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1. Introduction 

Detection* and forecasting of convective 
initiation (CI) is an important problem, not only 
for aviation related purposes, but across all 
forms of business and general recreation.  For 
aviation in particular, hazards related to 
thunderstorms, such as lightning, hail, strong 
winds and wind shear, are very costly to airlines 
through delays and wasted fuel in the events of 
holding or diversions.  Current nowcasting 
systems, such as MIT Lincoln Laboratory’s 
Corridor Integrated Weather System (CIWS) 
(Wolfson et al. 2006) rely heavily on the 
tracking and trending of existing radar 
signatures of precipitation intensity and storm 
heights to produce forecasts, and as a result, 
often struggle with predicting new storm 
growth.  Improving this capability is the subject 
of this work. 

The use of visible and infrared satellite 
observations to assist in the nowcasting of CI 
has received a great deal of attention in the 
past decade.  Specifically, two Geostationary 
Operational Environmental Satellites (GOES), 
GOES-13 and GOES-15, provide real time 
capabilities for monitoring the growth of small 
cumulus as they grow to the cumulonimbus 
scale, and as a result, are useful for identifying 
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clouds that will likely develop into hazardous 
storms before the presence of radar signatures.  
The Satellite Convection Analysis and Tracking 
(SATCAST) system was developed to use visible 
and infrared observation to predict CI in real-
time (Mecikalski et al. 2006).  SATCAST 
calculates eight satellite-based CI indicators at 
each satellite pixel. Each indicator is assigned a 
value of 1 if it is within a pre-defined threshold, 
and a value of 0 if it is not. Each pixel is then 
assigned a 0 to 8 “score” based on the number 
of CI indicators that fall within the given 
threshold, with higher scores indicating higher 
confidence in CI. For more information on the 
use of GOES imagery and SATCAST, see Section 
2.2. 

In addition to satellite observations, 
environmental parameters, e.g. Convective 
Available Potential Energy (CAPE), can also help 
in identifying areas where the atmosphere is 
unstable and prone to formation of new 
convection.  In 2011, a CI capability was added 
to the CIWS 0-2 hour forecast that uses 
SATCAST in combination with environmental, 
numerical weather prediction model output 
winds, temperature, and moisture, and 
additional satellite data to incorporate CI into 
the CIWS deterministic forecast (Iskenderian et 
al. 2010).  This algorithm uses a Fuzzy Logic 
based algorithm that combines the 0 to 8 score 
of SATCAST indicators together with 
environmental factors to produce an 
automated 0-2 hour nowcasting capability for 
CI.  While this algorithm provides additional 
forecast lead for a number of initiation events, 
it has some known drawbacks.  Namely, the 
Fuzzy Logic requires extensive hand tuning 
which can be time consuming and expensive.  
The Fuzzy Logic system has also been observed 



to be overly conservative in instances where 
initiation of storms occurs away from existing 
convection.   The algorithm also does not use a 
wealth of information that is potentially 
contained in the full distribution of the SATCAST 
indicators. Finally, the algorithm is somewhat 
inflexible to new or additional data, as each 
new predictor of CI will require a new set of 
Fuzzy Logic parameters to be carefully tuned for 
optimization.   

In this study, we develop a machine learning 
approach for nowcasting CI with the goal of 
improving the CIWS system.  This algorithm 
generates fine scale (1 km) forecasts of 
Vertically Integrated Liquid (VIL) for new storm 
growth up to 1 hour lead times.  Similar to the 
Fuzzy Logic algorithm, this uses input from 
GOES and information about environmental 
stability; however the machine learning 
framework will, in theory, make optimal use of 
all available predictors and enable the model to 
easily incorporate new predictors as they 
become available.  In particular, this approach 
allows for numerical model output to be added 
to the list of predictors to improve the 
detection of CI.  Section 2 describes the current 
set of predictors in more detail. 

