© Copyright 1999 American Meteorological Society (AMS). Permission to use figures,
tables, and brief excerpts from this work in scientific and educational works is hereby
granted provided that the source is acknowledged. Any use of material in this work that is
determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies
the conditions specified in Section 108 of the U.S. Copyright Act (17 USC 8108, as
revised by P.L. 94-553) does not require the AMS’s permission. Republication,
systematic reproduction, posting in electronic form on servers, or other uses of this
material, except as exempted by the above statement, requires written permission or a
license from the AMS. Additional details are provided in the AMS CopyrightPolicy,
available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the
AMS at 617-227-2425 or copyright@ametsoc.org.

Permission to place a copy of this work on this server has been provided by the AMS. The
AMS does not guarantee that the copy provided here is an accurate copy of the published
work.



P8.17

THE THUNDERSTORM PENETRATION / DEVIATION DECISION
IN THE TERMINAL AREA™*¥

Dale A. Rhoda and Margo L. Pawlak
MIT/Lincoln Laboratory
Lexington, Massachusetts

1.0 INTRODUCTION

During thunderstorm periods, terminal air traffic plan-
ners make a number of key decisions. They decide when
to close and re—open arrival fixes, departure fixes, and
runways; they anticipate and execute changes in runway
configuration; they negotiate routing and flow rate deci-
sions with Air Route Traffic Control Genter (ARTCC) traffic
managers; and they set the airport acceptance rate. In
making each of these decisions, the traffic planner looks
ataweather radar display and makes an educated guess
at answering the two following questions:

— What will the weather be like in the airspace
and time period in question?

— Will the pilots be able and willing to fly through
that airspace during that time?

The same two questions will be important for advanced
terminal automation systems. One key element of air traf-
fic automation systems such as the Center-TRACON Au-
tomation System (CTAS) is the calculation of candidate
trajectories for each aircraft for the time period of automa-
tion control. To make this calculation, the automation soft-
ware must know which routes will be usable during the
control period.

Thefirst of the two fundamental questions is being ad-
dressed by the convective weather Product Development
Team (PDT) of the FAA's Aviation Weather Research pro-
gram. (Wolfson, 1997; Wolfson, 1999; Hallowell, 1999;
Forman, 1999; Evans, 1997) The second fundamental
question is the subject of the work reported here.

The state of the art answer to the second question is a
widely quoted air traffic control rule—of~thumb which says
that pilots generally do not penetrate precipitation that is
NWS VIP level 3 (i.e. 41 dBZ) or higher. Thatis not to say
that air traffic controllers always vector aircraft around lev-
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el 3+ cells but rather that they begin to anticipate pilot re-
quests for deviations when the weather approaches level
3. Asuite of new weather sensors have become available
that provide much more comprehensive information on
convective weather features than was available in the
past. Additionally, flight-related data such as preceding
pilot behavior and whether a flight is running late are easi-
er to obtain than in the past. In this study we develop an
objective quantitative assessment of which weather and
flight-related variables best explain pilot deviation deci-
sion—-making.

2.0 APPROACH

The study's approach is as follows: Aircraft position
data and weather data were collected in the Dallas—Fort
Worth Terminal Radar Approach Control (TRACGON) for
several thunderstorm days. The weather data were ex-
tracted from parts of the storms that the planes penetrated
and from the parts of the storms that clearly caused air-
craftto deviate. A pattern classification software package
was employed to determine which combinations of
weather variables best explain the pilots’ penetration /
deviation behavior. Several statistical classifiers were
trained and tested to assess their suitability for generating
a map of pilots' probability of deviation around weather.
Finally, several hypotheses were tested regarding the
correlation of flight-related variables to the penetration /
deviation behavior.

