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Abstract—Collision avoidance systems play an important role in 
the future of aviation safety. Before new technologies on board 
manned or unmanned aircraft are deployed, rigorous analysis 
using encounter simulations is required to prove system 
robustness. These simulations rely on models that accurately 
reflect the geometries and dynamics of aircraft encounters at 
close range. These types of encounter models have been 
developed by several organizations since the early 1980s. Lincoln 
Laboratory’s newer encounter models, however, provide a 
higher-fidelity representation of encounters, are based on 
substantially more data, leverage a theoretical framework for 
finding optimal model structures, and reflect recent changes in 
the airspace.  

Three categories of encounter model were developed by Lincoln 
Laboratory. Two of these categories are used for modeling 
conventional aircraft; one involving encounters with prior air 
traffic control intervention and one without. The third category 
of encounter model is for encounters with unconventional 
aircraft—such as gliders, skydivers, balloons, and airships—that 
typically do not carry transponders. Together, these encounter 
models are being used to examine the safety and effectiveness of 
aircraft collision avoidance systems and as a foundation for 
algorithms for future manned and unmanned systems. 
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I.  INTRODUCTION 
Because of the extreme time criticality and the potentially 

catastrophic consequences of error in the operation of collision 
avoidance systems, civil aviation authorities such as the FAA 
and Eurocontrol require rigorous safety studies to gain 
confidence in system effectiveness before deployment. The 
analysis process includes flight tests and simulation. Although 
a flight test can evaluate a collision avoidance system in actual 
operation, only a few situations can be examined due to time, 
cost, and safety constraints. Simulation analyses use Monte 
Carlo techniques to estimate the robustness of a given collision 
avoidance system across a wide range of encounter situations. 

Central to Monte Carlo simulation analysis is an encounter 
model that describes the types of encounter situations typically 
occurring in the airspace. An accurate representation of these 
encounters is required so that the collision avoidance system 

being tested is exposed to a realistic set of problems to resolve. 
This paper describes the highest-fidelity models to date of 
aircraft encounters, based on hundreds of times more data than 
was used to construct previous models. 

The primary function of an encounter model is to generate 
random encounter situations between two aircraft, capturing the 
potentially hazardous events that may occur in the actual 
airspace. The encounters represented by the model are those 
involving aircraft in the final stages before a collision, typically 
covering a period of one minute or less. The model assumes 
that prior safety layers—e.g., airspace structure and air traffic 
control (ATC) advisories or vectors—have failed to maintain 
standard separation distances between aircraft. A situation 
generated from an encounter model describes the initial relative 
positions, velocities, and attitudes of two aircraft and 
subsequent maneuvers that may take place before the aircraft 
reach a point of closest approach. A dynamic simulation using 
the encounter model then propagates the aircraft positions 
based on the model, applies sensor and algorithm models to 
determine whether a collision avoidance command is issued, 
and then tracks the resulting outcome. 

This paper begins with a background on prior U.S. and 
European encounter models and discusses the different 
categories of models introduced in our work. The remainder of 
the paper describes the model construction process and the data 
used to build the models. The paper concludes with a 
discussion of some applications of the models to collision 
avoidance system development and safety analysis. 

II. BACKGROUND 
Several encounter models have been designed and 

employed since the mid-1980s and were crucial in the 
development and certification of the Traffic Alert and Collision 
Avoidance System (TCAS) [1-4]. The first model, developed 
by MITRE in 1984 and updated in the early 1990s, supported 
the U.S. mandate for equipping larger transport aircraft with 
TCAS (Fig.1). This encounter model was based on radar data 
collected from 12 sites across the United States and was two-
dimensional, modeling only vertical motion of the aircraft. This 
model was used to study the effect of altitude changes due to 
the alert messages, known as resolution advisories, that TCAS 
sends to pilots. The International Civil Aviation Organization 
(ICAO) and Eurocontrol subsequently developed more 
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Figure 1. Airspace encounter models have evolved significantly over the past 25 years. Beginning with a two-dimensional (vertical plane motion) model in the
1980s developed by MITRE using data from 12 radar sites [1,2], models were subsequently extended by the International Civil Aviation Organization (ICAO) [3]
and Eurocontrol [4] in the 1990s to add simplified three-dimensional motion.

complex encounter models that were used to support 
worldwide TCAS mandates. The latest such encounter model, 
completed in 2006, is three-dimensional but allows only a 
single maneuver in each dimension during an encounter. 

