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1. INTRODUCTION  
 

Air traffic in the United States is highly 
congested in its “Northeast Corridor”, an area 
that roughly encompasses the airspace from 
Washington, DC to Boston.  This region is 
frequently affected by low cloud ceiling and 
visibility conditions during the cool season, often 
in association with synoptic-scale low pressure 
systems.  Operating under IFR (Instrument 
Flight Rules) for extended periods of time 
substantially reduces airport capacity and can 
cause significant delay at major airports.  
Anticipating transitions into and out of IFR 
ceiling and visibility conditions can mitigate air 
traffic disruption by allowing for appropriate 
upstream planning.  For instance, an accurate 
forecast of the lifting of cloud ceiling out of IFR 
range would allow for the release of more planes 
upstream to take advantage of the anticipated 
increase in capacity. 

The Federal Aviation Administration (FAA), 
through its Aviation Weather Research Program 
(AWRP), is currently sponsoring the Northeast 
Winter Ceiling and Visibility Project (NECV).  Its 
purpose is to provide situational awareness of 
current ceiling and visibility conditions in the 
Northeast United States in a way tailored to the 
needs of air traffic control (ATC), as well as to 
bring a number of various but complimentary 
technologies to bear on providing automated 0-
12 hour forecasts of upcoming conditions.  
Methodologies currently under development 
include numerical weather prediction (NWP) 
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applications, 1-dimensional column modeling, 
tracking of aviation-impacting cloud, and statistical 
forecast models (Clark 2006).  This presentation 
describes the development of statistical forecast 
models for major New York City airports. 

The statistical forecast models use routine 
regional meteorological observations as predictors 
for future values of ceiling and visibility for selected 
locations.  These predictors consist primarily of 
hourly surface observations, but upper air soundings 
and buoy data are available for use as well.  The 
methodology for building the models is based on 
non-linear regression, with the nonlinearity entering 
in the spirit of Generalized Additive Models (Hastie 
and Tibshiriani 1990). Several innovations are 
introduced to aid in predictor selection and to 
enhance the skill and stability of the final models. 

Statistical models such as these have been 
successfully developed and used recently in an 
operational setting for ATC.  The recently completed 
San Francisco (SFO) Marine Stratus Initiative (also 
sponsored by AWRP) features a real-time display 
and forecast system, which contains as one of its 
components a regional statistical forecast model 
(Wilson 2004, Clark et al. 2005).  The model uses 
hourly surface observations from the San Francisco 
Bay area along with the Oakland sounding to 
produce regular forecasts of stratus dissipation 
during the warm season.  The performance of this 
model during two years (May – October) of real-time 
operations is given in Table 1.  The context for the 
marine stratus model differs from that for NECV in 
several important ways.  In SFO, warm season 
stratus dissipation is a diurnal phenomenon, 
governed primarily by mesoscale and radiative 
processes in conjunction with local topography.  The 
NECV problem is more affected by synoptic 
dynamics, and less by the diurnal component. 

This paper next provides a high-level summary 
of the methodology that has been developed to build 
these statistical forecast models followed by details 
of the initial NECV problem, including some 
discussion of the quality of the predictor data.  Model 
accuracy can be improved by development over 
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phenomenological partitions of the available 
cases; a method of partitioning the cases is 
described.  The paper concludes with a 
discussion of near-term tasks. 

 
Table 1. 

Operational Performance Summary from the 
2003-4 Warm Seasons of the SFO Regional 

Statistical Forecast Model. 
Forecast 

Hour 
(UTC) 

Number  
of 

Forecasts 

Median 
Absolute Error 

(hrs) 

 
Bias 
(hrs)

09 107 0.96 0.40 
11 121 1.03 0.58 
13 124 0.84 0.27 
15 123 0.89 0.45 
16 116 0.74 0.33 
17 87 0.51 0.01 
18 55 0.45 0.28 

Forecasts are of stratus “burn-off”.  This typically 
occurs between 16-18 UTC, as is reflected in 
the smaller number of forecasts and the 
improved accuracy at these hours. 
 
