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AUTOMATED GUST FRONT DETECTION USING KNOWLEDGE-BASED SIGNAL
PROCESSING*

Richard L. Delanoy and Seth W. Troxel
Lincoln Laboratory, Massachusetts Institute of Technology

-ABSTRACT

For reasons of aviation eafety and airport operations efficiency, gust
front detection and tracking is an important product of Doppler weath-
er radars developed for use in airport terminal areas. Previous gust
front algorithms, which have relied on the detection of one or two con-
spicucus signatures in Doppler radar imagery, have worked reasonably
well in images generated by the high-resolution, pencil-beam Termi-
nal Doppler Weather Radar (TDWR). The latest Airport Surveillance
Radar, enhanced with » Wind Shear Processor (ASR-9 WSP), is being
developed ns a leas expensive alternative weather radar. Although guet
fronts are visible to human observers in ASR-9 WSP imagery, the lower
sensitivity and less reliable Doppler measurements of this radar make
automated gust front detection a much more challenging problem.

Using machine intelligence and knowledge-based signal processing
techniques developed in the context of automatic target recognition,
a Machine Intelligent Gust Front Algorithm (MIGFA) has been con-
structed that is radicelly different from the previous algorithms. De-
veloped initially for use with ASR-9 WSP data, MIGFA substantially
outperforms a state-of-the-art gust front detection algorithm based on
earlier approaches. These results also indirectly suggest that MIGFA
performance may be nearly as good as human performance. Prelim-
inary results of an operational test period (2 months, approximately
15000 scans processed) during 1992 in Orlando, Florida are presented.

INTRODUCTION

A gust front is the leading edge of a cold air outfiow from a thunder-
storm. The outfiow, which is deflected horizontally at the ground, may
propagate many miles ahead of the generating thunderstorm. Gust
fronts can have b significant impact on air terminal operations since
they often produce pronounced changes in wind speed and direction,
forcing a change of active runway and a rerouting of aircraft already
in the terminal area. In addition, turbulence and wind shear along the
front can be hazardous to aircraft. Reliable detection and forecasting
of gust fronts would both improve air safety and reduce costly delays.
The Federal Aviation Administration (FAA) has sponsored research
and development of automated gust front detection algorithms to be
included as eritical components of a suite of hazardous weather detec-
tion capabilities for the Airport Surveillance Radar with Wind Shear
Processor (ASR-9 WSP) systems and the Terminal Doppler Weather
Radar (TDWR).

Gust fronts produce signaturea that are observable to varying de-
grees in weather reflectivity and Doppler velocity date generated by
these radars. In Doppler velocity images, gust fronts are recognizable
as boundaries between converging velocities. In reflectivity images,
gust fronts appear as thin lines of increased intensity, which occur as
the result of insects, dust, and debris being lofted and concentrated
at the leading edge of the front. Based on an approach developed
nearly 10 years ago (Ref. [1]), existing automated gust front detec-
tion algorithms, such as the Gust Front Detection Algorithm (GFDA;
Refs. [2, 3, 4]) and the Advanced Guat Front Algorithm (AGFA; Ref-
8. [5, 6]), have achieved respectable levels of performance in TDWR
imagery using only these signatures. However, many fronts or parts
of fronts are missed due to the ambiguous or conditional nature of the

*The work described has boen sponsored by the Federal Avistion Administration.
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observable signatures. For example, convergence signatures disappear
an gust fronts become radially aligned and assume a bad Doppler view-
ing angle. Also, reflectivity thin lines can be obscured by low altitude
precipitation.

The ASR-9 WSP provides a less expensive alternative to the TDWR
#3 & terminal weather radar (Ref. [7]). Although not originally intended
for weather imaging, this fan-beam Doppler radar generates images of
sufficient quality that gust fronts can be identified and tracked. How-
ever, versions of AGFA adapted for ASR-9 WSP data have performed
poorly. The lack of performance is due primarily to the reduced gain
and lowered sensitivity inherent in the fan-beam design of the ASR-9.
With lowered sensitivity, clear air velocity estimates are unreliable,
making most convergence signatures invisible, Consequently, AGFA
is forced to rely on only the thin-line portion of the algorithm. To
make matters worse, the reduced sensitivity also makes faint thin-line
signatures more fragmented and harder to resolve from background.