In 2006, Lincoln Laboratory was asked by the FAA, the 
Department of Defense, and the Department of Homeland 
Security to define and generate new encounter models to 
evaluate TCAS and future collision avoidance systems for 
manned and unmanned aircraft in the U.S. This task involved 
collecting and processing approximately one year of data from 
130 radars across the U.S., extracting the statistical makeup of 
aircraft behavior in the vicinity of close encounters, and 
tabulating those statistics in a form that other organizations 
could use to run safety analyses. 

Current U.S. encounter models are more than a decade old 
and do not reflect recent changes to the airspace, including the 
rise of regional jet fleets, the use of reduced vertical-separation 
minima at higher altitudes, and increased traffic densities.  

Moreover, they do not reflect the types of encounters one 
may expect to see between aircraft not receiving ATC services, 
such as those occurring between two aircraft flying under 
visual flight rules (VFR), or for aircraft without transponders 
(termed noncooperative aircraft). Properly modeling 
encounters with aircraft not receiving ATC services is 
particularly critical for evaluating collision avoidance systems 
for unmanned aircraft, which have no pilot on board to visually 
scan for intruder aircraft [5]. VFR and noncooperative aircraft 
may maneuver frequently in a short period of time—a behavior 
that previous encounter models did not represent. Additionally, 
previous encounter models were built by using a limited set of 
observational data, which, along with computing restrictions, 

reduced the fidelity and realism of the simulated encounters. 
Through a variety of recently developed statistical techniques 
and a unique opportunity to access national radar data, we have 
overcome those obstacles to create new U.S. encounter models 
in support of robust collision avoidance system safety analyses. 

III. ENCOUNTER MODEL CATEGORIES 
Aircraft encounters can be one of two types. The first type 

involves transponder-equipped aircraft with at least one in 
contact with ATC. It is therefore likely that both aircraft are 
tracked by ATC and that at least one aircraft receives some 
notification about the traffic conflict and begins to take action 
before the involvement of a collision avoidance system. This 
ATC intervention often leads to a correlation between the 
trajectories of the two aircraft that is important to include in the 
airspace model. Accordingly, this form of encounter model is 
termed correlated. The second type of encounter involves 
aircraft that do not receive prior ATC notification of a conflict. 
Such encounters include two aircraft flying under VFR without 
flight-following services, and encounters with an aircraft 
without a transponder. In these encounters, the pilots must rely 
on visual acquisition (or some other collision avoidance 
system) at close range to detect each other and maintain 
separation. Such encounters tend to be uncorrelated, since there 
is no coordinated intervention prior to the close encounter.  

To determine the category to which an encounter belongs, it 
is necessary to infer whether aircraft are receiving ATC 
services. To make this determination, one can monitor the 
Mode A transponder code transmitted (or “squawked”) by an 
aircraft. Aircraft that are not receiving ATC services typically 
squawk the digits 1200. Aircraft that are receiving ATC 
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Figure 2. Relative airspeed frequency distributions for several types of 
unconventional aircraft. The conventional distribution is representative of
aircraft captured by the uncorrelated conventional model. 

services squawk a discrete (non-1200) code assigned to it by a 
controller. 

The Lincoln Laboratory conventional aircraft encounter 
models are based on collecting and processing nine-months of 
radar data from sensors across the U.S. As shown in Table 1, 
the correlated encounter model (C) is derived from observing 
close-encounter events between two discrete-code aircraft or 
between a discrete-code aircraft and an aircraft squawking 
1200. The uncorrelated models (U and X) are derived from 
1200-code (VFR) aircraft trajectories and from a more detailed 
examination of noncooperative aircraft tracks. 

TABLE I.  MODEL SELECTION BASED ON AIRCRAFT TYPE 

Aircraft of Interest 

Intruder Aircraft Discrete VFR 

Discrete C C 

VFR C U 
Noncooperative Conventional 
(fixed-wing powered aircraft) U U 

Noncooperative unconventional 
(balloon, glider) X X 

 

The core of the uncorrelated model is based on radar 
beacon reports from aircraft squawking 1200. Radar 
surveillance of aircraft without transponders (noncooperative 
traffic) is complicated because of clutter and missed detections, 
making identification of real tracks difficult. The lack of a 
transponder means that the only information available is the 
aircraft’s horizontal position—not its altitude or its identity 
code. Hence it is difficult to infer the vertical rates to be used in 
the encounter model. Aircraft using code 1200 tend to be small 
general aviation aircraft that fly low and make significantly 
more maneuvers than transport aircraft, both horizontally and 
vertically. To a large degree, their trajectories resemble aircraft 
that do not carry transponders. 

