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ABSTRACT 
This  paper illustrates  the  use of a  primitive symbolic 

description of an image to obtain  more  robust  identifica- 
tion of amorphous objects than would be possible with 
more conventional  edge or gradient-based  segmentation 
techniques.  An algorithm is described which uses  a simple 
multi-level thresholding operation  to  form a symbolic 
representation of weather radar reflectivity images. This 
representation allows the use of detailed  rules  for the 
detection and quantification of the  image features. A 
method is described for using this  information to identify 
significant  intensity  peaks in an image, and  examples of 
its performance  are shown. 

INTRODUCTION 
This  paper  discusses the initial results of an effort to 

develop  automated algorithms  for the interpretation of 
time  sequences of radar images of thunderstorms.  The 
radar images are  acquired  at regular intervals in time, as 
the  radar  scans through  a  sequence of elevation angles 
(Figure 1). The information thus obtained  depicts the time 
evolution of the three-dimensional structure of the storms 
being observed. An automated interpretation and analysis 
capability is desired  for use in the  detection of weather 
events which may be  hazardous to aviation, and in par- 
ticular,  to the  identification of storm cells which may give 
rise  to  microbursts (small  scale  downdrafts which hit the 
Earth's  surface  and  cause a strong  divergent outflow of 
wind). 

The primary  goal of the  interpretation  process is to 10- 
cate  the  storm cells  present in the image sequence,  and 
identify  those characteristics which are important in deter- 
mining  the storm severity and likelihood of producing a 
microburst. One  such  characteristic is the height vs. time 
profile of the  storm reflectivity [l]. This  profile is useful in 
identifying  the  collapsing  stage of the cell life cycle, during 
which microbursts  are  formed. An example of the  chang- 
ing vertical structure of a  severe thunderstorm is shown in 
Figure 2. Parameters such as the  size and vertical extent 
of the  raincore,  and  the  rate at which it falls to the surface 
are of interest. 

The interpretation  task is a  difficult one, for two 
reasons.  First,  the objects of interest in the  images (i.e., 
storm  cells),  are not very  well defined. They appear in 
various shapes,  sizes,  and intensities,  and are often clus- 
tered  together into complex  aggregates.  Second, the 
desired analyses require  the association of individual radar 
observations  at  different altitudes and points in time. 
Hence,  the  storm cells not only need to be  recognized,  but 
coherently  tracked in space and  time. 

Time (min) 

While automated algorithms  for processing weather 
radar  images exist [3], the common techniques detect and 

Figure 2:  Vertical  reflectivity cross sections depicting the time- 
height  profile of a typical severe thunderstorm  (adapted from 
1211 

characterize  storm cells using single (fixed) level 
Figure I :  Weather  radar  data acquisition Scenario thresholding [4] or more  adaptive peak-finding [5] 

methods. While these methods have proven useful for ap- 
plications such as storm tracking and hail storm  detection, 

This work was sPonsored by the Federal Aviation Ad- they are not  always able to resolve and independently  track 
ministration.  The United  States  Governmellt assumes no the small-scale Storms typical of microbursts, and do 
liability for its contents or the use thereof. provide all the  information about storm structure that 

would be  useful  for  the  discrimination of microburst- 
producing storms. In particular,  the  information  required 
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to  derive  the time-height storm profile is not conveniently 
available. 

The  approach described  here is to  generate, at an early 
stage, a  symbolic representation of the  image to be 
processed. This symbolic representation then  provides a 
basis  for  the identification of the primitive features in the 
image, the  association of features between images,  and the 
computation of the  important  characteristics of the result- 
ing objects. The two main advantages of this approach  are: 
(1) the use of a  symbolic representation for  the low-level 
image,  thus allowing more complex  spatial  reasoning  rules 
to be  used to  perform the feature identification  task, and 
( 2 )  the use of multiple-level threshold  information, allow- 
ing more complete  characterization of the detected storm 
cells, and  more level-adaptive analyses to be performed. 

SYMBOLIC IMAGE DESCRIPTION 
The  first  stage of the image  analysis  process is to 

generate a basic description of the  image in a form which 
is readily accessed  and manipulated symbolically. The 
description is generated by thresholding the image at  each 
of a number of fixed  intensity  threshold levels, and  for 
each threshold level identifying the  contiguous  regions 
which contain  data  points having an intensity above the 
corresponding level. Each of these  regions  becomes  a 
component of the image  description, and a set  of basic 
characteristics  are  computed for each, including the area, 
centroid,  and bounding  box. 

By definition,  each region  at  a given threshold level N 
must lie completely within another region at the next 
lowest threshold level N-1 (except at the lowest threshold 
level). This ’nesting’  relationship  between  the  regions at 
different levels is captured by maintaining, for each region 
R, the  name of the region which supports it (Le., the 
unique region at  the next lower level within which R lies) 
and a list of those regions  at  the next highest level which 
are  supported by region R. This supportskupported-by 
relationship between  regions is used as the  basis for a 
structural description of the  radar image.  This  description 
may  be viewed as a set (forest) of directed trees, where 
each node corresponds  to a  region, and  each edge 
represents a ’supports’ relationship.  Figure 3 illustrates  the 
structural  representation corresponding to a  simple set of 
regions. 

