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2.7              THE USE OF THE GAUSS–MARKOV THEOREM IN WINDS ANALYSIS*�

Rodney E.  Cole

MIT/Lincoln Laboratory
Lexington, Massachusetts

1. INTRODUCTION

The FAA and NWS have deployed a number of atmo-
spheric sensing systems near major airports.  Traditionally,
systems have been developed to use data from a single
sensor.  The FAA’s Integrated Terminal Weather System
(ITWS), currently in production, integrates the information
from a number of weather sensors to provide more accu-
rate and more consistent weather information for use at air-
ports.  This system will improve safety and efficiency of air-
port operations (Evans and Ducot, 1994).  Another airport
specific meteorological data fusion effort is underway for
NASA’s Aircraft Vortex Spacing System (AVOSS) (Dasey
and Hinton, 1999).

Wind information is of particular importance in three
areas: aircraft control, both by automation systems and by
human controllers; storm evolution predictions; and adap-
tive spacing for wake vortex avoidance.  There currently
are a number of sources of wind information in the airport
region: Doppler weather radars, surface anemometers,
aircraft reports, and wind predictions from numerical
weather models.  It is the great abundance of Doppler data
that drives the development of our winds analyses.  Addi-
tional sensors are available at testbed sites such as the
Dallas/Ft.  Worth (DFW) airport: sonic wind profilers (SO-
DAR), Doppler radar wind profilers, and an instrumented
tower.  The requirements for accuracy, timeliness, and in-
formation content for each use are different, so user specif-
ic algorithms must be developed.

A state–of–the–art analysis technique for producing
gridded fields from non–Doppler meteorological data anal-
ysis is Optimal Interpolation (OI) (Gandin, 1963, Daley,
1991).  Optimal Interpolation is a statistical interpolation
technique that under certain hypotheses gives an un-
biased minimum variance estimate.  Differences between
the observations and the initial estimate at the observation
location are computed (�j  for the jth observation).  The �j
terms are averaged in a least square sense to form a per-
turbation field which is then added back to the initial esti-
mate.  If the observations, as has traditionally been the
case, are sparse relative to the desired resolution of the
wind analysis this provides a method to adjust the overall
wind field without smoothing over the structure in the initial
estimate, which would occur if the sparse data were ana-
lyzed directly.  This method ties the errors in the output field
to the errors in the initial estimate, which is a reasonable
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trade–off when data are sparse.  Standard OI implementa-
tions require observations of the full horizontal wind vector,
which Doppler radars do not provide.

In traditional multi–Doppler wind analysis, radars are
sited so that they cover the region of interest with signifi-
cantly different viewing angles (Armijo, 1969).  At a given
location, each radar then provides an estimate of a differ-
ent wind component.  If two radars are used, a simple
change of coordinates results in an estimate of the hori-
zontal winds at that location in standard eastward (u) and
northward (v) components.  If three or more radars are
used, the resulting system of equations is overdetermined,
and the horizontal wind can be estimated using least
squares techniques.  When the geometry is good, and
each radar has sufficient return power, the resulting wind
estimates are very accurate.  However, at locations without
returns from at least two radars, this method can not be
used.  At locations where the radars are looking in nearly
the same direction the solution to the equations is numeri-
cally unstable, and the method again can not be used.  An
operational system using existing radars cannot count on
good Doppler returns where they are desired, nor can the
system count on favorable radar siting.

We apply the Gauss–Markov Theorem (Luenburger,
1969) to develop a set of analyses to jointly analyze both
vector quantities and single component quantities (i.e.
Doppler measurements).  The ITWS Terminal Winds (TW)
gridded analysis provides a smooth transition between an
analysis of differences from the initial estimate in data poor
regions to a direct analysis of data in data rich regions.  It
is the ease with which the Gauss–Markov Theorem allows
for such properties that motivated its use.  This technique
provides a new capability which is important since increas-
ing numbers of Doppler weather radars are being
deployed.

These analyses account for the differing errors in the
wind information and the correlations among these errors.
Highly correlated errors arise frequently due to the nonuni-
form distribution of data from the Doppler radars.  If these
correlated errors are not accounted for, these data domi-
nate the analysis to a degree greater than is warranted by
their information content.

2. THE GAUSS–MARKOV THEOREM

In order to apply the Gauss–Markov Theorem, we
need to pose the problem in the form

(1) Ax = d,

where x is the unknown wind vector, d is the data vector,
and A is a linear transformation of the space of unknowns
into the space of observations.  In our applications, the
components of the vector x are the eastward wind com-
ponent u, the northward wind component v, and may also
contain the spatial derivatives of these wind components.
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The vector d contains the wind information to be ana-
lyzed: observed wind components and information from
previous analyses or from numerical weather prediction
models.