The 1200 tracks are a good surrogate for much, but not all, 
of the noncooperative traffic. The noncooperative targets for 
which they are not suitable include most balloons, ultralights, 
and gliders because they do not fly like transponder-equipped 
aircraft squawking 1200. An FAA study found that more than 
71%, 85%, and 95% of light-sporting aircraft, gliders, and 
lighter-than-air vehicles, respectively, do not carry transponder 
equipment [6]. The challenge in developing models for such 
unconventional aircraft is that it is difficult to obtain high 
quality tracks based on radar returns from only the skin of the 
aircraft. Therefore, sets of global navigation satellite system 
(GNSS) tracks were used to build models for unconventional 
aircraft. Because knowledge of the relative airspace density, or 
rate at which unconventional aircraft occur in the airspace, is 
unknown, and the behavior of these vehicles is strongly 
dependent on the aircraft platform (Fig. 2), separate models 
must be created for each aircraft. We term the collection of 
these models the uncorrelated unconventional model, while the 
model encompassing 1200 tracks we term the uncorrelated 
conventional model. Fig. 3 illustrates this model hierarchy. 

Although we use the same general approach to develop the 
correlated and uncorrelated models, the underlying 
assumptions behind each model—and therefore the data 
collection strategies—are fundamentally different. The 
behavior of two aircraft in a correlated encounter is statistically 
related (i.e., what one aircraft is doing may be dependent on 
what the other aircraft is doing). Most correlations are a 
function of ATC intervention and airspace organization. In 
order to collect data for the correlated model, we must search 
radar data to capture the tracks of two aircraft that come close 
enough together that a collision avoidance system may come 
into play. Simulating correlated encounters then involves 
initializing and propagating the two aircraft in a manner that 
reflects the statistical distribution of actual observed close-
encounter events between two aircraft in the airspace. 

The uncorrelated model, by contrast, is based on the 
assumption that VFR aircraft randomly encounter each other 
without prior structure or intervention affecting what the other 
may be doing until reaching the very close ranges that are 
simulated. For the uncorrelated model, it is sufficient to capture 
a sample of VFR traffic over a period of time and randomly 
propagate an intruder trajectory based on the statistical 
characteristics of aircraft in our dataset. 

Given unlimited data, safety assessments could be 
performed by using only those encounter events that are 
actually observed. However, because mid-air collisions and 
near-mid-air collisions are rare, it is necessary to generalize 
from the limited observed data and generate millions of test 
cases for a robustness analysis. One major challenge when 
constructing an encounter model is deciding how to best 
exploit the available data. The major contribution of this work 
is the introduction of a new encounter-modeling approach that 
is based on a Bayesian statistical framework. Such a 
framework allows us to optimally leverage available data to 
produce a model that is representative of the actual airspace. 
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Figure 3.  Encounter model hierarchy; models are represented by green nodes. 

IV. MODEL 
The method for forming each model is fundamentally the 

same although the variables required to properly account for 
the encounter characteristics are different. This section 
describes the model variables, the model representation, and 
how the model structure is chosen. Further detail on each type 
of model is available in publicly available Lincoln Laboratory 
project reports [7-9]. 

A. Variables 
The variables in the model include the true airspeeds, 

airspeed accelerations, vertical rates, and turn rates of the 
aircraft in the encounter, as well as environmental variables 
such as altitude layer and airspace class. In the correlated 
model, we include additional variables that capture the 
structure of the encounter geometry, including approach angle 
and horizontal and vertical miss distances at the time of closest 
approach. The models previously developed by ICAO and 
Eurocontrol used similar variables. 

 Choosing an appropriate set of variables is essential to 
building a valid encounter model. Including irrelevant variables 
wastes the data used to estimate the parameters of the model. 
However, not including relevant variables results in blurring 
important encounter characteristics. In contrast with previous 
models, our model includes an airspace class variable to 
capture the fact that aircraft behave differently in different 
categories of airspace. For example, aircraft are more likely to 
be climbing or descending when they are in terminal airspaces 
than when they are in non-terminal airspaces. 