2. MODEL-BUILDING METHODOLOGY 
 

Building meteorological statistical forecast 
models presents a number of challenges.  There 
are a large number of potential predictors to 
choose from, far more than would be 
appropriate in any particular model.  In the 
present case, there are at least 20 reliable 
observing stations within 200 km of New York 
City.  If seven basic parameters are considered 
for each station (wind (u, v), temperature, dew 
point, pressure, ceiling, and visibility), that leads 
to 140 potential predictors.  If past observations 
at various lags, either on their own or expressed 
as differences, are considered then the number 
increases exponentially.  Many of these will be 
highly correlated with others (for example, the 
concurrent ceiling observations at JFK and 
LaGuardia).  Some predictors have more value 
when considered in combination than when 
considered separately (e.g. pressures at two 
stations differenced and used as a crude 
gradient).  An objective method of determining 
the most important predictors and their possible 
pairings is developed.  Once these are 
determined, it remains to combine them into a 
single forecast model in a quasi-optimum way 
for the regression analysis, avoiding the pitfalls 
of over-training.  A methodology has been 
developed which meets these challenges and 
provides other improvements.  An earlier version 

of this process was used to develop the statistical 
models for the SFO system. 

Once the training data have been subjected to 
quality control (to be described below) they are 
subjected to an automated model building process.  
The components of this process are: 

 
• Synergy:  A combination of predictors has a 

synergistic relationship when their combined 
predictive impact is significantly stronger than 
might be anticipated from their individual skills.  
This step automatically identifies such 
synergies from the full set of training data.  It 
establishes their defining coefficients, and 
passes them along as single entities to 
subsequent steps. These synergies can be 
viewed as virtual sensors. 

 
• Pre-processed Correlation Enhancing 

Predictor Transformation (PreCEPT):  This 
step rescales each predictor to maximize its 
correlation to the response variable 
(predictand).  A piecewise linear function is 
used for the rescaling.  The effect is to 
highlight the ranges of the predictor that are 
associated with the most response in the 
predictand.  An example from SFO is shown in 
Figure 1.  This component introduces the non-
linearity into the regression analysis. 

 
• Nulling:  This algorithm reduces information 

redundancies in the set of predictors by 
examining their multiple correlations with the 
predictand. Statistically, the process is 
designed to accept an additional small amount 
of bias error in exchange for a reduction in 
model complexity.  This is accomplished 
iteratively, with the least important predictor 
being eliminated at each step.  The output of 
the nulling process is a list of the most 
important predictors.  In our application, this 
list has been limited to the 20. 

 
• Compare(h,k):  This process determines the 

forecast models with best performance, based 
on a combination of all-model comparison and 
cross-validation. The comparison step 
involves building all models with h or fewer 
predictors from a list of k predictors (the 
finalists from the Nulling analysis). A cross-
validation exercise is conducted for each 
model candidate, in which a variety of model 
skill and stability measures are computed. The 
cross-validation exercise involves training the 
model candidate on a randomly selected 90% 
of the training data and evaluating its 



performance on the remaining 10% of the 
data. This process is repeated 100 times, 
thereby creating 100 models with the 
same list of predictors. Skill and stability 
parameters are computed from the 
aggregate of the model characteristics and 
evaluation data from these 100 models.  
The result of the Compare analysis is a list 
of the selected models, together with their 
stability and cross-validation properties, 
ranked according to their cross-validation 
R2 skill (R is the correlation of the model 
prediction vector with the training 
response vector). 

 
• Selection:  This step is more interactive 

than the previous ones. It consists of a 
spreadsheet tool that allows the developer 

to select an ensemble of final forecast models 
from those models that have the best cross-
validation R2 skill.  This is done by examining 
the other skill and stability metrics from the 
Compare step, and by examining ensemble 
model performance on the full training set.  
Diversity of the predictors in the ensemble is 
also examined to allow for robust real-time 
performance in the presence of missing 
observations.  Currently a 10-member 
ensemble in envisioned for operational use. 
 

While a great majority of this process is 
automated each step produces output that allows an 
easy audit of the results to examine their 
meteorological integrity. 
 

 
 

 
 
Figure 1.  Scatter plot showing the PreCEPT scaling of 1600 UTC inversion height at the SFO airport.  
Predictand response for this predictor is seen to be limited to the 350 to 700 m range. 



