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THE ITWS RUNWAY WIND NOWCAST PRODUCT

R. Gary Rasmussen and Frank M. Robasky

MIT Lincoln Laboratory
244 Wood Street
Lexington, Massachusetts 02173-9108

1. INTRODUCTION

The Runway Wind Nowcast Product' will
support the ITWS? objective by providing short term
(up to 30 minutes) forecasts of the tailwind -and
crosswind components of the horizontal wind over
each runway at an ITWS airport. These forecasts will
enable FAA users to better anticipate wind shifts
impacting runway usage and trajectories of
approaching and departing air traffic. They may also
support future ITWS products such ceiling and
visibility nowcasts,

Our initial development - efforts, which are
reported here, have been directed toward Orlando
International Airport (MCO) as the product request
originated there. However, in the near future we plan
to expand the scope to include other ITWS airports
including Memphis.

The Runway Wind Nowcast Product is being
developed to help Air Traffic Control (ATC) personne!
answer the following question: Do we need to change

! The work described here was sponsored by the Federal

Aviation Administration (FAA). The United States
Govermnment assumes no lizbility for its content or use
thereof,

?  The Integrated Terminal Weather System (ITWS)
currently in development by the FAA will be a fully
automated, integrated terminal weather information system
designed to improve the safety, efficiency, and capacity of
terminal area aviation operations. The ITWS will acquire
data from FAA and National Weather Service sensors as
well as from aircraft in flight in the terminal areas of

* selected airports. It will provide products to FAA Air Traffic
personnel that are immediately usable without further
meteorological interpretation. Those products include
current terminal area weather and short term predictions of
significant weather phenomena.
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runways? That would become necessary if tailwinds or
crosswinds exceed usage thresholds. At most US
airports, with dry runways, tailwinds must be less than
five knots and crosswinds must be less than 15 knots.
Other, lower thresholds apply if the runways are wet.
However, these thresholds are subject to local
modifications. For example, the MCO tailwind
threshold for dry runways is 7 knots.

The decision faced by ATC personnel seems, at
first, to be clear cut: if the tailwind or crosswind
exceeds nominal thresholds, use of that unway must
be discontinued. The problem (at least at MCO) is that
most threshold crossings are very brief. So, it may be
better to temporarily hold traffic than to switch
runways. Reliable (i.e., accurate and precise) short
term forecasts will help ATC personnel make better
hold-or-switch decisions.

2, BACKGROUND INFORMATION
2.1 Event Statistics

How frequently are hold-or-switch decisions
required? To gain insight into this question we
compiled statistics on the frequency and duration of
runway usage threshold-crossing events using 111
days of Low Level Windshear Alert Systern (LLWAS)
wind observations taken at MCO. In the future, we
also plan to analyze runway usage logs.

The LLWAS data set was collected in 1992
between June and September. This is the rainy season
in Orlando and most of the observed events were due
to local flows associated with convective storms. The
MCO LLWAS system consists of a network of 14
anemometers arranged in three lines, each orientated
north-south. The three MCO runways have a like
orientation (Fig. 1). In Orlando, the preferred flow for



arriving and depaning air traffic 1s from north to
south. In that runway configuration a north wind is a
tailwind. Since we didn't know which configuration
was in use at any given time, we compiled statistics for
north wind events rather than for tailwind events.
Figure 2 shows the results.
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Figure 1. Schematic map of Orlando International Airport
(MCQ) showing runway and LLWAS sensor locations.
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Figure 2. Relative frequency (N=747) of durations of north
winds greater than 7 knots showing that long-duration
threshold-crossing events are relatively uncommon.

During the 111 days of the study period 747
threshold-crossing north-wind events occurred: an
average of 6.7 per day. Eighty percent had durations of
10 minutes or less (5.4 per day) while 10 percent (0.7
per day) had durations greater than 20 minutes. The
median duration was three minutes. For crosswind,
which has a higher threshold, threshold-crossing

events were less common. 187 events occurred during
the 111 days of which 91 percent had durations of 10
minutes or less. Five events (1 per 22 days) had
durations greater than 20 minutes. Again, the median
duration was three minutes.