Previous encounter models allowed only a single constant 
acceleration segment in the horizontal and vertical planes (e.g., 
a turn segment, or a level-off from a climb profile). Individual 
variables were used to represent the timing, duration, and 
magnitude of a single acceleration period. Our updated 
encounter models, in contrast, use dynamic variables that 
permit vertical rate, turn rate, and airspeed acceleration to 

change continuously over the entire duration of the encounter. 
This refinement significantly improves model fidelity and 
realism. Each variable can randomly take on varying values 
over time. However, it is important to capture dependencies 
between variables because, for instance, the vertical and lateral 
motions of an aircraft are closely correlated. 

B. Markov Processes 
Our model uses Markov processes to capture the level of 

complexity of typical aircraft behavior during encounters. A 
Markov process models how the state of a system changes over 
time under the assumption that the probability of a given future 
state is determined only by the present state. Each state in our 
model specifies a particular vertical rate, turn rate, and airspeed 
acceleration. Given an initial airspeed, horizontal coordinates, 
heading, vertical rate, altitude layer, and airspace class, we 
project the next state of the aircraft and thereby describe how 
the trajectory evolves over time. Unlike previous encounter 
models, this approach allows multiple maneuvers over the 
course of an encounter. Previous models have tended to 
oversimplify true encounter conditions. As noted earlier, prior 
encounter models allowed only one maneuver, or acceleration 
period, per track in each dimension over the course of an 
encounter. For instance, the model could have an aircraft’s 
vertical trajectory change from level to a descent, but it could 
not then have the aircraft reverse direction and start to climb. 
Furthermore, simulated aircraft could have only one turn 
segment, at a specified turn rate. After analyzing actual radar 
tracks, however, we found that aircraft often had multiple 
acceleration periods in both dimensions over the course of an 
encounter. Because of latencies in the trackers used in collision 
avoidance systems, dynamic maneuvers by intruders can be 
challenging to resolve and are important to include in 
simulation analysis. 

C. Dynamic Bayesian Networks 
One of the challenges in using a Markov process is 

inferring, from limited data, the state transition probabilities. 



 
 
Figure 4. This example of a dynamic Bayesian network structure represents
the aircraft’s state at time t with five variables, which are linked to three
variables describing the state at time t + 1. The arrows show dependencies
between variables, represented with conditional probability tables. 

 
Figure 5. Bayesian techniques are used to generate a score related to the
likehood that the observed data were generated by a particular network.
Shown above are three example networks; the center network was determined 
to optimally represent the data observed to date. Adding more dependences
between variables would make the model more complex than could be
supported by the data; reducing the number of dependencies would eliminate
important correlations between variables.  

Often these probabilities are represented with a state transition 
matrix where the element in the ith row and jth column 
specifies the probability that the system will transition to state j 
from state i in the next time step. Such a representation is 
appropriate when there are relatively few states, but to model 
the dynamics of an encounter with a reasonable level of 
fidelity, the state transition matrix would have to be enormous 
and would require estimating hundreds of millions of transition 
probabilities. Estimating all these transition probabilities would 
require an unfeasible amount of data. Instead of representing 
each transition probability explicitly, we employed dynamic 
Bayesian networks [10] to leverage the structure of the 
relationships between variables and reduce the number of 
parameters to be estimated from on the order of hundreds of 
millions to only thousands. 

A dynamic Bayesian network consists of a set of variables 
(nodes) and arrows representing direct statistical dependencies 
between these variables. Fig. 4 shows the dynamic Bayesian 
network used for the uncorrelated model. Dynamic Bayesian 
networks have two slices. The first slice represents the values 
of variables at the current time step. The second slice 
represents the values of variables at the next time step. For 
example, in the model shown in Fig. 4 the vertical rate at time  
t + 1 depends upon the vertical rate at time t, the airspace class, 
and the altitude layer. A conditional probability table 
associated with the node labeled (t + 1) specifies the probability 
distribution over vertical rates, given the current vertical rate, 
airspace class, and altitude layer. For the dynamic Bayesian 
network shown in Fig. 4, there are three conditional probability 
tables associated with the variables at time t + 1: one for 
vertical rate, one for turn rate, and one for airspeed 
acceleration. Once we choose a model structure and populate 
the conditional probability tables based on the data, we can 
sample from the network to produce new trajectories that are 
representative of the ones we observed in that data. 

D. Model Structure Identification 
In creating a dynamic Bayesian network, it is important to 

use arrows to correctly identify the relationships between 
variables shown. Not including arrows between nodes when 
there is a true relationship between variables results in missing 
an important correlation. Adding arrows between nodes when 
relationships between variables are not present wastes data. 
The relationships included in previous encounter models were, 
to a large extent, chosen on the basis of engineering judgment. 
By contrast, the structure of our encounter models was chosen 
and optimized according to a principled, quantitative metric 
that describes the quality of a particular network, based on the 
actual data that have been collected. 