This is not the first attempt to use machine 
learning methods to forecast CI.  For example, 
Random Forests have been utilized to identify 
regions where CI is likely based on a large 
number of predictor fields (Williams, et. al. 
2008).  However, the approach described here 
is different and unique in several ways.  First, 
the forecast generated using the methodology 
described here is deterministic (explicit 
forecasts of new storm locations) as opposed to 
creating broader probabilistic regions of new 
storms.  Additionally, the training methodology 
is modified, both in the way training data is 
obtained, and the machine learning methods 
which are used.  Finally, the number of inputs to 
the models used here is kept relatively small, 
since this model is designed to be run 
operationally, and hence it is desired to have as 

few inputs as necessary to ensure consistent 
and reliable forecasts. 

This paper is organized as follows.  In Section 2, 
we describe the set of inputs used in the 
machine learning model, and divide them into 
three categories: environmental input, satellite 
input, and numerical models.  Next in Section 3, 
the machine learning methods being 
investigated are described.  In Section 4, the 
training methodology is described, and Receiver 
Operating Characteristics (ROC) and indicator 
importance results are discussed.  The 
performance of the machine learning models is 
discussed in Section 5, and future work is 
discussed in Section 6.       

2. Input Data 

In this section, the data used to predict CI are 
discussed in more detail.   

2.1 Environmental 

Lincoln Laboratory has created an 
environmental stability mask to help identify 
broad regions where CI is likely to occur 
(Iskenderian et al. 2010).  This field is created 
from two sources of data: NOAA’s Rapid 
Refresh (RAP) model provides upper-air 
temperature, moisture and winds, and NOAA’s 
Variational Local Analysis and Prediction System 
(V-LAPS, formerly known as STMAS), (Xie et al. 
2005) provides 5-km analyses of dry bulb 
temperature and dew point temperature from 
surface observations every 15 minutes.  These 
two fields are used in CIWS to create a stability 
mask by blending the V-LAPS dry bulb 
temperature and dew point temperature with 
RAP data in approximately the lowest 50 hPa.  
This process updates the lowest altitudes of the 
RAP with surface observations to account for 
several hours of RAP forecast latency.  The 
convective available potential energy (CAPE) 
and departure of the dry bulb temperature 
from the surface convective temperature are 
calculated from this blended data and 
combined to create the surface stability mask.  
Areas of high CAPE and small departure from 



dry bulb temperature from the convective 
temperature are favored for CI and are 
highlighted in this mask. 

2.2 Satellite 

Satellite data has been widely studied as an 
indicator of CI.  Examination of GOES satellite 
data in Roberts and Rutledge (2003) in cases of 
CI has shown that the cumulous cloud top 
cooling in the 10.7 micron infrared (IR) 
brightness temperatures are a strong indicator.  
In addition, Mecikalski and Bedka (2006) 
combined the 10.7 micron cooling rate in 
addition to other IR brightness temperatures 
and band differences (including the 13.3 and 6.5 
micron channels) in the SATCAST system to 
create real-time CI interest fields derived from 
GOES data.  This system combines three 
components to create satellite based indicators: 
a cloud mask component (Berendes et al. 2008) 
to classify cloud types, a cloud tracking 
component (Velden et al. 1997) to derive cloud 
motion vectors, and a third component which 
combines the cloud type and tracking, and 
various IR brightness temperatures to create a 
set of CI interest fields. 
 
In addition to satellite processing involved with 
SATCAST, the visible satellite image is smoothed 
with a 25 X 25 km Gaussian kernel and the 
smoothed image is subtracted from the original 
image. This results in an image known as the 
“peaky” interest field which highlights small 
features with high texture (i.e. reflectance 
peaks in the visible imagery) such as cumulus 
clouds, and de-emphasizes areas of low small 
scale texture, such as stratus and cirrus clouds 
(Iskenderian et al. 2009).         
 

2.3 Numerical Model 

Numerical model forecasts can be powerful 
predictors of CI since they combine numerous 
observations in a dynamical framework to make 
a weather forecast.  These forecasts are 
incorporated into the 0-2 hour forecasts 
through the methods described below. 

Two numerical model forecasts are currently 
used to assist in forecasting CI.  The first model 
forecast considered is from the Localized 
Aviation Model Output Statistics (MOS) 
Program’s (LAMP) thunderstorm probability 
forecast (Ghirardelli, 2005). This product 
provides a probability of one or more cloud to 
ground lightning strikes in a 2 hour period in a 
20 km grid box.  For this study, the most 
recently available 2-hour LAMP forecast, issued 
at least an hour prior to the issue time, is used 
for predicting CI.  LAMP forecasts are generated 
using a multiple linear regression of several 
predictors of lightning, which include (but are 
not limited to) surface observations, Global 
Forecast System (GFS) model output and 
climatological variables.  

