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1.0  INTRODUCTION  

During the past decade the United States 
(US) National Airspace System (NAS) has 
become significantly more congested.  When 
weather perturbs the NAS, already operating at 
near or maximum capacity, the air traffic system 
can become chaotic resulting in massive delays 
that can propagate throughout the country.  
Studies have shown that roughly 75% of these 
delays are a result of convective weather.  As a 
result, the US Federal Aviation Administration 
(FAA) has assembled a convective weather 
product development team (PDT) as part of the 
Aviation Weather Research Program (AWRP), 
made up of a collaboration between several 
institutions to help in air traffic delay reduction. 
These institutions include the Massachusetts 
Institute of Technology Lincoln Laboratory (MIT 
LL), the National Center for Atmospheric 
Research (NCAR), the National Oceanic and 
Atmospheric Administration (NOAA) Forecast 
Systems Laboratory (FSL), and several 
universities.  

 
Air Traffic control planning is primarily split 

between two planning methodologies: strategic 
(2-6 hour forecast lead time) and tactical (0-2 
hour forecast lead time). Strategic planning 
occurs daily and is often only useful when the 
weather is highly predictable. When convective 
weather impacts both enroute and terminal 
settings, the airspace capacity drops below a 
sustainable threshold and the planning switches 
to tactical. In this case, it is critical that reliable 
and accurate short-term 0-2 hour forecasts of 
precipitation and storm tops be available for 
tactical maneuvering in both terminal and 
enroute airspace. 

 
                                                 
 *This work was sponsored by the Federal Aviation 
Administration under Air Force Contract No. FA8721-
05-C-0002.  Opinions, interpretations, conclusions, 
and recommendations are those of the authors and 
are not necessarily endorsed by the United States 
Government. 

The development of the Tactical Convective 
Weather Forecast (CWF) algorithm grew out of 
the need for better situational awareness during 
weather events and has been primarily driven by 
the needs of the air traffic management 
community and hence has evolved as the user 
needs have become better understood. We will 
briefly review the development of the CWF 
system, however a more in depth review is given 
in Wolfson et al. (2004-a). 

 
The “corridor” between New York and 

Chicago covers one of the busiest air traffic 
regions in the world (Figure 1).  In 2001, a study 
of weather delays in the New York Terminal 
Radar Approach Control (TRACON) (Allan et al., 
2001), showed that two-thirds of delays were 
caused by convective weather in the terminal 
areas and one-third of the delays were due to 
weather in enroute airspace.  This study showed 
that terminal operations were highly coupled to 
the enroute operations in the corridor.  As a 
result, in 2001 a radar-mosaic version of CWF 
was released for use by the enroute controllers 
at the Air Route Traffic Control Center and the 
US Air Traffic Control System Command Center. 
This concept exploration demonstration weather 
system is called the Corridor Integrated Weather 
System (CIWS) of which the CWF is a key 
component.  CIWS has proven to be an 
extremely valuable tool for the air traffic 
community (Robinson et al., 2004).   

 
To extend the forecast out to 2 hours, a few 

new concepts were added in 2002.  These 
included the addition of the weather 
classification algorithm and the multiscale 
tracking technology.  In parallel, a growth and 
decay trending algorithm was being developed.  
The weather classification algorithm (weather 
type) provided information by which precipitation 
trends could be applied to meteorological 
features of interest.  Fuzzy function methods 
allowed for specific storm models to be 
constructed that contained growth and decay 
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trends, weather type, storm phase and time 
horizon of interest.  This technology was added 
in 2003 to the terminal and corridor versions of 
CWF (ITWS and CIWS respectively).  

 

 
 

Figure 1: 24-hr traffic counts over the continental 
United States on a clear weather day (12-13 
September 2002) showing the high traffic 
density in the Northeast Corridor, where several 
major terminals are located.  The strong 
coupling between terminal and enroute delay in 
this area motivated the 2-hour forecast horizon 
for CIWS, to help improve tactical management 
of the congested enroute traffic. 
 

Even though the CWF was primarily 
developed for use on convective weather, our 
aviation users continued to use the precipitation 
forecast during the winter season, primarily for 
situational awareness.  In order to provide more 
utility of the forecast in the winter, a new VIL 
color scale was introduced that had greater 
resolution in weaker precipitation levels.  See 
Table 1 for the correspondence of levels in 
Vertical Integrated Liquid Water (VIL) products.  
The winter mode display split the color level 1 
into three categories, adding finer resolution 
required to resolve weak winter features like 
snow bands. The winter product was released in 
2004. 

 
Evans et al. (2003) conclude that one of the 

key problems that needs to be addressed to 
help improve the capacity of the NAS is the 
introduction of a storm echo tops structure.  In 
addition to the VIL mosaic, CIWS provides a 
high resolution mosaic of echo tops with 1000 ft 
(305 m) vertical resolution and 2 km horizontal 
resolution.  This product proved to be one of the 
most valuable to users in the 2002-2003 
seasons (Robinson et al., 2004). As a result, in 

the spring 2005 an Echo Tops Forecast (ETF) 
was added to CWF.  This forecast is coupled 
with the CWF technology and uses much of the 
existing methodology. 

 
Table 1 

Correspondence of Levels in VIL Products.   
Color 
Level 

 
dBZ 

 
VIL (kg/m2) 

 
Scaled VIL

1a* -10.0 0.03 5 
1 18.5 0.15 16 

1b* 22.7 0.28 34 
1c* 27.4 0.53 59 
2 30.2 0.75 74 
3 41.1 3.54 133 
4 46.2 7.08 160 
5 50.1 12.2 181 
6 57.2 32.3 219 

*These color levels were added by MIT LL to 
further divide the level 1 category for winter. 

 
This paper describes the Tactical 0-2 hour 

Convective Weather Forecast (CWF) algorithm 
developed by the MIT LL for the FAA.  We will 
address the algorithm and focus on the key 
scientific developments.  Future directions will 
also be discussed. 

 
2.0  FORECAST DISPLAY 
 The forecast display is designed to 
graphically present predicted future weather in a 
manner that is easily understandable and 
requires no further interpretation.  The CWF 
forecast is composed of two forecast products:  
the Precipitation Forecast (VIL), which has two 
modes (standard and winter), and the Echo 
Tops Forecast.  The Precipitation Forecast is a 
forecast of the intensity and location of VIL given 
in operationally significant levels.  The Echo Top 
Forecast is a forecast of the maximum altitude 
where the radar reflectivity drops below 18 dBZ 
and is a proxy for the cloud “precipitation” top.  
The echo top forecast levels depicted are of 
significant operational use.  Each of these 
products is displayed to the users in separate 
windows but the windows can also be displayed 
side by side on the same situation display. We 
will describe these windows separately.  
 
2.1  VIL Forecast Display 
 The VIL forecast can be displayed to users 
in two ways.  The first display method is an 
animated loop that shows past weather, 
transitions to the forecast after the current time, 
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and then increments the forecast out to the 
maximum time horizon.  For the CIWS, the 
length of the past weather loop is 60 minutes, 
the maximum forecast time horizon is 120 
minutes and the forecast increment is 15 
minutes.  Satellite data are selectable as the 
background on the past weather portion of the 
loop. 
 
