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ABSTRACT 

Air traffic delays in the U.S. are problematic and often attributable to convective 
(thunderstorms) weather.  Air traffic management is complex, dynamic, and 
influenced by many factors such as projected high volume of departures and 
uncertain forecast convective weather at airports and in the airspace.  To support the 
complexities of making a re-route decision, which is one solution to mitigate 
airspace congestion, a display integrating convective weather information with 
departure demand predictions was prototyped jointly by MIT Lincoln Laboratory 
and the MITRE Corporation.  The tool was deployed to twelve air traffic facilities 
involved in handling New York area flights for operational evaluation during the 
summer of 2011.  Field observations, data mining and analyses were conducted 
under both fair and convective weather conditions.  The system performance 
metrics chosen to evaluate the tool’s effectiveness in supporting re-route decisions 
include predicted wheels-off error, predicted wheels-off forecast spread, and hourly 
departure fix demand forecast spread.  The wheels-off prediction errors were near 
zero  for  half  the flights across  all  days, but the  highest 10%  errors exceeded 30 
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minutes on convective weather days.   The wheels-off forecast spread exceeded 30 
minutes for 25% of forecasts on convective weather days.  The hourly departure 
demand forecast spread was 9 flights or less for 50% of departures across all days 
except one.  Six out of the seven days having the highest hourly departure demand 
forecast spreads occurred in the presence of long-lived weather impacts.   

INTRODUCTION 

Air traffic delays in the National Airspace System (NAS) are problematic.  The 
New York region’s airspace is highly congested, and problems originating from the 
region contribute to nearly three-quarters of NAS delays (Partnership for New York 
City, 2009).  The Federal Aviation Administration (FAA) reports that 70% of delays 
are attributed to weather, a large portion of which are due to convective activity that 
is often localized and difficult to forecast (Hughes, 2011).  Air traffic delays have 
increased during the months of the year in which convective weather predominates 
(Evans, 2001).  Convective weather is unpredictable, greatly impacts air traffic, and 
adds challenges to air traffic management.      

When convective weather occurs near airport terminal areas, traffic managers 
have difficult decisions to make to balance demand with capacity, such as choosing 
to delay flights, run traffic through impacted airspace, or reroute flights from 
impacted routes to non-impacted ones should they be available.  Multiple factors are 
considered in departure planning, which include airspace resources such as 
departure fixes and jet routes.  A departure fix is the first airspace location a flight 
passes through upon departing to a destination airport along a jet route.  One 
departure fix may serve multiple air routes in the congested NY-area airspace.  
Demand includes the number of departures predicted over each fix and along each 
route; forecast weather impacts are considered for these resources and airports 
(Song, Bateman, Masalonis, & Wanke, 2009).     

Departure management consists of planning and implementation activities 
among many stakeholders.  Demand volumes over fixes and routes are considered 
strategically by national and regional air traffic managers to implement plans to 
mitigate congestion. Such plans, which may include reroutes, are subsequently 
implemented by regional and airport air traffic controllers in coordination with 
airline dispatchers and pilots (Beatty, Smith, McCoy, & Billings, 2000; Smith, 
Spencer, & Billings, 2007).  To implement reroutes, impacted flights are identified, 
alternative routes are sought, sequencing of flights on the airport surface is 
considered, and flight plans are updated (Song et al., 2009).  Air traffic managers 
coordinate with additional stakeholders such as pilots and airline dispatchers, but do 
so without the benefit of integrated tools that provide situational awareness of air 
traffic demand and forecasted weather impacts (Beatty et al., 2000; Song et al., 
2009).   

 



Decision-support tool components 

To support the complexities of making a re-route decision, a display integrating 
convective weather information with departure demand predictions was prototyped 
jointly by MIT Lincoln Laboratory and the MITRE Corporation.  The display and 
underlying system components are collectively called the Integrated Departure 
Route Planning (IDRP) tool, which provides real-time, integrated departure 
information (DeArmon, Jackson, Bateman, Song, & Brown, 2010).  The purpose of 
the IDRP tool is to reduce the workload required to identify, plan, coordinate, and 
implement re-routes during convective weather (Masalonis et al., 2008). 

