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Abstract—In this paper we seek to characterize traffic in the
U.S. air transportation system, and to subsequently develop
improved models of traffic demand. We model the air traffic
within the U.S. national airspace system as dynamic weighted
network. We employ techniques advanced by work in complex
networks over the past several years in characterizing the
structure and dynamics of the U.S. airport network. We show
that the airport network is more dynamic over successive
days than has been previously reported. The network has
some properties that appear stationary over time, while others
exhibit a high degree of variation. We characterize the network
and its dynamics using structural measures such as degree
distributions and clustering coefficients. We employ spectral
analysis to show that dominant eigenvectors of the network
are nearly stationary with time. We use this observation to
suggest how low dimensional models of traffic demand in the
airport network can be fashioned.

I. INTRODUCTION

In this paper our aim is to characterize traffic in US
national air space in order to gain insight that would sub-
sequently lead to developing detailed demand models. We
model the US air transportation system as a network to assist
with the characterization of traffic demand. The U.S. airport
network has been the subject of previous study, although not
with the aim of developing traffic demand models. Xu and
Harriss [1] have studied the structure of the U.S. intercity
passenger air transportation network. The cumulative degree
distribution of the network was shown to have a power-
law tail. The vertex strengths (with number of passengers,
fare and distance as incident edge weights) were shown to
grow as a power of the vertex degree. As a result airports
with higher degree were found to handle more traffic than
those with smaller degree. The clustering property of the
network was also examined through clustering coefficients.
The clustering coefficient as a function of degree was found
to have a power-law distribution, with lower clustering
coefficients for higher degree vertices. This behavior is
characteristic of a hierarchical network structure.

There have been similar studies of the airport network
structure for other national networks and the world wide
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network. The evolution of the Chinese airport network over
successive years has been analyzed by Zhang,et.al. [2].
The traffic growth in this network was found to correlate
well with the growth in Chinese GDP. The Chinese airport
network was shown to have a degree tail distribution which
exhibits a two-regime power-law. The relationship between
the clustering coefficient and degree showed vertices with
smaller degree to have larger clustering coefficient. The
vertex traffic strength was shown to grow as a power of
vertex degree. The topological properties on the Chinese
airport network were seen to remain nearly fixed over 2002
to 2009, even though airports were added and removed from
the network and the network saw an exponential growth
in passenger and cargo traffic. Bagler [3] has studied the
weighted airport network of India. da Rocha [4] examined
the structure and evolution of the Brazilian airport network
over consecutive years and found similar degree, strength
and clustering characteristics as other examinations of na-
tional airport networks. The worldwide air transportation
network was also shown to exhibit some characteristics
similar to other national airport networks [5].

We examine the temporal dynamics of the network by
considering the behavior over a number of successive days.
We find the network to be highly dynamic over successive
days, and exhibit an unexpected level of spatial and temporal
complexity. In the next section (Section II) we present
the approach we have employed in constructing the daily
airport networks. The resulting airport networks and their
spatial structure is shown in Section III. The structural
characteristics, as well as the dynamic behavior of the US
airport network is discussed in Section IV. An analysis of
the spectral characteristics of the airport network using the
adjacency matrix is presented in Section V.

II. NETWORK CONSTRUCTION

In order to construct the US airport pair network, we
employ the Aircraft Situation Display to Industry (ASDI) [6]
data feed provided by the Federal Aviation Administration
(FAA). The generation of graphs for the airport network
relies on the use of Flight Management Information (RT)
messages. The RT messages contain information about a
flight’s identity, origin, destination, departure/arrival times,
and filed route. We construct each graph by either adding
new airport pairs (edges) or updating the flight count on



an existing edge for all flights reported by RT messages
occurring within a 24-hour period. These graphs include
flights with origin or destination outside the continental US
territory. The graphs are then truncated to retain only airports
that reside inside the bounding spherical quadrilateral speci-
fied by (latitude, longitude)-coordinates: (25◦,−125◦) and
(50◦,−65◦).

The outcome of the aforementioned processing are daily
graphs Gn, where n is the daily index. Each graph Gn is
specified by a set of edges En and a set of vertices Vn. The
set Vn is composed of vertices {vi}n. Each vertex vi denotes
an airport with geographic position ϑ = (φ, θ), where φ
and θ specify the latitude and longitude respectively. The
set En is composed of vertex two-tuples {(vi, vj)n|vi, vj ∈
Vn}. For the analysis in this paper we consider {Gn} to
be undirected weighted graphs. The weight of each edge
ek,n = (vi, vj)n is denoted by wk,n, with k as the edge
index.

