
 

 

 

 

MIT Lincoln Laboratory has developed the Route Availability 

Planning Tool (RAPT), which provides automated convective 

weather guidance to air traffic managers of the NYC metro 

region.  Prior studies of RAPT have shown high-accuracy 

guidance from forecast weather, but further refinements to 

prevent forecast misclassification is still desirable.  An 

attribute set of highly correlated predictors for forecast 

misclassification is identified.  Using this attribute set, a 

variety of prediction models for forecast misclassification are 

generated and evaluated.  Rule-based models, decision trees, 

multi-layer perceptrons, and Bayesian prediction model 

techniques are used.  Filtering, resampling, and attribute 

selection methods are applied to refine model generation.  

Our results show promising accuracy rates for multi-layer 

perceptrons trained on full attribute sets. 

 

I. Introduction 

HE Route Availability Planning Tool (RAPT) was 

developed at MIT Lincoln Laboratory to help air traffic 

managers of the NYC metro region determine the operational 

impact of convective weather on airspace departure routes [1].  

RAPT creates route status timelines using weather forecasts 

from the Corridor Integrated Weather System (CIWS) [2].  

Research conducted in [3] compared RAPT air traffic guidance 

using forecast weather to guidance based on true weather 

inputs.  The study showed RAPT guidance was highly 

accurate.  However, further refinements to status prediction and 

enhanced operational feedback are still desirable.  The goal of 

this research is to create and evaluate different prediction 

modeling methods to anticipate the possibility of forecast 

misclassifications, given certain weather and airspace 

conditions.   
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II. RAPT Algorithm and CSI Scoring 

RAPT creates route status timelines using CIWS forecasts of 

Vertically Integrated Liquid (VIL) and echo top heights.  Each 

route timeline contains seven status tuples, representing 

forecasted route status for departures from time t in 5 minute 

binned intervals, ranging from (t + 5) to (t + 35). The route 

status tuple provides a discretized assessment of first-worst 

convective weather blockage on a route, binned into GREEN 

(route clear), YELLOW (route impacted), or RED (route 

blocked).  A screenshot of the RAPT Display is shown in  

Figure 1.  These RAPT route timelines are generated through 

four sequential algorithm processes.   

 

 
 

Figure 1 - RAPT display with route status timelines. 

 

Forecasted VIL and echo top heights are combined using a 

Gaussian classifier to produce a regional Weather Avoidance 

Field (WAF) [4].  Each pixel in the WAF grid represents a 

pilot's likelihood of deviating around the weather at that point.  

At each point along a departure route, a heuristic scoring of 

airspace blockage of 0-100 is calculated from local WAF 

values.  A discretized route status is derived from an 

algorithmic combination of route blockages and a regional 

airspace sensitivity field.  Finally, an inertia algorithm is 

applied to smooth status variability from small blockage 

changes, and operational confidence statistics are generated. 

 

Evaluating and refining forecast accuracy is crucial for 

automated air traffic management tools.  Evaluations of RAPT 

operational accuracy may be performed by creating dual sets of 

departure status timelines: an operational “forecast” timelines 

set calculated from CIWS weather forecasts, and a “true” 
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timelines set using actual weather.  The true weather data set is 

created retrospectively by replaying RAPT using CIWS 

weather archives.  The comparison of forecast and true weather 

blockages can be used to evaluate the ability of RAPT to 

provide operationally valid impact data. 

 

The evaluation of RAPT conducted in [3] used forecast and 

true weather CIWS inputs from the 2009 convective weather 

season.  The study revealed a high rate of accurate 

classifications from forecast weather, shown in Figure 2.  The 

number of levels that a forecast miscast a true weather status is 

represented as FC |Δ|.  FC |Δ| = 0 means that the forecast 

predicted the true weather correctly. One-level errors (e.g., 

forecast GREEN that verified as true YELLOW) were 

infrequent and two-level errors (forecast GREEN that verified 

as RED and vice-versa) extremely rare.   

 

 
 

Figure 2 – RAPT forecast status accuracy. 