3. INITIAL FORECASTING APPROACH FOR 
NECV 

 
The first modeling efforts focus on 

forecasting cloud ceiling at New York City’s 
LaGuardia airport (LGA).  Model equations are 
developed for situations where a ceiling of 2000 
m or less is already in place.  (The IFR threshold 
for ceiling is 1000 ft, or 305 m.)  Separate 
models are developed for each forecast horizon 
from 1 – 12 hours, in hourly increments, with 
initial focus on the 1 – 3 hour horizons.  The goal 
is to accurately predict transitions into and out of 
the IFR state. 

The initial training data set is assembled 
from an archive of northeastern hourly surface 
observations covering the 1977-2004 period.  
The most reliable stations, defined by the ratio of 
hours for which an observation exists within 15 
minutes of the top of the hour, are shown in 
Figure 2.  The training set is limited to those 
hours where a ceiling of 2000 m or less is 
observed at LGA.  If sampled hourly, this 
training set amounts to nearly 40,000 cases. 
 

Figure 2.  Most reliable NECV surface 
observation stations.  Those in blue have an 
hourly reliability above 0.90, those in green from 
0.80-0.90, and those in red from 0.75-0.80.  The 
four stations crowded near New York City are 
TEB, EWR, LGA, and JFK. 
 

Several obvious initial transformations of the 
raw observations are made to help in model 
development.  Ceiling observations are capped 
at 3000 m.  This is done primarily to minimize 
the discontinuity with respect to observations of 
unlimited or very high ceilings.  Wind 
observations are decomposed into their u and v 

components.  Dew point depression is calculated 
from the observations of air and dew point 
temperature. 
 
4. DATA QUALITY ANALYSIS 
 

The training dataset is subjected to a thorough 
data quality analysis (DQA), the main components of 
which are: 

 
• Simple bounds check:  Identify observations 

that are physically impossible as erroneous, 
through simple range checks. 

 
• Climatological bounds check:  Identify 

observations as erroneous that are 
climatologically unlikely.  A climatology of each 
variable stratified by month and hour is 
constructed, limited to the constraints 
governing the construction of the training 
dataset (i.e. LGA ceilings of 2000 m or less).  
The observations are then subjected to a 
bounds check of the expected value for the 
given month/hour ± several standard 
deviations. 

 
• Parameter consistency check:  Any derived 

parameters (such as dew point depression) 
are also subjected to the simple and 
climatological bounds checks. If the derived 
parameter is identified as erroneous, then all 
contributing parameters are also identified as 
erroneous. This approach was introduced by 
Miller and Barth (2003). 

 
• Data filling:  Missing observations across 

many stations can quickly diminish the number 
of full cases available for training.  For a first 
pass, a temporal fill of missing observations is 
implemented for gaps in the record of two 
hours or less by linear interpolation.  
Remaining missing observations are filled by 
their climatological value as described above. 

 
With the exception of the data filling, which is 

applied only to the training data, the same DQA 
techniques are used for the training data and for 
implementation of the operational forecast models. 

Our long period of record for training 
encompasses the operational shift from largely 
manual to automated surface observations (via 
ASOS).  This was found to be reflected in the 
resolution with which cloud ceiling was observed.  
Prior to ASOS, ceilings greater than 2000 ft (610 m) 
were reported in 500 ft (152 m) increments.  This 



discontinuity would be harmful to model 
development through the introduction of a bogus 
change in predictor variance across the training 
dataset.  Simply ignoring the older data, 
however, would cause the loss of a large 
fraction of training cases (roughly from 1977-
1985).  To avoid this all ceilings above 2000 ft 
will be standardized to the nearest 500 ft 
increment across the entire time period. 

 
5. CLUSTERING OF DEVELOPMENT CASES 

 
In the SFO project separate models were 

developed based upon a phenomenological 
partitioning of the training data.  This partitioning 
was guided by the desire to discriminate 
between typical cases where the models might 
be expected to perform well versus atypical 
cases where the models would likely be less 
accurate.  In the case of the SFO regional 
statistical forecast model, this was based upon a 
crude parameterization of meridional pressure 
gradient.  This indicated the likelihood of on- or 
off-shore surface flow, with onshore flow tending 
to prolong stratus in San Francisco Bay.  The 
pressure difference used to represent this was a 
codification of a longstanding empirical rule used 
by operational forecasters. 

