Workload Intensity 
Components with Volume 

Figure 10 plots the model workload intensities of 
the conflict workload, transition workload, and 
recurring workload components as a function of 
sector volume for 4:1 rectangular sectors with 
optimal longitudinal flow when operating at capacity.  
(We omit background workload because it is 
invariant to sector volume.)  All the model 
parameters are as in Figure 2. 
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Figure 10. Variation of workload components with 
sector volume (4x1 rectangular sectors operating 

at design capacity). 

When this hypothetical optimal sector operates at 
capacity, the conflict workload component Gc 
dominates for all sector volumes.  (Transition 
workload will increase relative to conflict workload 
in sectors with less favorable flow.)  As a sector of 
fixed altitude and shape becomes smaller, the 
available airspace drops faster than the peak traffic, 
causing a growth in density and thus conflict rate.  
The transition workload component Gt is proportional 
to sector capacity Nm divided by transit time T.  It 
remains relatively invariant to volume because sector 

capacity and transit time both increase approximately 
as the square root of sector volume.  The recurring 
workload component Gr is proportional to sector 
capacity Nm.  It thus increases roughly as the square 
root of sector volume. 

Other Capacity Models and Parameters 
As noted previously, the original Schmidt model 

[16] included only two workload types: a routine 
workload component equivalent to our transition and 
recurring workload and a conflict component.  Rather 
than calibrating model parameters based on sector 
capacity data, Schmidt used real-time controller 
simulations to estimate the model service times.  The 
observed controller transition service time τt for “low 
arrival” sectors was 46s, and τt for “high transition” 
sectors was 28s.  The controller conflict service time 
τc was 55s for all sectors. 

Figure 11 compares model design capacities for 
three cases: our model with service times fit to CWIS 
sector data, Schmidt’s low sector model, and 
Schmidt’s high sector model.  The figure assumes 
sectors of fixed height and shape in which transit 
time varies with sector volume. 

0

5

10

15

20

25

30

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000

Sector Volume (nm3)

Se
ct

or
 T

ra
ffi

c 
(a

irc
ra

ft 
co

un
t)

Schmidt low: τt = 46s, τc = 55s, τr = 0

Schmidt high: τt = 28s, τc = 55s, τr = 0

Best fit:  τt = 15s, τc = 50s, τr = 2s

 
Figure 11. Design capacity comparison for 10Kft 
high, 4x1 rectangular sectors, from three models. 

Schmidt’s high-sector result agrees closely with 
ours.  Because he does not include an explicit 
recurring workload component, his result tends to 
overestimate capacity for larger sectors and 
underestimate capacity for smaller sectors. 

Schmidt’s low-sector result gives significantly 
lower design capacity.  If valid, this would imply that 
transition workload dominates in low sectors, 
whereas conflict workload dominates in high sectors.  
The two types of sectors would thus have different 
priorities for ATM task automation. 

Although we have not separately analyzed low 
arrival sectors, we have compared the peak traffic 
counts of all low, high, and super-high sectors in the 
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CWIS domain.  We observe a slightly lower capacity 
in low sectors that implies a transition service time of 
20s (compared to 15s for high and super-high 
sectors).  Taken alone, this 5s increase in τt would not 
cause transition workload to dominate in low sectors.  
However, transition workload would be expected to 
dominate low sectors that are not elongated or that 
have significant transverse flow. 

Majumdar determined the effect of vertical rates on 
throughput using data from the Eurocontrol RAMS 
simulation [12].  The Majumdar model used peak 
sector throughput (in units of aircraft per hour) as a 
measure of sector capacity for aircraft in level flight.  
His level-flight throughput value (derived from 
subjective controller estimates for a single busy 
European sector) was T = 54 aircraft/hr/controller.  
Because throughput is simply the transition rate, it 
has the same weak dependence on sector volume that 
appears in the transition workload intensity curve of 
Figure 10.  Numerical throughput values predicted by 
our workload model are consistent with Majumdar’s 
value, but throughput does not account for conflicts 
or recurring tasks and is thus not a sufficient indicator 
of design capacity. 

Figure 12 compares the predictions of Majumdar’s 
constant-throughput model with the CIWS traffic 
data.  The model does not fit the observed traffic data 
because its predictions depend only on sector length. 

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000

Sector Volume (nm3)

Se
ct

or
 T

ra
ffi

c 
(a

irc
ra

ft 
co

un
t)

Majumdar constant throughput model design capacity

Peak clear-weather traffic count

 
Figure 12. Constant-throughput model design 

capacity compared to CIWS peak traffic counts. 

Conclusions 
A macroscopic workload model that uses 

operationally reasonable parameters can provide 
design capacity estimates that fit observed peak 
traffic data for a wide range of sectors shapes and 
volumes.  The quality of the agreement is significant 
in view of the simple nature of the model.  

The model explains important observed operational 
relationships such as the approximate square-root 

relationship between sector capacity and volume and 
the relationship of capacity to sector length. 

The design capacity model can be used for refining 
flow management alert thresholds and for guiding 
storm re-routing by providing individual sector 
capacity estimates that account for anticipated flow 
direction.  Sector workload estimates will also help 
analyze the benefits of air traffic management 
automation, and prioritize ATM automation research 
by identifying manual tasks with higher workload. 
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