The Gauss–Markov Theorem states that the linear
minimum variance unbiased estimate of x is given by

(2) x = (ATC–1A)–1ATC–1d,

if each element of d is unbiased, and C is the error covari-
ance matrix for the elements of d.  The error covariance
of the solution is

(3) (ATC–1A)–1.

While we are primarily interested in solving a vector
problem, under certain conditions the wind vector problem
reduces to two scalar problems, and some variables are
intrinsically scalars.  In the case that x is a scalar, the solu-
tion is especially simple.  Let W be the matrix C–1.  The ma-
trix A is a column of ones.  Solving equation 2 we see that
each value dn  gets a weight equal to the sum of the values
wij  in the nth column divided by the sum of all values wij , and
the value in equation 3 is just one over the sum of all wij.

3. TW INTERPOLATION TECHNIQUE

The technique used in the TW gridded analysis is ap-
plied independently at each grid point and has the follow-
ing properties:

1. The analysis produces multi–Doppler quality winds  in
regions where multi–Doppler analyses are numerical-
ly stable.

2. The analysis is numerically stable in regions where
multi–Doppler analyses are not numerically stable.

3. The analysis produces near multi–Doppler quality
winds in small gaps in multi–Doppler radar coverage.

4. The analysis directly analyzes data in data rich re-
gions and analyzes differences from the initial esti-
mate in data sparse regions.

5. The analysis produces smooth transitions between
regions with differing density of data.

Throughout this section we use the following notation:

� r denotes a radial wind component
� u denotes an east wind component
� v denotes a north wind component
� superscript i denotes a initial estimate quantity
� superscript o denotes an observed quantity
� subscripts denote location, o denoting an analysis

location

In order to apply the Gauss–Markov Theorem, we
need to pose the problem in the form of equation 1, where
x = (uo, vo)T is the unknown horizontal wind vector and d
contains the initial wind estimate and information derived
from observations in a window centered on the analysis
location.  The size of the data collection window adjusts dy-
namically based on local data density.  The form of the ma-
trix A depends on the number and type of data, vector and/
or radial, to be analyzed.

When the data window contains vector observations
and Doppler observations, in addition to the initial esti-
mate, equation 1 has the form:
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where rows 3 and 4 repeat for each observation of a hori-
zontal wind vector and row 5 repeats for each Doppler
observation.

The terms of the form (f i
m–f i

o)  are estimates of the dis-
placement error in the variable f  that arise from taking a
measurement at location m and using that measurement
as an estimate at location o.  The displacement error is just
the change in f  between the location of the observation
and the analysis point.  The actual change is not known,
so it is estimated from the initial estimate of the field f.  The
initial estimate of the radial component is computed from
the initial estimates of u and v.  The resulting estimates of
the form f o

m –(f i
m–f i

o ) are unbiased estimates of the variable
f at the analysis location provided the observations are un-
biased relative the observation locations.  This is true even
if the initial estimate has a bias, since differencing the initial
estimate removes the bias.

In data rich regions, a small data window is employed,
resulting in small displacement distances.  This, coupled
with the fact that the initial estimate is smoothed prior to ap-
plying the Gauss–Markov Theorem, causes the displace-
ment error terms to be near zero in data rich regions; the
observations in data rich regions are analyzed directly.
This allows the analysis to incorporate the full richness of
detail in the observations and de–couples the errors in the
output field from the errors in the initial estimate.  In data
poor regions large data windows are used and the dis-
placement terms come into full play.  While the form of the
analysis using the displacement error corrections is differ-
ent from the form classical OI takes, it is equivalent: each
is simply a different method of solving the same least
squares problem, assuming a consistent set of error mod-
els.

Unlike the multiple Doppler analysis, the TW analysis
is always numerically stable due to the inclusion of the ini-
tial estimate wind.  The inclusion of a (u,v) data point pro-
vides two component estimates at right angles, giving a
maximum spread of azimuth angles.  Since the Doppler
data are usually much more numerous than the other data,
the TW solution closely matches the multiple Doppler solu-
tion at locations where the multiple Doppler problem is well
conditioned.  Otherwise, the analysis gives a solution that
largely agrees with the radar observations in the compo-
nent measured by the radars.  The remaining component
is derived from the vector estimates.  A detailed compari-
son to the stability of dual doppler techniques is given in
(Cole and Wilson,1994).