 For the second display method, the forecast 
can be displayed as contours overlaid on the 
current weather.  The past weather VIL uses the 
six standard National Weather Service (NWS) 
color levels. 
 
 Since the CWF is a continuous automated 
system and must operate in winter conditions, a 
method to convey more information about snow 
bands containing moderate to heavy snow is 
provided.  There are two choices for forecast 
display:  standard and winter.  In standard mode 
the 3 levels represent color levels 1, 2, and 3 
(Figure 2).  The solid yellow represents high 
intensities of level 3 and above, the lighter grey 
represents moderate intensities of level 2, and 
the dark grey represents the lowest intensities of 
level 1. 
 
 When the winter forecast mode is selected, 
the lower VIL forecast values appear in much 
greater detail (Figure 2).  The winter color scale 
replaces and extends the standard level 1 
precipitation interval with three new intervals 
(1a, 1b and 1c) (see Table 1).  The precipitation 
levels 2 through 6 are unchanged.  The forecast 
portion of the animation loop will also change in 
color when the mode is changed to winter.  With 
the winter color scale, level 1c and above is 
forecast at the high intensity, and this level is 
displayed in solid green to alert the users that 
the winter forecast is being displayed. 
Additionally, level 1b is displayed as light grey 
and level 1a is dark grey.  
 
 The forecast also displays a forecast 
accuracy scoring metric (Figure 3).  This is a 
“User Confidence Score” and provides past 
performance of the algorithm based on the 
location of level 3 for standard and level 1c for 
winter modes.  See section 5 on Forecast 
Performance. 
 
 
 

2.2  Echo Tops Forecast Display 
The ETF is displayed as an animated loop 

from 60 minutes in the past to 120 minutes in 
the future in 15 minute increments (Figure 3).  
The past echo tops are shown in 5 kft (1.5 km) 
increments from 0 to 50+ kft (0 to 15.2+ km) 
above mean sea level, while four colors are 
used to indicate the forecast heights.  [<25, 25, 
30 and >= 35 kft (<7.6, 7.6, 9.1, 10.7 km)]  
These colors are grey, dark purple, purple and 
light purple respectively.  The forecast accuracy 
numerical scores indicate the past performance 
of the ETF based on predicting areas of 30 kft 
(9.1 km) or higher echo tops. 
 
3.0 FORECAST SYSTEM 
 It has long been known in nowcasting that 
scaling of storm physics is key to predicting 
future behavior.  Wilson (1966) showed that 
spatially large scale features (lines) mapped to 
longer time scale persistent features whereas 
spatially small scale features (airmass cells) 
were typically short lived.  Contributions by 
Marwitz (1972), pointed out that multicellular 
storms often grew and moved with the mean 
wind whereas the initiating disturbance moved 
with a distinctly different motion coincident with 
the large scale forcing.  Classification of the 
cellular nature of storms has been made by 
Weisman and Klemp (1986), where three 
distinct groupings were made: airmass cells, 
multicellular (lines and squall lines), and super 
cells. In such a classification, airmass cells are 
typically short lived and it is difficult to predict 
where new cells will regenerate after collapse. 
Super cells and line storms, on the other hand, 
tend to grow new cells along a preferred flank 
and produce a new grouping of cells.  More 
recent work has shown that scale extraction of 
radar imagery can lead to better tracking 
predictions of large scale motion (Bellon and 
Zawadzki,  1994; Wolfson et al., 1999).  
Attempts to predict motion on multiple scales 
have been made by Seed and Keenan (2001), 
Dupree et al.  (2002), and Lakshmanan et al. 
(2003). 
 
 The CWF system is built upon the 
underlying assumption that weather can be 
classified based on scale and texture.  This 
classification is used to extract motion and 
trending behavior. 
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Figure 2: CIWS Forecast Display Standard and Winter Modes:  The upper left figure is the current VIL in standard mode with the six NWS color 
levels overlaid on top of the satellite image.  The upper right shows the standard mode VIL forecast loop.  The lower left figure is the current VIL in 
winter mode with the satellite image.  The lower right shows the winter mode looping VIL forecast. 
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Figure 3: CIWS Forecast Display:  The upper left window in the looping VIL forecast.  The lower left is the looping echo tops forecast.  The upper 
right is the current VIL with the 60 minute forecast level 3 contours overlay.  The lower right side is the current echo tops. 
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Furthermore, the classification can be used to 
construct heuristic models of storm behavior 
where this scaling and trending behavior are 
relevant.  In the next section we will follow the 
CWF processing chain and discuss each section 
in terms of the underlying scientific rationale. 
 
4.0  PROCESSING OVERVIEW 
 In this section we discuss the main areas of 
processing for the Forecast System.  Figure 4 
gives an overview of the processing chain.  This 
figure depicts four main processing blocks in the 
system: 
 

1) Per radar processing (pink):  
   Processing on a single radar image. 

2) Mosaicing processing (blue): Mosaicing 
  radar data onto a large grid 
  encompassing the domain of interest. 

3) Full grid processing (green):  Feature  
   extraction, advecting, and model  
   application. 

4) Post-processing (grey):  Scoring,  
   contouring, preparing data for display,  
   and display of the grids. 
 
4.1  VIL 

We selected VIL as the aviation precipitation 
map and forecast product for two reasons:  one 
statistical and one meteorological.  The first 
reason is that VIL is a vertical integral or a 
central measure and is not overly susceptible to 
outlier observations such as ground clutter or 
bright band contamination, as shown in Figure 5.  
The second reason for choosing VIL is that it is 
indicative of the amount of water aloft, and at 
higher values it is related to the strength of the 
updrafts and hence storm intensity. This makes 
VIL highly relevant to aviation decisions 
regarding areas to avoid.  
 
4.2  Radar Data Quality Editing 
 Before image processing occurs it is critical 
that each data set undergo a series of data 
quality editing (DQE) steps.  Two types of radar 
data are ingested into the system:  data from the 
United States network of NEXRAD radars and 
data from the neighboring Canadian network of 
SIGMET radars.  The NEXRAD data are edited 
as follows.  First, a strong point target detector 
(clutter editing) is applied in the NEXRAD Radar 
Data Acquisition (RDA), followed by application 
of the Open Radar Products Generator (ORPG) 
DQE module.  The ORPG applies FAA–
specified low velocity and low spectrum width 

editing, constant power editing (including, test 
pattern, sun strobe and star burst editing) and 
velocity dealiasing.  At this stage, the data are 
converted into VIL and echo tops and sent out 
as NEXRAD Level III data products.  Once data 
are available we apply the MIT LL data quality 
editing routine.  This routine is a lint detection 
algorithm that detects and removes small, thin 
and isolated regions (Wolfson et al., 2004-b). 
 
