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I
a Doppler velmity image, this phenomenon is obsemable as a sharp transition in Doppler values when viewed along a single radial.
Afinalkey gust front signatumismotimr. ~ensequential radmscms aecompwed, convergence mdtiinline signamres ofa
gust front will move conspicuously in a direction pcrpsndiculm to the orientation of the convergence bound~ and reflectivity
thin line, while otier features in the background scene (storer cells, ground clutter) are relatively statimr~.

Examples oftbese gusIfrmrt signatures can& swn in Figure l,which sbowscomesponding reflectivity (left) mdDoppler
velmity (right) images from asingle, nem-horimn, 36Wegree azimuth scarrof tbe~Wtien dutigmepistie ofsumer-
timethunderstmma ctivityi nOrlando,Florida. ~eradwislwatti attiecenter oftieimage mdrmgerings mdrawnat2Okm
intemalsoutto60 km. Several gust frmrtsevident intbeimagery are indicated with overlaid white boxes, Several thunderstorm
cells can beseennorth andwestoftheradar. ~estrmrrsn ortbofther adarhaveprtiucedt wogustfronts. ~efirst ispropagating
.towmdtie westmdhasprtiuced afiinlineecho extending fromroughly 25km,285degrws to55km,355degrees, ~evelmity
convergence signature is absent in W]s front because rctum signals from the clear air region tiead of the gust front was tm low
fortheradar to measure. ~esecond (we&er) gust front centerti at26km,7S degrees ismoving totieeast mdismostevident
as a zone of velocity convergence in the Doppler velocity imag~ note the abrupt trmsition from receding velmities (positive val-
ues)behlnd tiegust front toapproaching velwities (negative values) intiembient tirrdread oftbegustfrmrt. Note also that in
contrast with the first ‘front, tiere is a velocity convergence signature but no discernible reflectivity thin line signature.

Figurel. PP1imagesofrad~ reflwtivity (left pmel)md Doppler velmity (right pmel)showing multiple gust front signatures.
Range rings aein20km incrementa. Reflectivity isindBZ. Doppler velocity isintis (dwkgrays indica[e winds dirwted
away from the radar, light grays indicate winds toward the radar). mite boxes outline locations of gust fronts.
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Byexmitigimages generaEdby tieseradms, ex~rienmdhumm obsemerscm mliablydetect md&ackgustfronts, How.
ever, the development of automated gust front detwtirm algotitbms having sufficiently high detation rates with few false alms
has bwnelusive. timntgeneration algoritis1,2 we basMonm approach develo~d newly lOyeasago3. ~etiaditionalap-
proachattempts todetit oneortwo signamres rel~gon twW1ques chmac&ri=dby l~irnensional (radial) signal prmesaing,
sequential tishrdding of data, arrd complicate ad hoc heuriatica. me gap between humm md computer petiommrce is mises
mrtofaeveral irrherent fititations of thedetwtion algoritbma. ~eaelimi@tiona include tielack ofmemsforhmdling mdmain-
taifing weak, arrrbigumra, md contmdictmy evidence, the use of multiple pwset tiesholda for ohjwt disctimhation (use of such
thresholds can inadvefiently result in the discmding of imprtmrt data), a failure to use all of the mlevmt information available
in the input data, md the irreffcctive use of krrowldge mgading the behavior or approance of @st fronts under diffecent circum -
stmces.

G1venclem, unmbiguousaignatims, aomeofticexisting automabddetwtion algoritims~tiom reasonably well. ~echal-
lengeiaincons~cting dgoritimstiat cmhmdle Wem~ginally detwtablembiguous cases. Inauchcaaea, vwiousfactorsmust
reconsidered. Forexmple, gust front ~flectivi~ signamrea cm&obacumd bylmgemas ofpr&ipitation echoes. Doppler-
based signature are sensitive to the geometry betwwn the winds being meaaurd arrd the radac bcm, vaniahing when winds blow
pe~ndiculw tothebem(noradial comprment). ~tiemo=, gust front aignamrescm kmhicktiby otiernamral phenomena,
such as flwks of birds, clouds of dust, elongated bmrds of low-intensity rain, mrd ground clutter.

