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can only k provided in those regions with nearby da[a. What

constitutes “nearby” depends on tbe spatial md tenlporal scale

of the feature to k captured in the malysis. me refinenlenl of

the broad scale wind field is accomplished by averaging the

mtiel forecast withcumentdala.This allows the analysis totran.

sition gracefully from regions with a large numkr of obsewa.

tions to regions with vew few obscwations or no obsewalions

at all, and enables the malysis to cope gmcefully with unex-

pected changes to the suite of available sensors.

To account for the different scales of wind features and tbc

differing Rsolution of tie in fomalion provided from the vari.

oussensors, tbe malysis employs acascade+f–scale s.~iscas-

cade+f–scales uses nes[ed gfids, with an analysis witi a 2 km

horizontal resolution and 5 minute update m!e nested witiin m

analysis with a 10 km horizontal resolution md 30 minute up-

date m!e, which in turn is nested within the MAPS forecast witi

a 60 h horizontal resolution and 180 minute update rate. All of

the data sources Ue used in tie 10 km analytis, and data we al-

lowd to & as old as 90 minutes. Only fbe in fomlation fronl the

Bppler mdam ad LLWAS are suitable for the 2 km malysis.

This cascade+ f-scales is appropriate for the scales to h cap

turedhthemalysis, the diffe=nt scales of in fomation, and pro-

vides a unifom level of refinement at each step Of [be cascade

(as shown k Table l). An additional &nefit is that the 10 h

malysis acts as a stmd h for the plmed 10 h RUC foruast.

When a 10 km national forecat kcomes available, the 10 h

~S malysis cm k dropwd.

Table I: Scales of malysis for MAPS md Teminal Winds

“@[c botio”d domtin

~a size
MAPS 180 tin ~ km “at ioti
T.* I Wm&abve PBL 30 mh 10 h 25ti250 h

Temhal Wm&ti PBL 5 mh 2 km :2ti120km

h imponmt god is to minimize the emor of tie mdyzti

wind field. To achieve this god we develo~ m malysis tech-

niquecsfled Opttialfittiation. OEisalemtsqumstatique

designed 10 joiotly avenge bth v~tor qumtities md shglc

com~nent qumtities. Wvious stattif~+m OFmtiOnti

wtids msfysis systems have usd sbtistical tahiques to great

advmmge. However, none h= fhe ability to malyze dkutfy the

data from Dppler mdm. Optid fitfiation provides a new

capability which is hp~t stice haeashg numkrs of

~ppler weather rtim a khg deployd.

The OE mstysis accounts for the d~ering quality of lhe

wind itiomation, as well % enors tistigfrom&ts age md us-

ingdataat l~ations =movti from the Imation at wtich tiedats

were collmkd (displacement emon). ~e mtiysis also comw~

for comelated emm h a sfiilw manner to Gptim8f lnte~la-

tion. Highly conelatti displacement enon ~se fquentiy due

to the nonutifom distribution of dsfs from the kppler ratis.

If the% comlaed emos a not acwmkd for, these dsta domi-

nate the analysis to a gmaterdegrti tim is wmtd by tick h-

fomation content,

3.1 Termiwl Wi,tis i“lerpol.lion Technique:

Opliml Es fi”nrion

TbeTeminal Winds analysis isdornina[ed by Doppler radar

data. In regions with coverage by two or more radms, the Ternli -

nal Winds system should provide winds with at least the quality

of a traditional multiple Doppler analysis. The sute+f–tbe–an

analysis technique for non–Doppler meteorological data anaty -

sis is Oprinlal Interpolation. Optimal Intevolalionis astatisl ical

interpolation technique that under cenain hypotheses gives m

unbiased nlinimum v~imce estimate. We wish to build on the

foundation laid dow by bth the multiple ~ppleranalysis and

statistical intewlation techniques.

We have developed an unbiased minimum enor vaimce

techique !hat utili7.es Doppler measurements directly. We call

this technique Op!imal F~timation (OE) to distinguish it from

Optimal lnte~olation. The initial fwus isonmalyzinghorizon.

tal wind dala to a thrw dimensional grid. however, lhe nlelhti

aPP]ieS to other variables. The melhti is based o“ the Ga”ss–

Markov theorem (Luenburger, 1969), md under suitable condi-

tions gives m unbiased minimum enorvarianceesti nlate of the

horizontal winds. Optimal Etimation is m extension of btb

Optimal Interpolation and multiple [tippler malysis. It is the

ea% with which OE inco~mtes Mppler mdm data ha! moti. --

vates iti development.

OE hm the following pro~nies:

t.

2.

3,

~al ~ppler quality winds =e automatically

prduced in regions where dual kppter is nu-

merically stable.

Small gaps in dual bppler molar coverage xe

fillti to prtiuce ne=dual bpplerquality winds

in these gaps.

me malysis prtiuces smoofh timsitions k.

twmn regions with d! ffeting density of data.