In addition to LAMP, NCEP's time lagged North 
American Rapid Refresh Ensemble Forecast 
System (NARRE-TL) is another numerical model 
included as a predictor of CI (Zhou, 2011).  The 
NARRE-TL provides a forecast of the probability 
of convective precipitation and is produced 
hourly.  Unlike the LAMP, this product is 
computed from a 10-member time lagged 
ensemble that includes six RAP and four North 
American Mesoscale Forecast System (NAM) 
model forecasts.   

3. Machine Learning Methods 

The methods described in general terms below 
each take as input a vector containing a fixed 
number of “features” which have been 
extracted from the set of all input images 
available (satellite, environmental, and 
numerical model) and outputs a probability that 
CI will result in the next 0-2 hours.  Three 
machine learning techniques were investigated, 
Logistic Regression, Artificial Neural Networks, 
and Decision Tree Ensembles†.  The probability 
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output by these models is used in the 0-2 hour 
forecast to create a deterministic forecast.  In 
the following,             denotes a vector 
of   numerical features derived from the set of 
input images.  The details of the feature 
extraction are discussed in Section 4.    

The implementations of these algorithms for 
testing use the C++ open source Numerical 
Analysis package ALGLIB (Bochkanov & 
Bystritsky, http://www.alglib.net/).  This 
package was chosen because it is convenient, 
easy to use, and it provides solid 
implementations of the methods described 
below. 

3.1 Logistic Regression 

The simplest model considered here, Logistic 
Regression (LR), is a generalized linear model 
that estimates the probability of convective 
initiation using the logistic function evaluated at 
a linear combination of the input features,  

           

        
 

                      
  

The weight vector             is chosen to 
minimize the cross-entropy error function over 
the training set, which is defined as      

                            

          , where the   ’s represent vectors in 

the training set and the   ’s represent the 
associated binary variables which are 1 if CI 
occurred, and 0 if it did not.  LR can be viewed 
as a simplified version of an Artificial Neural 
Network with no hidden layers. 

Logistic regression has the advantage of being 
simple and fast to train, which is desirable when 
running on a real time system.  In addition, the 
minimization procedure detailed above has a 
global optimum which is always achieved 
without the need to define any stopping 
criteria, meaning no hyperparameter tuning is 
necessary.  The downside of this algorithm are 
that it uses only a linear combination of the 

input features, and hence will not perform well 
if the CI outcome depends non-linearly on the 
set of input features.   

3.2 Artificial Neural Networks 

In order to account for the possibly non-linear 
relationships involved in CI processes, we also 
consider Artificial Neural Networks (ANN) for 
estimating CI probability.  While there are many 
network architectures possible, the architecture 
used here is a single feed-forward network with 
one hidden layer, and two output neurons.  The 
input layers uses a non-linear (sigmoid) transfer 
function, and the hidden layer uses a linear 
transfer function with a softmax normalization 
to ensure the outputs can be interpreted as 
probabilities.    Mathematically, if   denotes 
the number of hidden neurons, then the ANN 
computes the probability of CI,      given a 
feature vector             as 

             

 

   

            

            

 

   

           

    
        

                
  

Here,                    is the standard 
sigmoid function.  The weight vectors 
                 for         and 
                 for       are chosen to 

minimize mean squared error (MSE) over the 
training inputs when this network is fit to the 
training output     if CI occurred, and      
if it did not.  

For training an ANN, a number of 
hyperparameters need to be set.  These 
parameters include the number of hidden 
neurons  , as well as stopping criteria like the 
maximum number of iterations to perform 
during optimization, and a stopping tolerance 
for the change in MSE after each step.  For this 
study,     the maximum number of 

http://www.alglib.net/


iterations was 10,000, and tolerance on change 
in MSE was set to 0.01.   