Machine intelligence techniques, ocigirrally developed at Lincoln Laborato~ in the context of automatic twget recognition,
provide more effativemema forexploitig, orgtiting, mdasaifilathg such additional infomation4. ~eseapproachea toob-
ject recogrdtion have bwn uwd to mnstmct a Machine Mtelligent Gust Front Algorithm (MIGFA) that in radically different from
previous gust fmntdetwtion algoritia. Vemiona of MIGFAhave &ndeveloped forhMASR-9 WSPmd~~aystems.
Results thus fm clemly indicate that MIGFA substitially mrtperfoms wlicr approaches mrd, in some canes, is competitive with
humarrobsewers. Ade~iltidescription oftie ASR-9WSPMIGFA cm bfoundin [Delmoymd~oxel]5. ~lspaperdescribes
the mom remntly developd ~WR version of MIGFA.

2. LOW-LEVEL MAC~~ ~~LLIGENCE

2.1. ~nctionrd %mplate CurrelatIOn

Frnrctional template comlatirm ~)6 in a generahti matched filter that bco~omtes as~ts of fuzzy wt tbeo~. Consider,
an a basis for underatmdhg, the baaic image prmessing tool cross mwelatiorr. Given some irrput image 1, m nutput image 0 is
generatd by matchtig a kernel K against the Insal neighbofid centewd on each pixel lmation Iw me match scorn assigned
tOeach pixel OV is computed by multiplying each element value of K by the superimposed element ValUein 1 md SUmMingacrOss

all prducts. If the shape to be matched can vary in orientation, then the pixel Iv ia probed by K at multiPle Orien~tiOna. me scOre
assigned tn OV in the maximum acrosa all orientations.

~C in frrndarnentally the sarrreoperation with one imp~t exception whereas the kernel used h croaa comelation is arrarray
of image valuea (essentially a aublmage nf the image to be pm~), the kernel rraed in ~ in a -y of scoring finctiorts. me
acofing finctions mrnm woma that indicate how well the image values mamh the ex~tations of the vahrea at each element of
the kernel. me set of all returned SCORSme averagd md “clip@ to the condrrurms rmge [0,1]. me output of ~C is a map
of tieae values, each of which mflmts the de~ee of belief that the shape or objwt implicitly encoded iu a functional template is
present at that irrrage lmation.

As m exarrrple, consider the functional template implementation of a sirrrple matched filter designed to detect gust fronts in
reflutivity data @igum 2). Gust front Orii linen w ch~acteciti by moderate reflectivity vahrea (O to 20 dBZ) that me flmrked
on both aides by low reflwtivity (approximately -15 to OdBZ). me left side of Figure 2 shows the template kernel consisting of
titegera that comeapond to Oretwo scotig functions shown on the fight. Elements of the kernel that do not comespond to either
of the scoring functions form guacd regions in which image (i.e., mflwtivity) values we ignord arrdhave no effat on match scores.
Scoring function O, correapnding to the fltilng mgirma of low reflectivity, mmma a maximal score of 1.0 for image vahres in
the intewal of -20 to -5 dBZ, a gradually decreasing score for image values in the ktcwal -5 to 10 dBZ, mrd a score of-2.0 for
image values luger thm 10 dBZ. Scoring function 1, comspond]ng to the wnrer of the kernel whe~ moderate reflectivity valuea
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ae expected, returns maximal scores in the intewal 5 to 12,5 dBZ mrdgradually decreasing scores for both higher and lower image
values. Note that alfiough vecy low image values can generate scores of -1.0, a slower dwline in score with a minimum score
of 0.0 is returned for image values above the maximal scoring titewal. ~Is asymmetry is m attempt to mitigate the obscuring
effects of storer echws arrd other patches of high reflectivity.

ScOting function O

tion 1

-1 + 480.

2.0

–1 .0

-2.0

_ -lo 10 20 30 40 50 60 70

~ Scoring function O

Figure 2. Example functional template for thin line feature detwtirm, Input images we pmbd with the scoring may
index kernel on the left, me indexes detemine which scoring functions (right) me accessed (together witb an under-
lying input image pixel) to ~rum a match score at the hput pixel lmation.

In general, by increasing or dwreasing the intewals over which afficming smres (i.e., SCOES> 0,5) me returned, scoring func-
tions can enctie v~ing degrees of uncertainty with regwd to which image values w allowable. In addition, knowledge of how
a feature or object ap~m in sensor image~ cm& encoded in scoring functions. me intetiering effects of occhrsimr, distofiion,
noise, md clutter can be minimized by the use of vtimrs design swategies.

