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1. INTRODUCTION

Lincoln Laboraiory, under funding from the Federal
Aviation Administration (FAA) Terminal Doppler
Weather Radar program, has developed algorithms for
automatically detecting microbursts. While micro-
burst detection algorithms provide highly reliable
warnings of microbursts, Lhere still remains a period of
time beiween microburst onset and pilot reaction dur-
ing which aircraft are at risk. This laiency is due to the
time needed for the automated algorithms to operate
on the radar data, for air traffic controllers to relay any
warnings and for pilots to react Lo the warnings. Lin-
coln Laboratory research and development has
yieided an algorithm for accurately predicting when
micraburst outflows will occur. The Microburst Pre-
dicuon Algorithm is part of a suite of weather detec-
tion algorithms within the Integrated Terrnmal Weath-
er System (ITWS; Evans and Ducol, 1994),

This paper details the performance of the Microburst
Prediction Algenthm over a wide range of geographi-
cal and climatological environments. The paper also
discusses the full range of the Microburst Prediction
Algorithm’s capabilities and limitations in vared
weather environments. This paper does not discuss the
overall rationale for a prediction algorithm or the de-
lailed methodology used to generate predictions. For
a detailed discussion of these issues. see Wolfson, et al,
(1994).

2. ALGORITHM PERFORMANCE

The ITWS Microburst Prediction Algorithm (MBPre-
dict) was tested in a real-1ime operational setting dur-
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mg 1994 and 1995 in Memphis, Orlando, and Dallas,
(Klingle-Wilson, 1995). The results of these tests are
described in this seetion.

Because of the safety—oriented operational use of the
Microburst Prediction Algorithm, the performance
must meet very swict false prediction crileria. The
ITWS Functional Requirement for the Microburst Pre-
diction Algorithm performance accuracy states that,
whilc it would be acceptable if MBPredict issued pre-
dictions for only one third of the expected microburst
events, the predictions that are issued must be accurate
at least 90% of the time. This ensures that any issned
predictions will be highly rcliable.

Table 1 shows the scoring results of each demonstra-
tion site. The ITWS Microburst Prediction Algorithm
descnption (Lincoln Laboratory, 1993} was writicn 1o
allow two modes of operation via a simple parameter
change. The first mode is called “restricted” mode.
This conservative mode reduces the chances for false
predictions by allowing only predictions which have
an underlying, confirming wind shear detectiou (13 to
29 knots) to be sent to the Situation Display. The se-
cond mode is called “unrestricted” mode. This mode
allows both wind shear and microburst strength pre-
dictions to be sent to the Situation Display. Operating
in “restricted” mode reduces the probability of falsely
predieting a wind shear (PFP.;) to zero (since. by defi-
niticn, wind shear with loss 2 15 knots must be pres-
ent), but it also reduces the number of microbursts pre-
dicted and the lead time for those that are predicted. In
some regional storm environments, MBPredict may
be able to run with linuted false predictions in unre-
siricted 1node, providing longer lead time and in-
creased awareness of new wind shear events. There-
fore, the resulis in Table 1 were calculated for both the
restricted and unrestricted modes at each site.

The Probability of Prediction (POP) is the uumber of
microburst (MB) events correctly predicted by the al-
gorithm divided by the total number of eveuts that
should have been predicted. Subjective truth entered
by an experienced meteorologist was used to deter-
mine the number of events that should have been pre-
dicted. POP is calculated on a eveul-by—event basis



Tabie 1. MB Prediction Scoring Results by Site and Mode of Operation (25 microburst events per site.)
PROBABILITY PROBABILITY PROBABILITY AVERAGE
OF OF FALSE WS OF FALSE MB LEAD TIME
PREDICTION (%) PREDICTION (%) PREDICTION (%) (sec)
SITE UNRE-~ RE- UNRE - RE- UNRE- RE- UNRE- RE-
STRICTED | STRICTED |STRICTED | STRICTED | STRICTED | STRICTED |STRICTED | STRICTED

Memphis 80 80 33 0 50 22 246 126
Qrlando 64 56 19 0 25 24 205 58
Dallas G4 64 23 0 30 17 360 102
AVERAGE 69 67 27 0 36 21 270 95

and only considers truth events which reach micro-
burst strength { = 30 knots). The analyst searches up to
9 minutes ahead in tine to find marching events when
scoring the algorithm. A prediction can only maich
one microburst event, If a microburst is predicted at
least once for an event, it is considered a correct pre-
diction. Generally, a 25% overlap of the predicted and
true regions was required, but very small predictions
(< | km radius) within 1 km of true evenis were also
considered hits,

