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ABSTRACT
Air traffic automation depends on accurate trajectory
predictions. Flight tests show that wind errors are a
large source of error. Wind-field accuracy is sufficient
on average, but large errors occasionally exist that
cause significant errors in trajectory-prediction. A year
long study was conducted to better understand the
wind-prediction errors, to establish metrics for
quantifying large errors, and to validate two approaches
to improve wind prediction accuracy.

Three methods are discussed for quantifying large
errors: percentage of point errors that exceed 10 m/s,
probability distribution of point errors, and the number
of hourly time periods with a high number of large
errors.

The baseline wind-prediction system evaluated for this
study is the Rapid Update Cycle (RUC). Two
approaches to improving the original RUC wind
predictions are examined. The first approach is to
enhance RUC in terms of increased model resolution,
enhancement of the model physics, and increased
observational input data. The second method is to
augment the RUC output, in near-real time, through an
optimal-interpolation scheme that incorporates the
latest aircraft reports received since the last RUC
update. Both approaches are shown to greatly reduce
the occurrence of large wind errors.

1. SUMMARY
Air Traffic Management (ATM) Decision Support
Tools (DST) depend on accurate trajectory predictions
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to provide controllers with operationally acceptable
advisories. Flight tests in 1992 and 1994 have shown
that wind-prediction errors may be the largest source of
trajectory-prediction error. Although wind-field
prediction accuracy may be sufficient on average, these
flight tests revealed large errors that occasionally exist
over large enough regions of airspace and time to cause
significant errors in trajectory-prediction accuracy.
Such errors, even if they only occur for short periods, a
few times a year, may significantly diminish the
operational acceptance of ATM DST advisories. A year
long study of the Denver Center airspace was
conducted to better understand the magnitude and
source of wind-prediction errors, to establish metrics
for quantifying large errors that may be critical to ATM
decision support, and to validate two approaches to
improve wind prediction accuracy, particularly with
respect to errors significant to ATM automation.

Three methods are discussed for measuring large errors
given spot checks of wind accuracy. The first, large
point error percentage, indicates the percentage of point
wind-vector errors (within a sample) that exceed
10 m/s. The value 10 m/s is taken as a threshold at
which wind errors become problematic from an ATM-
DST perspective. The second, error probability
distribution, looks at the distribution of point wind-
vector errors. This metric offers greater flexibility in
that no a priori threshold is applied. While large point
errors indicate a problem with a wind forecast, a single
large point error does not lead to a poor trajectory
prediction. The third method, large hourly error
percentage, determines the number of hourly time
periods within which a certain percentage of exceed a
threshold, for example 10 m/s. The advantage of this
metric is its applicability to determining the frequency
of periods within which ATM DSTs may be negatively
impacted by groups of large point errors.

The baseline wind-prediction system evaluated for this
study was the Rapid Update Cycle (RUC). Two
approaches to improve the original RUC wind
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predictions were examined. The first approach was to
enhance RUC in terms of increased model resolution,
enhancement of the model physics, and increased
observational input data. The second method is to
augment the RUC output, in near real time, through an
optimal-interpolation scheme that incorporates the
latest aircraft reports receive since the last RUC update.
Both approaches are shown to greatly reduce the
occurrence of large wind errors. For example, the
improvement in the RUC model reduced the percentage
of point errors greater than 10 m/s from 8% to 3%, and
the augmentation of RUC reduced such errors from
11% to 4% (using a slightly different set of RUC
forecasts.)

2. INTRODUCTION
The performance of Air Traffic Management (ATM)
flight deck decision support (DST) tools depends in
large part on the accuracy of the supporting 4D
trajectory predictions. This is particularly relevant to
conflict prediction and active advisories that suggest
clearances for the resolution of conflicts and the
conformance with traffic-flow management flow-rate
constraints (e.g., arrival metering / required time of
arrival). Flight test results have indicated that wind
prediction errors may represent the largest source of
trajectory prediction error (Williams and Green, 1998;
Jardin and Green, 1998). The tests also discovered
relatively large errors (e.g., greater than 20 knots),
existing in pockets of space and time critical to ATM
DST performance (one or more sectors, greater than
20 minutes). Classic RMS aggregate prediction-
accuracy statistics most often used in past studies
inadequately represent these operationally significant
errors.