With both radar systems, humans detect gust fronts using per-
ceptual skills that have been notoriously and surprisingly difficult to
implement in computer vision systems. These skills include:

1. The use of motion as a signature for detection,
2. The effective use of spatial and temporal context.

3. The ability to maintain and assimilate weak, uncertain, ambigu-
ous, and even contradictory evidence.

4. The ability to conditionally fuse information from various sources,
refiecting knowledge that different signatures can have varying
reliability that depends on situational context.

5. The use of knowledge of weather patterns and trends.

This paper introduces a new machine intelligence approach to de-
tecting and tracking weather phenomena, in this case as applied to the
development of a Machine Intelligent Gust Front Algorithm (MIGFA)
for use with ASR-9 WSP imagery. MIGFA is a direct adaptation of the
eXperimental Target Recognition System (XTRS), a general-purpose
approach to object recognition that was initially developed in the con-
text of automatic target recognition {Refs. [8, 9, 10, 11)).

The conventional wisdom in computer vision/object recognition
research has been to use general image processing operations, ideal-
ly devoid of object- and context-dependent knowledge, at the initial
stages of processing. Such operations might include edge detection,
segmentation, cleaning, or optic flow estimations. And yet, the ideal is
never really achieved in practice. For example, in order to effectively
detect edges, some knowledge of the sensor and the expected scene
contents are (implicitly) encoded in the form of thresholds or other
such paraméters. From the results of such general operations, image
characteristics are extracted and represented symbolically. Machine
intelligence is then applied, as if by definition, only on the symbolic
representations at “higher” levels of processing.

In contrast, sensor-, object-, and context-dependent knowledge is
applied in the eatliest (image processing) levels of XTRS and MIGFA
processing. Knowledge of the task is used in three ways. Knowledge is
used to choose from a library those feature detectors that arc selectively
indicative of the object being sought. The selected set of feature detec-
tors can differ, depending on environmental context. Knowledge is also



incorporated within feature detectors through the design of matched
filters that are customized to the physical properties of the sensor, the
environment, and the object to be detected. Finally, knowledge of the
varying reliability of the selected feature detectors is used to guide data
fusion.

KNOWLEDGE-BASED SIGNAL PROCESSING

Most feature detectors in MIGFA are constructed using a new tech-
nigue of knowledge-based signal processing, called functional template
correlation (FTC). FTC is a generalized matched filter incorporating
aspects of fuzzy set theory (Ref. [10]). For comparison, standard 2-D
cross correlation uses a kernel that is essentially a subimage consist-
ing of expected image values. In contrast, the kernel of a functional
template consists of a set of integers that each correspond to » unique
scoring function. Each scoring function, given an image value as input,
returns & score reflecting how well that image value matched expec-
tations for a given location on the kernel. The results of all scoring
functions within the functional template are then averaged and clipped
to the continuous range [0, 1].

By increasing or decreasing the interval over which affirming scores
(i.e.; >.0.5) are returned, scoring functions can encode varying degrees
of uncertainty with regard to what image values are allowable. But
in addition, knowledge of how a feature or object appears in sensor
imagery can be encoded in scoring functions. And with various de-
sign strategies, the interfering eflects of occlusion, distortion, nolse,
and clutter can be minimized. As a consequence, matched filters cus-
tomized for specific applications using FTC are generally more robust
than standard signal processing operations. The output of FTC is a
map of values in the range [0, 1], each of which reflects the degree of
belief that the shape or object implicitly encoded in a functional tem-
plate is present at that image location. In our ATR systems, FTC has
been used primarily as a direct, one-step means of 3-D object detection
and extraction. In MIGFA, FTC is used for edge detection, thin-line
filtering, thin-line smoothing, shape analysis, and thinning of shapes.