The Probability of False WS Prediction (PFPys) is the
number of false predictions issued by the algorithm
divided by the total number of predictions issued. This
is calculated on a minute-by—minute basis by
comparing the predictions issued with outh events
which reached at least wind shear strength (15 knots).
Thus, a single MB event can be falsely predicied for
several minutes, leading to several false predictions.
The PFPy. coresponds to the probability of false
prediction criterion specified i the ITWS Functional
Requireinents.

The Probability of False MB Prediction (PFP ) is the
number of predictions issued which did not march a
truth event with a microburst strength outflow (=30
knots} divided by the total number of predictions is-
sued. This value is a more stringenl criteria than PEP,,
and is shown here to indicate that MBPredict has con-
siderable skill at precisely predicting events which
will reach rue microburst strength,

3. LEAD TIME OF PREDICTIONS

MBPredict is capable of predicting outflows from 1 to
8 minutes in advance of microburst strength winds. As
shown in Table 1, while the POP does not change sig-
nificantly between restricied and unrestricted modes
of operations, the average lead time triples from 1.5 to
4.5 minutes. This increased margin of safety is one of
the primary benefits of operating in unrestricted mode.

Figure 1 illustrates the distribution of lead times based
on individual alerts generated by MBPredict. [Nate
that the Sitration Display does not indicate the timing,
i.e. when the outflow is predicted 1o occur. MB predic-
tions are depicted exactly as MB detections are on the
Situation Display.]
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Figure 1. Distribution of lead times for individual prediciion

aleris. Data presented are for all three test sites in restricted
mode.

4. THE NATURE OF FALSE PREDICTIONS

The Microburst Prediction Algorithm is, at its core, a
downdraft detector. Many of the features which are
used to find potential microbnrst regions are designed
to detect the rise and fall of water and moisture
associated with thunderstorm updrafts and down-
drafts. Becanse the algorithm accurately charts down-
drafts, any prediction region will cerrespond to a re-
gion which () has significant liguid water associated
with it and (b) has a downdraft which could cause an
aireraft airspeed loss. The only question is whether the
surface outflow will become strong enougli (o become
an aviation hazard.

Upon examining the false predictions which occurred
at each of the three test sites, we found they fell into
four categories. Figure 2 illustrates the varions types



of false predictions using charts of wind shear strength
versus time. (The dashed line indicates MB strength or
30 knots}. Referring to this figure, the false prediction
1ypes are:
A, During-Afler False Predictions, or predictions
which oceur during (hits) but which persisi af-
ter a truth evenl has ended.

B.  After False Predictions, or predictions which
accur only after a true MB evenl.

. Weak False Prediclions, or predictions which
match Iruth evenis with a peak strength less
than 30 knots.

D. Location Offsel False Predictions, or predic-
tions which are false due to location errors.

Table 2 shows the breakdown of false prediction types
by their relative frequency of cocurrence i restricted
and unrestricted modes.

False prediction type (A) can possibly be eliminated
by simply correlating microburst detections and pre-
dictions with time. MBPredict was specified in the
ITWS Microburst Prediction Algorithm description to
allow tracking of the underlying matching detection.
This will hopefully make it fairly simple to remove
type A false predictions once a sensible removal pro-
cess has been developed.

False prediction type (B) is more difficult to remove
because there is no lime continuity between the detect-
able event and the predicted event.

The weak (C) false predictions are dependent upon the
quality of the thermodynamic information used in the
algorithm {discussed later in this paper.) Over one-
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{b) Showing type C (weak).
Figure 2. llustrarion of three types of False Predictions

quarter of the type C falses are predictions which
matched detected wind shears between 15 and 30
knots.

Finally, location offset ercors (D) are problematic be-
cause they are related to radar data quality problems
which the algenthm itself has little control over. Fortu-
nately, these location errors account for a very small
fraction of the overall false predictions.

Table 2. Relative frequency of false predic-
fion rypes in resiricied and wnrestricted mode (Data
presented are derived from Dailas scoring resulis.)