To facilitate the identification and reduction of DST-
critical wind prediction errors, NASA is leading a
collaborative research and development activity with
MIT Lincoln Laboratory and the Forecast Systems Lab
of the National Oceanographic and Atmospheric
Administration (NOAA). This activity, begun in 1996,
is focussed on the development of key wind error
metrics for ATM DST performance, assessment of
wind prediction skill for state of the art systems, and
development/validation of system enhancements to
improve skill. A yearlong study was conducted for the
Denver Center airspace in 1996-1997.

Two complementary wind prediction systems were
analyzed and compared to the forecast performance of
the “then standard” 60 km Rapid Update Cycle -
version 1 (RUC-1) a mesoscale numerical weather
prediction model (Schwartz and Benjamin, 1998). The
first system, developed by NOAA, was the prototype
40-km RUC-2 that became operational at NCEP in
1999. The RUC is a regional numerical weather

prediction and data assimilation system that runs at the
National Centers for Environmental Prediction (NCEP)
to provide high-frequency, 3D analyses and short-range
(out to 12 h) forecasts.

The RUC differs from other forecast models run at
NCEP in that it runs at a higher frequency, with RUC-1
run every three hours producing a set of hourly
forecasts and with RUC-2 run hourly producing a set of
hourly forecasts. In addition to a finer resolution grid,
RUC-2 uses more sophisticated physics than the
RUC-1, and additional observation sources. The high-
frequency atmospheric observations which allow this
rapid updating include those from commercial aircraft
equipped with Aircraft Communication Addressing and
Reporting System (ACARS), wind profiles from
various kinds of vertically pointing radars, surface
observations, and estimates of moisture and winds from
satellites. The RUC horizontal domain covers the 48
lower United States and adjacent parts of Canada,
Mexico, and oceanic areas. The initial operational
version of the RUC was implemented at NCEP in
September 1994 with a 60- km horizontal resolution. A
major upgrade was implemented in April 1999 as the
40-km RUC-2.

The second system studied, Augmented Winds (AW),
is a prototype en route wind application developed by
MIT LL based on the Terminal Winds analysis (Cole, et
al., 2000) developed for the FAA’s Integrated Terminal
Wind System (ITWS) (Evans and Ducot, 1994). AW
would run at a local facility (Center) level. The
Terminal Winds is a data assimilation system that uses
RUC wind forecasts and recent local measurements of
the wind to produce wind nowcasts. These local
measurements can come from surface observing
systems, FAA and NWS Doppler weather radars, and
ACARS. The ITWS TW system produces two wind
fields: one with a horizontal resolution of 10 km and a
30 minute update rate and one with a horizontal
resolution of 2 km that updates every five minutes. The
2 km resolution grid is nested within the 10 km
resolution grid. The algorithm starts with an initial
estimate and modifies it to agree with the observations
in a general least-squares sense via the Gauss-Markov
Theorem (Luenbuger, 1969). This scheme is closely
related to traditional Optimal Interpolation and
variational techniques (Daley, 1991). The AW analysis
consists of only the 10 km analysis fed RUC-1 on the
hour, and near real-time ACARS wind reports. Due to
the RUC-1 3-hour run cycle and model run time, the
3-5 hour RUC-1 forecasts are used.