 

Our research seeks to create a prediction model which can 

predict forecast misclassifications.  Potential inputs to these 

models include measurements of forecast uncertainty.  RAPT 

generates two measurements of forecast uncertainty in an 

operational airspace: a Modified Critical Success Index (mod-

CSI) score [5] and a True Critical Success Index (true-CSI) 

score [3].  Both scores range from 0-100 and are calculated by 

comparing blockage values from the forecast and true weather 

grids. 

 

The mod-CSI uses a region-wide calculation of blockage scores 

with a 40 minute parameterizable lag.  In the ZNY airspace, 

scores are calculated for regions that encompass the NORTH, 

WEST, and SOUTH departure gates.  The true-CSI model 

applies to RAPT route departure regions only, and requires an 

80 minute time lag between forecast and verification.  

 

III. Prediction modeling methods 

The data set of N = 43008 tuple comparisons from the summer 

2009 convective weather season was used for our prediction 

model research.  These tuple comparisons represent a total of 

6144 RAPT route timelines produced from CIWS forecasts 

generated at five-minute intervals.  Eight major departure 

routes out of LaGuardia Airport (LGA) were used for the 

study.  These departure routes are depicted in Figure 3. 

The classification target of our models was Forecast Delta, a 

discretization of status misclassifications into “Overwarned” 

(e.g. true GREEN predicted as RED), “Underwarned”, and 

“Correct”.  The six attributes initially used to predict Forecast 

Delta were: 

 

 Date-Stamp – Date/time marker for tuple. 

 Route ID – Name of departure route. 

 Tuple Level – Departure time of tuple.  Nominal 

divisions of t+5 to t+35 in 5 minute increments. 

 Forecast Status – GREEN, YELLOW, or RED 

forecasted route blockage. 

 Mod-CSI Score – CSI score of forecast uncertainty 

for departure gate region.  Scores range 0-100, with 

lower scores indicting more uncertainty. 

 True-CSI Score - CSI score of forecast uncertainty 

for departure route region.  Scores range 0-100, 

with lower scores indicting more uncertainty. 

 
Figure 3 - LGA departure routes. 

 

The following machine learning methods were utilized in our 

study.  All model generation was done using the Waikato 

Environment for Knowledge Analysis (WEKA), version 3.7.1 

[6].  Each prediction model was generated using 10-fold cross-

validation.  Comparisons of accuracy were performed using t-

testing over 10 iterations, utilizing random seeding for 

sampling and probabilistic attributes. 

 

Supervised Discretization – Filter to discretize numeric 

attributes into nominal values.  Attributes are binned relative to 

changes in the target classification using the Minimum 

Descriptive Length (MDL) principle [7]. 

 

Correlation-based Feature Selection (CFS) – Attribute 

selection filter used to eliminate noisy and redundant features 

in data sets.  Algorithm pares attributes down to subsets 

exhibiting high correlation to target class and low cross-

correlation to remaining features [8]. 

 

Resampling – Instance filter to produce a randomized subset 

of a dataset.  Sampling can preserve class distribution of 

sample, or create a sample with uniformly distributed class 



 

 

 

values.  Uniform bias class resamples allow prediction models 

to train with equal weight to majority and minority target 

values [6]. 

 

OneR – Rudimentary prediction algorithm which uses single-

attribute models to predict target classification.  Also known as 

1R or Learn-One-Rule [9]. 

 

J48 – Java implementation of C4.5 decision tree learning 

algorithm.  Decision tree algorithms use information gain 

metrics to create logical conjunctions which represent 

classification values.  C4.5 is an evolution of the basic ID3 

decision tree algorithm, and accounts for missing values, 

decision tree pruning, and rule deviation [6, 10]. 

 

Bayes Net – Bayesian networks are directed acyclic graphs 

which represent conditional statistical relations for attributes of 

an entity.  Bayes net predictors construct a networked 

probability model for classification using a specified network 

evaluator and network-space search function [6]. 