Consider the gimple matched fitter shown in Fig. 1, which has been
designed to detect gust fronts in reflectivity data. Gust fronts are
observed as thin lines of moderately high reflectivity values (approxi-
mately 0 to 20 dBZ), with low reflectivity values (approximately —10 to
0 dBZ) shead and behind the front. On the left is the template kernel
consisting of integers, corresponding to the 2 ecoring functions shown
on the right. Elements of the kernel that do not have an index form
guard regions in which image values are ignored and have no ¢ffect on
match scores. Scoring function 1, corresponding to the flanking regions
of low reflectivity, returns a maximal score of 1.0 for image values in
the interval of ~20 dBZ to —5 dBZ, a gradually decreasing score for
image values in the interval —5 dBZ to 10 dBZ, and a score of —2.0 for
image values larger than 10 dBZ. Scoring function 2, corresponding to
the center of the kernel where moderately high reflectivity values are
expected, returns maximal scores in the interval between 5 and 12.5
dBZ with gradually decreasing scores for both higher and lower image
values. Note that while very low image values can generate scores of
—1.0, & slower decline in score with a minimum score of 0.0 is evident
for image values above the maximally scoring interval. The relatively
greater tolerance to high reflectivity values reflects the belief that very
high reflectivity gust fronts might exist and that gust fronts sometimes
pass under high reflectivity storm cells.

INTEREST IMAGES

“Interest” is used as a medium for data fusion and for assimilat-
ing evidence at the pixel level (Ref. [9]). An interest image iz a map
of numeric values in the range [0, 1], indicating the presence of some
feature that is selectively indicative of an object being sought, Higher
pixel values reflect greater belief that the intended feature is present
8t that location. Given the assumption that the output of any feature
detector can be configured as an interest image, evidence from any
number of registered sources of information can be easily combined
using simple or arbitrarily complex rules of arithmetic or fuzzy logic.
Clusters of high values in the combined interest image arc then used
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Figure 1: Example functional template for reflectivity thin line feature
detection.
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Figure 2: MIGFA block diagram,

to guide selective attention and serve as the input for object extrac-
tion. If done effectively, the combined interest image provides a better
repregentation of object shape than is evident in any single sensory
modality.

An individual feature detector may be reliable only under certain
identifiable circumstances. By using knowledge of such circumstances
and by allowing feature detectors to mutually support or compensate
for each other, relatively good performance can be achieved using fea-
ture detectors that may individually be weakly or inconsiastently dis-
criminating.

ALGORITHM DESIGN

The system block diagram in Fig. 2 illustrates the configuration
of the ASR-9 WSP version of MIGFA. Input images V (Doppler ve-
locity image) and DZ (reflectivity image) are passed to five simple,
independent feature detectors that use FTC. The resulting interest
images are fused into a single combined interest image. From the com-
bined interest image, a set of gust front points, collectively called an
event, is extracted. This event is integrated with prior history in the
TRACKING modute, which establishes a basis for making predictions
of subsequent behavior.

Input Images

Reflectivity and velocity data are converted from polar to Cartesian
format, producing images DZ and V, respectively. As part of the
conversion to Cartesian format, the data are subsampled so that the
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Figure 3: Combining multiple sources of interest.

pixel size is 480 meters per pixel.

Although convergence signatures are not reliably visible in ASR-9
data, the velocity data does contain relevant information. Velocity
measurements within a gust front have higher signal-to-noise ratios,
and consequently lower local Doppler variance, than the surrounding
clear sir measurements. Consequently, a map of velocity local standard
deviation (SD) is computed from V. Gust fronts appear in SD as thin
lines of low variance against a background of high variance,

Feature Detectors

The firet feature detector referenced in Fig. 2, labelled TL-DZ, ap-
plies the thin line filter shown in Fig, 1 to the reflectivity image DZ,
The output is an interest image shown in Fig. 3 highlighting the loca-
tions where thin lines were found in DZ. The second feature detector,
DZ-MOTION, applies a similar thin line filter to the difference of two
sequential DZ images. The thin line filter in DZ-MOTION uses the
same kernel as TL-DZ, but scoring functions that reflect the effects of
image differencing. Image differencing eliminates those thin lines that

" are not moving.

The feature detector QUT-OF-TRIP uses FTC to identify range-
ambiguous echos of more distant weather. These range-ambiguous
echos tend to appear as radially aligned thin lines and are a potential
source of false alarms. Areas believed to reflect out-of-trip weather are
given high interest values, which are then subtracted from correspond-
ing areas of the other interest images.