ANNs have the advantages that they can fit to 
highly non-linear functions and have been 
proven to be quite successful for many 
applications.  However, due to the large 
number of network structures available and 
hyperparameter tuning, finding the optimal fit 
can be difficult when compared to simpler 
models such as LR.  Moreover, noisy training 
data can lead to over fitting if the optimization 
step finds a local minimum in the objective 
function.  It is important to keep these 
drawbacks in mind while training. 

3.3 Decision Tree Ensembles  

Ensemble based learning, where multiple weak 
classifiers (base learners) are combined to 
improve overall predictive performance, has 
been shown to be effective in several areas of 
supervised learning.  Leo Breiman applied this 
idea using simple decision trees as base 
learners, and coined the term Random Forest to 
describe the resulting ensemble classifier‡ 
(Breiman, 2001).  In a decision tree ensemble, a 
number          of decision trees are trained 
on subsets of the training data drawn at 
random from the original training set.  Each tree 
uses only a subset of          features out of 

the full list of features in the feature vector   at 
each node, and is typically grown to completion 
with no pruning.  For a new input feature 
vector, each tree of the ensemble casts a vote 
(CI or no CI), and a final probability of CI is 
obtained from the proportion of positive CI 
votes over the ensemble.  

Similar to ANNs, decision tree ensembles can fit 
non-linear functions.  These algorithms are fast 
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done in ALGLIB differs slightly from Breiman and 
Cutler’s original Random Forest implementation, but 
the overall steps described here remain the same.  
For a more specific description, the reader is 
referred to the documentation of ALGLIB found on 
their website. 

to train, and in contrast to ANNs, do not require 
stopping criteria parameters to be set.  As far as 
shortcoming of decision tree ensembles, they 
have been observed to be prone to over-fitting 
(Segal, 2004), especially with noisy training 
data.  The hyperparameters required to be set 
include        and       , as well as the 

proportion of the training set to use for growing 
each tree.  The values used in this study for 
these parameters were           , 
       , and 60% of the training set for 

growing each tree.      

One further benefit of the decision tree 
ensembles is that they provide a useful 
measure of predictor importance.  While there 
are multiple techniques for measuring 
importance, the method used here computes 
the Gini Importance measure, which is a 
measure of “impurity loss” ensemble for each 
input feature over all nodes of the tress in the 
final ensemble.  If a feature possesses a large 
Gini Importance, then nodes split using this 
feature did a better job distinguishing CI events.        

4. Training and Implementation 

This section describes the procedure for 
constructing the training set used to configure 
the models described in Section 3, namely, how 
to automatically extract the features from the 
available satellite, environmental and numerical 
model data, and how to classify these points as 
“CI” or “Not CI”.   

4.1 Identification of CI Regions 

In order to train the machine learning models 
discussed in Section 3, we start by identifying 
regions in which CI is going to occur in historical 
data.  Particularly, we seek regions which 
transition from containing no radar signature, 
to a VIL observation of Level 3 and above, 
within a time span of less than an hour.  To find 
such regions, radar images of VIL close in time 
are time aligned using a backwards advection 
technique so that regions of CI become 
apparent.  Let    and        denote the time 



stamps of two VIL images to be used for 
identification of CI regions.  Motion vectors 
derived using the CIWS cross-correlation 
tracking module at time       are rotated 

     and the VIL valid at       is advected 
backward using these vectors over    minutes.  
At this stage, storms that existed at    which 
were simply advected to time       will be 
approximately aligned in space, and can be 
discarded using a simple masking procedure.  
Backward advected pixels from time       
which are VIP Level 3+ and do not lie near 
existing VIP Level 3+ are tagged as new storm 
growth.  Regions which contain no VIL in the 
radar signature in either image, or which 
contain storms which existed in the time    
image are tagged as “Not CI”.  Typically, a time 
lag of       minutes is used, and backwards 
advected storms must be more than 45 km 
away from existing convection to be considered 
as new growth.  See Figure 1 for a visual 
summary for this procedure.   