In practice, the error covariance matrix C is not known
and must be estimated.  There are two types of errors to
estimate.  The first is the error that arises from imperfect
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sensors or an imperfect initial estimate.  The second is the
error due to an imperfect correction of the displacement er-
ror.  Our error models are based on the following simplify-
ing assumptions:

1. Observations are unbiased.

2. Sensor errors from different observations are uncor-
related.

3. Errors in u and v components, observed or initial esti-
mate, are uncorrelated.

4. Displacement errors and sensor errors are uncorre-
lated.

5. Displacement errors are functions solely of the hori-
zontal, vertical, and temporal distance of the observa-
tion from the analysis point.

These assumptions are found to hold relatively well
for our data sets.  With these assumptions, the error covari-
ance matrix C decomposes into the sum of a sensor error
covariance matrix and a displacement error covariance
matrix.  The sensor error covariance matrix is diagonal,
and the sensor error variances are well known.  Note that
if only wind vector observations are used, assumption 3
leads to a system that decomposes into two scalar sys-
tems, each with the same error covariance matrix.

The displacement error covariance model for two
non–orthogonal, non–parallel components must take into
account the angle between the two components.  We de-
note the angle between the observed component and the
u axis by �, with east at 00, and north at 900, and the dis-
placement error in observation j by �j .  Then the displace-
ment error covariance for two observations is given by the
following equation:

(5)   Cov(�1,�2) = cos(�������Var(�1)Var(�2)]1/2Cor(�1,�2)

4. DOPPLER WIND PROFILES

The Gauss–Markov Theorem is also used to analyze
Doppler data surrounding a radar to produce wind profiles.
A Doppler Profile Analysis (DPA) is part of the real–time
wind profiling system operational in DFW in support of a
NASA wake vortex effort (Matthews and Denneno, 1999).
In this system, data from two FAA Terminal Doppler Weath-
er Radar (TDWR) are used to produce two wind profiles
with the winds computed in headwind and tailwind compo-
nents.  These profiles have a vertical resolution of 50 m
and an update rate of 5 minutes.

Each DPA uses data from only one TDWR.  Data are
collected around the radar at a fixed altitude from multiple
elevation angles and the Gauss–Markov Theorem is ap-
plied.  Since there is no gridded initial estimate from which
to compute displacement errors, these correction terms
are not used.  The result is then an average wind over the
data collection region as required by the AVOSS.

The numerical stability and the inherent quality esti-
mates (equation 3) make this an attractive method for pro-
ducing Doppler wind profiles.  The NASA wake vortex sys-
tem requires not only estimates of the horizontal winds, but
also estimates of the expected variance of the winds from
these estimates over (nominally) the next 30 minutes.
Once the estimates are made it is straight forward to esti-

mate the variance of the observations about each wind es-
timate.  This variance is computed for a spatial window cor-
responding to a temporal average of 30 minutes.  Since
only Doppler data are used, this variance is a mix of the
wind variability over all component directions; indepen-
dent wind variability estimates for headwind and tailwind
are not provided.  The Gauss–Markov Theorem provides
estimates of the error variance of each wind component.
Since the error variances of the wind estimates and the
wind variability are independent, their sum gives the de-
sired estimates of the expected variances of the wind com-
ponents about the wind estimates.

5. COMPUTATION OF WIND FIELD DERIVATIVES

A follow–on ITWS product is the prediction of convec-
tive storm evolution.  This is an important product for im-
proving traffic flow and planning.  Divergence in the sur-
face wind flow plays a key role in understanding storm
evolution.  Negative divergence, or convergence, indi-
cates an updraft and increasing storm intensity.  Converse-
ly, a positive divergence in the surface flow arises from the
storm core descending and a decrease in storm intensity.
This gives rise to the need for a winds analysis that pro-
vides estimates of the spatial derivatives of the horizontal
wind components.

The Initial Operating Capability (IOC) ITWS TW analy-
sis was not tailored to modeling the surface flow; air traffic
control is concerned with winds above the surface.  The
IOC TW analysis was tailored to minimize the error in the
wind vectors, but was not tailored to minimize the errors in
the derivative fields.  A new version of the TW analysis is
in development to estimate jointly the horizontal winds and
the spatial derivatives of the horizontal winds, while mini-
mizing the errors in the wind vectors and the errors in the
derivatives.