 For the SIGMET radars from the Canadian 
Radar network we edit out returns under a 0.5 
km floor and apply a strong point target 
detection algorithm to the reflectivity data.  Next, 
the radar data are converted to high resolution 
VIL and echo tops using the same methods as 
the NEXRAD ORPG. 
 
4.3  Scale Separation and Tracking 
 The observation that line storms are 
persistent and follow the envelope motion and 
not the cellular motion was the driving force for 
developing the Growth and Decay Storm tracker 
(Wolfson et al., 1999).  A fundamental and 
critical step is the extraction of scales of interest 
from the precipitation images and has come to 
be known as the multiscale tracking method.  In 
this method, the VIL images are correlated with 
a series of elliptical-mean filters using an array 
of orientations.  Then taking the point-wise 
maximum of the resulting filtered images, one 
can construct an envelope or “line” detector. 
With application of the cross-correlation tracking 
(XCT) method (Chornoboy et al., 1994) to 
successive images one can deduce the motion 
of the propagating line.  Cartwright et al. (1999) 
showed that the most optimum settings, i.e. the 
filter that produced the best tracking results, was 
a 13x69 km elliptical filter rotated at 5 degree 
increments.  Furthermore, the optimum scale 
used to track airmass cells was found to be a 13 
km diameter circular mean filter.  We chose to 
split the tracking into not just distinct scales but 
distinct phenomenon.  
 
 Early analysis of our envelope forecasting 
algorithm showed that occasionally the tracking 
motions were in error due to the over-rejection of 
cross-correlation vectors (Theriault et al., 2000 
and 2001).  Early versions of the XCT allowed 
one to compare a tracking vector against the 
scene average or the full NEXRAD domain.  If 
the vector did not fall between parameterized 
limits (+/- 75 degrees) then the vector was 
removed.  However, this average was not
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Radar Data Ingest 

Data Quality Editing 

CWF Per Radar Processing
- Filter And Track
- VIL Growth and Decay Trending
- Echo Top Growth and Decay Trending

Mosaic Processing
- Mosaic VIL
- Mosaic Echo Tops
- Mosaic VIL Growth and Decay Trends
- Mosaic Echo Top Trends
- Mosaic Vectors

2) Mosaic Processing

CWF Full Grid Processing
- Weather Classification 

 - Multiscale Tracking
- Generation of Echo Top Cap
- VIL and Echo Top Forecast Combinations

CWF Scoring
- Forecast Accuracy Scoring
- Creation of Contours

CWF Display Processing

Display Product Server

3)  Full Grid Processing

1)  Per Radar Processing

4) Post-Processing

 
 

Figure 4: CWF Algorithm Processing  
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Figure 5: A typical “Bright-Band” situation.  This 
occurs when thin layers of precipitation at the 
melting level have enhanced reflectivity. 
 
indicative of some local motions and important 
motion data was being rejected, so XCT was 
modified to determine the average motion locally 
in spatially smaller boxes.  Currently we use a 
restriction of +/- 45 degrees compared to the 
average motion in a 56 km box size for envelope 
motion and a 28 km box size for cell motion.  
This change provided much better motion 
estimates in airmass, meso-lows, and 
hurricanes situations.  

 
Additionally, the envelope motion vectors 

are temporally averaged in an Eulerian sense 
where the most recently updated vector is 
weighted at 30% and the previous running 
average is weighted at 70%.  For cell tracking, 
the newest vectors are weighted at 90% and the 
previous average at 10%, since cells are 
typically short lived.  Correlations of the filtered 
images are done on the same temporal scale of 
12 minutes for envelope and cell tracking. 
 
 The echo top data basically provides a 
measure of the top of the VIL image. For this 
reason, we chose to use the VIL tracking motion 
as a proxy for the echo top tracking motion.  
 
4.4  VIL and Echo Top Trending 
 Trending of precipitation rates in radar data 
has received much interest in the past.  Wilson 
(1998) and Tsonis (1981) concluded that 
essential physical processes that dictate the 
change in rainfall with time are not necessarily 
observable in the past history of a particular 
echo development.  In an attempt to alleviate 
this problem the forecast generation algorithm 
uses the weather classification image in 
conjunction with the trend interest images to 
determine the expected behavior of a storm cell 
over time.  The weather classification image 
dictates how to model the trend information for a 
particular storm type.  

 The Growth and Decay Trend (GDT) 
algorithm consists of a suite of image processing 
feature detectors that produced interest images 
containing growth and decay information on a 
per pixel basis.  Both the VIL and echo tops 
radar data are processed using similar 
methodology, however, there are differences in 
the fundamental output of each data type. 
Common processing will be discussed as will 
fundamental differences.  
 
 The VIL Growth and Decay Trend (VGDT) 
algorithm ingests VIL and the envelope and cell 
vectors generated in the scale separating and 
tracking section.  These detectors create short-
term trends, long-term trends, isolated cell, and 
boundary growth images.  The resultant interest 
images can be used to (1) modify the VIL 
forecast values, (2) add new regions of interest 
to the VIL forecast and (3) provide subtype 
classifications in the weather classification 
algorithm. 
 
 The Echo Top Growth and Decay Trend 
(ETGDT) algorithm is similar to the VGDT 
algorithm in the initial stages.  The echo top 
trend process requires echo top images and cell 
vector images as input.  The output from the 
ETGDT is a short-term trend image where the 
pixel values represent a physical rate in units of 
meters/min.  This image is used to modify the 
echo tops forecast. 
 
4.4.1 Trending 
 This section covers detectors that are 
common to VIL and echo top trending.  The first 
feature detector to be executed is the VIL 
variance detector.  This detector calculates the 
standard deviation under a 15x15 km circular 
kernel over the entire VIL image. The standard 
deviation values returned are used by 
subsequent feature detectors to identify possible 
convective areas.  High standard deviation 
values are indicative of convective areas while 
low values indicate stratiform areas. 
 
 The fundamental image processing step for 
the trend feature detectors is the differencing of 
prior images with the current image.  A prior 
image is advected to the current time with a set 
of vectors which capture the desired scale of 
motion.  The cell vectors are used for the short-
term VIL and echo top trend images while the 
envelope vectors are used for the long-term VIL 
trend image.  The cell vectors capture the 
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motions of individual cells within a storm 
complex while the envelope vectors capture the 
motions of the large scale storm structure.  Once 
the prior image is aligned in time with the current 
image the two images are subtracted.  This 
difference image represents the change in VIL 
or echo tops in the given time period.  
 
 The short-term trend image is generated 
from the difference between two consecutive VIL 
or echo top images.  Typically this time 
difference is the radar scan update rate of about 
5-6 minutes (Figure 6).  
 
 The long-term trend interest images are 
generated similarly by differencing two VIL 
images separated by a wider time difference. 
Alignment of the prior time images differs 
between the short-term and long-term trend 
processes.  A quasi “Lagrangian” advection 
technique is used in the long-term process. 
Since the advection of the prior image spans 
several radar updates a new set of vectors is 
used at each radar update timestep.  A history of 
vectors is saved for each radar update.  As the 
prior image is advected to the current time the 
new vectors are used at each timestep.  A 
difference interest image is created for each 
radar update. 
 