3.0 WEATHER SENSORS AND VARIABLES

Weather data were obtained from three fan beam Air-
port Surveillance Radars (ASRs), two pencil beam Termi-
nal Doppler Weather Radars ({TDWRs), and one pencil
beam Next Generation Weather Radar (NEXRAD) in the
Dallas-Fort Worth TRACON as well as the National Light-
ning Detection Network (NLDN). The meteorological sen-
sors and the products derived from them were as follows:

Ai urveillance Radar (ASR—

— Precipitation (NWS six-level VIP scale)

— Percent of each quadrant of the TRACON
covered in level 2 or higher precipitation

— Percent of each quadrant of the TRACON
covered in level 4 or higher precipitation

X neration Weather R
— Probability of severe hail

— Mesocyclone detection
— Tornado detection
— 3-D Radar reflectivity (DZ)

r (NEXRAD



Additionally, the following products were calculated for
each vertical column of reflectivity:

— Maximum reflectivity

— Height of the maximum reflectivity

- Height of the center of mass of the reflectivity

— Highest altitude of significant radar returns (echo top)
— Lowest altitude of significant returns (echo bottom)
— Vertical extent of region with significant radar returns
— Vertically integrated liquid water content (VIL)

Terminal Doppler Weather Radar (TDWR)
— Microburst detection

— Gust Front detection
— 3-D Radar reflectivity (DZ)

Additionally, the following products were calculated for
each vertical column of reflectivity:

— Maximum reflectivity value

— Height of the maximum reflectivity

— Height of the center of mass of the reflectivity

— Highest altitude of significant radar returns (echo top)
— Lowest altitude of significant returns (echo bottom)
— Vertical extent of region with significant radar returns
— Vertically integrated liquid water content

National Lightning Detegtion Network (NLDN)
— Flashrate of cloud-to—ground lightning strikes

4.0 FLIGHT TRACK AND DELAY DATA
ARTS Flight Track Data

Flight track data were recorded in real-time from an
ARTS at the Dallas—Fort Worth (DFW) airport. The data
included both flight plans and aircraft positions within the
terminal area. Aircraft positions updated every five se-
conds. Data were collected for both arriving and depart-
ing flights. This study only considered the flights arriving
at DFW or Dallas Love (DAL) airports. The data were
post-processed to automatically compute:

— Arrival fix

— Runway

— Flight pathlength inside the TRACON

— Arrival time

— Range of the encounter from the airport
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The major airlines each submit a monthly report to the
U.S. Department of Transportation listing every sched-
uled domestic flight and its scheduled departure time,
scheduled arrival time, actual departure time, wheels—off

time, wheels~on time, and arrival time. These data were
used in a hypothesis test described in section 10.2.

5.0 DATA PROCESSING AND REDUCTION

The data for storm cell penetrations were processed in
a different way than the data for storm cell deviations.

5.1. ration in

An algorithm examined each flight and searched for
instances where the aircraft entered weather that exceed-
ed the penetration threshold for one or more variables. To
avoid biasing the study results toward one sensor, there
was a penetration threshold for one variable from each of
the weather radars: ASR Precipitation (threshold of 2 on
NWS six—level precip scale), TDWR VIL, and NEXRAD
VIL (threshold of 2 kg/m?). A penetration was defined as
the sequence of observations for which one or more of the
penetration variables exceeds its threshold.

Some aircraft penetrated multiple storms. Each pe-
netration of a storm cell consisted of multiple weather ob-
servations. Each penetration was reduced to a single “en-
counter observation” that consisted of one representative
value for each of the weather variables. For all variables
except echo bottom and center of mass, the encounter
observation value is the maximum value from the pe-
netration observations. The echo bottom value is the
minimum value and the center of mass value is the me-
dian value from the penetration observations.

5.2.  Deviation Processing

Itis difficult to have software automatically identify air-
craft that are deviating from their intended flightpath. In
this study a human analyst reviewed sequences of ani-
mated images of weather and flight frack data and judged
which aircraft deviated around weather. The analyst used
software to draw a box around the weather which was be-
lieved to cause the deviation. Figure 1 shows the flight
track of an aircraft deviating around a storm cell with level
4 ASR precipitation.,

Analysis software extracted all of the weather variables
from all of the x,y,z locations in the box at the time of the
encounter and computed the minimum value for the echo
bottom variable, the median value for the center of mass
variable, and the maximum value for all other variables in
the entire 3-D region of airspace that was avoided.

6.0 DATA CASES

The dataset consists of 63 hours of weather and air-
craft data from nine different days during the spring and
summer of 1997. Approximately 4300 aircraft landed at
the DFW and DAL airports during that period and 1279 of
those aircraft had a total of 1952 encounters with storm
cells. Of the 1952 aircraft encounters with storm cells,
there were 642 deviations and 1310 penetrations.