Here we define three parameters that are employed in sub-
sequent sections for quantifying graph characteristics: vertex
degree, vertex strength, and local clustering coefficient. The
degree κi is defined as the number of edges incident upon the
vertex vi. The strength si of vertex vi is defined as the sum
of edge weights for all edges incident upon the vertex. In
order to define the clustering coefficient Ci, we first define
the vertex neighborhood Ni = {vj : ek = (vi, vj) ∈ E}.
For a vertex with κi neighbors it is possible to define a
maximum of κi(κi−1)/2 edges amongst the neighbors. The
local clustering coefficient Ci measures the number of actual
edges within the neighborhood as a fraction of the maximum
number possible.

Ci =
2|{ek}|

κi(κi − 1)
, ek = (vi, vj) ∈ E ∧ vj ∈ Ni (1)

III. U.S. AIRPORT NETWORK

The US airport network and its dynamic character is
depicted in Figure 2. The graphs shown in Figure 2(a-c)
capture the aggregate air traffic between city pairs on a
particular date. The graph in Figure 2(d) is the union-graph
Ḡ∪. This graph is computed from a set of N daily weighted
graphs {Gn}, with edge sets {En} and vertex sets {Vn}.
The edge set Ē∪ and vertex set V̄∪ of Ḡ∪ are given as:

Ē∪ =
N−1⋃
n=0

En, V̄∪ =
N−1⋃
n=0

Vn (2)

The weight of the k−th edge, w̄k, in the set Ē∪ is computed
as:

w̄k =
1
N

N−1∑
n=0

ŵk,n (3)

The quantity ŵk,n is equal to the weight wk,n for k ∈ En,
and zero for k /∈ En. The strength s̄i of vertex vi ∈ V̄∪ is

the sum of weights w̄l(i), where l(i) is the index over edges
in the incidence set L(i) of the vertex vi.

The graphs shown in Figure 2(a-c) depict the volume of
traffic carried on links between city pairs. The straight line
edges are meant to depict linkages between city pairs, and
should not be mistaken as travel paths between the cities.
The edges are assigned colors such that blues denote lower
traffic volume, and reds denote higher traffic volume. The
edge colors make it easier to visually discern that daily
graphs are dominated by lower volume edges, and have
relatively fewer higher volume edges. This is verified by
examining the distribution of edge weights in Figure 1.
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Figure 1. Distribution of edge weights

The variations in spatial edge density and coloring of
edges in these plots illustrate the changes in traffic across
the national airspace over consecutive days. This is visually
most apparent in comparing graph Figure 2(c), which shows
the traffic for a Saturday, with graphs for the other days. The
size and color of the vertices depict their strength, which
is the number of flights that were served by the airport
during that day. The major airports such as Chicago O’Hare
International Airport (KORD), Hartsfield-Jackson Atlanta
Airport (KATL), Denver International Airport (KDEN), and
Dallas/Fort Worth International (KDFW) stand out as the
busiest airports by traffic volume.

The union-graph Ḡ∪ shown in Figure 2(d) is computed
from a set of 29 daily graphs over the period 26 April
2011 to 24 May 2011. These graphs show expected as
well as some unexpected features. We had anticipated that a
set of major airports would continue to represent the vertices
with dominant strength over consecutive days. However,
we did not expect the amount of variation found in the
sub-dominant vertices and edges in the set of daily graphs
examined. A remarkable contrast is found in comparing
the average number of edges in the daily graph ¯|En| =
1
N

∑
|En| to the number of edges in the expected graph,

|Ē|. The quantity ¯|En| is approximately 10K, while |Ē∪|
is approximately 80K. This surprisingly large difference
suggests a level of dynamicism in the daily air traffic over the



national airspace that we have not seen reported elsewhere.

IV. STRUCTURAL CHARACTERISTICS

In this section we employ basic structural metrics such
as vertex degree, edge weights, and vertex clustering for
characterizing both static and dynamic aspects of the daily
airport network graphs. The tail distributions of degree κ for
Gn over selected days are shown in Figure 3. The degree tail
distributions Pn(κ > K) for the consecutive days are found
to be similar. The mean distribution is found to exhibit a
power law decay, P (κ > K) ∼ κ−α, with α ≈ 1.17.

