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Table 1. MB Prediction Scoriflf< Results bv Site and Mode 0(0 eration (25 microburSf events ver sile.! 

SITE 

PROBABILITY 
OF 

PREDICTION (%) 

PROBABILITY 
OFFALSEWS 

PREDICTION (%) 

PROBABILITY 
OF FALSE MB 

PREDICTION (%> 

AVERAGE 
LEAD TIME (sec) 

UNRE­
STRICTED 

RE­
STRICTED 

UNRE­
STRICTEO 

RE­
STRICTEO 

UNRE­
STRICTED 

RE­
STRICTEO 

UNRE­
STRICTED 

RE­
STRICTED 

Memphis 80 80 33 0 50 22 246 126 

Orlando 64 56 19 0 29 24 205 58 

Dallas 64 64 23 0 30 17 360 102 

AVERAGE 69 67 27 0 36 21 270 95 

and only considers truth events which reach mkro­
bum strength (2: 30 knots). The analyst searches up to 
9 minutes ahead in time to find marching events when 
scoring the algorithm. A prediction can only match 
one microburst event. If a microburst is predicted at 
least once for an event, it is considered a correct pre­
diction. Generally, a 25% overlap of the predicred and 
true regions was required. but very small predictions 
« I km radius) within 1 km of true events were also 
considered hits. 

The Probability of False WS Predi,tion (PFPws) is the 
number of false predictions issued by the algorithm 
divided by the total number of predictions issued. This 
is ,alculated on a minute-by-minule basis by 
comparing the predictions issued with truth events 
which reached at least wind shear strength (15 knots). 
Thus, a single MB event can be falsely predicled for 
several minutes. leading to several false predictions. 
The PFPw~ ,orresponds to the probability of false 
prediction criterion specified in the nws Functional 
Requirements. 

The Probability of False MB Prediction (PFPmb) is the 
number of predictions issued which did not malCh a 
truth event with a microburst strength outflow (2: 30 
knots) divided by the total number of predictions is­
sued. This value is a more stdngenl criteria than PFPws 
and is shown here ro indicate that MBPredict has con" 
siderable skill at precisely predicting events wiIich 
will reach true microburst strength. 

3. LEAD TIME OF PREDICTIONS 

MBPredkt is capable of predicting outflows from 1 to 
8 minules in advance ofmkrobursl strength winds. As 
shown in Table I, while the POP does not change sig­
nificantly between restricfed and unrestricted modes 
of operations, the average lead time triples from 1.5 to 
4.5 minutes. This increased margin of safety is one of 
the primary benefits of operating in unrestricted mode. 

Figure I illustrates the distribution of lead times based 
on individual alerts generated by MBPredict. [Note 
that the Situa/Lon Display does not indicate the timing, 
i.e. when the outflow is predicted to occur. MB predic­
tions are depicted exactly as MB detections are on the 
Situation Display.] 

>40 
,;-5°1 l 
~ 30 I 

~ i 

~ 
20

I:L 
1 

~J 
0-1 1-2 2-3 3-4 4--5 5-6 ~7 7-8 

TIME TO MB ONSET (min) 

Figure I. Distribulion oflead til1U'sfor individual prtdiClio" 
a/erls. Data presenled arefor aillhree lesl sites in feslricted 
mod,. 

4. THE NATURE OF FALSE PREDrCfIONS 

The Microbu~[ Prediction Algorithm is, at itS core, a 
downdraft detector. Many of the features which are 
used to find potential microbnrst regions are designed 
to detect the rise and fall of water and moisture 
associated with thunderstonn updrafts and down­
drafts. Because the algorithm accumtely charts down­
drafts, any prediction region will correspond to a re­
gion which (a) has significant liquid water associated 
with it and (b) has a downdraft which could cause an 
aircraft airspeed loss. The only question is whether the 
surface outflow will become strong enough to become 
an aviation hazard. 

Upon examining the false predictions which occurred 
at each of the three test sites, we found they fell into 
four categories. Figure 2 illustrates the varions types 



of fal~e predictions using chans of wind shear strength 
ven.:us time. (The dashed line indicates MB strength or 
30 knots). Referring to this figure, the false prediction 
types are: 

A.	 During-AIler False Predictions, orpredictions 
which occur during (hits) but which persist af­
rer a truth event has ended. 

B.	 After False Predictions, or predictions which 
occur only after a true MB event. 

C.	 Weak False Predictions, (If predictions which 
match truth events with a peak: strength less 
than 30 kn(lIS. 

D.	 Location Offsel False Predictions, (lr predic­
rions which are false due to lOCZltion errors. 

Table 2 shows the breakdo\Vll of false prediction types 
by their relative frequency of occurrence in restricted 
and unrestricted modes. 