PEAK LOCATION 
The ’objects’ of primary  interest  in the  radar images 

are  storm cells, which are usually manifest as  compact 
regions of strong reflectivity. The  basic  approach to recog- 
nizing these cells is therefore to locate  significant intensity 
peaks in the  image. Since  the storms may occur  over  a 
large range of amplitudes  and  spatial  scales, this peak 
finding method  must be relatively independent of absolute 
amplitude  and region shape  and  size.  The reliable  detec- 
tion of major peaks in an  image, independent of 
amplitude,  size,  and  shape,  is a  problem of general  inter- 
est.  The  method described here is a rather general ap- 
proach which could  be  applied in other  contexts  as well. 

The  fundamental observation  behind the peak  location 
method is that  major peaks will be segmented into ’stacks’ 
of nearly concentric  regions,  as shown by regions  A,B,C, 
and D in Figure 3. This  observation assumes, of course, 

that  the  number  and spacing of the threshold levels in the 
segmentation  process  are  adequate  to resolve the peaks of 
interest. 

( 4  (b) 
Figure 3: Nested set of contours  representing regions at 
various threshold levels (a),  and corresponding  structural 
representation ba.sed on ’supports’  relationships  between 
regions (b) . 

Based on this  observation,  the peak location  process 
attempts  to locate  collections of regions which exhibit a 
structural  relationship where each region supports just  a 
single  region at  the  next highest  threshold  level.  Since 
peaks may be  embedded in regions of non-zero intensity, 
this single-support  condition  need only be  met  for some 
set of regions which form  the ’top’ of a tree. 

A basic  algorithm  for locating such  peaks is to scan all 
the regions  in the  image,  from  the highest threshold level 
down,  and flag a  region as  part of a  peak if it supports 
exactly one region at  the next  highest level, and  that 
region is  either itself flagged as being in a peak,  or is at 
the ’top’ of the peak (i.e., it supports no regions).  This 
approach will identify peaks of any amplitude  (but  at  least 
spanning two threshold levels) and any shape  or size. It 
does  require, however, that  the peak be completely well- 
formed. As discussed in the following section,  a  somewhat 
more liberal definition of a peak is desirable. 

Artifacts from thresholding quantization 
The  process of thresholding  the  image, and using the 

resulting  regions as a description,  amounts  to quantizing 
the  image intensity  values. The  quantization process in- 
duces  several  artifacts which must be  accounted for in the 
interpretation  process. Basically, the quantization  effect 
can  induce large jumps (a quantization step size) in the 
image  as a  result of very small fluctuations  in the original 
image intensity level, when the intensity is in the vicinity 
of a threshold level. A desirable  characteristic of the inter- 
pretation  process is that it be relatively immune to these 
artificial jumps in the quantized  image,  and  that  the  same 
image result in the  same  interpretation despite  small 
changes in the specific  threshold levels used. 

The  small ’spurious’  regions generated by the quantiza- 
tion process when the image  intensity level fluctuates  near 
a threshold level can  hinder the  peak  location  operation. 
Since  the  simple peak-finding algorithm requires  each 
region to  support exactly  one other region at  the  next 
level, these noise regions could cause major  peaks to be 
missed.  An  improvement  to  the algorithm is desired to al- 
low such  minor deviations from  the ideal  model of a peak. 
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The  search process  handles the presence of these  ex- 
traneous regions by introducing the concept of a 'primary' 
region.  A  region R is a  primary region if it has  an  area 
which is a  large  fraction of the total area of those  regions 
supported by the same region which supports region R, 
and is also much larger than  the  next largest of those 
neighboring  regions. The peak search process is then 
modified to find stacks of these  primary  regions, allowing 
other (less  significant)  regions to exist as well. 

A  second common quantization artifact is the  'splitting' 
of the  top region of a peak. If the intensity level at the  top 
of a peak is near a threshold level, then the fluctuations in 
the intensity  may cause  the top to be split into several 
separate regions. In some  cases, this splitting of the top 
level will be  handled by the 'primary region'  concept,  but 
if the splitting is such that no single region dominates, 
then  the  peak will be missed. Since  the  top  threshold level 
of a major peak is most sensitive to this splitting problem, 
an  additional  rule is useful for reliable  peak  detection. 
This  rule is implemented so as  to allow a tightly-grouped 
cluster of comparably-sized  regions to  form  the  top level 
of an otherwise well-formed peak. 