 4.2   Cloud Clustering and Feature Extraction 

After identifying general regions where CI has 
and has not occurred, the next step is to look at 
the neighboring clouds from the visible satellite 
imagery, namely, cumulous clouds which may 
be in the early stages of storm development, 
but do not yet possess a radar signature, and 
gather data within these clouds in order to 
search for patterns of CI in the data.  In order to 
do this, we start with the SATCAST Convective 
Cloud Mask, which classifies pixels of the visible 
satellite image into categories (Berendes et al. 
2008).  Since we are interested in CI, we only 
use pixels inside this mask which fall into the  
Small Cumulus, Developing Cumulus, or 
Towering Cumulus categories.  Once other 
cloud types (Thin and Thick Cirrus) are removed, 
the remaining clouds are broken down into 
clusters using the Mean Shift image 
segmentation algorithm (Comaniciu & Meer, 
2002) as shown in Figure 2(c), (d) and (e).   

Figure 1: Visualization of the method used for identifying regions of CI.  Consecutive VIL mosaics, (a) and (b), are time aligned 
by rotating storm motion vectors shown in (c) 180 degrees and using these for advection for    minutes, (d) and (e).  The 
backwards advected image is compared to the earlier VIL image in (a) with a masking procedure to label regions as CI regions or 
Non-CI regions, shown in (e).      



The Mean Shift algorithm partitions large 
contiguous groups of clouds into clusters based 
on their spatial density and cloud category.  This 
clustering step uses a spatial band width to 
perform clustering, which can be interpreted as 
the approximate average size of the cluster, 
though clusters will vary in size and shape.  
Clusters which fail to meet preset size criteria 
are discarded.  The goal of the clustering is to 
automatically partition large areas of cumulus 
into smaller non-overlapping groups such that 
training data can be collected within each.  The 
fact that resulting clusters are non-overlapping 
is important, because this ensures the training 
data does not contain duplicate data from the 
input images.  This helps avoid over fitting when 
training the machine learning models. 

Once clusters have been computed, 
environmental, satellite and numerical model 
fields are sampled from underneath each 

cluster.  Initially, several statistical features are 
gathered, e.g. mean, standard deviation, 
minimum, maximum, and several percentiles of 
the distribution under the cluster.  If a predictor 
field is unavailable, or does not contain valid 
data within a cluster, the cluster is discarded.  
Finally, each cluster with valid data is labeled as 
“Near CI” or “Far from CI” using the CI region 
map described in Section 4.1, and clusters 
which fall in regions of existing convection are 
discarded.  This full list of features together 
with the CI classification is saved to a database 
for later analysis. 

4.3 Feature Selection and Receiver Operating 
Characteristics 

The processes described in Sections 4.1 and 4.2 
are performed over several weeks of data 
during the summer of 2012 to construct a 
training set containing thousands of points, 

Figure 2: Satellite imagery is broken down into cloud clusters by identify candidate cumulus clouds, and forming clusters 

using a mean shift segmentation. In (a) and (b), a growing line is shown.  The cumulous clouds are broken into clusters, 

which are represented by different colors in (c), (d) and (e).  The blue contours represent regions of imminent CI detected 

through the backwards advection process (Figure 1), and the red contour represents existing convection.  The resulting 

clusters are then labeled “CI” or “No CI” based on their vicinity to the CI regions, as seen in (d) and (e).  Clusters near existing 

convection are not included in the training set. 



both near developing CI and far from it.  At this 
point, the database contains a large number of 
features extracted from the distribution of 
predictor fields within each cloud cluster 
derived during sampling.  Before training any 
models, some preprocessing of the data set is 
performed.  Clusters over the ocean are 
discarded in order to focus the training on land 
based CI.  In addition, clusters which fail to fall 
in a region of sufficient environmental 
instability are also discarded, since this will 
force the model to focus more in the more 
difficult situations of broad instability, and will 
avoid false alarms from happening in regions 
where the environment is not suitable for storm 
growth.   

In order to trim down the large list of features 
under consideration as predictors, the 
importance of various features was measured 
using decision tree ensemble Gini Importance 
method described in Section 3.3.  A sample of 
the most important features is shown in Figure 
3.  In addition to the important features, a 
“control” feature was added to the training set 
which consists of a vector of random numbers 
which are independent of the training set.  This 
is used as a baseline to determine which 
features truly contribute to the results, that is, if 
a feature does not out-perform a random 
feature, it is not used in the final training.  
Features that are highly correlated with other 
features are also discarded as they add no 
further value to the classification and tend to 
bias the importance results.   