The metric we use to select a model structure is called the 
Bayesian scoring criterion [11]. The Bayesian score of a 
network is related to the likelihood that the data observed 
would have been generated from that network. This score can 
be used to compare candidate networks; the network with the 
highest score is most likely to represent the distribution present 
in the data [12]. 

The advantage of the Bayesian statistical approach is that it 
optimally balances model complexity with the amount of 
observed data. More data allow more relationships between 
variables to be captured in the model. Fig. 5 shows three of 
many example network structures that were considered for the 
uncorrelated model. On the left is a completely unconnected 
network that requires only 16 independent parameters to 
describe the conditional probability tables (not shown), using 
an appropriate level of variable discretization. On the right is a 
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Figure 7. Cumulative flight hours derived from radar data.  

Figure 6. Radar coverage map. 

completely connected network requiring hundreds of thousands 
of parameters. The optimal network, according to the Bayesian 
scoring criterion based on the actual radar data collected, is 
shown in the center and requires 9296 parameters. 

V. DATA 
Radars distributed throughout the U.S. provide a 

continuous, independent surveillance of the airspace. This is a 
complete data source as it provides both aircraft trajectories 
and aircraft density. Both track data and density are required 
for an estimate of the mid-air collision rate. As many types of 
smaller, unconventional aircraft do not carry transponders, it is 
difficult to use radar alone to build a model—the vehicles must 
be classified from cluttered primary-only radar returns. GNSS 
data are used instead of radar data to build models for each 
unconventional aircraft type except for airships—some airships 
carry transponders and can be manually extracted from the 
radar data. The radar and GNSS sources are discussed along 
with the associated processing to obtain the track features to 
build the models. 

A. Radar Data 
The conventional models are based on radar data obtained 

through a near-real-time stream from the Air Force 84th Radar 
Evaluation Squadron (RADES) at Hill Air Force Base in Utah. 
RADES receives radar data from FAA and Department of 
Defense sites throughout the United States. RADES maintains 
continuous real-time feeds from a network of sensors, 
including long-range air route surveillance radars (known as 
ARSR-4) around the perimeter of the United States as well as 
short-range ASR-8, ASR-9, and ASR-11 radars in the interior. 
Radar ranges vary from 60 to 250 nautical miles. Fig. 6 shows 
the coverage by the 130 sensors whose data were used to 
construct the encounter models. 

The RADES data feed offers a number of advantages 
compared to the Enhanced Traffic Management System 
(ETMS) data often used in airspace analyses. ETMS data 
include only cooperative aircraft on filed instrument flight rules 
(IFR) flight plans and provide updates once per minute 
showing aircraft position after processing by air traffic control 
automation. In contrast, RADES data are continuously 
streaming directly from the radar, providing track updates on 
both cooperative and noncooperative aircraft every 5 or 12 
seconds without being affected by automation systems. Use of 

the RADES feed ensures that our filters and trackers have the 
best raw data with which to begin processing. 

The continuous RADES feed provides many times more 
data than were used to build previous models. Fig. 7 shows 
observed traffic densities across the U.S. for discrete-code and 
VFR aircraft. To build the uncorrelated model, for example, we 
used an initial data collection that involved VFR (1200-code) 
beacon reports between December 1 and December 7, 2007, 
and between June 1 and June 7, 2008; altogether, we gathered 
74,000 VFR flight hours after fusion. To build the correlated 
model, we processed data continuously from December, 2007 
to August, 2008. This processing identified tracks involved in 
encounters in which a collision avoidance system could 
potentially become involved, but excluded formation flights, 
closely spaced parallel runway approaches, and operations in 
special use airspace. There have been approximately 1600 such 
encounters per day where at least one aircraft involved is 
receiving ATC services, resulting in approximately 400,000 
encounters. During our data collection period, we accumulated 
over 100 times more encounters than what was used to build 
previous models. 