FALSE RE- UNRE-
PREDICTION TYPE |STRICTED |STRICTED
DURING-AFTER (4) R4% 34%
AFTER (B) 16% 34%
WEAK (C) N/A 25%
LOCATION OFFSET (D) N/A 7%

Note that 93% of the “false” predictions actually
matched a confirming, but weak, wind shear outflow.
In addition, if all the “after” false predictions were re-
moved from the scoring analysis shown in Table 2, the
PFP for unrestricted mode would meet the ITWS
Functional Requirement level of << 10%.

5. OPERATIONAL CAPABILITIES
AND LIMITATIONS

The Microburst Prediction Algerithm is designed to
accurately predict microburst outflows with a very low
probability of false predictions in a wide range of ther-
modynamic environments. This requirement demands
a fairly complex set of checks and balances within
MBPredict. Operationally, the algorithmic features
which make the algorithm work have physical limita-
tions. While the Microburst Prediction Aigorithm has
proven to be reliable and effective, if is important to
understand the limitations of the techniques uscd with-
in MBPredict. In developing the Microburst Predic-
tion Algorithm, steps were taken to incorporate soft-
ware and adjustable parameters which would help
mitigate any limitations.

Sections 5.1 and 5.2 describe how, by understanding
the physical forcing of microburst cutflows and char-
acterizing the overall microburst environment, the Mi-
croburst Prediction Algarithm is able to achieve a high
probability of detection. Just as important as the algo-
rithm's ability o predict microbursts is its ability w©
control false predictions. As shown in Table 2, only
one—quarter of the false predictions are due to over—es-
tmations of the peak outflow strength. The remaining
sections detail the controlling methodology of the al-



gorithm. They also discuss ways in which false predic-
tions could oceur along with the POP tradeoffs in-
volved in eontrolling the PFP.

5.1, verview

Wolfsen (1990) showed that the primary foreing
mechanisms of thunderstorm outflows were the
amount of upper level water and ice within the storm
and the amonnt of evaporation and meiting of the wa-
ter and ice as it was pulled downward by gravity (as
shown below.}

dw AT ( e
— =~ ——— — g (water+ice
dt T

Downdraf Waier
Strength Buoyancy Loading

As an illustration, Figure 3 shows that the surface re-
flectivity associaled with Orlando and Denver micro-
bursts are extremely different. However, as shown in
Figure 4, the corresponding distribution of peak out-
flow strengths is quite similar. The moisture profile in
Denver is much drier than that of Orlando, reducing
Denver’s potential water-load forcing. The thermody-
namic forcing in Denver, however. 15 much greater
than that of Orlando. Environmental factors such as
the cemperature and humidity strzcture in the atmo-
sphere determine the negative buoyancy generated by
the melting of frozen precipitation and the evaporation
of rain. Because water phase changes are usually not
discernible in radar reflectivity, explicit consideration
of the atmospheric temperature and humidity profile
are needed ro develop a reliable and accuralc Micro-
burst Prediction Algorithm,
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Figure 3. Comparison of the surface reflectivity meassre-
menis associated with wind shear outflows. The grey histo-
gram shows the distribution for Denver(DEN), €O fa
“dry” MB environment}, and the black hisiograrn ihows
the distribution for Orlando(MCO}, FL(a "wer” MB envi-
Fosren ).
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Figure 4, Comparison of the peak outflow sirength dis-
tribution for the same everds charocterized in Figure 3

52 i Environmeni

The ability of MBPredict to estitnate the buoyancy and
water—load downdraft forcing, allows it to operate
year—round in widely varying environments. The ther-
modynamic “microburst ervironment” is determined
via a combination of three sounding profile paraine-
ters:
A. Freezing Level, the heighi at which the ambi-
ent remperature first drops 10 0° C,
B. Full Lapse Rate, the change in lemperature
withheight fromthe surfacetothe freezing lev-
el.
C. Low-level Lapse Rate, the change in teunpera-
lure with height from the surface 1o 3/4 of the
freezing level height.

Negative buoyancy in the downdraft is primarily gen-
erated below the freezing level; thus the height of the
freezing level is a measure of the depth of the down-
draft. The full lapse rate is a measure of how much neg-
ative buoyancy the water—saturated air can gain
through melting and evaporation. Finaily, the low lev-
el lapse rate is a measure of sub—cloud evaporation and
discontinuities at low levels. A low-level lapse rate
that is significantly lower than the full lapse rate indi-
cates possible temperature inversions which will
dampen outflow strengths. The reverse case is an in-
dication of enhanced outflows from exirene low level
evaporation (typical of dry MB environments).