2.2. Interest images

Knowledge of the v~ing ~liabilities of the selected feature detectors is used to guide data fusion md extinction, Conditional
data fusion is simplified by using “interest” as a common denominator. An interest image is a spatial map of evidence for the
presence of some feature that is selectively indicative of an object being sought (the output of ~C is mr interest as long as the
functional template encodes an indicative feature), Higher pixel values reflect greater confiderme that the intended feature is pres-
ent at that lmation. Using interest as a common denominator, MIGFA fuses data by combining interest images derived from various
pixel-registered senso~ smrms. Using simple or mbiktily complex roles of mithmetic, fuzzy logic, or shtistics, MIGFA can
assimilate pixel-level evidence from several coregistered sources into a single combined interest image. Clusters of high values
in such combined interest images we then used to guide selective attention and cm sewe as the input for object extraction, If done
effectively, the combined interest image provides a better representation of object shape rhrmis evident in any single sensor modal-
ity. Using these techniques, MIGFA petioms a significmt amount of howledge-based prmessing before the application of the
first discriminating tieshold, Mosr waditional perception systems apply one or several thresholds ewly in the prmessing as a way
of quickly Muting the amount of data to be pr~essd, However, es~ially with ambiguous data, each applied threshold closes
off options for detecting m object., A bettw swategy — a skategy used in MIGFA — is to apply tiesholds only after evidence
from many sources of infomration have been meaningfully fused into a single map of evidence.
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3. MIGFA DESIGN

3.1. Overview

me system blink diagrm in Figure 3 illustrates the configuration of the TD~ version of MIGFA. In preparation for proces-
sing, input images DZ (reflectivity) md V @oppler velmity) from the current radar scan arc convened from polm to Cmesian
representation and scald to a useful resolution, A map of shear (radial velocity change over a 1 knr distmce) is derived from input
image V and sewes as a W]rd input image DV. me input images m then passed to multiple simple independent feature detectors
that attempt to localim those features which we selwtively indicative of gust fronts. The outputs of each of these feature detectors,
most of which me based on some application of ~C, are expressed as interest inrages that specify evidence indicating where md
with what cofildence a gust front may be present. me different interest images are fused to fomr a combined interest image, thus
providing an overall map of evidence”indicating the locations of possible gust fronts.
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Figure 3. Block diagram of the Machine Intelligent Gust Front Algorithm (MIGFA).

From the combined interest image, fronts are extracted as chains of points. The chains extracted from a radar scan, collectively
called an event, me integrated with ptior events by establishing a point-tbpoint comespondence. Heuristics me then appliti to
reject those chain points which have an appmnt motion that is fiprobable. The updated history is used to make predictions of
where points along the front will be located as some future time. Such predictions are used in the processing of subs~uent images,
specifically in tie feature detector called ANTICFATION. h the output of ANTICWATION, high interest values me placed wher-
ever fronts are expected to be, thereby selectively sensitizing the ayatem to detect gust fronts at specific locations. ANTICIPATION
is tuned so that it will not automatically trigger a detection by itself but, when its output is averaged with other interest images,
it will suppofi we~ evidence that would othewise bc insufficient to tigger a detection. Figure 4 ia a summ~ of the processing
steps for the input image shown in Figure 1.
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Figure 4, Prmessed scan summa~, In tie first row we the DZ (reflectivity) image, V (velocity) image, DV (velocity-
change) image, and wth overlaid with bfight white lines on the DZ image. The second row bsgins with the combined
interest image computed from the DZ, V, and DV images, Next is the extracted indexed event, mite pixels me those
points which have been dwlmed as pti of a gust front, Gray pixels me hose points which have not ken tacked long
enmrgb to establish sufficient confidence. In the histo~ frame, the cunent chain is shown in white and the prwding
scans me shown in shades of gray (dmker shades indicate more distant events in time). In the predictions frame, gray
pixels indicate the lW and 2&minute forecasts of where the fronts me expcted to be, while white pixels indicate the
cument detected locations,

4. PROCESSING

4.1. lmagepmparation

Asdiscussed e~lier, ash~chmge invelocity witidistm@ (convergent velocity sbem)is mindication ofagust front, To
facilitate detwtion of convergent boundaries, missing values (tising from lack of signal or data quality editing by Oreradm system)
in the input image Vmefirs!fiOed, whew appropriate, byradially propagating neighboring pixel values. Tbe cleaned velocity
image istbenused toderive anew image DV, where each pixel represents tielocal chmgein radial velmity overa 1 km range
window centered on that pixel.