 A single difference image contains high 
frequency noise.  By temporally averaging 
several of these difference images together 
much of the high-frequency noise is mitigated. 
Fortunately, this averaging still allows the 
persistent trends to remain.  
 
 Once the averaged VIL and echo top 
trending images have been calculated, the 
processing diverges for the two input images.  
We will discuss the final processing steps for VIL 
and echo tops separately.   
 
4.4.2 VIL Trending 
 Filtering of the averaged VIL difference 
images is done using Functional Template 
Correlation (FTC; Delanoy et al., 1992) and 
produces an interest image that represents the 
short-term and long-term trends of VIL.  
 
 The short and long-term VIL trend images 
each have one final processing step performed 
prior to application in the VIL forecast.  The 
trend images have been scaled such that the 
interest values range from 0-255.  The value of 

128 is indicative of a neutral trend, or no change 
in VIL, while values below 128 indicate the 
increasing magnitude of decay.  Values above 
128 indicate increasing magnitudes of growth. 
An important image called the trend modified 
VIL image is used to generate the VIL forecast.  
These images are created by making a 
modification to the VIL image using the growth 
and decay trend values and parameterized 
scaling factors.  This modification creates an 
interest image by applying the magnitude of the 
trend interest image to the current VIL pixel 
value.  That is, 
 

VVV δ+='
    (1) 

fTDV =δ  T < 128   (2) 

fTGV =δ   T > 128   (3) 

Vδ = 0  T = 128   (4) 
 
T = pixel value of trend image  
Gf = growth factor trend image 
Df = decay factor trend image. 
 
Here V’ represents the modified growth and 
decay field.  The resultant interest image is the 
trend modified VIL interest image.  These 
feature detectors output the trend modified 
short-term and long-term interest images in 0-
255 scaled VIL units.  
 
 Two additional feature detectors are used in 
the VGDT algorithm only:  the boundary growth 
feature detector and the isolated cell feature 
detector.  By utilizing the short-term VIL trend, 
standard deviation interest image, and the 
current VIL image, the boundary growth feature 
detector returns an interest image that 
represents regions of linearly aligned growth 
(see Figure 7).  Specifically, the detector assigns 
high interest to areas that show thin bands of 
moderate to strong growth surrounded by no 
radar returns.  These are areas where rapid 
convective development occurs not only in 
intensity but in aerial extent.  Additionally, the 
detector outputs the orientation of the major axis 
of the interest region.  The boundary growth 
feature detector tries to capture the initiation 
phase of the storm from the growth of the low-
moderate strength radar returns.  The feature 
detector is tuned to capture only the initial 
growth phase of the storm cells.   
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Figure 6: VIL Differencing: This figure shows the process of differencing prior VIL precipitation images and averaging to produce short-term and 
long-term growth and decay trends. 
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Figure 7: Boundary Growth: The boundary growth detector showing the functional template correlation kernel. 
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 Another important VIL feature detector 
produces the Isolated Cell interest image.  This 
feature detector uses the short-term trend 
interest image to assign interest to small storm 
cells that show a growth signature.  These small 
cells have been empirically shown to be 
responsible for forecast false alarms when 
isolated from any surrounding growing cells.  
The isolated cell interest image is used to 
suppress the forecasting of interest in these 
cells.  The FTC kernel is structured such that 
high interest is given only to small (< 20 km 
diameter) storm cells that are surrounded by no 
radar returns.  
 
4.4.3  Echo Top Trending 
 The only image filtering that occurs in the 
echo top trends is a simple 7x7 km mean filter.  
This filtering is done to reduce some of the high-
frequency noise.  The processing chain for the 
echo top trend algorithm is shown in Figure 8. 
 
4.5 Mosaic Processing 

The per-radar processing steps discussed in 
the previous sections generate a set of maps or 
images of (1) VIL, (2) echo tops, (3) VIL growth 
and decay trends, (4) echo top growth and 
decay trends and (5) motion images (envelope 
and cell). These images are generated 
asynchronously at the update of each individual 
radar system (nominally once every 5-6 
minutes).  The VIL, VIL trends, and motion data 
from individual NEXRAD radars extend out to 
460 km and for the Canadian SIGMET radars 
out to 256 km from the radar location.  The 
NEXRAD echo top data are used out to 230 km 
from the radar and the SIGMET echo top data 
out to 256 km.  Due to the average spacing of 
the radar systems, there is overlapping 
coverage over most of the Continental United 
States (CONUS), especially the eastern half.  
The overlapping coverage is shown in Figure 9.  
The figure shows that over the CONUS, there 
are typically between three and six values at 
each pixel for the 230 km range.  
 
 There are different approaches to mosaicing 
data from overlapping radar systems.  For 
example, one can consider overlapping data as 
point estimates and interpolate (Zhang, 2002) or 
select from a fixed pre-evaluation of the 
neighboring radars’ data quality (Lang, 2003).  
The essential features of our approach are to (1) 
time align or advect the individual asynchronous 
images to a common time, and (2) combine 

them on a product-by-product basis in a 
conservative or worst-case representation that 
still rejects ground clutter or other forms of 
Anomalous Propagations (AP) by use of the 
“maximum plausible” rule detailed below. 
 
4.5.1 Time-Alignment 
 In order to synchronize the mosaic data, we 
generate a time strobe at every 2.5 minutes so 
that the mosaiced data are broadcast in regular 
time increments.  Using the motion vectors, the 
VIL, echo top, and trend images and the vectors 
themselves are advected to the next time strobe.  
We use, in essence, a forward, or downwind 
advection scheme. In the case of VIL, we 
additionally select the largest value which lands 
on a grid location.  In addition to time alignment, 
a time check is made.  Data will not be advected 
more than a given amount of time (nominally 15 
minutes); if a data set is too old, it is dropped out 
of the mosaic.  Locations in the mosaic where 
there is no radar coverage are flagged with a no 
coverage value; hence a radar drop out may 
change the appearance of the overall coverage 
pattern. 
 
4.5.2 VIL and VIL Trend Mosaic 

The VIL images are combined using the 
“Maximum Plausible” rule.  This rule, in effect, 
chooses the highest value that can be confirmed 
by a (slightly smaller) value reported from a 
neighboring radar.  Whether another radar has 
the ability to confirm a particular value (the test 
value) at a particular location (the test location), 
depends on the distance from the test location to 
the radar that is trying to confirm the value (the 
confirming radar).  If the highest value is not 
deemed plausible, it is removed and the process 
is repeated until a value is found which can be 
confirmed, or there is only one value left.  This 
procedure reduces clutter and AP breakthrough 
in the VIL mosaic output, yet provides the 
maximum in normal situations, as shown in 
Figure 10. 