The feature detectors TL-SD and SD-MOTION use thin line filters
similar to those used in TL-DZ and DZ-MOTION. They differ only in
that the scoring functions are suited for values of Doppler standard

_deviation instead of reflectivity.
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Anticipation

The final feature detector, ANTICIPATION, provides a mechanism
for spatially adjusting the detection sensitivity of MIGFA on the basis
of knowledge of various environmental data, including current gust
front trackings and dominant weather patterns,

The most important use of anticipation is as & replacement for
coasting, Simply put, coasting is the continued tracking of a target
on o radar screen for some time interval after the target signal falls
below threshold. Coasting assumes that the loss of a target’s signal is
not due to a change of behavior (e.g., a change in velocity or perhaps
the disappearance of the target). Gust fronts do change behavior, as
in cases of collisions of gust fronts. Consequently, blindly coasting a
signal after its loss is a potential source of false alarms. Anticipation
provides an alternative by progressively increasing the sensitivity of
the detection system, supporting weak evidence that would otherwise
be below detection thresholds. Based on prior history of gust front
behavior, a prediction is made of where the gust front is expected to
be in the current scan. These predictions are used to create a band
of elevated Interest values; not so high as to trigger a detection by
themselves, but high enough to raise colocated weak signals above
detection threshold.

Combining Interest

The four interest images TL-DZ, TL-SD, DZ-MOTION, and SD-
MOTION are averaged together (missing values are ignored). The
resulting averaged interest image and the ANTICIPATION interest
image are combined as a weighted average; ANTICIPATION is given
a weight of 0.25 while the average-of the first four interest images is
given a weight of 0.75, Finally, elements of the OQUT-OF-TRIP interest



image are multiplied by 0.25 and subtracted from the elements of the
weighted average. The resulting image is the combined INTEREST
image. An example of how the outputs of multiple feature detectors
are fused into a combined interest image is shown in Fig. 3.
Extraction

The goal of extraction in MIGFA is to identify the set of points
(collectively called an event) that lie in any gust front. Certainly, some
chaing of points are spatially segregated or have different velocities.
For purposes of reporting, such chains can be inferred to belong to
separate gust fronts, However, there is no concerted attempt to label
or track gust fronts as entities. Instead, individual points are tracked
acroes time; the fact that a point belongs to one gust front or another
is irrelevant to processing. Because different points can have variable
velocities, MIGFA predictions are elastic.

The thin line shapes evident in the combined interest image are s-
moothed using a functional template whose shape increases the weights
for the extremes of & thin line segment over that of the center. This op-
eration serves to bridge gaps between thin line fragments. It also tends
to suppress random interest values that are not aligned. A threshold
of 0.5 {level of ambiguity) is applied to this smoothed interest image,
setting all pixel values below threshold to 0. Note that this is the first
discriminatory threshold applied in processing any ene scan,

The resulting elongated shapes are thinned, resulting in chains of
points. Chains less than a minimum length (6.25 km) are rejected. The
remaining chains of points are extended from their end points along
ridges of relatively high interest values until either the interest value
of the next point falls below a minitum value (0.3) or the change in
orientation from an initial end point to the next point exceeds some
maximum (41 degrees).

At this point, the chains of points may form one or more disjoint
complex networks, each potentially with internal closed loops and mul-
tipte end points. From this network of chain fragments is assembled
the single most interesting (typically, but not necessarily, the longest)
combined chain of points. Once the edges of this combined chain have
been extracted, the process is repeated until either no more edges exist
or the assembled combined chain has a summed interest value below a
threshold (12.0). An example of extracted gust front points is shown
in Fig. 4.

Tracking/Heuristics

Tracking is done by establishing point-by-point correspondence be-
tween successive scans. For each point in the current scan, a point in
the previous scan is found that is nearby and that has a propagation
velocity consistent with the point in the current scan. Once correspon-
dence is established, a link is created from the point in the current scan
to its corresponding point in the previous scan. Using this network of
links, the complete history of any gust front point can be traced. After
indexing is completed, each extracted chain of points iz edited in or-
der to smooth the computed propagation epeeds and orientations over
local segments of the chains.

Heuristice are then used to reduce the number of false alarms, mak-
ing use of knowledge of how false alarms can be distinguished from real
gust fronts. Examples of identifiable behaviors that are not associated
with gust fronts are as follows:

1. The direction a point moves is inconsistent with the measured
Doppler value,

2. A point that is approaching the radar site has a propagation
velocity towards the radar site that is slower than the winds
ahead of the front as measured by ancimometer at the radar site.

The final stage of tracking is to make a binary decision whether or
not to announce to the outside world that one or more gust fronts have
been detected. Whether or not a particular chain is included in the
report depends upon its summed interest score and the depths (number
of events through which a point is traced) of constituent points. In
chains with high summed interest scores, points with lower depths can
be included.