 

Naïve Bayes – Variant on Bayes Net predictors.  Assumes 

statistical independence amongst attributes in predicting a 

target classification.  Known for high characterization accuracy 

despite comparative algorithmic simplicity [9]. 

 

Multi-layer Perceptron (MLP) – A neural network classifier 

which uses backpropagation to train weights of network 

connections.  The number of layers for each model varies by 

experiment.  Attributes and numeric classes are normalized 

during execution [6]. 

 

IV. Initial results and analysis 

Date-stamp and Route ID attributes were removed during the 

initial experiments, as they were found to “serialize” the target 

classes.  The combination of Date-Stamp and Route ID created 

a nominative label of each instance.  Prediction models built 

from these data sets overtrained to the specific contents of each 

label. 

 

The remaining attributes were Tuple Level, Forecast Status, 

Mod-CSI Score, and True-CSI Score.  Prior research in [3] 

provided some initial knowledge about these attributes.  Time 

series analysis showed that both Mod-CSI and True-CSI are 

internally stable processes with high rates of autocorrelation.  

CSI scores also have low rates of cross-correlation and are 

mutually poor predictors of each other.  A forecast status of 

RED or YELLOW is associated with higher rates of 

misclassification.  The rate of underwarning is known to grow 

linearly with Tuple Level: status underwarning for the t+35 

tuples occurs at about twice the rate of t+5 tuples. 

 

The majority class value for the data set was Correct (p = 

0.871).  The Overwarned class value (p = 0.071) occurs at a 

slightly higher rate than Underwarned (p = 0.058).  The 

distribution of Forecast Delta values is shown in Figure 4.  

Black denotes Correct, dark-gray denotes Underwarned, and 

light-gray denotes Overwarned.   

 

The attribute distributions are shown in Figure 5 through 

Figure 8.  The Forecast Delta categorical colors are 

incorporated into the attribute histograms.  Each histogram bar 

is colored by the distribution of the target class relative to the 

attribute value (e.g.: a histogram bar for Forecast Status = 

GREEN colored one-quarter light gray implies that a quarter of 

GREEN forecasts have an Underwarned classification). 

 

 
 

Figure 4 - Forecast delta class distribution.  

 

 
 

Figure 5 - Tuple level attribute distribution. 

 

 
 

Figure 6 - Forecast status attribute distribution. 

 



 

 

 

 
 

Figure 7 - Mod-CSI score attribute distribution. 

 

 
 

Figure 8 - True-CSI score attribute distribution. 

 

V. Initial prediction model results 

Supervised Discretization – Supervised discretization was 

applied to the two numeric attributes: Mod-CSI Score and 

True-CSI Score.  The MDL-based binning of these attributes is 

illustrated in Figure 9 and Figure 10.  Eight distinct bins were 

assigned to Mod-CSI, and six were assigned to True-CSI.  

Training on discretized attribute sets generally did not affect 

rates of prediction accuracy, although it did contribute to 

simplification of decision tree models. 

 

 

 
 

Figure 9 - Supervised discretization of mod-CSI scores. 

 

 

 
 

Figure 10 - Supervised discretization of true-CSI scores. 

 

Correlation-based Feature Selection Filter Results – Feature 

selection chooses the attribute subset with the lowest internal 

cross-correlation and highest correlation to the target class.  

CFS filtering chose Forecast Status and Tuple Level for this 

subset.  Prediction model generation was conducted on both 

filtered and original attribute sets.  Exceptional differences in 

the resultant accuracy are noted. 

 

 

Resampling Filter Results – To create prediction models that 

trained equally on majority and minority cases, a uniform bias 

resampling was applied to the target class.  The resampled 

distribution of Forecast Delta is shown in Figure 11.   

 

 
 
Figure 11 - Resampled forecast delta distribution with uniform class 

bias. 