Hxelvalues forallimages mescaledto tieintemal 0t0255tosuppofi subsequent ~Coperations ontieinputimage~. Each
image istagged wititie scaling factor mdoffset necess~to mmslate scaled values backtotie original physical values. Finally,
tieinput DZ, V,mddetived DVimages reconvened frompolmamays (4Ormgebinsx 360radials) to Catiesianmays (260

SPIE Vol. 2220/ 187



x260). Mapping isdonebycomputing foreachelementof tie Ctiesianmay, tierangebinmd radial atwhichtiecomsponding
value istobefmmdin tbepolarar ray. Dutingtie mapping prmess, mimplicit subsampling oftiedatamcurs, From an initial
radial resohrtionof 149mpcr range bin and pixel simintie wimufial dimensimr decreasing from 1050 mat 60km, tbe final
Cartesian image has a pixel resolution of 480 m per pixel.

4.2. Featuradetectirm

Given contextual information of the sensor being used, the location of that sensor, and the environmental conditions, a role-
based expefiselects mappropfiate setoffeature detwtom forapplication totie input dam. Fortbemoment, tfremrlymletbat
isavailable chrmses betwemrtwosetao ffearoredetectms: mresetcustomimd fortbe ASR-9 WSP, the other fortbe TDWR. In
fact, fietwo MIGFAvemions wenewly identical, differing primtily intieset of feamredetwtors used, Tbe TDWRMIGFA
employs approximately ten different feature detectors, a few of which will & described here.

Figure 5showsseveral interest images prtiucedby applications of~Ctotie input images displayed intieupprleft, The
figu~also shows tiecomtinti interest image detived from alloftie individual interest images. Homogenous, mid-level gray
regions denote mess where spcific feamrc detectors have not expressed an opinion regarding the presence of a gust front, deferring
instead totbeevidence generatdby other feamredetectom. Tbefirat interest image,labelled TDWR-~D>CONV, isgeneratcd
by a tandem feature detector that looks for thin lines in the DZ image that are coincident rmd aligned with velocity convergence
inthe DVimaget. Since obscuration prevents detwtion oftiinline echmsinside stomcells, tie~WR-~D>COW detwtor
is prevented from generating opinions in these areas (unfounded negative opinions can irrappmpfiately inhibit gust front detection).
To mask storm regions from ~C oprations, an image of storm regions is generated with a round functional template whose kernel
has a diameter of 13 pixels (6.25 km) and whose assmiated scoring function returns high scores for high reflectivity pixels in the
DZimage. Prior toapplying ~, fiestom regions image isustitomask fieinput image besetting comesponding input image
pixels to nil fi.e., no opinion).

me TDWR-DMONV-MOTION detector is similar to TDWR-~DXONV except that here we ae lmzking for tandem
motirmofthin line andconvergence feamres, Motion detcctora are bastion simple differencing, Tbe DZimage from tbeprevious
scan (prtiuced approximately 5minutes before tiecument scan) issubtiacted tiomtie DZimage from tiecunent scan. Intbe
difference DZ image, gust fronts ap~w as white lines @ositive values at the front’s position in Orecurrent scan) that are trailed
bypwallel dmklines (negative values attiefront's position intiepwviousscm). Althmrgh finctional templates that can scan
for parallel white md dark thin lines simultaneously we feasible, these types of templates have so far proven to be too computation-
ally expnsive cooperate witiintie real-time constraints oftieavailable computer resources. ~efmrctionalt emplateusedlooks
for thin lines of positive values and has a kernel that is identical to Oreone shown in Figure 2, but utilims scoring finclirms that
reflect theeffects ofimage differencing. fieatment oftbeinput DV image is similar except theorder ofdifferencing isreversd,
the current scan is subkacted from the previous scan to produce positive values where moving convergence mnes exist (conver-
gence is indicated in single input DV imagery by negative values).