From Figure 3, the satellite indicators, 
particularly those associated to the 10.7- m 
channel and the local spread of the satellite 
peaks field, score high on the importance 
measures.  Observe also that the importance of 
the environmental instability is not as large as 
one might expect, however this is due to the 
preprocessing step where clusters in a region 
with low environmental instability are removed 
before the model is trained.  The LAMP forecast 
also proves to be a favorable indicator of CI, 

trailed by the NARRE-TL, which also adds value 
to the classification.   

 

Figure 3: Feature importance as measured by the 
Decision Tree Ensemble.  The colors represent the 
different data categories, satellite, numerical models and 
environmental.   The control variable (shown in grey) is a 
random feature which is used as a baseline importance.  
The importance measure used is Gini importance, which 
quantifies the contribution of each predictor for classifying 
CI. 

After the preprocessing and feature selection, 
the indicators shown in Figure 3 are used to 
train the models discussed in Section 3.  The 
final training set used for the results below 
consisted of approximately 3000 near CI 
clusters, and approximately 12,000 far from CI 
clusters, which were collected randomly over 
the summer of 2012.  A small subset of this 
training set was withheld for testing, and the 
models were trained.  A ROC curve, showing the 
performance of these models on the testing set 
is shown in Figure 4.    

Of the three methods, the decision tree 
ensemble appears to perform the best, 
however not by a significant amount.  Overall 
performance can be measured by the area 
under the ROC curve (AUC), averaged over a 10-
fold cross validation by withholding different 
subsets of the training data for testing.  The 
results of this cross validation are 0.841 for 
Decision Tree Ensembles, 0.821 for Artificial 



Neural Networks and 0.809 for Logistic 
Regression.  The differences in the outputs of 
the cross validation are significant to the 5% 
significance level.     

 

Figure 4: ROC performance of the three models described 
in Section 3 for predicting CI.  The models were trained 
and applied to a separate testing set withheld during 
training.  The decision tree ensemble shows the best 
performance, followed by neural networks and logistic 
regression. 

4.4 Real-Time System Implementation 

The models listed in Section 3 are each 
configured to run on the Lincoln Laboratory 
real-time research system and are used to 
create a deterministic CI forecast.  New 
forecasts are generated every 5 minutes.  The 
inputs listed in Section 2 are ingested in real 
time, and are time aligned to the current 
forecast time stamp if necessary.  Satellite 
products are discarded if they become more 
than 15 minutes old.  Numerical model 
products are ingested hourly, and are discarded 
if they become more than an hour old.  
Currently, only GOES-E is used in this study and 
as such, CI is added to the forecast only east of 
the Rockies. 

Similar to training, only areas with developing 
cumulus clouds (small, developing or towering) 
are processed, which ignores a large proportion 
of the domain and provides a real time 
computational speed-up.  Additionally, pixels 
which fail to meet a preset environmental 
stability threshold are ignored.  Around each 
pixel, a circular kernel is used to gather all 
neighboring pixels containing cumulous clouds, 
and the same features used to train the models 
are extracted from all predictor fields.  The size 
of the kernel was chosen to match the average 
size of the clusters formed in the training 
process.  The vector of extracted features is 
passed to the trained machine learning model 
which generates a probability of CI at each grid 
point.  If this probability exceeds a preset 
threshold, that pixel is activated in a CI Interest 
field which is used to grow new convection in 
the 0-2 hour forecast.  The details of how new 
storms are added to the forecast in the CIWS 
system are not described here (Iskenderian, et 
al. 2010). We found it important to choose a 
conservative threshold range because even a 
small to moderate false alarm rate can be 
detrimental in a deterministic forecast for an 
aviation application.   

 

5. Results 

This Section provides some results of the 
various machine learning algorithms described 
previously.  Some case studies are presented, 
and then statistics gathered over a larger 
sample of days is discussed. 