 
Once a value of VIL has been found, the VIL 

trend value from the same radar at the same 
location as the VIL is chosen for use.  This 
keeps the VIL trend data (the time derivatives of 
VIL) consistent with the VIL data. 
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Figure 8: Echo tops short-term growth and decay:  This figure shows the algorithm steps used to create the echo tops short-term growth and 
decay interest.  The first step shows the differencing of prior images, the middle graphic is the step where previous images are temporally and 
spatially averaged, the right image is the final short-term echo top growth and decay image. 
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Figure 9: Number of NEXRADs within 230 km 
radius coverage.  This figure does not consider 
terrain blockage which serves to reduce the 
range of NEXRADs in mountainous regions. 
 
 

 
Figure 10: Example of AP contaminating a radar 
image (MELBOURNE) and failing to be 
confirmed by a neighboring radar (TAMPA)  
Both the max and max plausible mosaic results 
are shown. 
 
4.5.3 Echo Top and Echo Top Trend Mosaic 

For the echo top mosaic, we simply select 
the maximum value provided by all the radars at 
the time and location of interest.  For the echo 
top trend mosaic we use the same radar from 
the echo top mosaic to determine which echo 
top trend data value gets mosaiced. 
 
4.6 Weather Classification 

Weather Classification is a key component 
of the forecast system in that it serves as the 
underlying classification scheme used to assign 

specific phenomenological behavior in 
subsequent models.  

 
Convective and stratiform partitioning 

classification schemes based on radar 
precipitation images have been addressed by 
many researchers (Anagnostou, 2004, 
Biggerstaff and Listemaa, 2000, Awaka et al., 
1997, Steiner et al., 1995).  However, these 
schemes limit the classifications to three basic 
categories: convective, stratiform, and other. 

 
Dupree et al. (2002) introduced the 

convective weather classification scheme that 
extracts lines, cells and stratiform precipitation 
regions from VIL images.  This approach aims to 
classify the radar returns not only as convective 
or non-convective but assigns them a distinct 
phenomenological class.  This algorithm was 
later enhanced to use additional input fields, and 
to provide growing and decaying sub-type 
categories (Wolfson et al., 2004-a).  Weather 
types are constructed from the VIL, echo tops, 
and VIL growth and decay trend images using 
FTC and image processing region analysis.  
Figure 11 shows an example of the weather 
classification image for a single radar mosaic. 
 

A more in-depth explanation of the weather 
classification algorithm is given in Wolfson et al. 
(2004-b). 

 
First a spatial standard deviation image 

(“variability”) is used to differentiate between 
convective and non-convective regions.  This 
image is constructed by running a 15x15 km 
kernel over the input VIL image and calculating 
the spatial standard deviation of the radar 
returns.  Following this step, the standard 
deviation images are filtered and smoothed with 
a 15x15 km mean filter producing an image in 
which higher values represent convective 
elements and lower values are stratiform in 
nature. 

 
In order to construct a “line” detection, 

defined as a strong linear precipitation area, 
convective weather regions are filtered with a 
13x69 km rotated elliptical filter to highlight the 
interest.  Region analysis is further applied to 
each of the non-convective and convective 
images to generate specific classifications. 
Embedded cells are defined in this context as 
any strong cells above VIL Level 2, with echo 
tops above 26 kft (7.9 km) and located in a VIL 



 15

region greater than 70 km in size.  The echo top 
requirement was added to reject those regions 
with strong and variable precipitation that can 
form in stratiform weather often due to bright 
band contamination. Isolated convective regions 
(< 70 km in size) are sorted into sizes from 4-20 
km (small cells) and 21-70 km (large cells).  
 

 

 
Figure 11: The VIL and weather classification 
image showing examples of weather features 
identified in the algorithm. 
 

Non-convective elements are classified into 
stratiform and weak cells.  Weak cells are simply 
regions with low variability that are less than 70 
km in size and have precipitation less than Level 
2.  At this stage of development it is difficult to 
distinguish a growing cell from an isolated small 
patch of stratiform weather.  It has been noted 
that weak cell types contain the first signatures 
of growing airmass cells.  Future work is 
required to find a classifier that can identify 
proto-airmass cells.  

All remaining stratiform regions are 
considered next.  These are divided into 
convective and non-convective stratiform even 
though variability is low throughout.  There are 
two types of convective stratiform pixels that we 
assign: anvil stratiform, or those with high echo 
tops values that form around convective cores, 
and convective stratiform, or any stratiform that 
is in proximity to convective regions. 

 
To add further sub-classification, types are 

split into growing, decaying or neutral sub-types 
based on input from the VIL short-term growth 
and decay trends.  These sub-types have been 
valuable in identifying the stage of some 
classes. 

 
The final step assembled all the sub-

classified images into a single weather 
classification image.  This is done with a 
precedence order (see Wolfson et al., 2004-a).  
In most cases classification pixels are mutually 
exclusive, but there are a few cases where 
pixels can be classified as more than one 
weather type.  For example, line regions can 
contain embedded cells and convective 
stratiform pixels and therefore we present line as 
the class for these pixels based on the greater 
precedence order.  
 
4.7 Multiscale Tracking 

Tracking and producing forecasts on 
multiple scales remains an area of active 
research (Bellon and Zawadzki, 1994, Wolfson 
et al., 1999, Seed and Keenan, 2001, Dupree et 
al., 2002 and Lakshmanan et al., 2003).  All of 
these studies apply some type of classifier to 
separate features and some method of tracking 
the feature, usually either cross-correlation 
tracking or mean-square error tracking.  A key 
result is that all show certain features are more 
predictable than others.  Specifically, large scale 
features are more predictable than small scale 
features.  We have chosen to simplify this scale 
extraction step and to only consider two scales 
or objects of interest, those indicative of line 
storms (which can also be applied to stratiform 
weather and “super cells”) and those that depict 
single cell motion. 
 

Track vectors are calculated on individual 
radar grids and then time aligned and merged 
into data streams with vectors for all the radars.  
Because tracking of different radars can result in 
different motion vectors for the same patch of 
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weather when placed on a common grid, it is 
necessary to look for locations where the vector 
fields deviate.  We calculate the standard 
deviation of vectors from regions under a 57 km 
diameter circular kernel and reject all vectors in 
the top 15% of deviants. 

 
Once deviant track vectors have been 

rejected, the envelope and cell vectors are 
sorted according to weather type.  We group cell 
vectors as all vectors that occur under the “small 
cell” weather type and no larger than 20 km 
region.  All other weather classification types 
receive envelope track vectors.  The merging of 
the envelope and cell vectors is simply a 
mapping of the envelope and cell vectors 
according to the weather classification onto a 
single grid and can be thought of as a 
phenomenological weather classification 
mosaicer. 

 
The mapped vectors are clustered in 

locations where weather exists and are only 
located where a correlation track was 
determined, so the data are irregular and 
sparse.  For the advection procedure, a vector is 
required at every pixel.  To fill this motion field 
we apply a two part scheme. First, the weighted 
average of vectors under a 1/r shaped weighting 
function is found at a user-specified spatial 
frequency (50 km), and the remaining unfilled 
pixels are found using bilinear interpolation with 
the previously calculated 1/r  values.  The result 
is the multiscale track vector field which is used 
to advect both the VIL and echo tops forecasts 
for each time horizon. 
 