Figure 2 shows a histogram of the number of penetra-
tions and deviations vs. ASR precipitation level for all
1952 encounters. Level 1 precipitation was essentially ig-
nored in this study. There are many penetrations of level
2 and the number of deviations becomes larger than the
number of penetrations for level 4 and higher weather.
This corresponds well to the controllers’ rule—of-thumb
that pilots begin to deviate when the weather reaches lev-
el 3 or greater.
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Figure 1. An aircraft deviating around a storm cell.
An analyst has drawn a box around the weather
that is believed to be responsible for the deviation.
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Figure 2. Penetrations and deviations vs. NWS VIP level

7.0 STATISTICAL ANALYSIS OF WX VARIABLES

This section of the paper considers which weather re-
lated variables are correlated with the pilots’ penetration/
deviation behavior. We do not consider any flight-related
variables because it would be highly desirable to design
aclassifier that could reliably compute the probability—of—
deviation without knowing what types of aircraft are flying
around, which airlines they belong to, or what order they
are flying in. It turns out that weather variables alone de-
scribe most of the variation in the dataset.

The statistical analysis of the weather variables in this
dataset was done in two parts. First, the data were ana-
lyzed to find the combination of variables that best ex-
plained the variation in the penetration/deviation data.
Second, several statistical classifiers were trained and
then tested on data that was not used in the classifier
training phase.

7.1. Feature Selection

A software package named LNKnet (Lippmann, 1 993)
was used to perform a forward and backward search
through the input variables employing a k-nearest—
neighbors, leave—one—out technique to assess the ex-

planatory power of various combinations of input vari-
ables or “features.” The best combination explained 94%
of the variation in the penetration/deviation decisions us-
ing justfive variables: range from the airport, pencil-beam
radar reflectivity (DZ), ASR precipitation level (ASR), per-
cent of the TRACON quadrant covered in at least low—in-
tensity (level 2+) precipitation (QUAD_CVG_LO), and
percent of the TRACON quadrant covered in high-inten-
sity (level 4+) precipitation (QUAD_CVG_HI).

The radar reflectivity variable alone explained about
80% of the variation in the dataset. The magnitude of this
variable's explanatory power is not surprising because
most commercial aircraft are equipped with weather radar
that indicates the presence of light, medium, and heavy
rain. The ground-based radar reflectivity variable should
be strongly correlated with the radar information that was
available to the pilots at the time that they made the pe-
netration/deviation decision.

Itwould not be practical, however, to design a probabil-
ity-of—deviation classifier based on a 3-D radar reflectiv-
ity product. In order to be helpful to air traffic planners and
automation systems, a probability—of—deviation classifier
would need to run on a forecast weather product; the sys-
tem would need to predict the probability—of—deviation
out 20-30 minutes into the future. The technology to ac-
curately forecast 3—-D storm structure 30 minutes into the
future simply does not exist at this time. For the foresee-
able future, a probability—of—deviation classifier will need
touse a 2-D representation of storm intensity. Therefore
the LNKnet feature selection process was run a second
time without the radar reflectivity variable.

Without considering the 3-D radar reflectivity variable,
LNKnet found that 89% of the variation in the data can be
explained by four variables: range from the airport, verti-
cally integrated liquid water (VIL), QUAD_CVG_LO, and
QUAD_CVG_HI. Seventy—four percent of the variationis
explained by VIL alone. Again, itis not surprising that VIL
has a great deal of explanatory power because VIL is
computed solely from the 3-D radar reflectivity variable.

Broadly speaking, this analysis indicated that there are
three categories of variables that are strongly correlated
with penetration and deviation behavior: storm intensity,
weather coverage in the surrounding region, and range
from the destination airport. The dataset contains a num-
ber of variables that are estimates of storm intensity. Sta-
tistical classifiers were trained and tested using all of
those variables. (Rhoda, 1998) This paper will discuss
the performance of the classifiers that used DZ, VIL, and
ASR. These variables correspond to the variable with the
most explanatory power (DZ), the variable with the se-
cond-most explanatory power (VIL), and the only weath-
er variable that controllers see on their operational dis-
plays (ASR).