Figures 5 and 6 show examples of a 1 hour 
forecast with the new CI module, the 2011 
version of CIWS with the fuzzy logic module, 
and the radar measurements of VIL for 
verification.  Figure 5c shows the results of a 1 
hour forecast over the southern US where the 
Decision Tree Ensemble model detected storm 
growth over Arkansas and Mississippi before 
any radar signature was available, and shows a 
noticeable improvement over the previous 
version of CIWS (Figure 5d), which was unable 
to detect the new storm growth far from the 
existing VIL Level 3+ growth.  Despite the 
improvement, the difficulties in forecasting 
convective initiation are also apparent in this 
case, namely the phase errors observed in this 
forecast caused partially by the lack of reliable 
storm motion vectors at forecast time, and 
difficulty in time aligning satellite images with 

radar images.  These factors should be weighed 
when assessing accuracy of these forecasts.  
That being said, the storms introduced into the 
forecasts give the character and approximate 
location of the severe weather, which we feel 
provides significant benefit for CIWS users.   

Figure 6 shows a high aviation impact case over 
the Northeast where the Decision Tree 
Ensemble detected a large line of storms 
growing over Pennsylvania, New York, 
Connecticut and Massachusetts.  The 
improvement over the previous version of CIWS 
is clear, especially in the storm growth in 
western and northeastern Pennsylvania.  The CI 
module could admittedly have been more 
aggressive in this case; however the addition of 
new storms would likely have given some 
warning and alleviated some of the burden on 
aviation planning.      

Figure 5: Example of CI added to the 0-2 hour forecast using the Random Forest.  The left column shows radar VIL at 1630 
UTC August 16

th
 2012(a) and 1 hour later (b).  The right column shows a 1 hour forecast with the Decision Tree Ensemble (c) 

and the CIWS forecast without any machine learning model (d) valid at 1730 UTC.  The Decision Tree Ensemble correctly 
predicted CI (circled) throughout southern Arkansas and northern Louisiana, however was unable to capture the air mass 
storms that develop over northwestern Mississippi.      



To obtain statistics over a larger number of 
cases, seven days during the summer of 2012 
were chosen to test the new algorithm.  These 
days were chosen because they exhibited 
substantial new storm development, and were 
cases where the 2011 version of CIWS showed a 
low bias.  To measure improvement in the 
forecast, CSI and Bias are measured over the 
convective portion of the day and averaged 
over all days for each valid time.  Forecasts 
were scored only in areas of VIP Level 3 and 
above, because these are the areas of aviation 
impact.  Due to the phase errors and time 
alignment issues observed in the case studies, 
prior to computing the CSI, forecast and truth 
images are mapped to a 21 km domain. 

The parameters used in these simulations, 
which include the settings for model training, 
and the probabilistic threshold used to initiate 

CI in the forecast, were set based on the ROC 
results in Section 4.3.  As a result, the Decision 
Tree Ensemble ended up having a lower (more 
aggressive) probabilistic threshold than the 
ANN or LR, and this is evident in the bias results 
discussed below.  Prior to running simulations, 
it is difficult to know if the parameters which 
performed best in the ROC setting would 
continue to perform well when used to 
generate a deterministic forecast since other 
factors such as phase error and growth and 
decay rates which impact the CSI score are not 
captured by the machine learning models.  In 
the future, more simulations using different 
settings need to be run in order to optimize 
these choices.      

Figure 7 shows the comparison of CSI scores for 
the three machine learning models considered 
here normalized to the CSI of the 2011 version 

Figure 6: Another example of the CI module over the Northeast on a high aviation impact case.  The left column shows radar 
VIL at 1630 UTC on July 18

th
 2012 (a) and 1 hour later (b).  The right column shows a one hour forecast with the Decision Tree 

Ensemble (c) and without any machine learning model (d).  In this case, the Decision Tree Ensemble model produced a better 
forecast the storms about to grow over western and northeastern Pennsylvania. 



of CIWS.  These scores are for 1 and 2 hour VIL 
forecasts.  The real benefit of the models can be 
seen in the 2 hour forecast scores while for 1 
hour forecasts, the CSI shows variable results, 
with a slight improvement seen in the ANN and 
LR models in the earlier portion (17-20 UTC) and 
slightly degraded performance later on.  The 
Decision Tree Ensemble, which had the most 

aggressive settings, did not perform as well for 
1 hour forecasts.  For 2 hours, it is clear that 
each of the three methods show improvement 
over CIWS over the convective portion of the 
day (18 – 22 UTC).  All three models perform 
well in this case, though the Decision Tree 
Ensemble performed best on average for the 

Figure 7: Average CSI by time of day for the three different machine learning models.  Forecasts and VIL mosaics used for 
validation are first mapped to a 21 km grid and the CSI is computed for VIP Level 3+. For 1 hour forecasts, a small improvement 
is seen for the earlier hours considered (17-20 UTC).  For 2 hour forecasts, each model shows improvement over the 2011 
version of CIWS for forecasts made in the most convective initiation portion of the day (18-22 UTC). 