Figure 5 shows the wide range of lapse rates under
which the Microburst Prediction Algorithm operates.
The stable region indicates an eavironment where
thermodynamic forcing is s¢ low that impossible
amounts of water and ice are needed to force an out-
flow. The operating region of the curve is an environ-
ment where microbursts may occur and MBPredict is
able to perform with a low prebability of false predic-
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Figure 5. Hiusiraiestheregions af thermodynamic forcing for microbursts. The regions shownassume alow—levellapse
rate equal to the full lapse and that MBPredict is attempting lo predict ouiflows greater than 25 knois.

tion. The suspension region indicates an environment
where the buoyancy forcing far outweighs the water—
loading forces, and suspension of the algorithm pre-
dictions is necessary to limit false predictions.

5.3, D fin i icr
___ Environments

MBPredict is designed to recognize whether or not it
is operating 1n an environmental regime where it will
likely have a high probability of false prediction. The
suspeusion region in Figure 3 depicts enviromments
under which MBPredict (left unchecked) would po-
tentially have a high PFP. Semi-arid microburst envi-
ronments, for example, are problematic for the Micro-
burst Prediction Algorithm. Buovancy forcing is so
large in these environments that MBPredict predicts
that any amount of water loading will result in a micro-
burst strength outflow. Dry microbursts tend to occur
integions where the lapse rate is approaching or great-
er than dry adiabatic (9.76 °C/km). By utilizmg the
sounding parawneters discussed above, MBPredict is
able to detect dry environments where the algorithm
will have difficulty accurately predicting microbursts.

Once a dry environment is detected, MBPredict will
suspend predictions until the thermodynamic environ-
ment changes. While this is a limitation of the Micro-
burst Prediction Algorithin’s ability to predict out-
flows, it is an asset in that iv eliminates the chances for
severe over—warning and talse predictions.

5.4. undin i BPredi

Soundings are created by combining RUC (Rapid Up-
date Cvcle) model data, automated aircraft reports via

MDCRS (Meteorclogical Data Collection and Report-
ing System), and NWS$ surface observations. The
moxde]l data provides a good approximation of the
sounding profile, but the large scale smoothing re-
moves any localized sounding features. The surface
observations and MDCRS reports are used to capture
these smaller scale features. Not al] aircraft automati-
cally report meteorological data, and during slow traf-
tic periods (i.e. overnight) reports are very sparse. In
many cases, there are an insufficient number of
MDCRS reports at heights under 5 km to accurately
represent the thermodynamic profile.

The scarcity of aircraft measurements and large—scale
smoothing of model data can cause the sounding o be
an inaccurate measure of the thermodynamic environ-
ment. Because MBPredict relies heavily on thermody-
naniic information, inaccurate soundings can result in
MBPredict aver— or under-predicting wind shear po-
tential. A feedback mechanism was added to the Mi-
croburst Prediction Algorithm to mitigate potential
sounding deficiencies.

The feedback mechanismn sensitizes MBPredict based
on real-time verification of the predictions againsr the
detections frown the ITWS Microburst Detection Algo-
rithm (MBDetect), Data are compared over the pre-
vious 20 minutes. If there are mare detections than pre-
dictions, MBPredict’s sensitivily is increased slightly,
thereby mcreasing the probabiliry that more predic-
tions will be made in the future. Conversely, if the Mi-
croburst Prediction Algonthm is over-warning, its
sensitivity is decreased, thereby making it less prob-
able that predictions wili be made in the near term.



5.5, iction Bias of F

The feedback cycle is primarily designed 1o reduce
false predictions. Therefore, in sitwations where
MBPredict has a significant number of false predic-
tions, a large feedback correetion is made to eliminate
the chances of continued false predictions. Once an
over—warmning correction is made, it is extremely diffi-
cult for the Microburst Prediction Algorithm to make
predictions in the near tuture (1-2 hour recovery time).
While this correction may seem excessive, Air Traffie
Control perscnnel expressed the need for MBPrediel
to havc an extremely low probability of false predic-
tion.

The feedback mechanism is also critical to the success
of the overall algorithm. First, as mentioned, the quali-
ty of the sounding profile can be questionabie. Second,
there are some operational days where even the com-
bination of precise water content and thermodynamic
information does rot accurately capture the micro-
burst environment, causing MBPredict to over of un-
der—predict outflow strengths (i.e. sections 3.6 and
5.