3. FLIGHT TEST RESULTS USING RUC-1
As part of an overall NASA effort to research and
develop integrated user (FMS) and ATM (CTAS)
systems (Denery and Erzberger, 1995), a series of flight
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tests were conducted at the Denver Center in 1992
(phase I) and 1994 (phase II). These tests were
conducted to validate airborne and ground-based
(ATM/CTAS) trajectory prediction accuracy, identify
and measure major sources of trajectory prediction
error, and explore procedures for the integration of
FMS and CTAS decision support tools for arrival traffic
(Williams and Green, 1998, and reference ATM-2000
abstract 84). A key finding of those tests was that wind
prediction error was the greatest source of error for
trajectory predictions on the order of 20 minutes time
horizon (critical to ATM DST advisories for conflict
prediction/resolution and conformance to flow-
rate/metering constraints).

Phase I involved 24 test runs conducted over five
flights over five days. The phase II test involved 26 test
runs conducted over five flights over seven days. Each
test run involved a 100-200 n.mi. arrival path including
a cruise segment (FL350 or 330) followed by a descent
segment (to 17,000 or 18,000 ft) to the Denver terminal
area. The phase I test involved arrival runs from the
northeast standard arrival route (arrival course of 237
degrees true), while the phase II test involved arrival
runs along the northwest standard arrival route (initial
course of 090 degrees true followed by a turn to 145
degrees true approximately 30 n.mi. prior to the end of
the test run at the terminal-area boundary). Typical test
flights included 5 runs over approximately 3 hours.

Wind prediction errors were measured, recorded, and
analyzed in the following way. CTAS, the ATM DST
ground system used at the Denver Center, received 3-hr
updated forecasts of winds aloft from the MAPS (the
RUC-1 prototype system) operated out of NOAA
(Boulder CO). CTAS converted the MAPS data into
local Denver-Center system coordinates and
interpolated the data to determine the predicted winds
aloft along a CTAS-predicted flight path. These CTAS-
interpolated winds aloft along the path were recorded
for each test run. The actual winds were measured and
recorded (once per second with smoothing) on board
NASA’s Transport Systems Research Vehicle (TSRV)
B737 test airplane using GPS for inertial velocity and
the flight-test air data system for air-mass velocity. The
wind speed errors were analyzed along each test-run’s
path.

The measured winds of sample phase I and phase II
flights are presented in figures 1 and 2, respectively.
The winds along path are presented in terms of
component speeds (knots) in the true north and east
directions. For consistency between runs, the data are
presented as a function of pressure altitude, with
samples at discrete levels. Data from the multiple runs
of each flight are combined into a mean and standard
deviation of wind speed at that altitude. Data for the
cruise altitude include all samples taken at cruise during

the run whereas data for lower altitudes include a single
sample for each run as the flight passed through that
altitude. Figures 1 and 2 illustrate a relatively large
variation in the winds aloft between flights with some
variation within a flight (across multiple runs).
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Figure 1. Measured winds from the phase I test.
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Figure 2. Measured winds from the phase II test.

The measured/analyzed wind prediction errors are
presented in figures 3 and 4, for phase I/II, respectively,
using a similar format. Figure 5 presents a composite of
the wind errors (mean and standard deviation) over all
runs for each phase. Figures 3 and 4 indicate a fair
amount of variation in mean wind error from one flight

to another, with small variation across the test runs
within a flight, as well as variation with altitude. In
many cases, the errors exceed 20 knots, particularly in
cruise where the error will accumulate over the time
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Figure 3. CTAS wind model errors from the phase I
test.
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Figure 4. CTAS wind model errors from the phase II
test.

horizon of a typical trajectory prediction. In particular,
the test runs within flight 732 (phase II) consistently
experienced cruise wind errors on the order of 60+

knots. This was attributed to a frontal passage in the
general area that was incorrectly forecasted.

These flight test results reveal the existence of “large”
wind prediction errors that may be detrimental to the
performance of an ATM DST. Although these errors
typically occur in scales of space and time that are
critical to the performance of an ATM DST, they have
little effect on classic wind prediction skill metrics such
as aggregate RMS error computed over large spatial
and temporal intervals.
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Figure 5. Composite CTAS wind model errors.