The 2011 IDRP prototype is the second version of the system (DeLaura, 
Underhill, Hall, & Rodriguez, 2011); the first version was deployed in 2010 for a 
limited field study.  Underlying the IDRP prototype are the Route Availability 
Planning Tool (RAPT) and the Corridor Integrated Weather System (CIWS), both 
of which are presented in Figure 1.  RAPT provides 30-minute forecast weather 
impacts in 5-minute increments for each departure route (Robinson, DeLaura, & 
Underhill, 2008), and it has undergone a series of field evaluations to solidify and 
expand its operational concept (Davison Reynolds, DeLaura, & Robinson, 2010; 
Robinson et al., 2008; Robinson, DeLaura, Evans, & McGettigan, 2008).  CIWS 
provides forecast weather on a geospatial display that allows detailed weather 
information to be provided (Robinson et al., 2008).   

The 2011 IDRP prototype calculates departure demand forecasts using filed 
flight plans and current aircraft locations on the airport surface from the Airport 
Surveillance Detection Equipment, Model X (ASDE-X) where available.  Course- 
and fine-grained departure forecasts across four visual components (DeLaura et al., 
2011) are available; the first two are presented in Figure 1: 

1. a fix list giving predicted departure demand and congestion alerts for 
each departure fix, 

2. predictions of departure demand on each RAPT departure route, 
3. a departure demand flight list that provides origin, destination, fix, 

flight plan, predicted departure time and RAPT status, and  
4. a reroute alternative list with RAPT forecast and additional miles flown 

for each flight in the flight list. 
The aggregate departure demand predictions, shown as totals in the right-most 

column of the fix list and alongside each route, provide course-grained information 
to support ATMs’ strategic re-route planning.  The aggregate departure demand 
predictions, shown in 15-minute bins in the fix list, along with the detailed flight 
and re-route lists (not shown), support fine-grained planning, coordination, and 
implementation of re-routes.     



 

Figure 1.  IDRP views for aggregate fix and route demand forecasts; NYC-area airspace. 

Tool evaluation 

The IDRP tool was deployed in the ZNY New York Air Route Traffic control 
Center (ARTCC), N90 New York Terminal Radar Approach Control (TRACON) 
facility, and ten other facilities for operational evaluation during the summer of 
2011 (DeLaura et al., 2011).  Field observations were conducted across the 
facilities, and data mining and analyses were performed on underlying system 
components, supplemented with reported flight departure (wheels-off) times and 
observed (true) weather impacts, to assess forecast accuracy and reliability.  System 
stability, expressed using accuracy (correctness) and precision (consistency, 
reliability) measures, may impact the adoption or value of a decision-support tool.  
Disuse, an underutilization of automation, may result from an unstable system that 
can cause users to distrust the information (Parasuraman & Riley, 1997; Lee & See, 
2004).  Conversely, misuse, an overreliance of automation, may occur if users 
accept the information literally without regard for its reliability; in effect, causing an 
over trust of the information (Parasuraman et al., 1997; Lee et al., 2004; Smith, 
McCoy, & Layton, 1997). 

METHODS 

The tool’s effectiveness in supporting re-route decisions was assessed using 
IDRP departure demand forecast issuances that were updated at a frequency of once 
every minute.  The forecast performance metrics were evaluated separately for fair 
and convective weather days, as operations differ in the presence of convective 
weather.  Departures from five major New York area airports were included in the 
analysis: Newark Liberty International, NJ (EWR); LaGuardia, NY (LGA); John F. 
Kennedy International, NY (JFK); Teterboro, NJ (TEB); White Plains, NY (HPN).  



Three of these airports (EWR, LGA, and JFK) have ASDE-X systems that provide 
information about aircraft location on the airport surface and in the immediate 
airspace.  Forecast issuances for twenty-three hours of each day, ranging from 
midnight to 11:00pm local time (04:00Z to 02:59Z the next day), were included in 
the analysis. 

Three forecast performance metrics were defined for the evaluation: predicted 
wheels-off error, predicted wheels-off spread, and predicted fix demand spread.  
The IDRP flights included in the predicted wheels-off analyses were limited by two 
additional criteria.  First, the flights must correlate to reported Aviation System 
Performance Metrics (ASPM) flights for actual wheels-off times.  Second, the 
flights must not have been rerouted, because their departure times may have 
significant changes due to the additional coordination required to implement 
reroutes.  The predicted wheels-off forecasts were evaluated with respect to a 
planning horizon, which represents a decision maker’s point of view for the time 
during which proactive reroute planning occurs to avoid convective weather and 
congestion.  For the evaluation, a 30-minute planning horizon was used to align 
with the current RAPT status forecast limit.  Figure 2 illustrates the forecasted 
wheels-off issuances, and identifies the relationship between the forecasted wheels-
off times and the planning horizon. 
 