7.2.  Statistical Classifier Training and Testing
LNKnet is capable of training neural networks, likeli-

hood classifiers, nearest neighbor classifiers, rule-based
classifiers, and committee classifiers. In the exploratory



phase of this project, nearest neighbor, rule-based, and
neural network classifiers were trained and tested. The
neural network classification technique out-performed
the other two and was used throughout the remainder of
-the study. All of the neural net classifiers constructed in
this study employed the range variable, the two weather
coverage variables, and one storm intensity variable.
Three separate storm intensity variables— DZ, ASR, and
VIL — were used to train and test three separate classifi-
ers.

The data were split randomly into thirds and DZ, VIL,
and ASR classifiers were trained and tested on each per-
mutation of two—thirds training and one-third testing. Fi-
nally the data were separated into nine subsets where
each subset corresponded to a storm day in the dataset.
For each day in the dataset, DZ, VIL, and ASR classifiers
were trained on eight days of data and tested on the ninth.
Table 1 lists the average error rates for the two—thirds/
one-third splits. Table 2 lists the average error rates for
the eight days/one day splits. The DZ classifier has the
lowest errors, followed by the VIL and ASR classifiers.
The low error rates imply that it may be possible to gener-
ate reliable maps of probability—of-deviation for use in air
traffic management decision aid tools.

DZ VIL ASR
DEV 12 19 29
PEN 3 5 7
TOTAL 6 10 15

Table 1.Average Percentage of Test Data Incor-
rectly Classified by Neural Net Classifiers. Train
on 2/3; test on 1/3; three different permutations.

DZ VIL ASR
DEV 11 20 28
PEN 5 7 14
~TOTAL 7 11 18

Table 2.Average percentage of test data incorrect-
ly classified by neural net classifiers. Train on
eight days; test on one day; nine permutations.

8.0 CONTROLLERS’ RULE-OF-THUMB

A simple binary tree classifier was trained to replicate
the controllers’ rule—of—thumb. LNKnet determined that
if ASR precipitation is the only variable available, the low-
est error rate is achieved by classifying all encounters
with levels 1 and 2 weather as penetrations and all en-
counters with level 3+ precipitation as deviations — this
finding corresponds exactly to the controllers’ rule—of—
thumb. Unfortunately the resulting classifier incorrectly
classified 30% of the 1952 observations in this dataset.
All of the classifiers described in section 7.2 that took ad-
vantage of information about the range of the encounter
and weather coverage performed better than the rule—of—
thumb classifier.

9.0 EXPLANATORY WEATHER VARIABLES

Again, this analysis indicated that there are three cate-
gories of variables that are strongly correlated with pe-
netration and deviation behavior: storm intensity, weather
coverage in the surrounding region, and range from the
destination airport.

9.1. Storm Intensity

The dependency on storm intensity is intuitive; pilots
are trained to avoid intense convective activity.

9.2. Weather Coverage

The dependence on weather coverage is also some-
what intuitive. If the storm being encountered is the only
cloud in the sky then pilots often have plenty of latitude to
deviate around the cell. If the area is covered in wide-
spread precipitation then the pilot will likely have to fly
through some precipitation to reach his/her destination so
penetration becomes more likely. Finally, if the region is
covered with strong convective activity, pilots tend to
avoid the region altogether.

9.3. Range From the Airport

Pilots in this dataset were more likely to penetrate in-
tense thunderstorms as they drew nearer the destination
airport. Near the airport (<20km), 91% of the encounters
with heavy weather (NWS level 3+) resulted in penetra-
tions (211/231). Farther from the airport (>20km), only
31% of the heavy weather encounters resulted in pe-
netrations (212/678).

There are several possible explanations for this behav-
ior and more research will be required to determine
whether the finding is generally true and if so, why. The
explanations fall into two broad categories: First, itis pos-
sible that when the pilots are near the airport at low alti-
tude with a high workload level, they are less able to as-
sess the severity of the weather and therefore they
inadvertently penetrate significant weather. Second it is
possible that the pilots are aware of the intensity of the
weather and yet they are more willing to penetrate heavy
weather near the airport. Both categories of explanation
are discussed at some length in the technical report that
describes this research. (Rhoda, 1998) Whatever the
reason, the fact that pilots penetrate thunderstorms with
level 3, level 4, and even level 5 precipitation near the air-
port, highlights the importance of wind shear detection
and prediction systems that alert controllers and pilots to
hazardous conditions near the runway.