The raw radar data include time, the four-digit Mode A 
identifying code squawked by the aircraft, quantized altitude 
measurements reported by the target, and range and azimuth 
measurements. Converting these measurements into fused 
latitude and longitude tracks requires a significant amount of 
computation. First, the raw reports are processed by using an 
aircraft tracking algorithm developed at Lincoln Laboratory 
[13]. Then another algorithm, also developed at the Laboratory, 
fuses tracks from multiple sensors that belong to the same 
aircraft [14]. We eliminate tracks without a sufficient number 



 
Figure 8. The uncorrelated encounter model generated this bearing 
distribution of one million simulated encounters between two aircraft when 
both aircraft are operating under visual flight rules (VFR). 

of reports; we also ignore tracks if any of their associated 
reports were inside special use airspace, whose boundaries are 
defined in the Digital Aeronautical Flight Information File, 
managed by the U.S. National Geospatial-Intelligence Agency. 
We then smooth and interpolate the remaining tracks and use 
them to build the model. 

From our collection of hundreds of thousands of processed 
tracks, we extract the features defining the encounter variables 
in our model, such as vertical rate and turn rate. We then 
quantize the features so that we can build the conditional 
probability tables associated with the Bayesian network 
variables. For example, in the dynamic Bayesian network 
representing the uncorrelated model, the vertical-rate variable 
depends upon the vertical rate at the previous time step, the 
airspace class, and the altitude layer. To construct the 
conditional probability table associated with the vertical-rate 
variable, we simply count (and then normalize) the number of 
times the vertical rate at the next time step takes on a particular 
value, given the vertical rate at the current time step and the 
airspace class and altitude layer. The conditional probability 
tables for all of the models developed at Lincoln Laboratory are 
publicly available to support system development and 
certification. 

B. GNSS Data 
With the growing popularity of low-cost GNSS receivers 

and servers, many pilots have started uploading their 
unconventional aircraft tracks online. These websites, many of 
them attracting pilots internationally, were originally created 
for recreational use or for competition with other pilots. For 
example, the Online Contest (www.onlinecontest.org) is a 
database of archived GNSS tracks sponsored by the Fédération 
Aéronautique Internationale (FAI) for competition among 
unpowered aircraft.1 Certified GNSS receivers and a track file 
format standard are required to ensure quality and prevent 
tampering. The update rates for these raw tracks range from 1 
to 30 seconds. We collected more than 96,000 aircraft tracks to 
build the unconventional model. 

There are two caveats when using the data. First, the tracks 
may not represent the total population of data for these vehicles 
as they are often submitted for competition. It is assumed that 
these data are representative of the aircraft platforms modeled 
as the data correspond very closely with several expected 
performance parameters such as cruise airspeed and minimum 
sink speed. Second, the tracks are submitted voluntarily, so 
although we can extract the position for each of the tracks, it is 
not possible to extract the airspace density for these vehicles. 
We assume that the performance and characteristics of each 
aircraft are independent of the location of the track so many 
international tracks were used. A similar method as was used 
for the radar data was used to create a model for each 
unconventional vehicle type, except that an additional 
processing step was employed to ensure track quality. Track 

                                                           
1  In addition, ultralight aircraft tracks were obtained from the Paragliding 
Forum (www.paraglidingforum.com), gliding tracks from the Soaring Server 
(soaringweb.org), hot air balloon profiles from Every Trail (everytrail.com) 
and skydiver tracks from Paralog (www.paralog.net). National Weather 
Service upper-air observing system vertical profile data were used to create 
the weather balloon model.  

fusion was unnecessary as individual tracks were obtained with 
aircraft type, latitude, longitude, altitude, and time. Nine 
individual unconventional aircraft models were created: 
gliders, paragliders, flexible and rigid hang gliders, paramotors, 
hot air balloons, weather balloons, airships and skydivers. 

VI. APPLICATIONS 
To simulate random encounters using the encounter 

models, we randomly sample from the conditional probability 
tables to generate millions of test encounters and use the 
Laboratory’s Collision Avoidance System Safety Assessment 
Tool (CASSATT) to run experiments with a collision 
avoidance system of interest. CASSATT has several integrated 
sub-models, including TCAS, sense-and-avoid algorithm logic, 
sensor models, 3D-airframe models, a human-visual-
acquisition model, a pilot-response model, command and 
control latencies, and an adjustable vehicle-dynamics model. 
Aircraft motion is represented by using point-mass dynamics 
with either four or six degrees of freedom; also built into the 
model are acceleration constraints and transient response 
characteristics related to aircraft type. Because of the sample 
sizes involved, data processing and simulation are greatly 
expedited by the use of a parallel computing environment that 
allows us to run several million simulated encounters in a 
matter of hours rather than the several days of continuous 
processing that this task would take on a single high-
performance computer. 