4. METRICS FOR LARGE ERRORS
For ATM-tool applications, typically involving time
horizons of 20-40 minutes, trajectory prediction errors
in excess of 20-30 seconds may be disruptive and
decrease the efficiency of ATM service (Green and
Vivona 1996, Paielli and Erzberger 1996). In defining a
metric for peak errors, it is useful to consider that the
FAA standard for en-route radar-separation is 5 n.mi.
under Instrument Flight Rules. A 15 kt (~7.7 m/s) mean
error in along-track head wind component, over a
20-minute trajectory prediction, will result in a 5 n.mi.
error in predicted position. For conflict prediction,



- 6 -

trajectories are along different directions, and two
trajectories will have different prediction errors. In the
worst case of aircraft converging from opposite
directions, the errors will be of opposite sign and much
smaller mean along track errors may lead to poor ATM
DST performance.

While headwind error is the most appropriate wind
error to study if examining time-to-fly (TTF) errors for
a given aircraft, it is easier to examine the magnitude of
the vector error as this is independent of any knowledge
of specific trajectories. Given a wind vector error, an
aircraft flying perpendicular to the error vector will
experience no headwind error. An aircraft flying
parallel to the error vector will experience a headwind
error equal to the magnitude of the error vector.
Averaged over all directions, the mean headwind error
will be the magnitude of the error vector times 2/π Thus
a 15 kt headwind error is roughly equivalent to a 20 kt
(~10m/s) vector error.

An ATM DST that provides active advisories (i.e.,
specific clearance suggestions for conflict resolution
and flow-rate conformance), must provide high quality
advisories at nearly all times. Even the occasional
occurrence of incorrect advisories may not be
operationally acceptable to controllers using the DST.

Standard measures of wind prediction accuracy are
averaged over large periods of time and airspace.
Alone, such aggregate metrics are not enough to
determine the suitability of a wind-field prediction for
for use by an active ATM DST. Most wind prediction
systems provide adequate on-average performance
since most of the time, over most of the airspace, the
wind is only slowly varying and thus is easy to predict.
However, as shown in the flight tests, unacceptably
“large” wind errors (i.e., errors greater than 10 m/s)
may exist over smaller periods of time and regions of
airspace than have been typically studied in the
meteorological literature. These large errors, potentially
unacceptable for active ATM DST operations, are
simply drowned out in the classical aggregate statistics
typically used to assess the skill of wind-prediction
systems.

Three types of metrics are introduced in this study to
capture and quantify large errors. The simplest metric,
large point error percentage, simply quantifies the
percentage of wind vector errors larger than some
value, for example 10 m/s. A second type of metric is to
compute percentile values of the magnitude of wind
vector errors. These percentile values give a probability
distribution. The probability distribution has the
advantage that no threshold is set in advance, each user
of the data can choose their own threshold. While large
point errors, for example caused by strong small-scale
winds, will have little effect on time-to-fly estimates,

the reduction in large point errors is a useful measure of
improvement of wind prediction skill relative to ATM
DST use.

A third type of metric, large hourly error percentage, is
more directly related to ATM DST performance. This
metric is based on the frequency of occurrence of large
errors in temporal and spatial domains of interest to
ATM automation, rather than the frequency of large
point errors. While a large point error by itself will not
cause a problem, a collection of such errors along a
flight path will. The data are not dense enough in
general to look at errors along individual flight paths.
Instead, the 25th percentile, 50th percentile, and 75th
percentile error for the wind fields on an hourly basis is
used. If the 25th percentile hourly error is greater than
10 m/s, then 75% of all the errors measured in that hour
are greater than 10 m/s. Given most of the errors in an
hour are greater than 10 m/s, it is likely that the wind
field for that hour would lead to poor ATM DST
performance. If the 75th percentile error is large, only
25% of the reported errors in that hour are large, but if
these errors tend to be located in one region of the
airspace they may cause poor ATM-DST performance.