 

Figure 2.  The decision-making planning horizon for a single flight’s forecasts. The 
flight enters the 30-minute planning horizon at 11:27:00Z when the forecast wheels-off 
time is 11:56:21Z.  Actual wheels-off time is 11:54:00Z; forecasts range from 11:51:00Z 
(earliest) to 12:07:39Z (latest).    

The forecast issuance when the flight entered the planning horizon was used to 
calculate the predicted wheels-off error and magnitude metrics.  For each flight, the 
predicted wheels-off error was calculated as the difference between the flight’s 
actual wheels-off time and the predicted wheels-off time at the time the flight 
entered the 30-minute planning horizon.  Given the predicted wheels-off issuances 
provided in the example flight illustrated in Figure 2, the wheels-off error is -
00:02:41Z, which represents a late forecast.  A highly volatile forecast may be 
difficult to use in planning, so the wheels-off forecast spread was assessed.  The 



wheels-off forecast spread for a particular flight was defined as the difference 
between the latest and earliest predicted wheels-off times for that flight over the 
interval of time from the flight’s entrance into the planning horizon until its wheels-
off time.  Given the predicted wheels-off issuances provided in the example flight 
illustrated in Figure 2, the wheels-off error spread is 00:16:39Z.       

A highly volatile wheels-off forecast may likely manifest itself in the forecasted 
fix demand counts, so the aggregate hourly fix demand forecast spread was 
assessed.  The hourly fix demand forecasts were selected instead of the more fine-
grained 15-minute forecasts to focus on this strategic decision-support aspect.  The 
total predicted hourly demand across twenty-four NY-area departure fixes, equal to 
the sum of hourly demand forecast from all twenty-four fixes, was calculated for 
each forecast issuance.  The hourly fix demand forecast spread was defined as the 
difference between the largest and smallest total hourly fix demand for forecast 
issuances within a 15-minute time period.  .   

RESULTS 

The forecast performance metrics were evaluated for a total of twelve days 
spanning the summer of 2011, two fair weather and ten convective weather days. 
The scale (widespread or local) and duration (long-lived or short-lived) of 
convective weather impacts were reported in (DeLaura et al., 2011), which 
included: four days having short-lived, widespread impacts; one day having long-
lived, local impacts; five days having periods of long-lived, widespread impacts.   

The IDRP prototype was predominantly used in one facility, the New York 
TRACON (N90), out of the twelve facilities deployed.  The supervisors and traffic 
management coordinators at N90, responsible for the airspace surrounding the NYC 
airports, were observed using the tool to monitor trends in fix demands, detect 
capacity overloads, and identify possible reroutes to avoid congested fixes.  The 
field observer noticed flickering of the fix demand forecasts, but subjects did not 
explicitly comment on this tool behavior.  

Forecast Wheels-Off Analyses 

Over 15,000 departure flights were included in the two predicted wheels-off 
analyses.  Wheels-off prediction times were generally constant (or infrequently 
changing) until aircraft entered into ASDE-X coverage, as shown in the example 
flight in Figure 2.  From this point, wheels-off prediction times changed every 
minute.  Several different prediction behaviors were observed.  In some instances, 
predictions steadily converged toward the actual wheels-off time, and errors 
decreased as the actual wheels-off time approached.  However, forecasts often 
showed considerable volatility, as the wheels-off time forecasts moved later and 
earlier, sometimes not approaching the actual wheels-off time until just a few 
minutes before takeoff.  

Predicted wheels-off error measurements were made separately for convective 



and fair weather days, and are presented as a histogram and a line overlay, 
respectively, in Figure 3.  Median errors are near zero minutes for both datasets.  A 
negative wheels-off forecast error indicates that a flight departed before the 
predicted wheels-off time (a ‘late’ forecast).  The error distribution falls off more 
slowly for convective days than fair weather days.  Half of the wheels-off prediction 
errors on convective days fell within the error bound envelope of -10 and plus 12 
minutes (except for August 25, when the error envelope reached 20 minutes).  The 
extreme error bound – the ceiling for the highest 10% errors – ranged from 30 to 50 
minutes on convective days (with the exception of August 25 and June 22, when the 
extreme error bounds were 70 minutes and 23 minutes, respectively). 

 

 
Figure 3.  Histogram of wheels-off forecast errors for convective (bars) and fair (line) 
weather days 

Wheels-off forecast spread measurements were made separately for convective 
and fair weather days.  On convective days, the spread was typically 20 minutes or 
less for many flights, but there was a very long tail to the distribution.  Wheels-off 
forecast spreads on fair weather days was 20 minutes or less for the majority of 
forecasts.  The spread of wheels-off forecasts on convective days was generally 
around 30 minutes or less for 75% of departures (with the exception of August 25, 
when the spread was approximately 45 minutes).  The extreme spread ranged from 
50 to 70 minutes on convective days (with the exception of August 25, when the 
extreme spread was approximately 90 minutes).   