As most threshold-crossing events are associated
with convective storms, it is not surprising that their
number pedks in the mid io aie afternoon. During ihe
study period nearly haif of the north-wind events with
durations of 10 minutes or less occurred between noon
and 8 PM (local time). The peak occurred between 4
and 6 PM. That this time coincides with the afternoon
traffic surge further emphasizes the need for reliable
short-term wind forecasts.

2.2 Data Sources

The Runway Wind Nowcast Product will rely
primarily on observations from a local network of
LLWAS or Automated Surface Observing System
(ASOS) anemometers. A simple scale analysis shows
that a typical network radius of about 5 km will
support a-15 minute forecast, assuming a disturbance
propagation speed of 5 m/s. For higher propagation
speeds and tonger forecasts (30 minutes is desired) we
must gather wind information from a larger area
around the airport. Thus, we also plan to use Doppler
radar wind observations, as processed by the ITWS
Terminal Wind Analysis Product (Cole er al., 1993)
and the Machine Intelligent Gust Front Algorithm
{Delanoy and Troxel, 1993). Figure 3 summarizes
these relationships.
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Figure 3. Schematic diagram showing the Runway Wind
Nowcast Product inputs and outputs.

2.3 User Interface

Our preliminary concept for a user interface is to
present two levels of information. Normally, the user
display will show a color-coded status circle which,
when activated, will expand to show a time series of
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crosswind and tailwind for the selected runway. The
color code will be as follows:
» red — a threshold crossing is forecast to occur
- during the next 10 minutes,
s yellow —— a crossing (the first) is forecast to occur
from 10 to 30 minutes hence,
» green — No crossings are forecast over the next
30 minutes, and
¢ black — the forecast system is not currently
operational {e.g., insufficient data).

The time series display will show the actual wind
components over the past 30 minutes and future
projections for up to 30 minutes. Estimates of forecast
reliability will be made too, but will not be displayed.
Rather, they will be used to suppress forecasts which
are deemed to be insufficiently reliable (Fig. 4).
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Figure 4. Tentative user display of crosswind series. In
this example estimates of low forecast precision inhibit
forecast displays for lead times greater than 20 minutes.

2.4 Forecasting Approach

Linear and non-linear time series (Gershenfeld
and Weigend, 1993) and space-time models are being
evaluated for use in a Kalman Filter (i.e., state space)
framework (Harvey, 1989; Gelb, 1974) to generate
headwind and crosswind forecasts. Although we plan
to employ as much physics as feasible, data limitations
mandate use of a statistical approach.

We anticipate a need to customize forecast model
parameters for each ITWS airport (as well as for
diurnal and annual cycles), This presents an
implementation dilemma in that an adequate
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development database is not expected to be available
prior to the initial installation at some sites. To
ameliorate this problem, we plan to integrate a
learning algorithm and a local statistics database with
the forecast model so that site performance will
improve over lime. Moreover, we will use proxy data
during development where feasible,

3. PROGRESS
3.1 Preliminary Data Processing

LLWAS wind speeds and directions are sampled
every 10 seconds. All results discussed below are based
on simple two minute trailing averages of the u and v
components of the observed winds. The running
means have been resampled at one or five minute
intervals.

As noted above, the MCO LLWAS network
contains 14 sensors. Measurements from these sensors
can be in marked disagreement, as is illustrated in
Figure 5. These inconsistencies may be the result of
true variations in the wind field, improperly sited
sensors, obstructions, faulty instruments, or a
combination of these factors. Traditionally, ATC
personnel consult the center field anemometer when
making decisions about runway usage. Ironically, the
reported center ficld LLWAS speed at MCO may be
biased high, compared with speeds from other network
sensors, Another consideration is frequently missing
data, with some sensors more prone to dropouts than
others. These aspects of the LLWAS data imply that a
real-time data quality module will be an essential
component of an operational product generator.
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Figure 5. Measurements of the v wind component from 6
of the 14 MCO LLWAS sensors for a |-hour period on

9/21/92, illustrating center field sensor bias. The vertical
solid lines near 1730 GMT bound a data dropout in the
southeast sensor.