10.0 FLIGHT-RELATED VARIABLES

There were several flight-related variables in the study
that were well-suited for hypothesis tests that yielded in-
teresting results.

10.1. Leaders and Followers

The data in this study indicate a correlation with the be-
havior of preceding pilots. Aircraft that follow closely be-
hind a preceding aircraft are more likely to penetrate
heavy weatherthan aircraftthatdo not. In this study “lead-



ers" were defined to be aircraft who flew along a route that
had not been used by a preceding aircraft for at least ten
minutes. Followers were aircraft that flew along a route
that had been used by another aircraft within the preced-
ing ten minutes. Twenty—six percent of the leaders that
encountered heavy weather in this dataset (79/298)
penetrated the storms. Fifty—six percent of the followers
that encountered heavy weather (344/610) penetrated
the weather. When the analysis is restricted to encoun-
ters with heavy weather within 20 km of the airport, the
percentages increase. Fifty—eight percent of the leaders
penetrated the storms (21/36) and ninety—eight percent of
the followers did so (190/194). The difference between
the leaders’ and followers’ propensity to penetrate is sta-
tistically significant at the .01 level.

10.2. Aircraft Behind Schedule

Alrcraft in this study first appear in the flight track data
when they are 60 nautical miles from the DFW airport.
From that point it typically takes 20 minutes to fly to the
DFW or DAL airports. In this study, aircraft that arrived at
the radar boundary having already flown 15 minutes long-
erthanthe scheduled flying time to that pointin the trip (i.e.
within five minutes of the scheduled flying time for the en-
tire trip) were more likely to penetrate heavy weather than
those that arrived earlier. Fifty—one percent of the en-
counters with heavy weather made by “late” planes
(39/77) resulted in penetrations. Only 15% of the heavy
weather encounters made by aircraft that were not “late”
(79/531) resulted in penetrations. The difference be-
tween the early and late aircraft's propensity to penetrate
is significant atthe .01 level. [Note. The scheduled flying
times were not available for all of the aircraft that encoun-
tered heavy weather.)

10.3. Various Aitlines

There were seven airlines that had more than 20 en-
counters with light weather (level 1 or 2) in the dataset.
There were no statistically significant differences in the
airlines’ propensity to penetrate or deviate around light
weather.

There were six airlines that had more than 20 encoun-
ters with heavy (level 3+) weather in the dataset. There
were no statistically significant differences in the airlines’
propensity to penetrate or deviate around the heavy
weather.

11.0 CONCLUSION

The data in this study affirm the air traffic controllers’
rule—of-thumb. If the only variable available is the NWS
six—level precipitation intensity then it is best to say that
pilots tend to deviate around weather that is level 3 or
higher. Range and weather coverage information im-
prove the performance of the rule—of-thumb classifier.
Even more accurate classifiers may be constructed with
products from pencil-beam radars; both 3-D reflectivity
(DZ) and vertically integrated liquid water (VIL) result in
classifiers with lower error rates than the ASR classifiers.
Other factors that seem to be correlated with penetration/

deviation behavior include leader/follower status and on—
time status.

Initial analysis indicates that the storm intensity, range,
and weather coverage variables yield promising results in
candidate statistical classifiers. Given a reliable forecast
of storm intensity, it should be possible to generate a fore-
cast of the pilots’ probability—of—deviation for use in traffic
management decision—aid tools.

Pilots in this study penetrated some surprisingly in-
tense weather near the airport. The reasons for this are
notclear. The penetration/deviation decision near the air-
port warrants further analysis and research.

Opportunities for future work include: analysis of de-
parting aircraft in the TRACON; analysis of aircraft in the
en-route environment; analysis of storm cell encounters
in other parts of the country; interaction with the pilot com-
munity to understand the penetration/deviation decision
as the plane nears the airport; implementation of a candi-
date statistical classifier to generate probability—of—devi-
ation maps; and interaction with the convective weather
forecasting community to generate and evaluate forecast
probability—of-deviation maps.
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