Gust Fronts Gust Front Length

POD PFA | PLD PFD
Baseline (AGFA) || 56.7 4.6 | 38.9 12.9
MIGFA 88.1 06 | 86.2 33.4

Table 1: AGFA and MIGFA performance on ASR-9 WSP data as
scored against human interpretations,

Gust Fronts Gust Front Length

POD PFA |PLD PFD
Baseline (AGFA) I 426 3.2 | 21.0 4.2
MIGFA 751 0.0 | 58.7 6.4

Table 2: AGFA and MIGFA performance on ASR-9 WSP data as
scored against human interpretations of matching TDWR data.

Conversely, chains that have low summed interest scores are leas
likely to be gust fronts and are required to accumulate higher depth-
8 before being included in the announced gust front detections (see
Fig. 4D end E).

Predicti

The current extracted event, indexed into the prior history, is used
to make predictions of where the points having sufficient depth and
interest are likely to be at some time in the future. Given the direc-
tion moved, the propagation speed, and the current coordinates of an
extracted point, & new coordinate is computed for some time in the fu-
ture. Fig. 4F shows the 10 and 20 minute predictions for two colliding
gust fronts. .

RESULTS

Table 1 compares performance of MIGFA against the previously
constructed AGFA, which uses more conventional methods of signal
processing and computer vision. A test set of ASR-9 WSP data col-
lected in Orlando, Florida during field testing in 1991, contains § d-
ifferent gust front tracks through 15 hours (372 images). A human
interpreter looking at the same data detected 280 instances of the 9
gust fronts tracked by the radar. Four figures of merit are shown for
each of the two systems. The first one, the probability of detection
(POD), is the number of detections made by each algorithm as a per-
cent of human detected instances of gust fronts. The second number is
the probability of false alarm (PFA). In addition to simply identifying
fronts, the human interpreter delimited the length of each detected
front. Detection quality was measuring by computing the degree of
overlap between the gust front front as estimated by each algorithm
and by the human interpreter. The third figure of merit indicates the
length detected by each algotithm as a percent of the length delimited
by the human interpreter {percent length detected or PLD). The fourth
figure of merit indicates the amount of algorithm estimated gust front
length that does not overlap with what the human interpreter could
see (percent false length detected or PFD).

The first two columns indicate that MIGFA approximately dou-
bled the number of fronts detected by AGFA, while decreasing the
false alarm rate. Simﬂarly. the PLD (column 3) reflects the improve-
ment in detection ratd. However, the increased PFD (from 12.9 % to
33.4 %) would suggest that MIGFA was doing a woree job of discrim-
inating the extent of individual fronts. In order to better understand
why MIGFA was extending fronts beyond what the human interpreter
believed appropriate, we rescored AGFA and MIGFA results against
human interpretations of TDWR data taken at the same time as the
ASR-9 WSP data. In these rescored results, shown in Table 2, the POD
and PLD remain relatively high for MIGFA. However, the PFD for
MIGFA dropped from 33.4% using ASR-9 truth to 6.4% using TDWR
truth. Given that the TDWR is a more sensitive radar, the difference
between ASR-9 and TDWR truth probably reflects parts of actual gust
fronts that were hard to see and consequently missed by the human
interpreter of ASR-0 WSP data. These findings and an analysis of in-
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Figure a: summary of the results of processing a ASR-9 WSP scan containing two colliding gust fronts. (A) The reflectivity image DZ, (B) The

image of local standard deviation SD. (C) The combined INTEREST image.
those that have been tracked long enough to built up sufficient confidence for

(D) The set of extracted points called an EVENT; white points are
declaring them to be part of a gust front. (E) The gust front points

shown in the context of prior HISTORY. (F) The 10 and 20 minute PREDICTIONS of gust front location.

Gust Fronts Gust Front Length
POD PFA | PLD PFD
MIGFA || 7564 1.8 | 80.8 21.1

Teble 3: Results of MIGFA operational testing on ASR-9 WSP data
collected in Orlando during August 1992,

dividual cases lead us to believe that the MIGFA-generated detections
of gust fronts were more accurate than those generated by the human
interpreter given the samne ASR-9 WSP data.