After some experimentation, we deeided to fit a
linear (spatial) surface to the available LLWAS
observations of each wind component at each tlime.
The least-squares fit was of the form:

W{X,¥y) = Co + C1 X + C2¥ (n

where w is either u or v, x and y are rectangular
coordinates of the sensors (with the origin at center
field, see Fig. 1), and cg, ¢, and ¢, are parameters of
the fit. Note that ¢q is the fitted value at center field, ¢,
is an estimate of dw/dx, and c; is an estimate of dw/dy.
We fit a plane rather than a higher order polynomial
surface to suppress higher spatial frequcnmes The
fining also tended to beneficially suppress higher
temporal frequencies and biases (Fig. 6).
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Figure 6. The observed center field v (dotted line) and its
estimate from a linear surface fit to all available sensors
(solid line) showing that the estimate filters high temporal
frequencies and removes most of the center field
measuremant bias (compare with Fig. 5).

3.2 Statistical Forecast Models

Initial efforts have focused mainly on developing
and applying a conventional linear time series model:
the autorcgrcssive. inlegratcd moving average
(ARIMA} modei of Box and Jenkins {1976). These
results will serve as a baseline for the subsequent
evaluation of nonlinear and space-time models. The

general form of an ARIMA(p,d,q) model is:

[1_ T aB [1-Bflw =C4{1- $ bB" .

i=1 j= 1
(2)

i = .
B'wy=wy_j

Here, B is the backshift operator, C is a constant, and
a; and b are autoregressive (AR) and moving average
{(MA) coefficients, respectively. {g} is a series of
random shocks (unobserved inputs) which are
assumed to be both zero mean and independently and
identically distributed. {w,} is the subject time series
{which may be a transformed version of an original
series). In the present case it is either {w} or {v.}.
Note that Eq. 2 may be solved for w,. This gives a one-
step prediction formula. An n-step prediction may be
obtained by iterating the 1-step formula. Thus, with
this model, predictions of future winds are based
purely on past behavior, an obvious weakness.

In practice, the ARIMA modeling process
consists of several iterations of the following steps:

s identify p, d, and q, the autoregressive,
difference, and moving average orders, using
graphical or analytical tools (this is the most
difficult step),

s estimate the coefficients using a maximum
likelihood or least-squares procedure to minimize
1-step ahead forecast errors, and

» perform diagnostic checks to determine the
adequacy of the model.

Initially, we developed low order models using
several days of data. Model parameters were identified
using an objective criterion which minimized 1-step
prediction errors while penalizing models for large p's
and q's. The resulting models perform well for 1 or 2
steps, but the prediction accuracy degrades rapidly at
longer leads. For example, Fig. 7 shows several 30-
minute forecasts from an ARIMA({2,1,1) model for u
on 8/28/92 using a S5-minute time step. This case is
interesting because of a dramatic rise and fall in the
crosswind component of roughly 10 knots within a 1.5
hour time period, with the wind briefly crossing the
usage threshold. The north-wind component, although
not shown, is equally interesting as it drops quickly to
just short of the tailwind threshold and then slowly
rises.

In Fig. 7, short-lead forecasts are seen to be much
more accurate than those at longer leads for the points
of most interest: the turning points. It is apparent that
we should optimize this model for longer leads (i.e.,
more than 1 siep ahead). Moreover, in cases such as
this, a larger information set (e.g., supplementa]
gradient information} shouid be beneficial. Figure 8
shows that, over the entire day, the ARIMA(2,1,1)
model slightly outperforms persistence at all leads.
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Figure 7. 5 to 30 minute forecasts from an ARIMA(2,1,1)
model of u-wind for 8/28/92. Actual winds (asterisks) and
forecasts (vertical ticks) have a sampling interval of 5
minutes,
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Figure 8. RMS error (upper curves) and bias (lower curves)
as a function of forecast lead for 8/28/92 from the

ARIMA(2,1,1) model of Fig. 7 (solid line) and persistence

(dashed line).