False prediction type (A) can possibly be eliminated 
by simply correlating microburst detections and pre­
dictions with time. MBPredict was specified in the 
nws Microburst Prediction AlgOrithm description to 
allow tracking of the underlying matching detection. 
This will hopefully make it fairly simple to remove 
type A false predictions once a sensible removal pro­
cess has been developed. 

False prediction type (B) is more difficult to remove 
because there is no time cominuity between the detect­
able event and thc predicted event. 

The weak (C) false predictions are dependent upon the 
quality of the thennodynamic information used in the 
algorithm (discussed later in this paper.) Over one-
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Figure 2. Illustration ofthree type! ofFalse Predictions
 

quarter of the type C falses are predictions which 
matched delected wind shears between 15 and 30 
knots. 

Finally, location offset errors (D) are problematic be­
cause they are related to radar data quality problems 
which the algorithm itselfhas little control over. Fortu­
nately, these location errors account for a very small 
fraction of the overall false predictions. 

Table 2. Relative frequency offalse predic­
lion types in restricled arul unreS"icled rrwde (Data 
presenled are derived from Dallas scoring results.) 

FALSE 
PREDICTION TYPE 

RE­
STRICTED 

UNRE­
STRICTED 

DURING AFTER (A) 84% 34% 

AFI"ER (B) 16% 34'1<­

WEAK(C) NfA 25% 

LOCATION OFFSET \.D) NfA 7% 

Note that 93% of the "false" predictiom actually 
matched a confrrming, bUl weak, wind shear oUlfiow. 
In addition, if all the "after" false prcdictions were re­
moved from the scoring analysis shown in Table 2, the 
PFP for unrestricted mode would meN the nws 
Functional Requirement Level of < 10%. 

5.	 OPERATIONAL CAPABILITIES 
AND LIMITATIONS 

The Microbursl Prediction Algorithm is designed to 
accurately predict microburst outtlows with a very low 
probability of false predictions in a wide range of ther­
modynamic environments. This requirement demands 
a fairly complex set of checks and balances within 
MBPredict. Operationally, the algorithmic features 
which make the algorithm work have physical limita­
tions. While the Microburst Prediction Algorithm has 
proven to be reliable and effective, it is impoTUlllt to 
understand the limitatious of the techniques used with­
in MBPrediCi. In developing the Microburst Predic­
tion Algorithm, steps were taken to incorporate soft­
ware and adjustable parameters which would help 
mitigate any limitations. 

Seclions 5.1 and 5.2 describe how, by understanding 
the physical forcing of microburst outtlows and char­
acterizing the overall micn)burst environment, the Mi­
croburst Prediction Algorithm is able to achieve a hig.h 
probability of detection. Just as important as the algo­
rithm's ability lO predict microbursts is its ability to 

control false predictions. As shown in Table 2, only 
one-<Juaner of the false predictions are due to over-es­
(imations of the peak outflow strength. The remaining 
sections detail the controlling methodology of the al­



gorithm. They also discuss ways in which false predic­
tions could oceur along with the POP LIadeoffs in­
volved in eOOlmlling the PFP. 

5.1. Overview 

Wolfson (1990) showed that the primary foreing 
mechanisms of thunderstonn outflows were the 
amount of upper level waLer and ice within the slonn 
and the amonnt of evaporation and melting of the wa­
ter and ice as it was pulled downward by gravity (as 
shown below.) 

dw LJT 
~ - g (woter+ice)

dr T 
Do...ndrafl Waler 

Strength Buoyancy Loading 

As an illustration, Figure 3 shows that the surface re­
flectivity associaLed with Orlando and Denver micro­
bursts are extremely different. However. as shown in 
Figure 4. the corresponding distribution of peak: out­
flow strengths is quite similar. The moisture profile in 
Denver is much drier than that of Orlando, reducing 
Denver's potential water-load. forring. The thennody­
namic forcing in Denver, however. is much greater 
than that of Orlando. Environmental factors such as 
the remperature and humidity structure in the atmo­
sphere determine the negative buoyancy generated by 
the melting of frozen precipitation and the evaporation 
of rain. Because water phase changes are usually not 
discernible in radar reflectivity, explicit consideration 
of the atmospheric tempemture and humidity profile 
are needed {Q develop a reliable and accuraLC Micro­
burst Prediction Algorithm. 
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5.2. The Mjcroburst Environment 

The ability of MBPredict ro estimate the buoyancy and 
waLer-load downdraft forring, allows it to operare 
year-round in widely varying environments. The ther­
modynamic "microburst environment" is deLennined 
via a combination of three sounding profile parame­
ters: 

A.	 Freezing Level, the height at which the ambi­
rnt temperature rust drops \0 0° C. 

B.	 Full Lapse Rate, the changr in temperature 
withheighlfromthe surface 10 the freezing lev­
,,~ 

C.	 Low-level Lapse Rate, thech.:lllge in tempera­
lure wilh hright from lhe surface 10 3/4 of the 
freezing Ie-vrl hright. 