5. METHODOLOGY
To determine wind field accuracy, the wind fields are
compared to a data set of independent ACARS wind
measurements. More than one million ACARS reports
collected during a one-year period (12 months for
MIT/LL and 13 months for FSL) starting 1 August
1996 are used. These ACARS reports are collected in a
region approximately 1300 km on a side that is centered
on the Denver International Airport. Each ACARS
report is independent of the RUC forecasts valid at the
time the ACARS report was taken since it is taken after
the data collection period for the RUC run. Similarly,
the ACARS reports are independent of any AW field
generated before the ACARS are taken.

The FSL results are obtained by differencing the
ACARS reports with the RUC-1 and RUC-2 forecast
fields nearest in time. The Lincoln results are obtained
by taking the difference between each ACARS report
and the most recent prior AW field and the difference
between each ACARS report and the RUC-1 forecast
used in that AW field. The wind field value at an
aircraft location is computed from the gridded values
using linear interpolation in three dimensions. The
differences between ACARS and wind field values are
estimates of the point errors in the wind fields and are
used to compute the desired statistics.

The spatial distribution of the ACARS data is shown in
figure 6. These data are from May 1st, 1997, the day
United Airlines began rapid ascent and descent
reporting in support of this study. The increased
reporting continued through the remainder of the study
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period. Data prior to this have a similar distribution but
are less dense, with about 3000 reports per day instead
of about 8000. Most of the reports are at cruising
altitudes, with two thirds of the reports associated with
the grid levels at 200 mb and 250 mb. Approximately
11% of the reports are associated with levels at 300 mb
and 350 mb. The remaining reports are roughly
uniformly distributed among levels from 400 mb to
800 mb.

Figure 6. Distribution of ACARS reports on 1 May
1997. This day has 8125 ACARS reports. This is after
United Airlines increased their reporting rate.

For these studies it is important to model the errors
expected to be encountered by an ATM DST in
computing time-of-flight as opposed to modeling
random errors throughout the entire airspace. This is
done by simply assuming that the distribution of
ACARS in these studies is the likely distribution of
aircraft an ATM DST will encounter. This means the
reported accuracy statistics are not quite measures of
the overall accuracy of RUC or AW. For example,
these studies show that wind errors are greater at higher
altitudes. Since there are more ACARS reports at
higher altitudes, this tends to elevate the estimates of
the RMS error in the wind fields relative to a uniformly
distributed sample of errors. Conversely, there are more
ACARS reports in regions where RUC and AW have
dense data, perhaps reducing the error estimates.

6. RESULTS
FSL found a RMS vector error of 5.26 m/s over all 0-6
hour RUC-1 forecasts, and a RMS vector error of
4.67 m/s for the same forecasts for RUC-2. These
values are corrected for the errors in the ACARS
reports, and cover 13 months, doubling up on August.
Lincoln found a RMS vector error of 6.24 m/s for
RUC-1 3-5 hour forecasts and a RMS vector error of
4.51 m/s for the AW fields generated from these RUC-1
forecasts. These values are corrected for ACARS
errors, and cover 12 months. A 16-day set of data were
rerun using AW fed RUC-2 instead of RUC-1. The
improvement due to AW over RUC is essentially the
same using either RUC-1 or RUC-2, so the

improvement presented for the year long AW data set
should represent the AW improvement over RUC-2 as
well as over RUC-1. While there is a reduction in RMS
error due to the improvement in the RUC model and
due to the augmentation with near real-time ACARS
reports, all of these values are well below 10 m/s.
However, significant errors exist within individual
forecasts.

Figure 7 shows the percentage of point errors for RUC-
1 and RUC-2 that are greater than 10 m/s on a month by
month basis over 13 months, starting August 1996. The
RUC-1 forecast fields are for predictions out 3-5 hours
as the forecasts are not available prior to hour three
after the start of the model run. The RUC-2 forecast
fields for hours 1 and 2 are used, as these are available
before an hour after the start of the model run. The
percentage of large errors increases in the winter,
corresponding to the increase in wind speed. Due to the
combination of shorter forecast times and improved
RUC, the RUC-2 produces far fewer large point errors
than RUC-1, 8% vs. 3%, respectively.
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Figure 7. RUC Monthly RMS vector errors greater than
10 m/s.