Hourly Fix Demand Forecast Analysis 

The hourly fix demand forecast spread statistics (10th, 25th, 50th, 75th, and 90th 
percentiles) were calculated for each individual day.  Predicted hourly fix demand 
spread was 9 flights or less for 50% of departures (except for September 7, when the 
spread reached 14 flights).  The hourly fix demand forecast spread on convective 
days was 19 flights or less for 75% of departures (except for two convective 
weather days, July 29 and September 7, whose spreads were 28 and 34 flights, 



respectively).  The extreme forecast spread ranged from 17 to 55 flights on 
convective days, and ranged from 8 to 19 flights on fair weather days.  Six out of 
the seven days having the largest spreads of the two most extreme spread bounds 
(75th and 90th percentiles) occurred in the presence of long-lived weather impacts.  
Three out of the four days having the smallest spreads of the two most extreme 
spread bounds incurred widespread weather impacts of short duration.  An example 
of large forecast spreads in the presence of impacted weather is illustrated in Figure 
4, which shows increased forecast spread starting 19:45Z after locally impacted 
weather starts around 18:00Z and continues for 8 hours. 
 

 

Figure 4.  Hourly fix demand forecast spreads, in 15-minute bins, from July 19 at 
14:00Z to July 20 at 03:00Z, in 15-minute bins; locally impacted weather from 18:00Z 
to 02:00Z, increased forecast spread from 19:45Z to 02:00Z. 

DISCUSSION AND CONCLUSIONS 

Wheels-off forecast accuracy and reliability are important because weather 
impacts on operations can vary greatly at different departure times and result in 
different traffic management decisions.  Accuracy of the wheels-off prediction can 
influence the quality of traffic management decisions.  Reliability of the wheels-off 
prediction, for individual flights and their contribution to aggregate hourly fix 
demand, may also impact the quality of a traffic management decision and may 
cause users to distrust the decision support.   



 
The wheels-off forecast error metric revealed that, although half the flights had a 

near zero error across all days, over a quarter of flights had late predictions.  The 
presence of late predictions can give a user the impression that a longer reroute 
decision time period is available than is actually the case.  On convective weather 
days, errors for 10% of flights were beyond 30 minutes (i.e., ‘early’ predictions, 
where actual departure times were more than 30 minutes later than predicted) for all 
days except one; this exceeds the planning horizon available for users to proactively 
implement a reroute.  The predicted wheels-off error was overall lower (the 
forecasts were more accurate) on fair weather days.  On convective weather days, a 
quarter of the flights had a wheels-off forecast spread of 30 minutes or more, which 
increases the uncertainty of departure demand as it may give an inaccurate picture 
of congestion.  The hourly fix demand forecast spread was generally lowest on the 
two fair weather days and on convective days having short-lived, widespread 
weather impacts.  The forecast spread was highest on convective days characterized 
by long-lived weather impacts, where most days also had widespread weather 
impacts.   

Overall, the departure demand forecasts were less accurate and reliable on 
severe convective weather days.  Widespread weather impact conditions necessitate 
the use of impacted airspace to move departures, which itself has a high degree of 
uncertainty.  The uncertainty of airspace capacity in turn makes departure capacity 
uncertain, which can make predictions about wheels-off times difficult to make.  
Although the perception of system performance was not explicitly measured, the 
system instability revealed in this study and noted by a field observer may cause a 
series of unanticipated consequences in the tool’s use.  What is not clear is how the 
system instability affects decision making and whether it causes over-control, 
paralysis, or poor decisions. 

Developing a decision-support tool to enable air traffic managers to effectively 
manage highly impacted airspace is challenging given uncertainty in weather, pilot 
behavior, arrival and departure demand, and performance of individual air traffic 
managers and controllers.  This study defined novel performance metrics to evaluate 
the IDRP tool from a user’s point-of-view, exposed areas of system instability, and 
established specific areas of interest to investigate further.  Models that relate errors 
and reliability in wheels-off, fix demand, and weather impact forecasts to departure 
throughput should be developed to assess the costs of forecast uncertainty and to 
determine meaningful forecast requirements.  Algorithm improvements that trade 
dampened forecast response for improved stability should be explored.  Finally, a 
detailed analysis of variations in the underlying flight and route lists may shed light 
on the usefulness of this tool component in support of reroute implementations. 
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