The interest image labelld TDWR-ASSOR~WMOTION represents the combined (logical OR) evidence from a number
ofsingle feature detectors. ~lsconstitutes acompwatively liberal detector fiathelps tooffset tiemlatively consewative opinions
pmducedbytbetandemd ejectors, TDW-CELLCO~RGE md~WR-CELLCONV-MOTION look forstaticmdmov-
ingvelocity convergence boundtiesrespectively wiXlnstomregions. Note tfratall rim-storm mgionshave beenmaskedsotbat
these detectors offer no opinions outside of storm regions.

The ANTICIPATION feature detector provides a mechanism for spatially adjusting the detection sensitivity of MIGFA on the
basis of knowledge of vtious environmental data including the prior history of the gust fronts being tracked and dominrmt weather
patterns. In particular, anticipation is used as a replacement for coasting, which is the continued tracking of an object for some
time interval after the obiect’s signal falls below tbresbold. Coasting works mrlv when the target beine tracked maintains a consis-
tent velocity. But in re;lity, the reason the object signal falls below threshol; is often because the-object did change behavior.
In contrast, anticipation works by creating bands of high interest values where the object is ex~ted to be in the current scan.

t Briefly, a tandem detector generates a pixel score value by accumulating and averaging scores frOm Simultaneous
application Of twO (or more) functional templates to corresponding Imations in the input images.
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Figure 5. Combining of interest images. Input DZ (reflectivity), V (velocity), and DV (velwity change) images are
shown along with output interest images from some of the feature detectom. The last two frames in the lower right show
the images resulting from combining the vtious interest images.

Arrticipation is set not ao high as to trigger a detection by itself (i.e., coasting), hut high enough to raise crdlmated weak signals
above detection threshold,

4,3. Combining evidence

In MIGFA, no one featire detector is mearrt to & a peflect, or even rrccesswily a good, discriminator of gust fronts and back-
ground. men used together, however, several weakly discriminating feature detectors can achieve robust ~flommrce depnding
on how the dekctor outputs ue combinti. The final combined interest image is generated by the assimilation of three major
sources of evidenw in a fairly complex mle of combination, me fust major source is the evidence derived from clea air areas
Ofthe images, In this category are the two tarrdem feature detectors, ~WR-DZCONV-MOTION and TDWR-~D>CONV,
which each provide a fairly cOnsewative estimation of gust front locations. These me averaged with the more liberal TDWR-AS.
SOR~D-MOTION image. Strong evidence that exists only in this last interest image would not be sufficient to migger a gust
front detection. However, when averaged with the two tandem feature detectors, the TDWR-ASSOR~D-MOTION image does
result in avenues of moderately high interest in the combin~ interest image through which extensions of gust front detections can
be made,
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The second major sources of evidence are from the featore detectors that generate interest within stem cells: TDWR-CELL-
CONVERGE and TDWR-CELLCONV-MOTION. The average of these two interest images are maximized with the clew air
feature detectom togenerate a map of imagedetived interest,

The final combined interest image is the result of a weighted average of the image~erived interest with the ANTICIPATION
interest image.

4.4. Extraction

The goal of extinction in MIGFA is to identify the set of points (collectiv&lycalled an event) that lie in any gost front. Individual
points me &acked across tim~ the fact that a point belongs to one gust front or another is tielevant to processing. MIGFA predic-
tions me elastic in that the vtiable propagation velocities of different points along the gust fronts are each used to m&e predictions
of what the gust front appearmce and lucat ion will be at some lime in the future.

Gust front features highlighted in the combined interest image may be fragmented due to combined effects of obscuration,
data quality, md low retom signal. To bfidge gaps between collinew fragments and to suppress random unaligned high-interest
values, MIGFA uses a sWcial bow-tie shaped template to petiom thin line smoothing of the combined interest image. The tem-
plate, insptied by the receptive field of the cooperative cell of the Bound~ Contour System develo~ by S, Grosshrg and E,
Mingolla8, weights the itiuence of the end regions over that of the center by placing more kernel elements at Sheends. Consequent.
ly, the template generates high output interest scores form image point between two collinew high-interest segments, even if that
middle point itself has a low input interest value. A tieshold of 0.5 is then applied to the smoothed image to create a bin~ image
of carrdidate fronts, The elongated bin~ shapes that ~main afier tiesboldtig we thimed down to a singl+pixel-width skeleton
by using mr ~C implementation of a modified version of S. Levialdi’s homotopic thiming9. h order to reasonably maximize
detection length, the resulting chains am extended from Sheti end points along ridges of relatively high interest values. After the
chain+ xtcnsion process has been completed, ,tie resulting image may h highly brmrched rmd may contain loops, From each net-
work of chain fragments is assembled the most interesting (typically, but not always, the longest) non-looping combination of chain
segments,