Figure 8 provides probability distributions for RUC-1
and AW over the entire data set. For example, the 90th
percentile wind vector errors are 10.18 m/s and
7.85 m/s, respectively. When the data are analyzed
from the point of view of the large point error
percentage metric, the figure indicates that RUC-1
forecasts contain vector errors greater than 10 m/s about
11% of the time, the AW enhancement reduces that
occurrence to 4% of the time.

Table 1 presents results for the same data set, but using
the third metric, large hourly error percentage. For
comparison, the results are presented in terms of the
25th, 50th and 75th percentile hourly-vector errors.
Considering the 25th percentile division, it is seen that
there are 42 hours during the year when 75 percent of
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the RUC-1 vector errors exceed 7 m/s. These 42 hours
are evenly divided between nighttime and daytime and
usually occur as isolated hours. The results indicate that
the AW enhancement reduces this number to five
hours. There are no hours when 75 percent of the RUC-
1 vector errors are greater than 10 m/s. Considering the
50th percentile division, the AW enhancement reduces
the number of hourly vector errors greater than 7 m/s
from 829 (RUC-1) to 124. Even more significant is the
reduction of the number of hourly vector errors greater
than 10 m/s from 46 hours to one. These 46 hours were
also evenly divided between nighttime and daytime and
usually occur as isolated hours. Having large errors
even over 25 percent of a forecast region is potentially
of operational concern if these errors are sustained
along a flight path rather than randomly distributed.
The AW enhancements resulted in similar
improvements over RUC-1 for the 75th percentile
division, but what is most notable is the reduction in the
number of hourly vector errors greater than 15 m/s from
45 to 8. Again, these 45 hours are evenly divided
between nighttime and daytime and usually occur as
isolated hours.

Figure 8. RUC and TW cumulative probability vs.
vector error.

Table 1. Number of hours with hourly Nth percentile
vector errors above given thresholds.

Results are for 7023 hours.
Variable >7m/s >10m/s >15ms

RUC-1 25th percentile 42 0 0

AW 25th percentile 5 0 0

RUC-1 50th percentile 829 46 0

AW 50th percentile 124 1 0

RUC-1 75th percentile 4160 834 45

AW 75th percentile 1913 203 8

7. CONCLUSIONS
Large wind errors (i.e., vector errors greater than
10 m/s) may be detrimental to ATM DST performance,
especially if they persist along flight paths. Flight test
results have demonstrated the existence of such large
errors that are not captured by the classic RMS
aggregate statistics typically used to assess the skill of
wind-prediction systems.

Three types of metrics for measuring large errors were
introduced. The first looks at the percentage of point
wind vector errors greater than a threshold. The second
type uses percentile values of the wind vector error, or
the related probability distribution for wind vector
errors. The last type is based on having a percentage of
h errors above a threshold.

Two approaches to improving wind field accuracy,
improving the numerical model, and updating forecasts
with near real-time aircraft reports, were examined in a
yearlong study of wind-prediction accuracy over the
Denver Center airspace. Both approaches not only
improved the overall aggregate RMS performance, they
also greatly reduced the occurrence of large errors as
measured by each of the three metrics. An additional
analysis of a representative subset of sixteen days
demonstrated the potential performance enhancements
of combining both approaches simultaneously. The
parameters that govern the AW algorithm were updated
based on what was learned in this study. With the
updated parameters, the improvement in RMS vector
error of the augmented winds is essentially the same for
both RUC-1 and RUC-2, so we feel that the above
results for AW are relevant to use with the current
operational RUC model. In other words, although
RUC-2 provides a significant performance
improvement over RUC-1 itself, an AW enhancement
of RUC-2 adds additional performance on par with the
AW enhancement of RUC-1.
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