6. Tem Inversions

A temperature “inversion” occtrs when ambieni tem-
perawures are cooler at lower levels than they arc at
higher levels. Large scale surface-based inversions
are commonly caused by nighttime radiational cool-
ing, where the surface cools much faster than the air
above. In addition, localized temperature nversians
can be created by thunderstorm outflow activity.
Thunderstorm outflows force cool mid-level air down
to the surface. Whichever method causes the inver-
sion, these cold pools of air form a bamer to new
downdrafts, reducing the streagth of future outflows.
MBPredict captures the inhibiting effect of invcrsions
via the sounding parameters.

As shown in Figure 6, inversions reduce both the over-
all full lapse rate and the low—level to full lapse rate ra-
tio, thus requiring more water—loading 1o initiate any
new outflows. The problem is that even weak inver-
sions (that strong downdrafts can break through) will
cause the algorithm to predict that no microburst out-
flow is possible. Unforfunately, the available tempera-
ture profile data is not of sufficient resolution to mea-
sure the relative swrength of the inversion. The
Microburst Prediction Algarithm will tend te under-
predict on days with inversions that stil] produce mi-
crobursts. It is rare for downdrafis to be strong enough
to break through an jnversion and produce a micro-
burst—strength outflow.
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Figure 6. The temperature profiledepicted in(ajillustrates
the rypical temperaiure decreasing with heighi. The profile
in (b) itlusirates a surface-based temperarure inversion.
The sounding parameiersfor eack profile are shown on the
right io illustrate the impuct of inversions on MBFredict.

5.7. Vertical Wind Shear

Vertical wind shear is a rapid change of wind specd
and/or direction with height. As shown in Figure 7,
very strong vertical wind shear will causc thunder-
storms and their downdrafts, to tilt with height. There
are no cansiderations made for vertical wind shear in
MBPredict. Even though strong vertical shear could
result in an over prediction of the peak strength of an
event, not all vertical wind shear situations adversely
affect algorithm performance. Work should continue
to determine ways to incorporate vertical wind shear
into MBPredict.
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Figure 7. Hiustration of the possible impact of vertical
wind shear on downdrafi. The downdraft forcing from ver-
tical warer loading is reduced due to the horizontal advec-
tion of uppe r—levelmoisture away from the downdraft core.



5.8. Coupling with Microburst Detection
Aleorthm

The Micreburst Prediction Algorithm is coupled with
the Microburst Delection Algorithm in two ways.
First, weak surface wind shear is used to detect regions
where the transition from downdraft to outflow has be-
gun. Secondly, and inore importantly, detections are
used as truth in the feedback loop. This coupling
means that the strengths and weaknesses of the ITWS
Microburst Detection Algorithm affect the perfor-
mance of the Microburst Prediction Algorithm. For
example, if MBDetect missed a microburst event, but
MBPredict makes an accurate prediction, feedback
will desensitize MBPredict to comect the perceived
false prediction problem. The reverse is true if MBDe-
tect false alarms (resulting in an increased probability
that the Microburst Prediction Algorithm will false
predict in the future). The high POD and low PFA
(probability of false alarm) of the Microburst Detec-
tion Algorithm, and the need for feedback makes the
coupling exlremely beneficial.

6. SUMMARY AND FUTURE WQORK

The ITWS Microburst Prediction Algorithm has prov-
en (o be reliable and accurate in predicting microburst
strength outflows in diverse thunderstorm environ-
ments. The key to this success is MBPredict’s ability
to both precisely measure the water content of the at-
mosphere via TDWR and accurately eslimate the ther-
modynamic forcmg of downdrafts via temperamre and
humdity profiles.

While the Microburst Prediction Algorithm has been
successful, Lincoln Laboratory research into ways to
improve the MBPredict should continue. Near term
medifications should include plans to inhibit false pre-
dictions which occur during or afier microburst—
strength events and to investigale ways of incorporat-
ing vertical wind shear information into the
MBPredict. The ITWS algorithm description incorpo-
rates many adaptable parameters and software fea-
tures which will allow these inodifications to be imple-
mented. Long-termi research needs to be done to
determine how MBPredict can predict outfiows in dry
microburst environments while keeping false predic-
fions to a minimurn.
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