What is the AR order beyond which no
appreciable gain in forecast accuracy will be achieved?
To investigate this question we fit AR models of
varying order and observed the order at which, for
selected forecast leads and independent data, the RMS
forecast error is minimized, We used three days of 1-
minute u data (8/27- 8/29) and applied the resulting
models to this same period (dependent data) and also
to an independent three day period (7/30-8/1). The
results for 1-step forecasts are shown in Fig. 9. As
expected, the model performs better with dependent
data. The RMS forecast error with independent data is
minimized at order 15 (though essentially at order 7).
We obtained longer lead forecasts by iterating the 1-
step model and found that for leads of 5 or more steps,
the RMS error is minimized with a third or fourth
order model. Thus it seems that little or no forecasting
advantage at longer leads is gained from the use of
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higher order, iterated 1-step models. This confirms the
need to develop forecast models optimized for longer
lead (n-step) forecasis.
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Figure 9. 1-step AR model RMS forecast error for 3-day
dependent (lower line) and independent {upper line) data
sets. The RMS error with independent data is minimized at
order 15 but shows little improvement past order 7.

We mentioned earlier that spatial information
should be helpful. Preliminary investigations in this
direction were based on the spatial variations present
within the MCO LLWAS network. Consider the
Navier-Stokes equation for u (dwdt):

du au_ du

du 1dp
e u— A T Y 2
5= 5 Vay VY T 3

Here, X, y, and z are Cartesian coordinates, v is dy/dt,
w is dz/dt, f is the Coriolis parameter, p is pressure, p
is density, and F, is the x component of the frictional
force. Of the right hand side terms, only the first two
(horizontal advection) and the fourth (Coriolis) can be
calculated from the wind data at hand. However, for
the spatial scales under consideration, the Coriolis
force is small and will be ignored for the sake of this
discussion,

We calculated the horizontal advection terms
each minute using all LLWAS sensor data and Eq. 1.
Figure 10 shows that the u-advection for the sample
period of Fig. 7 has an advection maximum which
precedes the maximum in u by about 5 minutes.
Although not shown, the v-advection similarly
anticipates changes in v. Thus advection may be a
useful additional predictor.



We have begun to investigate another class of
prediction models: feed-forward neural networks. The
architecture of one model we have used is shown in
Fig. 11. Observe that by connecting the input nodes
{lowest layer) directly to the output, we could construct
a comresponding (linear) AR model. The neural
network’s essential nonlinearity is due its activation
function (a logistic function here). Although these
networks have shown great promise by outperforming
corresponding linear models, we have decided 1o
postpone their further development until we settle on a
linear model architecture as the corresponding linear
models are much more economical to develop.
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Figure 10. Horizontal u advection (solid line) and fitted
center-field u (dotted line) on 8/28/92. Changes in advection
are seen to precede changes in u.
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Figure 11. An example of a feed-forward neural network
prediction architecture we have used. Lines between nodes
(circles) represent weights. Only a small subset of weights
in the fully connected architecture is displayed.

4. SUMMARY AND FUTURE PLANS

The Runway Wind Nowcast Product, now under
development at Lincoln, will provide short-term {up to
30-minutes) forecasts of the crosswind and tailwind on
each runway at ITWS airpons. The forecast model will
have both deterministic and stochastic components.
Ultimately, the prediction algorithms will be
embedded in a Kalman filter framework to permit
dynamic updating of system parameters and to provide
estimates of forecast precision, Initial work has
focused on the use of univariate ARIMA models,
which will provide a baseline against which to
evaluate future models.

Our efforts will next be directed towards the
development of longer lead models (i.e., optimized
beyond 1 step) and space-time models utilizing
horizontal advection. Ultimately, we will determine if
corresponding nonlinear models are justified. We also
plan to use Memphis data and meet with end users.
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