Peak  location recursion rule 
The complete peak  search process may now be stated 

in the following recursion rule (again,  applied to each 
region from  the  top level down): 
If the given region: 

9 
i i) 

iii) 
OR 

iv) 

v> 

vi) 

supports  just  one primary region at the  next  highest 
threshold level, and 

that region is the bottom of an existing  peak (or it is 
at  the  top Ievel, having no supported  regions),  and 
there  are  no other  supported  peaks, 

there  are multiple supported regions,  but no primary 
one,  and 
all the  supported regions are  at a  top level (having 
no  supported regions), and 
the  current region has a sufficiently small area 
(small  enough to preclude  multiple major  peaks), 

then  add  the new region onto the  bottom of the  peak. 

RESULTS 
Figures 4 and 5 provide examples of the performance 

of the peak  location  algorithm on radar reflectivity images 
of storms. In each  figure,  the regions belonging to detected 
peaks  are  drawn.  Each peak cell region is plotted as a 
circle centered  on  the region centroid, having an  area 
equal  to  the  area of the region [intersecting  contours are 
generated  because of the circular approximation  to the ac- 
tual region shapes]. 

The  case in Figure 4 shows a relatively simple collec- 
tion of isolated intensity regions, which are well identified 
by the  algorithm. This example illustrates  the ability of the 
peak-finding procedure to locate  regions which are 
visually perceived as  the major intensity peaks in the 
image. 

It is important  to note that, while the  identification of 
these  peak regions is a very significant  part of the task of 

locating storm cells, not all peaks are necessarily  cells, nor 
are all  cells  detected as  peaks. It is often the  case  that the 
information provided by a single image (i.e., a two-dimen- 
sional snapshot of a time-evolving three-dimensional 
complex) is not  sufficient  for distinguishing individual 
cells. The peak  regions form a useful component of a 
more complicated  spatial and  temporal association opera- 
tion, which is necessary to resolve the  ambiguities in the 
individual images. 

Figure 5 illustrates  a more complicated scenario, where 
numerous  storms cells are  present. The  algorithm has 
again located  a reasonable set of intensity peaks, but has 
failed to  adequately  capture  the full set of storm cells 
present in the image. Careful comparison between the 
radar  image  and  the identified cells will show that  the two 
intense precipitation  regions  (indicated by the  arrows in 
Figure 5) are not identified  as peaks. These  regions are 
not identified  because they do not fit the model for a peak 
(the  highest level regions are only one level above the 
region which joins  the two, and neither region can  be  con- 
sidered  'primary'). This example shows that the 'peak' 
construct  alone is not adequate  to fully describe  the full 
range of possible intensity structures characteristics of 
storm cells. 

A sequence of images of the same case  illustrated in 
Figure 4, covering roughly 30 minutes  time,  generated  the 
storm  track shown in Figure 6. Each connected  set of 
points in this  figure represents the peak cell detected  for 
the  storm  (at  an altitude of about 3 km) at  a  different 
time, as indicated.  Each point on the line represents the 
location of the centroid of the peak region at a  different 
threshold level. The  fact that  the  centroid locations do not 
coincide at  each level indicates  that the regions  comprising 
the  peak cell are not concentric.  This arrangement of con- 
tours is typical of storm  cells, whose shapes  are affected 
by ambient winds and storm growth and decay processes. 
The  example illustrates that time-coherent  observations of 
the  storm cell are possible with the  peak location algo- 
rithm. The consistency shown here, in both track direction 
and velocity, for  the different threshold levels is  of great 
importance in associating the observations  between  images 
at  different times.  Previous storm identification  techniques 
have suffered  from  an inability to reliably isolate the  in- 
dividual storm cells present  in  the image, which is neces- 
sary  for producing coherent tracks IC]. By using more 
powerful spatial information and decision rules, the 
methods described  here are  able to more reliably identify 
the  major  peaks,  and hence offer the potential  for im- 
proved temporal  and spatial  association. 

FUTURE WORK 
The peak  location  algorithm is  only a  partial  solution to 

the  problem of identifying significant features in the radar 
image.  Storm cells will not always  be  detected as peaks, 
and  there  are  more complicated formations which need to 
be  recognized. Additional  structural  models for the  more 
complicated  features,  as well as methods for using tem- 
poral  and vertical continuity to resolve ambiguities  must 
be  developed. 
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Cell ”A” 
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i-lgure 5:  Another  sample  radar  reflectivity image  and peak 
region  contours. 

1 “ 

Figure 4: Sample  weather  radar  reflectivity image (a),  and 
corresponding peak cell  regions (b). Images  are 40 kilometers 
on  each  side,  and  intensity is in units of dBZ. 20 dBZ cor- 
responds to very 1igh.t rain, while 50 dBZ is  extremely  heavy 
rain. 
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Figure 6: Locus of peak cell  region  centroids for storm ”A” 
over  time  period  from 19:20:09 to 19:44:20. The points on 
each curve  represent the cen.troid of a peak cell  region at a 
differen.t  threshold  level.  Displacement  between  curves  indi- 
cates cell motion, an.d change  in  angle  between  curves  indi- 
cates re-alignment of regions at  dlrerent  levels.  Note storm 
was  not  detected as a peak cell at roughly 19:37. 
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