4.5. ~acking and Prediction

Tracking is done by establishing point-by-point comespondence betwun successive scans. For each point in the cument scan,
a point in the previous scan is found that is nemby mrd that has a propagation velocity consistent with the point in the cument scan,
Once comespondenca is established, a Iiti is created from the point in the current scm to its comesponding point in the previous
scan. After indexhg is completed, each extiacted chain of points is edited in order to smooth the computed propagation speeds
and orientations over local segments of the chains, Heuristics are then used to verify the detections, mtilng use of bowledge of
how gust fronts move. Chains efiibiting patterns of motion that we improbable me rejected,

The cument exuacted event, indexti into the prior histo~, is used to make predictions of where the points having sufficient
depth md interest me likely to be at some time in the fumre. Given the direction moved, the propagation speed, and Orecument
coordinates of an exhacted point, a new coordinate is computed for some time in the futire,

5. RESULTS

The TDWR MIGFA was installed on a Sun SPARCstatimr 10/30 equip@ with 64 mbytes of RAM and was mn in the Lincoln
Laborato~ TDWR testbed during real-time operations testing in Orlando, Florida in the summer of 1993, The algorithm rm 7
hours a day (minimum), 7 days a week, during most of the summer, During the same period, the cument prtiuctimr TDWR algo-
rithm (GFg8) was also mn, providing m oppo~nity for compming the petiomance of the new algorithm against an existing stan-
dwd, Petiomance of both algorithms was assessed by automated scoring of algorifim detections against a tmtb database generated
by visual inspection of each input image processed by the two algorithms.

To generate the tm!h database, a humm analyst had access to Doppler and reflectivity images for an entire sequence of TDWR
scans, which could be viewed sep~ately or in sequence as a n~ovie. For each scm, the malyst entered a list of coordinates making
the gust front end points along with an intemcdiate sampling of points in between. For categorization of results, the estimated
maximum wind shew in the convergence zone was also stored,
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An automated scoring procedure, describd in detail by Klingl>Wilsmrlo compws computed gust front detections against
coordinates contained in the troth database. Briefly describti, the scoring dgoritbm comecta the sequence of coordinates defining
the limits of the gust front md expmds the collection of spming line segments into a S-h wide region that is called a truth box,
The scoring algorithm measures detection perfomrmce by two metrics. The first measure is a cmde “bitimiss” statistic that counts
a detection as successful if my pm of the detection overlaps rmypm of a troth box. A detection is counted as false if it falls com-
pletely outside of my ~tb boxes. An overall probability of detection &OD) is computed by dividing the number of successfully
detected fronts by the numkr of fronts identified by the hummr mralyst, me probability of false alarnr (PFA) is the number of
false detections divided by the total number of detections (both valid arrd false). Probabilities we convefied to ~rcentages for
repoming pu~oses. Detection quality was assessed by comparing the length of the front as estimated by each algorithm against
the length identified by the humm analyst. The percent length detected (PLD) is the length detected expressed as a percent of the
length delimited by the human mralyst. The percent of false length detected (PFD) reflects the fraction of total detection length
that was not verified by titb.