Figure 8: Forecast Bias of VIP Level 3+ versus time of day.  The 1 and 2 hour forecast bias was computed on a 1 km grid for the 
Forecasts made with all three CI models trained in this study.  For both 1 and 2 hour forecasts, each model adds additional storms and 
improves the bias towards 1.  The Decision Tree Ensemble added the most in these forecasts and shows the highest bias of the models 
considered. 



two hour forecasts, followed by ANN and LR 
close behind.   

In Figure 8, the Bias of the three models is 
shown for 1 and 2 hour forecasts.  The case 
days chosen for the scoring all exhibited CI, 
which explains the low bias seen in CIWS over 
the course of the day.  All three models 
improved the low bias, though there is still 
more that can be done.  The more aggressive 
setting in the Decision Tree Ensemble is evident 
since these forecasts show the highest bias.  
Each of the models can be made more 
aggressive by lowering the probabilistic 
threshold; however lowering this threshold by 
too much increases the frequency of false 
alarms.  When comparing the bias to the 1 hour 
CSI in Figure 7, it seems the higher bias did not 
always result in an improved forecast, while for 
2 hour forecasts, the additional storm growth 
provided benefit to the forecast.  We believe 
this can be attributed to the new storm growth 
being too fast in the 0-1 hour forecast range.  
By two hours, many of these predicted new 
storms have had a longer time to grow, and 
hence storms added into the forecast increase 
the CSI. We will work to improve the storm 
growth model in the future.    

6. Conclusions and Future Work 

In this study, multiple forms of data were fused 
in a machine learning framework to improve 
the nowcasting of convective initiation in 0-2 
hour forecasts.  Data included in this model are 
satellite, including the Satellite Convection 
Analysis and Tracking (SATCAST) fields, 
numerical models, including the Local Aviation 
Model Output Statistics (MOS) Program (LAMP) 
and North American Rapid Refresh Ensemble 
Forecast System (NARRE-TL) thunderstorm 
probability forecasts, and an environmental 
stability product developed by Lincoln 
Laboratory to show regions conducive to new 
storm growth in the near future.  Training data 
are gathered over several weeks for both near 
and far from CI events.  Using this data, 
different machine learning models, including 

Logistic Regression, Artificial Neural Networks, 
and Decision Tree Ensembles are trained.  The 
results from the three models are compared to 
each other, as well as to the 2011 CIWS system 
to measure improvement in the nowcasting 
system. 

Of the three models trained, the Decision Tree 
Ensemble performed the best over a seven day 
sample for 2 hour forecasts, while a less 
aggressive Artificial Neural Network performed 
well for 1 hour forecasts. For 2 hour forecasts, 
all three models considered provided 
improvement over 2011 CIWS forecasts, as 
measured by CSI and Bias.  Additional model 
tuning and feature engineering is still 
underway, however these results show that the 
machine learning methodology can be an 
effective technique for easily adding new 
predictors and improving deterministic 
nowcasts. 

Moving forward, we seek to improve the 
machine learning methodologies in several 
ways.  First the model will be retrained regularly 
with recent data so that the model can adapt to 
changing meteorological conditions.  Second, 
additional fields are being investigated for 
inclusion in the model.  These fields include the 
Short Range Ensemble Forecast (SREF) (Du et al. 
2003), and tracking and trending information 
from the High Resolution Rapid Refresh (HRRR) 
model.  The HRRR has the potential to be a 
particularly useful predictor of CI because of the 
fine scale resolution (3 km).  Finally, expansion 
of the CI model to the western US using GOES-
W is also underway.   
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