Storm induced gust fronts, the outflow of cold air from
thunder storms, are a primary source of surface conver-
gence.  While IOC TW does capture gust front signatures,
the locations generally lag behind the actual locations due
to temporal smoothing.  The spatial smoothing causes the
estimated magnitude of the convergence to be biased low.
The IOC ITWS has a gust front detection algorithm that
provides the location and velocity of gust fronts.  This in-
formation will be used to project the initial estimate wind
field forward in time to the analysis time, to appropriately
adjust the error models used in the spatial smoothing (the
displacement error models for horizontal displacements
and temporal displacement), and to notify the analysis to
use small data windows near the frontal boundary to avoid
smoothing across the front.

A simple approach to estimating the spatial deriva-
tives would be to take the difference of adjacent grid points
and divide by the distance between them.  This is problem-
atic; if the same, or nearly the same, input data are used
at the adjacent points their difference results not in an esti-
mate of the change in wind between the two points, but a
weighted difference of the error models used in the analy-
sis.  The resulting derivative estimate is then highly depen-
dent on the error models.  Averaging data to a grid point
leads to a loss of precision in the location of the data.  This
in turn leads to poor derivative estimates since the change
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in wind values is divided by the distance between grid
points, not the distance between observations.

A better approach is to estimate the derivatives direct-
ly from the data.  The advantage is much less dependence
on the error models used, the derivative estimates are al-
ways based on independent data values in an appropriate-
ly sized data window, and it removes the need for the dis-
placement error correction terms used the IOC TW
analysis.  It also allows for a direct estimate of the errors in
the resulting derivatives.

Now, when the data window contains vector observa-
tions and Doppler observations, in addition to initial esti-
mates of the parameters being estimated, equation 1 has
the form:

(6)
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where rows 7 and 8 repeat for each observation of a hori-
zontal wind vector and row 9 repeats for each Doppler
observation.

The unknowns are u, v, ux , uy, vx , and vy , where the
subscripts denote derivatives.  The terms �xo and �yo are
the known distances between an observation and the
analysis location, and cn  and sn  are the cosine and sine of
the nth radar observation azimuth angle.  Terms of the form
fx�x + fy�y estimate the change in the field f between the
observation location and the analysis location, and are
analogous to the displacement error correction terms used
in the IOC TW analysis. However, they are now estimated
in the least–squares process using, in part, current ob-
servations. Thus they adjust more readily to changing
conditions.

Rows 3–6 can be dropped from equation 6 if three or
more initial estimate winds are included.  The benefit of
having the initial estimates of the derivatives is that this
preserves peaks in their values, whereas substituting grid
values tends to smooth peaks.  The benefit of substituting
grid values for the initial derivative values is that this elimi-
nates complicating interactions of the models for wind er-
rors and models for derivative errors.  It appears that while
it is theoretically appealing to use the initial estimates of the
derivative, from a practical perspective, the use of grid
wind values instead results in a better analysis.

6. COMPUTATION OF LARGE SCALE FEATURES

The TW system uses the Gauss–Markov Theorem to
perform an analysis local to a grid point.  In the current TW
system, at a point with poor radar geometry and only
Doppler data, the output wind estimate is largely an aver-
age of the local Doppler values in the component mea-

sured by the radars with the remaining component esti-
mated from the large scale model used to initialize the
analysis.  The larger scale information in the Doppler data
is not considered.

We are working on a extension to the TW system that
uses the Gauss–Markov Theorem to compute wind esti-
mates at a very large scale followed by successive refine-
ments.  At each step the data are divided into smaller do-
mains and the previous estimates are used to initialize the
next refinement.  This allows for much better utilization of
the Doppler data.  We are currently working on an algo-
rithm to incorporate the ITWS gust front detections so that
the division of the data results in domains that do not cross
gust front boundaries, thus retaining these features in the
final analyses.  The initial versions of this enhancement to
the TW algorithm show great promise.

7. CONCLUDING REMARKS

The Gauss–Markov Theorem is a powerful tool for
analyzing winds from multiple data sources.  In particular,
the Gauss–Markov Theorem handles Doppler data in an
elegant fashion.  Doppler data can be analyzed without
transformation into problematic vectors.  The Gauss–Mar-
kov Theorem takes into account varying quality of ob-
servations and the correlations in observation error.  This
later point is especially important when using Doppler data
which is often nonuniformly distributed.  The Gauss–Mar-
kov Theorem is also ideally suited to estimating wind field
spatial derivatives.

We have built a number of real–time wind analysis
systems based on the Gauss–Markov Theorem, one of
which (ITWS Terminal Winds) is in production for the FAA.
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