Negative buoyancy in the downdraft is primarily gen­
emLed below the freeZing level; thus the height of the 
freezing level is a measure of the depth of the down­
draft. The full lapse rate is a measure of how much neg­
alive buoyancy the water-saturated air can gain 
through melting and evaporation. Finally, the low lev­
ellapse tale is a measure of sub-cloud evaporation and 
discontinuities at low levels. A tow-level lapse rate 
that is Significantly lower than the fuH lapse rate indi­
cales possible temperature inverSIOns which will 
dampen outflow strengths. The reverse case is an in­
dication of enhanced outflows from extreme low level 
evaporatIOn (typical of dry MB environments). 

Figure 5 shows the wide range of lapse taleS under 
which the Microburst Prediction Algorithm operaLes. 
The stable region indicates an environment where 
thermodynamic forcing is so low that impossible 
amounts of waLer and ice are needed to force an out­
flow. The operating region of the curve is an environ­
mem where microbursts may occur and MBPredict is 
able to perfonn with a low probability of false predic­
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tion. The suspension region indicates an environment 
where the buoyancy forcing far outweighs the water­
loading forces, and suspension of the algorithm pre­
dictions is necessary to limit false predictions. 

5.3.	 Detecting Potential Dry Microburst 
Environments 

MBPredict is designed to recognize Whether or nOl it 
is operating in an environmental regime where it will 
likely have a high probability of false prediction. The 
suspeusion region in Figure 5 depicts envirornnenls 
under which MBPredict (left unchecked) would po­
tentially have a high PFP. Semi-arid microburst envi­
ronments, for example, are problematic for the MicfO­
burst Prediction Algorithm. Buoyancy forcing is so 
large in these environments thaI MBPredict predicts 
mat any amount of water loading will result in a micro­
burst strength outflow. Dry microbursts tend to occur 
in regions where the lapse rate is approaching or great­
er than dry adiabatic (9.76 °C/km). By utilizing the 
sounding parameters discussed above, MBPredict is 
able to detect dry environments where the algorithm 
will have difficulty accurately predicting rnicrobursts. 

Once a dry environment is detected. MBPredict will 
suspend predictions until the thermodynamic environ­
ment changes. While this is a limitation of the Micro­
burst Prediction Algorithm's ability to predict out­
flows, it is an asset in that if eliminates the chances for 
severe over-warning and false predictions. 

5.4.	 Soundin2 Puabty and MBPredict Feedback 

Soundings are created by combining RUC (Rapid Up­
dale Cycle) model data. automated aircraft reports via 

MOCRS (Meteorological Data Collection and Report­
ing System). and NWS surface observations. The 
model data provides a good approximation of the 
sounding profile. but the large scale smoothing re­
moves any localized sounding fearures. The surface 
obsen'ations and MDCRS reports are used to capture 
these smaller scale features. Not all aircraft automati­
cally report meteorological data. and during slow traf­
fic periods (Le. overnight) repans are very sparse. In 
many cases, there are an insufficient number of 
MOCRS reports at heights under 5 km to accurately 
represent the thennodynamic profile. 

The scarcity of aircraft measurements and large-scale 
smoothing of model data can cause the sounding to be 
an inaccurate measure of the thennodynamic environ­
menl. Because MBPredict relies heavily on thermody­
nanlic infoffilalion, inaccurate soundings can result in 
MBPredict over- or under-predicting wind shear po­
tentiaL A feedback mechanism was added to the Mi­
croburst Prediction Algorithm [Q mitigate potential 
sounding deficiencies. 

The feedback mechanism sensitizes MBPredict based 
on real-time verification of the predictions againsr the 
detections from the ITWS MicroburstDetection Algo­
rithm (MBDetect). Data are compared over the pre­
vious 20 minutes. If there are more detections than pre­
dictions, MBPredict's sensitivily is increased slightly. 
thereby increasing the probability that more predic­
tions will be made in the future. Conversely, if the Mi­
croburst Prediction Algorithm is over-warning. its 
sensitivity is decreased, thereb}' making it less prob­
able that predictions will be made in the near term. 
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5.5. The False Prediction Bias of Feedback 

The feedback cycle is primarily designed to reduce 
false predictions. Therefore, in situations where 
MBPredict has a significant number of false predic­
lions, a large feedback correetion is made to eliminate 
the chances of continued false predictions. Once an 
over-warning correction is made, it is extremely diffi­
cult for the Microburst Prediction Algorithm to make 
predictions in the near future (1-2 hour recovery time). 
While this correction may seem excessive, Air Traffie 
Control persollllel expressed the need for MBPrediet 
to have an extremely low probability of false predic­
tion. 