4.8 VIL Forecast Model 
 The VIL forecast model creates a separate, 
independent forecast for each forecast time 
horizon.  Each forecast time horizon is created 
by a two step process.  First, we construct an 
initial “Time 0” forecast (F0) from the current 
interest images (VIL trends, VIL, isolated cells, 
weather type, boundary) using a weighted 
averaging method described in the next section.  
Because these images portray information in 
locations representative of conditions at analysis 
time (“Time 0”), the resulting F0 is therefore also 
located at a position reflecting conditions at the 
analysis time.  Second, the F0 forecast is 
advected to the position it is predicted to occupy 
at the desired forecast time horizon (“Time T”) 
using the multiscale vectors.  Third, we apply a 

Time T suppressor.  Fourth, we apply a final 
median filter to the forecast. 
 
4.8.1 Construction of VIL Forecasts 
 The VIL Forecast Model combines the 
current interest images into a single image 
representing a preliminary forecast for a 
particular time horizon using a weighted average 
of the inputs.  The weighted average can be 
expressed as the summation over the i interest 
images of a pair of functions:  the scoring 
function and the weighting function. 
 
 Specifically, there is one scoring function 
and one weighting function for each time 
horizon, weather type, and input interest image 
type.  In a system with nt time horizons, nw 
weather types, and ni input interest image types, 
there will be two arrays of functions, each array 
having dimensions [nt by nw by ni ].  For each 
time horizon and input interest type, the 
particular weather type-specific scoring and 
weighting functions chosen are based on the 
weather type at the pixel in question; i.e. 
weather types are mutually exclusive, and each 
pixel has exactly one weather type.  The scoring 
functions are represented here as Stwi and a 
pixel in an interest image i has the value vi.  The 
scores si returned for a value vi at a pixel in an 
interest image of type i having a weather type w 
at time horizon t is then represented as: 
 
      si =  Stwi( vi ).    (5) 
 
In a manner exactly similar to the scoring 
functions, the weights (ωi) used to average the 
scores si are represented as: 
 
      ωi =  Ωtwi( vi )  ,   (6) 
 
where Ωtwi represents the weight scoring 
functions.  The value of weighted average (f) 
can then be expressed as the summation over 
the i interest images or: 
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This forecast is for the forecast time t at a 
particular point in the forecast grid.  
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 The scoring and weighting functions were 
constructed based on an a-priori expectation of 
how the different types of weather classifications 
evolve over time and how the relative 
importance of each of the interest images were 
in that evolution.  These were then adjusted 
based on empirical results. 
 
4.9 Echo Top Forecast 
 In the NAS, if echo tops exceed flight levels 
of about 30 kft (9.1 km) the aircraft will be 
diverted around the high top cloud.  If this 
weather is also spatially extensive it can cause 
an entire route to be closed.  A reliable and 
accurate rapid update of echo tops is therefore 
highly desirable to the air traffic flow 
management community.  We chose to use 
portions of the existing CWF technology to 
construct a forecast of echo tops.   
 
4.9.1  Echo Top Cap 
 When forecasting echo top heights it is 
important to have a good estimate of what 
height one might expect a storm to achieve.  
Estimates of the maximum tops are made by 
calculating the distribution of echo tops under a 
51 km circular kernel that is applied to the 
current and two previous mosaic images (up to 
10 minutes in the past) in an Eulerian sense 
(Figure 12).  For each pixel in the domain, the 
98th percentile is found and placed on the echo 
top cap image.  We take this height to be the 
maximum growth height in the echo tops storm 
model described in the following section.  The 
echo top cap image is currently only used in the 
echo top forecast. 
 
4.9.2 Echo Top Storm Growth Model 
 The echo top storm growth model is 
distinctly a different evolution model than the VIL 
model.  For the echo top model we ingest VIL 
growth and decay forecasts and use them in 
conjunction with the other interest images to 
create a trending and advection echo top 
forecast.  The echo top forecast engine differs 
from the VIL engine in that interest is combined 
in a post-advection model.  Post-advection 
combination can be achieved efficiently by pre-
calculating a set of advection maps. These 
advection maps contain the indices of the grid 
locations for each time horizon.  Additionally the 
echo top cap, weather type, echo top trends, 
and VIL are ingested.  For each time horizon 
these images are advected.  The echo top 
trends are applied to convective elements, 

weather types with line, and large, small and 
embedded cell interest (see Figure 13).  These 
trends are in units of meters/min and we assume 
a linear growth model for the initial growth 
phase.  Once the echo top has grown to the 
echo top cap, the top is held at this level for all 
forecast time horizons.  For the remaining types, 
we advect the existing echo tops.  The advected 
VIL serves as a baseline forecast that can be 
compared to the growth and decay forecast.  
Difference images between the baseline 
forecast and the growth and decay are created 
and areas of growth and decay can be identified.  
The echo tops are then dilated to match the 
growth signatures.  In a final step, a 5x5 km 
median filter is applied to the final forecast. 
 
5.0 FORECAST PERFORMANCE 
 The CWF algorithm performs a quality 
assessment of the VIL forecast and the echo 
tops forecast in realtime.  For research and 
development, binary Critical Success Index 
(CSI; Theriault et al., 2001) scores are 
generated in addition to other scoring statistics.  
Performance is assessed in several ways 
including the generation of histograms, 
difference images and images of hits, misses, 
and false alarms.  Binary scores are meaningful 
for research; however, they do not portray the 
value that the user gains from forecasts that are 
only slightly off due to location errors.  Users 
desire a 1 hour forecast that is accurate to within 
5 nm (10 km) of the actual weather (Hallowell et 
al., 1999).  As the forecast time horizon 
increases to 120 minutes, the accuracy 
restriction is relaxed to 10 nm (20 km).  The 
“user” score that is displayed on the situation 
display incorporates this methodology.  In 
realtime, user scores are available for the 30, 60 
and 120 minute forecasts, denoted by a CSI 
percent accuracy number in the lower left corner 
of the forecast window (Figure 3).  Forecast 
verification contours are also displayed on past 
and current weather images.  Further details of 
the scoring techniques are described in Theriault 
et al. (2001) and Wolfson et al. (2004-b).   
 