Table 1 presents the automated scoring results md compares petiorrrrmce of MIGFA against GF88. Results were computed
from a substmrtial database comprised of 230 hours of data collatd on 30 different days during the test pried. As can be seen
from the table, MIGFA significantly outpetiomred the current TDWR gust front algoritim which uses more @aditional signal pro-
cessing tecboiques. MIGFA comcctly detected and tiackd over 70% of all gust fronts identified by human mralysts, compmed
to approximately 30% for the existing algofithm. MIGFA dms an even better job of detecting the overall length of gust fronts.
MIGFA detected 66% of the total length of all gust fronts, representing a four-fold improvement over prior pefiomarrce in this
catego~. Note also that with both metrics, MIGFA significmtly improves upon the false alamr rate. Of the newly 2750 scms
processed, false alamrs occumed on only 54 scms with a resulting false alm probability of only 3.5%

A significant fraction of the false alarnrs (mrd false detection length) issued by the gfS8 algoritim were the result of coasting
previous detections to maintain tracking during overhead passage (when velocity convergence signatures vardsh), As discussed
ealier, this is problematic since gust fronts do not always maintain their characteristics over the coasthg period. They may sWed

uP, S1OWdOwn, Ordissipate altogether. Since MIGFA dms not use coasting, it dws not suffer from this problem. The majority
of MIGFA’s 7.5% PFD came directly from sporadic false detections @redomirmrrtly from leadng dges of storer regions arrd thin,
weak rain echoes) that were not associated with ~al gust front events. A small fraction (5-10%) of the PFD was due to inappropriate
extension of some fronts beyond limits identified by the arralyat, An equally small fraction of the PFD represents situations where
the analyst was uncertain about the pmsencc of a gust front, but decidti not to generate troth for i~ MIGFA may have been inap-
propriately pcnalimd in some of these cases.

Table 1. Petiommce compmismr btween current WW GF88) gust front detection algorithm md MIGFA .

GUST FRONTS GUST FRONT LENGTH

POD PFA PLD PFD

TDWR GFS8 29.5% 8.1% 12.8% 17.s%

MIGFA 71.2V0 3.5% 6S.7% 7.s%

Conceptually, it is easy to unde~tarrd why MIGFA pctiomrs better. me cument TDM algorithm utilizes traditional 1-D
processing of radial Doppler velwity convergence signatures as its prim~ mearrs of detection. Without spatial context md addi-
tional information from other sources of evidence such as thin lines and motion, the GF88 algorithm is at a distinct disadvantage.
Although some of the more recent algorithms do make use of thin line detection, modest improvements in detection probability
have been accompmied by undesirably high false alamr probabilities. Once again, Oretmditional pr~essing methods limit achiev.
able petiomarrce gains,
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6. CONCLUS1ONS

The identifying signatures for gust fronts — thin lines of increased reflectivity, boundaries of converging Doppler values, md
motion -weconcepmally easy todescfibe andexploit astiebasis fordetection algofifims. Andyet, altbough several resemch
groups have worked collwtively for newly 10yemsto develop reliable automatic gust front algorifims, none oftiealgoritims
has demonskated pcfiommw compmable to the ideal of human petiocmrmce.

The problem is that automatic gust front detection, like other applications in computer vision, is deceptively much more diffi.
cult tfranthe task ofsimplyfmding oneormo~signatores. Humaaobsewers use avtietyofpmeptual skills tha:havebcen
notoriously mdsmprisingly difficult to implement incomputer-vision systems. Forexemple, humrmsuse spwifickoowledgeof
tieobjwtbeing sought mdtiecontext ofobsewation aswellas tieobject's spatial mdtempmlmntext. Tbelargepetiomance
gap between the petiommce of previous algorithmic approaches and humans in detecting gust fronts is in pm due to the lack of
these psrcepmal skills. ~esedeficiencies weaddmssed in MIGFAtiough tieuseofmachine intelligence attie lowest levels
ofprocessing, employing interest images as amechmism for fusing evidence at the pixel level, 2-D signal prmessing (spatial
context), motion (temporal context), fuzzy set theo~ (embodied in the use of ~C and intecest images), and delayed Ormshnlding,

MIGFAcontinues toundergofitier field testing mddevelopment in botitie ASR-9WSPmd ~~systems. In addition,
MIGFA ia being efiancd to ticoprate wind data from additional sensors within the Integrated Teminal Weather System (ITWS)
cumently under development by Lincoln Laborato~for FAA. I~Ssecks toirrtegrate teminal weatberinfomation providdby
vmiousweatier sensomadcreate aviation weatierprtiucts suitable foraktraffic control safety mdplaming functions, MIGFAs
data fusion techniques lendtiemselves ticelytotie 1~Sconcept. Finally, teckiquesused in MIGFAme being adaptdtosolve
otber meteorological detmtion problems, includtig microburst detection, microburst predictionll, mdconvective stem initiation,
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