 

OneR Prediction Model – The OneR algorithm builds a 

classification model based on a single attribute.  OneR 

identified Forecast Status as the best individual predictor of 

Forecast Delta.  Accuracy rate for model was p = 0.546.  This 

model’s predictions of Forecast Delta based on Forecast Status 

are: 

 

Forecast Status = G  ->  Correct 

Forecast Status = Y  ->  Overwarned 

Forecast Status = R  ->  Overwarned 

 

 

J48 Prediction Model – The J48 decision tree model scored a 

high accuracy rate at p = .736.  However, the decision tree was 

overtrained to the specific contents of each data instance.  The 

J48 algorithm produced a model that essentially contained 

serialized outputs, similar to models trained on Date-Stamp and 



 

 

 

Route ID.  The decision tree was also structurally cumbersome, 

with 12 layers, 1335 nodes, and 771 leaves.   

 

A more concise decision tree was generated from the attribute 

filtered set.  This decision tree had an accuracy rate of p = 

0.562.  The predictions of Forecast Delta based on Forecast 

Status and Tuple Level for this decision tree model are: 

 

Forecast Status = G -> 

|   Tuple Level = t + 1 -> Correct 

|   Tuple Level = t + 2 -> Correct 

|   Tuple Level = t + 3 -> Correct 

|   Tuple Level = t + 4 -> Underwarned 

|   Tuple Level = t + 5 -> Underwarned 

|   Tuple Level = t + 6 -> Underwarned 

|   Tuple Level = t + 7 -> Underwarned 

Forecast Status = Y -> Overwarned 

Forecast Status = R -> Overwarned 

 

 

Bayes Net/Naïve Bayes Model – The Bayes Net network-

space search concluded statistical independence amongst 

attributes produced models with the most accurate target 

classifications.  This statistical relationship between attributes 

produced Bayes Nets which structurally match the Naïve Bayes 

model.  The accuracy rate for this Bayes Net is p = 0.599, and p 

= 0.561 using the attribute filtered set. 

 

The full attribute Bayes Net is illustrated in Figure 12.  Note 

that the edges in this network depict conditional probability 

relationships, not the logical progression of a data point 

classification.  Bayes Nets classify new data points using the 

maximum a posteriori, or most likely hypothesis, from the 

attribute probability distributions.  Sample probability 

distributions for Tuple Level and Forecast Status are shown in 

Table 1 and Table 2.   

 
Figure 12 - Bayes Net/Naïve Bayes prediction model. 

 

 

 
Table 1- Bayes Net - Probability Distribution for Tuple Level 

 
 

 

Table 2 - Bayes Net - Probability Distribution for Forecast Status 

 
 

 

Multi-layer Perceptron Model – The Forecast Delta MLP 

was trained on ten folds of 500 epochs using a learning rate = 

0.3 and momentum = 0.2.  The generated network contained 12 

input nodes, 7 sigmoid nodes, and 3 output nodes.  A 

visualization of the MLP is shown in Figure 13.  The final 

predictor scored a high accuracy rate with p = .653.   

 

 
 

Figure 13 - Forecast delta MLP predictor. 

The performance of this MLP was compared the other non-

serialized prediction models.  The higher performance of the 

MLP was confirmed as statistically significant via 10-fold t-

testing with α = 0.05.   This makes the MLP the best 

performing non-serialized prediction model in the study. 

 

High performance is not the only promising aspect of the 

Forecast Delta MLP.  A software implementation of the MLP 

can also continually train through backpropagation.  This 

allows the MLP to adapt dynamically to larger data sets and 

varied domains.  MLP retraining is also comparatively 

efficient.  Many prediction models must be rebuilt from the full 

training sets with the receipt of new data.  MLPs can 

incorporate new information into its connection weights 

iteratively, without requiring a full network retraining. 

 

VI. Future work 

Additional classification methods may be examined in future 

work.  Refinements of promising high-accuracy methods, 

including the current multi-layer perceptrons, will be 

performed.  These refinement techniques may include an 

expanded use of attribute selection, discretization, and cost 

matrix specification.  Within the RAPT software, the 

application of implemented Forecast Delta prediction models 



 

 

 

will be examined. These applications may include refined 

status prediction and various forms of enhanced operational 

feedback.   
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