The variation in the clustering coefficient with vertex
degree κ is given in Figure 4. The clustering coefficient is
found to exhibit approximately a uniform distribution with
degree κ. This behavior is in contrast with results reported
in other investigations of the airport network. We believe
this difference can be explained by examining the clustering
coefficient for the intersection-graph G∩. We define the
intersection-graph Ḡ∩ as the intersection of as set of graphs
{Gn}. The intersection-graph has an edge set Ē∩ = ∩En,
a vertex set V̄∩ = ∩Vn, and weights {w̄k} that are averaged
over the weight sets {wk,n}. The variation in the clustering
coefficient with vertex degree k for the intersection-graph
Ḡ∩ is given in Figure 5. The near monotonic decay of the
clustering coefficient of the Ḡ∩ is consistent with behavior
reported by others.

The variation of average vertex strength with vertex
degree is given in Figure 6. The growth trend in strength
with degree is similar to vertex strength behavior reported
in previous studies. This behavior indicates that airports with
larger degree tend to also on average carry more traffic on
their city pair links.

The temporal dynamics of the US airport network in
the aggregate can be seen by examining the daily variation
in flight count, as shown in Figure 7. We find that flight
counts exhibit a weekly cyclic trend. It is interesting that
this periodic trend is also seen in the edge (Figure 8) and
vertex counts over successive days. These results indicate the
growth in traffic volume during the week is coupled with an
increase in the diversity of cities that host flights.

The results in Figure 8 suggest that there are city pairs
for which flights occur with periodicity less than a day, and
perhaps as infrequently as once in a week, or longer. In
fact there are flights that occured only once over the set
of 29 days examined. In order to quantify the number of
new city pairs visited over successive days, we examine
the one lag difference of our graph time series {Gn}. In
particular we consider the complement of the intersection
between successive day graphs Gn and Gn−1.

gn,1 = (Gn ∩Gn−1)C (4)

The edge count of the complement graphs {gn,1} for suc-
cessive lags in the daily time series is given in Figure 9.
This figure shows that the geospatial traffic pattern varies

substantially from day-to-day. Although the range of vari-
ation in the edge count over a week is approximately 3K,
the disparity in city pairs visited between successive days
can be nearly as high as 13K. As a result more than 1/3
of the flights between two successive days are to a different
set of cities. We have also examined the edge counts for
complement graphs {gn,m}, with m = 7, in an attempt
to remove the apparent seven day sesonality as evident in
Figure 8. However, the edge counts for {gn,7} were also
found to be highly non-stationary over successive days.

In an attempt to further characterize the dynamics of
the graph time series {Gn} we examine the autocorrelation
function over the edge weights. In order to compute the
autocorrelation we treat Ḡ∪ as a root-graph, for the set of
graphs {Gn}. We then define the set of graphs {Ĝn} that
have edge and vertex sets identical to Ḡ∪. The edge weights
of Gn are mapped onto Ĝn for shared edges, and set to
zero for all other edges. The estimate of the autocorrelation
function for the weights of each edge is given as:

Rw̃k,w̃k
(n) =

1
N − 1

N−1∑
m=0

w̃k,mw̃k,m+n (5)

The time series w̃k,n is obtained by converting wk,n to
be zero-mean and unit variance. The averaged autocor-
relation function over all edges is plotted in Figure 10.
The range bars that bracket the averaged autocorrelation
function indicate the maximum and minimum values of the
autocorrelation function amongst all the edges. The boxes at
each lag give the standard deviation in the autocorrelation
values over all edges. The average and standard deviation
of autocorrelation shows the temporal behavior of flights on
the majority of edges in US airport network to be weakly
correlated. The maximum values of autocorrelation for each
lag show the presence of highly correlated components.
These highly correlated components tend to also carry a high
volume of traffic. These results suggest that standard time
series techniques that employ time series differencing and
autocorrelation to construct forecasting models, are unlikely
to yield low dimensional models that would capture aggre-
gate, as well as fine scale features of traffic demand. In the
next section we examine spectral techniques that may hold
greater promise in development of such low dimensional
models.

V. SPECTRAL CHARACTERISTICS

In this section we discuss the spectral characteristics of
the set of adjacency matrices {Ân} associated with the nor-
malized graphs {Ĝn}. The eigenvalue magnitude spectrum
{|λ̂i|} for a set of consecutive days is given in Figure 11. The
structure of the eigenvalue magnitude spectrum is similar
over the days examined. The eigenvalue spectrum follows a
power-law decay, λ̂i ∼ i−β , with β ≈ 1.04.

