

Design and Implementation of the TFDM Information Management Architecture

William Moser

MIT Lincoln Laboratory

This work was sponsored by the Federal Aviation Administration under Air Force Contract No. FA8721-05-C-0002.

Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

Outline

- Brief Introduction to TFDM
- Information Architecture Objectives
- Survey of Architectural Components
- The TFDM Simulation Environment
- Summary

Tower Flight Data Manager (TFDM) System Overview

Enablers

Consolidated tower systems

Enhanced cross-domain information exchange

Decision support tools

Benefits

Robust operations

Reduced delay, fuel, environmental impact

Enhanced safety

Ability to support remote operations: Staffed NextGen Tower (SNT)

Operational Users

Tower controllers
Flight data, Clearance,
Ground, Local, Supervisor

Terminal Control

Flight Operations Centers

Ramp Tower

Airport Authority

Primary Computer Human Interfaces (CHI)

Tower Information Display System (TIDS)

Flight Data Manager (FDM) Display

* Integrated display concept being developed *

MIT Lincoln Laboratory

Assigned Departure Time Restriction Type

Tower Flight Data Manager (TFDM) System

Outline

Brief Introduction to TFDM

- Information Architecture Objectives
- Survey of Architectural Components
- The TFDM Simulation Environment
- Summary

Information Architecture Objectives

- Integrate multiple heterogeneous information sources
 - Flight plans, weather, en route traffic information, surveillance, etc.
- Accommodate system evolution as information and decision support capabilities are deployed, decommissioned, or updated
- Export terminal-area information to stakeholders
 - Other NextGen facilities and systems, airlines, data archives, etc.
- Comply with relevant requirements, standards and guidelines
 - FAA NextGen/SWIM
 - LL Mission Assurance Office
 - LL Net-Centric Toolkit

Information Management Architecture, External View

Scalable Information Architecture

Many distinct services vs. single flexible service

System-Wide Information Management (SWIM) Container

Progress Software's FUSE product selected as the SWIM container in August 2008

Function	Technology	TFDM Role
Enterprise Service Bus (ESB)	ServiceMix	Hosts ADMT modules, provides standard interfaces to external components
Message Broker	ActiveMQ	Pub/sub infrastructure for inter-process communication
Mediation Router	Camel	With ActiveMQ, forms backbone of TFDM information routing architecture
Services Framework	CXF	Implements information sharing via Web Feature Service (WFS)

Outline

- Brief Introduction to TFDM
- Information Architecture Objectives

- Survey of Architectural Components
- The TFDM Simulation Environment
- Summary

The TFDM Information Management Architecture (TIMA)

- TIMA is comprised of components which address
 - Data archiving and retrieval
 - Information exchange among processing components
 - Organization of information
- Web Feature Service (WFS)
 - Web Service standard developed by the OpenGeospatial Consortium
 - TFDM's "public" access point as a SWIM service
- TFDM Information Bus (TIB)
 - Apache Camel, JMS-based approach to data transport
- TFDM Information Architecture
 - "Information Channel" overlay on the TIB

TIMA Design Overview

The Web Feature Service (WFS)

- Open Geospatial Consortium (OGC) standard for storage and retrieval of XML data
- Data must conform to the OGC's Geographic Markup Language (GML) standard
- WFS operations include INSERT, UPDATE, DELETE, QUERY, and DISCOVERY
- WFS specification includes WSDL for service interoperability
 - http://schemas.opengis.net/wfs/1.1.0/wsdl
- G43 NNEW team extending to include a publish/subscribe operation

WFS serves as the internal database for TFDM, as well as the external service interface in the SWIM SOA

WFS/TFDM Integration

The TFDM Information Bus (TIB)

- "No-code" data transport: information bus configured from existing SWIM container components -- No additional software development required
- Transport-independent applications: applications configured to route data appropriately applications require no knowledge of information bus, or transport protocols
- Information-oriented: Applications need only know what information they require, not who provides it

The TFDM Information Architecture

Representation: Information structure

- Standardized approach to XML schema development
- Basis for information transmission, archiving, and retrieval
- Data types ("message payloads") are realized as TFDM Features
 - GML Features with a common "header"
- Related Features may be grouped into FeatureCollections for transmission

Transmission: Information channelization

- FeatureCollections defined for major information categories
 - Flight Object, Decision & Control, etc
- Data for each category transmitted on dedicated "channel"
 - Channels implemented as JMS topics

Uniform standards for both <u>representation</u> and <u>transmission</u> are the foundation for robust information exchange in an evolving system

Outline

- Brief Introduction to TFDM
- Information Architecture Objectives
- Survey of Architectural Components
- The TFDM Simulation Environment
 - Summary

Role of Simulation in TFDM

- Provide high-fidelity software test environment for developers
- Provide realistic environment for human-in-the-loop testing
- Qualify and integrate new features prior to field deployment
- Enable exploration of ATM concepts
- Provide a platform for benefits analysis

Ultimate purpose is risk mitigation for TFDM procurement

Simulation Requirements

- Simulation requirements are minimal, enough to enable TFDM modules to interact in simulations
- We need to develop a simulation framework to run simulations
- The simulation framework is not itself part of TFDM we have not developed a separate requirements document for this

Simulation Architecture Goals

- Scalable to multiple nodes
 - Primarily LAN-based, with limited WAN possibilities
- Robust, transparent time synchronization among system components
- TFDM applications unaware of simulation environment
- Lightweight, adaptable control mechanism
- Easily integrated with external simulation systems
 - Systems must have compatible time synchronization and accessible I/O mechanisms

Basic Control Framework

Synchronization scalability maintained by using systems' hardware clocks and NTP*

Co-simulation Integration Architecture

Data and protocol normalization is tailored to the specific co-simulation system

Simulation Engines and Modules

- NAS Subsystem Emulation components
 - Emulators for TFMS, ERAM, ASDE-X (Lo-Fi)
 - Integrated into TFDM as "native" components
- Controller Simulation Environment
 - Adacel MaxSim system with software interface enhancements
 - High-fidelity terminal-area traffic simulator with detailed outthe-window views
 - FAA deploying to multiple locations around the country for controller training

End-State Emulator Design

End state design modularizes functionality and enables integration with other simulation engines

Outline

- Brief Introduction to TFDM
- Information Architecture Objectives
- Survey of Architectural Components
- The TFDM Simulation Environment

Summary

TFDM Information Management Architecture Summary

- Event-driven
 - Receipt of information, timer expiration, external system change
- Information oriented
 - Flexible communication mechanism and service interface
- Distributed
 - Deployment topology is transparent to applications
- Built on open-source tooling and open standards
 - SWIM-compliant
- Designed to integrate with simulation systems

The TFDM Information Management Architecture is intended to scale:

- internally, using an implicit invocation paradigm to accommodate evolving configurations of decision support tools
- externally, accommodating changes in information content provided without the need for interface retooling on either the client or server side