The situation is more complex for the 
northeastern US.  As a first attempt to ascertain 
what variables would be most useful to classify 
low ceiling cases at LGA, a clustering analysis 
was applied to a large number of candidate 
indicators, including the base observations along 
with their past values and time trends.  Potential 
indicators were considered singly and in pairs.  
The analysis was attempted on many random 
samples of the training dataset taken at 3-hour 
increments, as it was computationally 
impractical to analyze the entire set.  A 
hierarchical clustering algorithm was applied, 
and forced to terminate with 2 or 3 clusters.  A 
metric of the quality of the clustering of these 
indicators was made by computing the mean 
Euclidian distance between the cluster centroids 
and multiplying this by the population ratio of the 
smallest cluster.  A larger metric results from 
more evenly distributed yet well separated 
clusters.  The indicator(s) were ranked by this 
metric.  The most promising LGA indicators 
were wind direction and ceiling height, 
considered separately and as a pair.   

A histogram of a typical sample of LGA 
surface wind directions separated into 3 clusters 
is shown in Figure 3.  The first cluster 
encompasses the clear maximum of low ceiling 

observations that are associated with a northeast 
surface wind from the Atlantic Ocean via Long Island 
Sound.  This is consistent with an independent 
climatology of low ceiling conditions for this area 
(Tardif 2006).  A second cluster roughly consists of 
the remaining on-shore directions, and the third 
cluster corresponds to offshore flow.  A sample 
histogram of LGA ceiling separated into 2 clusters is 
shown in Figure 4.  This shows a separation of the 
lowest ceilings (anchored by a sample maximum at 
100-300 m). 

A clustering of the LGA ceiling-wind direction 
pair is shown in Figure 5.  This two-cluster example 
combines characteristics of each separate indicator 
as mentioned above.  One cluster includes the entire 
2000 m depth at the key northeasterly wind 
direction, tailing to lower ceilings at the remaining 
on-shore directions.  Some clustering of other 
samples broke this cluster into two based on 
high/low ceilings. 
 The initial forecast models are developed on the 
entire set of training data. This provides a baseline, 
to determine the benefit of imposing a clustering 
strategy. The development of a clustering strategy 
requires the development of a clustering algorithm 
that can be applied equally to the training data and 
in real-time for the operational implementation. In 
addition to improving model skill, the clustering 
strategy should not introduce product instability. This 
issue is being actively investigated.  
 
6. SHORT TERM TASKS 

 
Models for LGA ceiling are being developed 

using the processes described above.  These will be 
developed for all cases, as a baseline, and also for 
some version of the “northeasterly flow” subset of 
cases.  These models at their various forecast 
horizons will be evaluated on independent cases 
(consisting of one or more cool seasons kept out of 
the training set for this purpose).  Statistical model 
performance will be evaluated against persistence, 
conditional climatology, NWP (extracted from the 
MM5 and/or RUC grids), and the operational 
Terminal Aerodrome Forecasts (TAF).  Evaluation 
will specifically focus on the forecast horizons for 
which these models show the most skill.  Based on 
this evaluation, regional statistical models will be 
deployed in realtime for the 2005-6 cool season and 
monitored by the developers along with the other 
components of the NECV operational display and 
forecast system.  Long-term modeling work will 
focus on adding predictors taken from radiosonde, 
buoy, and NWP data, and on broadening the 
application to other key airports in the NECV 
domain. 



 
 
Figure 3.  Sample historgam of LGA wind directions (rotated clockwise by 30°).  Overall sample 
population is in dark blue, with a 3-way clustering shown by the other colored bars. 
 
 

 
 
Figure 4.  Sample histogram of LGA ceiling heights.  Overall sample population is in dark blue, with a 2-
way clustering shown by the other colored bars. 



 
 
Figure 5.  2-way sample clustering of LGA wind direction (rotated clockwise by 30°) with LGA ceiling 
height. 
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