Fig. 8 shows an example of the bearing distribution of one 
million encounters between two VFR aircraft; the encounters 
were randomly generated from the Lincoln Laboratory 
uncorrelated model. As shown, most intruders would approach 
from ahead and so might be visually acquired and avoided. 
Varying one or both aircraft airspeeds would change this 
bearing distribution. Fig. 9 shows a set of histograms for the 
same one million encounters, representing the frequency with 
which aircraft are at various altitudes, vertical rates, turn rates, 
and airspeeds. Not shown by Fig. 9, however, are the important 
correlations between variables (such as turn rate and vertical 
rate), which would make it very unlikely for fast turns to be 
combined with fast climbs or descents. Also not shown are the 
rates with which aircraft might transition from one flight 
condition to another. Both of these aspects are managed by the 



Figure 9. A simulation of 1 million VFR-VFR encounters using the
uncorrelated model yielded these distributions of various features. 

 
Figure 10. This example of vertical (left) and horiztonal (right) profiles of a simulated VFR-VFR encounter was generated with the uncorrelated model. The blue 
aircraft makes a left turn and climbs from 2100 ft to 2900 ft while the red aircraft descends and makes a right 270° turn. At the closest point of approach (just over 
200 seconds into the simulation), the two aircraft are separated by about 100 ft vertically and 460 ft laterally. 

Bayesian network structure shown previously in Fig. 4. 

Finally, Fig. 10 shows one example encounter between two 
VFR aircraft. This kind of encounter can be simulated with a 
collision avoidance system in the loop. By examining millions 
of such encounters, we can then estimate the robustness of a 
collision avoidance system and identify problem areas. 

A. TCAS Safety Analysis 
Even though TCAS has been proven to be highly effective 

at preventing mid-air collisions, engineers in both the United 
States and Europe continue to try to improve its operation. 
Goals include reducing false alarms and mitigating weaknesses 
that may still exist in the system, especially with the changes to 
the airspace that have occurred and that are planned through 
NextGen in the U.S. and SESAR in Europe. The FAA is 

interested in using the correlated model for aircraft under air 
traffic control to investigate both the current version of TCAS 
and potential updates to the system. 

Between our high-fidelity model and our extensive 
collection of data, we can model certain operations that 
currently produce unnecessary alarms; new versions of TCAS 
will probably attempt to mitigate these events so as to increase 
overall pilot compliance with its resolution advisories. As with 
any alerting system, large numbers of false alarms decrease the 
confidence pilots have in TCAS, especially during common 
operations such as parallel runway approaches. Many large 
airports routinely allow two (or more) aircraft to land 
simultaneously on closely spaced runways in visual conditions. 
Our data processing effort has captured thousands of typical 
parallel runway approaches at terminals across the country. Our 
encounter model will be used as part of a drive to increase the 
ability of TCAS to distinguish these safe occurrences from 
similar but truly dangerous situations, such as when two 
aircraft slowly drift together, unaware of each other’s presence. 

By the end of our data collection effort, we will also have 
observed hundreds of encounters involving three or more 
aircraft under air traffic control. Such encounters, though now 
rare, may become more common as the airspace gets denser 
and new technology brings changes to separation practices and 
policies. Currently, TCAS includes the capability to resolve 
encounters with multiple threats, but there has been no rigorous 
testing of that logic using an encounter modeling approach. Our 
encounter model will, for the first time, enable us to 
realistically model and simulate these types of encounters, and 
test current and future versions of TCAS against this emerging 
safety concern. 

B. Systems for Unmanned Aircraft 
Another application of the encounter model is to analyze 

the ability of unmanned aircraft to sense and avoid air traffic—
particularly traffic that may not be controlled by ATC. An 
initial study analyzed TCAS performance on the U.S. Air 
Force’s Global Hawk unmanned aircraft [15]. This study 
investigated the effect of control and communication latencies 
in response to TCAS resolution advisories on Global Hawk. 



Although it was effective in reducing collision risk when 
latency was low, TCAS can detect only transponder-equipped 
aircraft. An unmanned aircraft with just TCAS would be 
unable to detect and avoid small noncooperative aircraft such 
as gliders and ultralights. To safely share the national airspace 
with civilian users, unmanned aircraft must be capable of 
sensing and avoiding all types of aircraft. 