 Each of the forecasts have corresponding 
thresholds that are deemed critical to flow 
management operations.  Interviews with Air 
Traffic Control (ATC) users have shown that 
during convective events, color intensity levels 3 
and above are the critical levels of interest.  In 
winter events, studies at MIT LL show that color  
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Figure 12: Echo top cap image:  The echo top cap is estimated by finding the 98th percentile of an echo 
top distribution from previous echo top images, 5 minutes apart and under a 51 km circular kernel. 
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Figure 13: Echo Top Forecast Engine.  The echo tops forecast engine applies a simple growth model to 
the current echo top height field. Short-term echo top growth rates are applied as a function of forecast 
time horizon in regions of convective weather, until the echo top height reaches the maximum cap as 
measured by previous echo top distributions in the area.  Non-convective weather is simply advected and 
growth and decay trends are not used. 
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level 1c is a good predictor of winter weather 
that is of concern to aviation.  Forecast 
performance is calculated using these critical 
levels.  These confidence scores indicate past 
forecast performance and may not represent 
how the current forecast will verify.  Table 1 
shows the relationship between display color 
levels and scaled VIL.  Table 2 shows the 
scoring parameters that are used by the 
algorithm.  

 
 Separate CSI performance scores for the 
30, 60, and 120 minute forecasts are available 
for both qualitative analysis (binary scoring) and 
for display to the users (user scoring). 
 
5.1 Binary Forecast Accuracy Scores 
 A 1 km resolution pixel by pixel comparison 
is used to calculate the binary CSI.  CSI scores 
are calculated for a performance evaluation of 
the data, but can be deceiving without further 
understanding of the usefulness of a slightly 
missed forecast in either time or space (Wilson 
et al., 1997).  Examples of both VIL and echo 
top forecasts are presented. Each section will 
show CSI curves in addition to a binary 
verification image that captures the pixel by pixel 
specifics of the forecast performance. 
 
5.2 VIL Performance 
 In order to illustrate the VIL forecast 
performance, we provide a data set of forecast 
performance over approximately one month.  
Figure 14 shows the 30, 60, and 120 minute 
standard VIL forecast performance scores over 
that time period.  The levels scored correspond 
to the high forecast threshold as noted in Table 
2.  The results show the dependencies of CSI 
upon the number of forecast pixels present at 
the threshold being scored. 
 
 The case of 9 July 2003 was studied to 
assess the performance of the growth and 
decay trending algorithm.  Two modes were 
created: one with growth and decay trending 
and one with just advection.  Figure 15 below 
shows the CSI comparisons for both modes for 
30, 60 and the 120 minute VIL forecast.  It is 
important to note the marginal improvements 
realized by examining the data in this way.  The 
blue curve represents VIL forecast performance 
with the addition of growth and decay trending, 
while the green curve shows performance 
without growth and decay trending.  
 

Table 2 
Thresholds for Forecast Performance 

Algorithm 
  

Color 
Level 

Standard 
Forecast 
(scaled 

VIL) 

Echo 
Top 

Forecast 
(km) 

HIGH 
forecast 

threshold 

 
3 

 
133 

 
9.1 

(30 kft) 
HIGH 
truth 

threshold 

 
3 

 
133 

 
9.1 

(30 kft) 
Moderate 
forecast 

threshold 

 
2 

 
73 

 
6.1 

(20 kft) 
Moderate 

truth 
threshold 

 
2 

 
73 

 
6.1 

(20 kft) 
 
 Figure 16 illustrates the binary forecast 
verification image with and without growth and 
decay trending during two time periods for the 9 
July 2003 case.  False alarms are shown in red, 
hits are shown in green, and misses are shown 
in blue.  At time 14:30 there is a large region of 
forecast false alarms (shown in red) in the top 
left image, but note the proximity to the misses.  
The next five minute time period (top right) 
better reveals the forecast improvement with the 
addition of growth and decay trending.  It 
captures the full extent of the line that was 
rapidly developing.  Examining cases in detail is 
crucial in understanding the benefit that the 
growth and decay trending adds to the 
algorithm. 
 
5.3 Echo Tops 
 Interviews with ATC personnel have shown 
that the critical flight level of 30 kft (9.1 km) is 
extremely important to enroute operations.  For 
this reason, the ETF scores the performance of 
the 30 kft forecast level against truth.  
Knowledge of echo top forecasted heights 
assists ATC in guiding planes to fly around or 
above the storms.  Air traffic routes may remain 
open longer in convective situations given this 
information.  Figure 17 shows the binary scores 
of the 30 kft threshold for the first month of 
operation. 
 
 An echo top performance analysis was also 
performed on the 9 July 2003 case we studied 
for the VIL forecast.  CSI curves for 30, 60, and 
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Figure 14: This figure shows the binary 30, 60, and 120 minute CSI scores for the VIL forecast over approximately a one month period.  Forecast 
is for VIL level 3 and above. 
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Figure 15: The CSI comparisons between the growth and decay VIL forecasts and the advection only VIL 
forecasts on 9 July 2003.  The blue curves represent the forecast performance with the addition of growth 
and decay trending, while the green curves show performance without growth and decay trending. 
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Figure 16: Shown is the superposition of the 120 minute VIL forecast at the level 3 threshold. False 
alarms are shown in red, hits in green, and misses in blue.  The upper left side shows where the forecast 
has false alarmed in close proximity to the newly grown line.  The top right shows the next time period 
where the growth and decay forecast provides significant benefit.  
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Figure 17: This figure shows the binary 30, 60, and 120 minute CSI scores for the echo top forecast over approximately a one month period. 
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120 minute echo top performance are shown in 
Figure 18.  The addition of growth and decay 
trending adds significant benefit to the forecast 
as shown by the blue curves, while the green 
curves show performance without growth and 
decay trending.  For this case we see clear 
performance gains for the echo top trend 
forecast. 

 
Similar to the VIL forecast performance 

scores, it is important to not only look at the 
statistical diagnostics of the scoring, but 
understand the specific regions of benefit.  
Figure 19 shows an example of the additional 
benefit gained using echo top growth and decay 
trending on the 9 July 2003 event. 
 

Overall, both the VIL and echo top forecasts 
perform well on a variety of storm classifications.  
The echo top forecast recently added to CIWS 
works well and will be analyzed throughout the 
next several months for possible enhancements.  
It has been shown that the addition of growth 
and decay trending adds benefit above and 
beyond an advection-only forecast. 
 
6.0 FUTURE WORK 
 
6.1  Convective Initiation 

Convective weather, and in particular the 
initiation of new thunderstorms, makes the 
efficient management of air traffic in the NAS 
difficult.  Prior knowledge of when and where 
new convection will develop, when it will decay, 
and the type of storms that will form are key 
elements in producing effective convective 
weather forecasts.  The CWF system currently 
produces forecasts of VIL based primarily on the 
characteristics of existing storms.  Since the 
CWF system is unable to account for convective 
initiation, the development of new storms is one 
of the largest sources of error in the CWF 
system.  Examples and a further discussion of 
this shortcoming can be found in Wolfson et al.( 
2004-a). 

 
In many situations, convective initiation is 

preceded by low altitude convergence in the 
horizontal winds (Wilson and Megenhardt, 
1997).  These regions of low altitude 
convergence, often referred to as boundaries, 
are typically associated with synoptic scale 
fronts, drylines, and thunderstorm outflows.  
Gridded wind analyses that utilize Doppler 
weather radar, surface, and aircraft 

measurements are one of the best sources of 
low altitude winds that can be used to identify 
wind boundaries over large domains.  Here a 
“large domain” represents an area greater than 
or equal to the continental US east of the 
Mississippi river.  