The feedback mechanism is also critical to the success 
of the overall algorithm. First, as mentioned, the quali­
ty of the sounding profile can be questionable. Second, 
there are some operational days where even the com­
bination of precise water content and thennodynamic 
infonnation does not accurately capture the micro­
burst environment, causing MBPredict to over or un­
der-predict outflow strengths (i.e. sections 5.6 and 
5.7). 

5.6. Tcmperature Inversions 

A temperature "inversion" occurs when ambient tem­
peratures are cooler at lower levels than they arc at 
higher levels. Large scale surface-based inversions 
are commonly cau.sed by nighttime radiational cool­
ing, whcre the surface cools much faster than the air 
above. In addition. localized temperature inversions 
can be created by thunderstorm outflow activity, 
Thunderstorm outflows force cool mid-level air down 
to thc surface. Whichever method causes the inver­
sion. these cold pools of air form a barrier to new 
downdrafts. reducing thc strength of future outflows. 
MBPredict captures the inhibiting effect of invcrsions 
via the sounding parameters, 

As shown in Figure 6, inversions reduce both the over­
all fu1l1ap~e rate and the low-level to full lapse rate ra­
tio, thus requiring more water-loading 10 initiate any 
new outflows. The problem is that even weak inver­
sions (that strong downdrafts can break through) will 
cause the algorithm to predict that no microbursl out­
flow is possible. Unfortunately. the available tempera­
ture profile data is not of sufficient resolution to mea­
sure the relative strength of the inversion. The 
Microburst Prediction ALgorithm will tend to under­
predict on days with inversions that still prcxluce mi­
crobursts, II is rare for downdrafts to be strong enough 
to break through an inversion and produce a micro­
burst-strength outflow. 
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5.7. Vertical Wind Shear 

Vertical wiud shear is a rapid change of wind speed 
and/or direction with height. As shown in Figure 7, 
very strong vertical wind shear will cause thunder­
storms and their downdrafts, to lilt with height. There 
are no considerations made for vertical wind shear in 
MBPredict Even though strong vertical shear could 
result in an over prediction of the peak strength of an 
event, not all vertical wind shear situations adversely 
affect algorithm performance. Work should continue 
to delermine ways to incorporate vertical wind shear 
into MBPredict. 

WINDS .--,

• 

Figllre 7. lllu5tralion of the pos1ible impaci of vertical 
wind 1hear on downdraft. The downdraftforcingfrom ver­
timl warer loading is redllced due 10 .he horizontal advec· 
tion ofupper-levelmol1111re awayfrom Ihe downdraft core. 
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5.8. Cougling with Microburst Detection 

Algorithm 

'The Microhurst Prediction Algorithm is coupled with 
the Microhurst Detection Algorithm in two ways. 
First. weak surface wind shear is used to detecl regioILS 
where the transition from downdraft to outflow has be­
gun. Secondly, and more importantly, detections are 
used as truth in the feedback loop. This coupling 
means that the strengths and weaknesses of the ITWS 
Microhurst Detection Algorithm affect the perfor­
mance of the Microburst Pretliction Algorithm. For 
ex.ample, if MBDelec[ missed a microbursl event, but 
MBPredict makes an accurate prediction, feedback 
will desensitize MBPredict to correct the perceived 
false prediction problem. The reverse is true ifMBDc­
teet false alarms (resulling in an increased probability 
that the Microbursl Prediction Algorithm will false 
predict in the future). The high POD and low PFA 
(probability of falSe alarm) of the Microbum Detec­
tion Algorithm, and [he need for feedback makes [he 
coupling extremely beneficial. 

6. SUMMARY AND FUTURE WORK 

The ITWS Microbursl Prediction Algorithm has prov­
en to be reliable and accurate in predicting microburst 
strength outflows in diverse thunderslOrm environ­
ments. The key to this success is MBPredict's ability 
to both precisely measure the water content of the at­
mosphere via mWR and accurately estimate the ther­
modynamic forcing of downdrafts via tempernmre and 
humidity profiles. 

While the Microburst Predicllon Algori[hm has been 
successful, Lincoln LaboratOry research into way.~ to 

improve [he MBPredict should continue. Near teml 
modifications should include plans to inhibit false pre­
dictions which occur during or afler microburst,... 
streng[h events and to investigate ways of incorporat­
ing vertical wind shear information into the 
MBPredict. The ITWS algorithm description incorpo­
rates filany adaptable parameters and software fea­
tures which will allow these modifications to be imple­
mented. Long-teml research nee.Js to be done to 
determine how MBPredict can predict outflows in dry 
microburst environments while keeping false predic­
tions to a minimum. 
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