The aggregate temporal behavior of the eigenvectors is
examined by observing their normalized autocorrelation



(a) Tuesday, 04/26/2011 (b) Thursday, 04/28/2011

(c) Saturday, 04/30/2011 (d) Union-Graph Ḡ∪
Figure 2. (a-c) Gn: Daily Geospatial graphs of the US airport network; (d) Ḡ: Expected value graph
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Figure 3. Degree distribution for daily graphs

function Rx̂xx,x̂xx(n), which is defined as:

Rx̂xxj ,x̂xxj
(n) =

1
N − 1

N−1∑
m=0

x̂xxT
j,mx̂xxj,m+n (6)

where x̂xxj,n is the eigenvector corresponding to the eigen-
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Figure 4. Clustering coefficient for daily graph

value λ̂j,n, for the graph Ĝn. The normalized autocorre-
lation function of the leading daily eigenvectors is given
in Figure 12. The normalized autocorrelation function for
the leading eigenvectors shows a temporal character that is
quasi-stationary. The apparent decay in the autocorrelation
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Figure 5. Clustering coefficient for the intersection graph
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Figure 6. Variation in the vertex strength with degree

function with lags is due to finite sample size effects.
The quasi-stationary behavior of the autocorrelation function
suggests that it may be possible to model the leading order
dynamics of the airport graphs by employing the spectral
decomposition of the adjacency matrix.

Ân =
|V̂n|−1∑

j=0

λ̂j,nQ̂j,n (7)

The matrix Q̂j,n is the spectral projection matrix corre-
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Figure 7. Daily Flight Count: 04/26/2011 to 05/24/2011
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Figure 8. Daily Edge Count: 04/26/2011 to 05/24/2011
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Figure 9. One Lag Difference Edge Count: 04/26/2011 to 05/19/2011

sponding to the eigenvalue λ̂j,n. Since Q̂j,n is function of
the eigenvectors, we expect to approximate it’s behavior as
stationary in modeling the leading order behavior of graphs
Ĝn. The application of this approximation allows Ân to be
modeled by the matrix M̂n

M̂n ≈
J−1∑
j=0

λ̂j,nQ̂j,0 (8)

where Q̂j,0 is the j-th spectral projection matrix of Â0,
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Figure 10. Averaged autocorrelation function
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Figure 11. Eigenvalue Magnitude Spectra For 26 April to 29 April, 2011
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Figure 12. Normalized autocorrelation function of the leading daily
eigenvectors

λ̂j,n is the j-th eigenvalue of Ân, and J is the rank of
the approximation. The solid line in Figure 13 corresponds
to M̂0, and shows that much of the information in Â0 can
be approximated by a low-rank model. The dashed line in
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Figure 13. Residual power for successively higher rank approximations

Figure 13 correspond to M̂2. Despite using the projection
matrix Â0 to compute the model M̂2, the model still contains
much of the information of Â2. A similar result is found for
other days’ adjacency matrices Ân 6=0. This shows that the

eigenvectors corresponding to the largest eigenvalues of Ân

are fairly static. With a method of modeling λ̂j,n we would
be able to create a low-rank approximation of Ân without
having to re-calculate the eigenvectors of Ân. We expect this
result to also aid in developing low dimensional predictive
models of the daily national airspace wide traffic demand.

VI. CONCLUSIONS AND FUTURE WORK

In our examination of the U.S. airport network we have
attempted to account for all flights that are tracked by the
FAA’s Traffic Flow Management System. We have found
that these flights have a significant impact on the topological
structure of the airport network. We have also found the
temporal dynamics of the US airport network to be more
complex than previously reported. The structure of the net-
work, as characterized by its edges, is found to vary remark-
ably from day to day. The non-stationary components of the
network were found to equalize the distribution of clustering
coefficients. We have also performed a spectral analysis of
the U.S. airport network. The eigenvalue spectrum of the
network shows a power law decay. The structure of the
eigenvalue spectrum is similar, even though the eigenvalues
themselves exhibit oscillatory behavior over successive days.
The leading order behavior of the eigenvectors is found to be
quasi-stationary. The observation has been used to construct
low rank models of the the airport network. This approach
can be useful in developing national airspace wide predictive
models for traffic demand.
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