Thiz ASR-9 WSP version of MIGFA was deployed in Orlando for
on-line operational testing during the summer of 1992. Table 3 shows
the results for the period from 1 August to 20 September. In general,
the results substantiate the off-line test results. Not surprisingly, the
probability of detection (75%) and percent Jength detected (81%) were
somewhat Jower than those shown for the selected test set. Most of this
difference can be explained by two problems. First, several gust fronts
had reflectivity values at or below the sensitivity Limits of the ASR-9.
Of course, those fronts with reflectivity values below the ASR-9 limits
were not delected by either MIGFA or the human interpreter. How-
ever, there were a few cases of margina! contrast in which the human
could detect a gust front, but for which MIGFA never accumulated
enough confidence to declare an alarm. Note, however, that the hu-
man interpreter had the opportunity to examine the sequence of radar
images repeatedly and could use information from scans late in the
sequence to confirm or deny the existence of the gust front in early
scans. Not much can be done to overcome the sensitivity limits of the
ASR-9. In most {(but not all) cases, these gust fronts with marginal
reflectivity levels were associated with weak wind shears. Since these
weak fronts had minimal impact on airport operations, a failure to
detect them should not be a significant liability.

The second problem was one of obscuration. In several cases, storm
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cells or out-of-trip weather were extensive enough to hide or fragment
the thin line signatures so that some gust fronts were detected late,
dropped early, or sometimes missed altogether. To improve perfor-
mance in these cases, the ANTICIPATION feature detector has been
modified. The interest values of anticipated gust front locations are
now increased wherever potential obscuration is detected. By raising
interest values high enough, detections are made even without sup-
porting evidence from other sources (i.e., coasted).

Finally, there would seem to be an apparent problem in the rela-
tively high PFD score (21.1%). However, as was shown in the offline
test results described earlier, the PFD score is an overestimation. The
high PFD score is almost, entirely because MIGFA extended the ends
of gust fronts beyond the signatures visible to the human interpreter.
However, a case-by-case analysis using matching TDWR data indicates
that most of the extensions contributing to the PFD are in fact rea-
sonable extensions of real gust fronts. A more sccurate estimation of
the PFD will require the systematic rescoring of the results against
TDWR truth.

CONCLUSIONS

Thin-line signatures in reflectivity images and convergence signa-
tures in Doppler images are conceptually easy to define and to use
in automated detection algorithms. And yet, several research groups
have worked collectively for nearly 10 years to develop reliable au-
tomatic gust front algorithms. Despite the effort, no algorithm has
demonstrated performance comparable to the ideal of human perfor-
mance,

The problem is that automatic gust front detection is deceptively
a much harder problem than simply detecting one or both of these
signatures. In order for human interpreters to detect and track gust
fronts, they make use of knowledge about the radar and the weather.
They use spatial and temporal context, And, they have the ability
to dea] with uncertainty while assimilating ambiguous or even con-



tradictory evidence. The large performance gap between algorithmic
and human gust front detection probably reflects the lack of these per-
ceptual skills in previous algorithmic approaches. With the machine
intelligence techniques developed as part of XTRS, MIGFA displays
levels of performance that are competitive with humean interpreters.

Given that reasonably good performance has been achieved de-
spite the limitations posed by the ASR-9 characteristics, MIGFA per-
formance ought to be very good on the higher resolution TDWR. A
TDWR version of MIGFA has in fact already been assembled. It uses
a different set of feature detectors in order to exploit the higher sen-
sitivity reflectivity data and reliable Doppler convergence signatures.
The control structure and the extraction, tracking and prediction mod-
ules are identical. Although a direct case-by-case comparison of AGFA
and MIGFA has not yet been run for TDWR data, preliminary results
indicate that MIGFA performance is again better than that for AGFA.

Finally, MIGFA is based on XTRS, a general system for automatic
object detection and recognition that should be applicable to other
meteorological detection problems. In conventional, hierarchical com-
puter vision design, machine intelligence techniques are applied only
in the higher (more abstract) levels manipulating symbolic representa-
tions of the data, In contrast, XTRS provides a framework for apply-
ing machine intelligence at the earliest stages of detection processing,
manipulating raw pixel data. It is true that this approach will not
solve the general vision problem of understanding a complex scene,
i.e., understanding the relationships of several instances of hundreds
of possible objects in an unconstrained contextual environment. But
for problems in which the goal is to detect one particular type of object
and discriminate it from an understood background, XTRS provides
an effective, straightforward means.
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