 
Two gridded wind analysis systems are 

being evaluated by MIT LL for use as a data 
source for a “large domain” system capable of 
providing realtime detections of wind 
boundaries.  The first is the Space Time 
Mesoscale Analysis System (STMAS) operated 
by NOAA FSL (Koch et al., 2004).  STMAS 
produces a surface wind analysis from a large 
network of surface anemometers.  The STMAS 
product is a 5 km grid point resolution analysis 
that updates every 15 minutes, with a 45 minute 
latency.  The second system being evaluated is 
the Corridor Boundary layer wind analysis 
system (CBOUND).  CBOUND is a prototype 
wind analysis system based on a modified 
version of the ITWS Terminal Winds (TWINDS) 
system that utilizes the 20 km RUC model wind 
analysis, 5 minute Aviation Surface Observation 
System (ASOS) measurements, and all of the 
available WSR-88D (NEXRAD) and Terminal 
Doppler Weather Radar (TDWR) data in the 
domain.  The final products from this analysis 
are two 9-layer wind analyses that extend from 
the surface to 800 hPa at 1 and 5 km horizontal 
resolutions. The prototype system currently 
covers a domain centered near Chicago, IL and 
produces an updated wind analysis every 5 
minutes.  The long-term goal of this 
development effort is to integrate data from all of 
the available FAA wind sensors in the CIWS 
domain into a single high resolution wind 
analysis. 

 
Automated techniques for the detection of 

synoptic scale fronts are also currently under 
development at MIT LL.  Lagrangian Scalar 
Integration (LSI) is the technique being used to 
identify these fronts.  The purpose of automation 
is to provide a rapid update of the location of 
synoptic airmass boundaries.  When ingested 
into CWF, this can improve the automated 
forecast of convective initiation and growth.  

 
Developed by MIT LL, LSI is applied to the 

gridded surface wind analyses for atmospheric 
feature detection (patent pending) (Winkler, 
2001).  A grid of tracers is specified over the 
wind analysis at a resolution consistent with 
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Figure 18: The CSI comparisons between the growth and decay echo top forecasts and advection echo 
top forecast for the 30, 60 and 120 minute forecasts for 9 July 2003 data.  The blue curves represent the 
trending forecast performance, while the green curves show performance without growth and decay 
trending.  
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Figure 19: Shown is the superposition of the 120 minute VIL forecast at the 30 kft (9.1 km) threshold.  
False alarms are shown in red, hits in green, and misses in blue.  Highlighted under the ellipse are areas 
where the echo top trend forecast showed improved performance over the advected forecast. 
 
features of interest (synoptic or mesoscale) and 
advected following the horizontal winds.  A 
scalar quantity such as temperature, moisture, 
wind divergence, etc., can be measured at each 
time interval and integrated.  This technique 
provides a measurement of the dispersive 
properties of the synoptic scale motions as well 
as an estimate of the conditions experienced by 
the tracer particles as they are advected in time.  
 

When parameterized for the detection of 
synoptic scale boundaries, LSI effectively 
sharpens the gradients of the scalar quantity 
while at the same time reducing noise generated 
by an analysis.  This is evident in Figure 20 
when comparing the gridded Eulerian 
divergence field (far left image) to the LSI 
divergence field (center image) during the 
passage of a synoptic cold front over the 
Western Ohio River Valley.  Here, artifacts and 
topographic effects present in an STMAS wind 
analysis as revealed by the Eulerian divergence 
calculation are filtered by the LSI divergence 
calculation and the convergence signature 
associated with the front is more coherent.  

 

The sharpened scalar fields produced by the 
LSI computation are then processed with a 
modified version of the Machine Intelligent Gust 
Front Algorithm (MIGFA) (Troxel et al., 2002) 
developed by MIT LL. The modified version of 
MIGFA utilizes multi-dimensional image 
processing and fuzzy logic techniques to identify 
synoptic fronts in the LSI data.  In the far right 
image of Figure 20, the LSI relative dispersion 
provides an interest field for the modified version 
of MIGFA to make a front detection.  Overlying 
the interest field (magenta lines) is the location 
of the surface front as detected by the 
automated algorithm.  While the position of the 
front becomes discontinuous in the southwest 
quadrant of the grid, the detectable interest can 
be enhanced by layering other scalar quantities 
output by the LSI calculation, which can lead to 
a continuous automated detection. 

 
Automated boundary detections of synoptic 

and mesoscale fronts can also be made using 
the LSI-processed CBOUND data.  Figure 21 
illustrates the Eulerian, Lagrangian, and LSI 
relative dispersion fields derived from the 1 
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Figure 20: This image shows the automated detection of a synoptic scale cold front utilizing STMAS 
surface analysis and machine intelligent front detection algorithms developed by MIT LL.  The far left 
image illustrates the noise generated by an Eulerian divergence calculation.  The center image shows the 
smooth fields resulting from a Lagrangian scaled integrated divergence calculation developed by MIT LL.  
The far right image illustrates Lagrangian Scalar Integrated Relative Dispersion used in automated front 
detection with the calculated position superimposed.  
 
 
 
 
 

 
 

Figure 21: This image shows automated detection of a mesoscale convective outflow boundary utilizing 
the CBOUND surface analysis and machine intelligent front detection algorithms developed by MIT LL. 
The far left image illustrates the noise generated by an Eulerian Divergence calculation compared to the 
smooth fields resulting from a Lagrangian integrated divergence calculation developed by LL in the center 
image. The far right image illustrates Lagrangian Scalar Integrated Relative Dispersion used in automated 
front detection with calculated position superimposed as a black line. 
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km resolution CBOUND wind analysis of a 
thunderstorm outflow.  The automated frontal 
detection of a thunderstorm outflow using 
MIGFA is overlaid as a black line on the LSI 
relative dispersion analysis.  When 
parameterized for the detection of mesoscale 
boundaries, LSI effectively sharpens the 
gradients of the mesoscale scalar quantities and 
reduces the noise generated by an analysis.  A 
comprehensive review of these wind analysis 
systems will be conducted during the summer 
convective season of 2005.  This review will 
provide a recommendation of which system can 
best meet the boundary detection capability 
required to make successful automated 
convective initiation forecasts. 
 
7.0 SUMMARY 

This paper has reviewed the scientific 
rationale and development path for the MIT LL 
automated Convective Weather Forecast (CWF) 
system. The CWF system provides 0 to 2 hour 
forecasts of precipitation, and a novel forecast of 
storm height called the Echo Top Forecast, 
which is currently undergoing operational 
evaluation. The CWF system operates in a large 
part of the US NAS and has proven to be 
extremely beneficial to air traffic flow 
management operations. The forecast shows 
consistently good performance over long periods 
of operation and during periods of growth and 
decay.  We recognize that integrating convective 
initiation into the system can provide further 
benefit in aiding with weather related decisions 
and we are actively working towards creating 
initiation prediction tools. 
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