Developers of unmanned aircraft have identified a variety 
of potential sensors: electro-optical (EO) sensors, onboard and 
ground-based radars, laser radar, and acoustic systems. For 
example, we have used the new uncorrelated encounter model 
to investigate potential requirements and trade-offs for an EO 
sensor system for Global Hawk [16]. Our analysis looked at the 
trade-offs for the current field-of-view specifications of ±110° 
horizontally from the nose and ±15° vertically from the flight-
path angle. Our results suggest that the horizontal field-of-view 
angle is wide enough to detect most intruders in anticipated 
encounters with VFR traffic, because Global Hawk generally 
flies faster than most VFR traffic. Our results also show that 
many intruders are not detected during a turning maneuver if 
the field of view is fixed to the body of the aircraft and rotates 
out of the horizontal plane as the aircraft banks. Horizontally 
stabilizing the field of view is one way to counteract this effect. 

We are also currently leading a study to assess a radar + EO 
system under development by Northrop Grumman to provide 
end-to-end autonomous collision avoidance for Global Hawk. 
This system is one of several currently being developed that 
may fill the current technology gap for sensing small aircraft. 
Our analysis based on the new encounter models will be 
integral to determining the robustness of this system. In 
addition, our analysis will inform future collision avoidance 
development and testing procedures for other unmanned 
aircraft, as well as be a vital component of certifying any 
collision avoidance system for use in civil airspace. 

C. Advanced Collision Avoidance Algorithms 
In the past, engineers have tailored collision avoidance 

systems to a particular platform, starting from certain 
reasonable assumptions and iteratively creating an acceptable 
algorithm through painstaking and expensive testing. For 
instance, the TCAS collision avoidance logic, designed to work 
on typical passenger airliners, required over a decade of 
development before reaching an acceptable level of 
effectiveness. The result is a system that cannot adapt quickly 
to major changes in the airspace, changes in flight 
characteristics of the aircraft in which the system is installed, or 
different types of sensor data the system may receive in the 
future. It would be very challenging to adapt TCAS to 
accommodate the diversity of unmanned aircraft that are 
expected to be flying, each with its own sensors and flight 
characteristics, and all requiring collision avoidance systems. 

We have been experimenting with a new kind of collision 
avoidance system that leverages the updated encounter models. 
The new system can essentially derive effective collision 
avoidance logic, given models of the aircraft dynamics and 
sensors being used. For example, with the data that have been 
collected, it is now possible to model the probability that a 
given intruder will maintain its current turn rate or change to a 

different turn rate. This would assist in improving trajectory 
extrapolation and prediction of collision threats. 

To enable an effective, flexible, and stable collision 
avoidance system across platforms, this research uses a variant 
of the Markov process—a Partially Observable Markov 
Decision Process (POMDP)—to represent the collision 
avoidance problem. In a POMDP, the state dynamics are 
assumed to be Markovian, meaning that the next state depends 
only upon the current state, just as in the Markov process used 
to represent the encounter model. However, the state of the 
world is observed imperfectly by a set of noisy sensors. A 
POMDP solver finds the optimal control strategy, given an 
objective cost measure that balances flight plan deviation and 
collision risk. In the real world, the quality of the optimal 
control strategy depends strongly on the accuracy of the models 
of the sensor performance and state dynamics. With the fidelity 
offered by our encounter model, a POMDP approach to 
collision avoidance may represent an exciting possibility for 
future collision avoidance systems. 

VII. CONCLUSIONS 
This paper presented a new approach to encounter 

modeling that allows for the generation of more realistic 
encounters than previous models constructed for the U.S. and 
European airspaces. The approach involves modeling the 
dynamics of aircraft state based on Markov models, where the 
probability of the next state depends only upon the current 
state. We used dynamic Bayesian networks to efficiently 
represent our Markov models by leveraging the conditional 
independence between variables. Using an extensive set of 
National radar data, we chose the structure of the dynamic 
Bayesian networks using statistical model-selection techniques. 

Prior U.S. and European encounter models—due to their 
focus on TCAS safety assessment—concentrated on modeling 
encounters between aircraft where at least one aircraft is 
receiving air traffic control services. The Lincoln Laboratory 
family of encounter models, however, include models that 
capture the behavior of conventional and unconventional 
aircraft not receiving air traffic control services. In these 
encounters, the trajectories of the aircraft are independent of 
each other prior to intervention by a collision avoidance 
system, human or automated. These models assume that 
aircraft blunder into close proximity without prior intervention.  

The three types of encounter models presented in this paper 
are available to international civil aviation authorities and other 
organizations to generate encounters for use in Monte Carlo 
safety analyses. The results of these robustness studies will 
inform the development and certification of new systems of 
collision avoidance systems for manned and unmanned aircraft. 
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