~oughout this sxtion we use tie following nolatiox

. r denotes a radial wtid component

. u denotes m easl wind component

. v denotes a nofi whd component

. Supncript a denotes m mstyzd qumtiw

. su~rscript b denotes a background quantity

● suwrscript o denotes m obsewed qumtity

. sub=ipw denote Iwa[ion, odenotingm analysis

lmation

In order to apply the Gaus*Markov fheorem, we ned to

Pse the problem h the fom

& -d, where (1)

x - (u:, ~)T, is the unhom horizontal wind vector md

d- (u:, <, U;, v;, . ... U%, V%, <,..., .F )T

contsins tie background estimate at the mdysis l~ation, and

obsewatiom in a data window centeti on the malysis lwa-

tion. ~c fom of the matix A depnb on fhe t~ of data,

v=tor an~or radid, to & mdy=d. me Gauss–Mmkov thee

%m ststes hat the Ihw mhimum vtiance unbimed esthate

of (u:, M)T is given by

(.;, %)T - ( ArG]A)-lArC-ld, (2)
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if each elcnle”t of d is unbiased, a“d C is the cnor covaria”ce

matrix for the elements of d. ~e emor covxiance of the sol”-

tion is

(~7~.1~).1, (3)

Me” tie data window contains “t vector obsematio”s, a“d

n tippler obsewations, equation 1 has the fore:

,
10 .:

01 v:.,
.,
,,

10 ()u:
01 “. = :

0 .

CoSe, she,
<

.,

COS8. sin Q.
<

me “>inimum dam window covers a 3x3 grid point region so

frequently the dam window contains seveml &ppler values.

In pmctice, Cis not knom md must k estimated, mere m

tWO ly~s Of enon to estimate. ne fimt is the em~r ~a! ~~~~

from im~tiect sensom, me second is tie displacement enor

due to the measurement king ttien at some dismnce, in space

md time, from he malysis imation. Our initial emormtiels are

based on tie following simplifying assumptions:

1,

2,

3.

4.

s.

Obsewations are unbiased.

Sensoremo~ from different obsewat ions =e un.

comelated,

Emrs in u md v compnents, measu~d or back.

ground, Ue uncomlated,

Displacement emors md sensor emors me uncor-

relatti,

Displacement emom m hde~nde”t of the com-

pnent ktig mesud.

With these assumptions, the emor covmimce mati Cde-

compses tito the sum of a senwr emor avtimce matiti md

adisplacement emor wvtimm matix.~e ~nsoremorcovwi-

mce matix is diagond, md tie semor emr vtimces m

how. me ~mtig tik is tie esttiation of the displacement

enor covtimce mati,

~e initial displacement emor vtimce mtiel is a Iinm

function of the displa~ment &tw&n the obsewation lwation

md the mdysis Iwation. me initial displacement emorconela.

lion mdel fort wo like compnents is a dwmuing ex~nential

function of tie displacement &twWn two obsewation l~a.

tions. ~e displacement emor covtimce m~el for IWO no”-

ofiogonal, non-ptilel component must I&e htoawowt the

mgle ktwwn the two wmpnents, We denote the mgle &-

lw~n the o~wd compnent and the u uis by 8, with emt at

~, a“d “oti at ~, md tie displacement eror ti obsewatio”

i by d;,~c” tiedisplacement eworcovaria”ce fortn,oobsems.

tio”s is given by [he following equation:

COv(d; ,d;)-cos(O~ -@*)[Var(d;)Var( d;)] t/2Cor(d;, d;)

Unlike the nlultiple bpplcr analysis, [he OE analysis is al.

ways ““medically s(able due to lhe inclusion of the backgro. ”d

wind estimate. me inclusion of a (u,,) data point provides Iwo

conlponent estimales at righ[ angles, giving a maximum spread

of azi”)”th angles. Since [he emor variances of the kpplerda!a

are “s”ally n,”ch smaller than the emor variances of the other

data, the OEsolutio”ctosely matches lhemulliple Doppler sol”-

[ion at t~ations where the multiple Ikppler problem is well

conditioned. OtheNi se, tiemalysisgives asolution that largely

agrees with the radar obsew ations in tie componc”t measured

by lhe rad~s. Theremaining component is derived fromtht VCC.

101estimates. ~is feature of [he analysis is demonstrated in an

example blow.

3,2 A Comparison ofDual Doppler ati OE Awlyses

We con)pxe OE md dual ~ppler malyses at a point wi[h

coverage from two ndam todemo”s!rate their similwity, md to

demonstmte the numerical stability of the OE analysis, Were.

swicl our dtscussio” to tie case where we only have a back.

ground wind estimate and two bppler obsewa!ions at a fixed”-

analysis Imationas in Figure 1,~is situation holds for example

if lhe dab windon, only contains fbe malysis pobt,

I J
Figure 1: Analysis gwme~ for OWdud hppler compuison

me dual &ppler Wuations for this situation a

(4)

~e solution to quation 4 is

()=(u (r, + r2)/2 case
“ )(r, - r2)/2 she “

bt mDD md .EDD denote the enor in the u and v compe

nents of the dud bppler solution. kt a; denote the avenge of

the emor vaim~s for the two mdm, ~e dual ~ppler emor

vtimces, providd fhat the mb have uncomlatti emon, m

VtimDD)= o~/2cosz0, and

Vti V&Do) = o~/2sin28.

AS8 approaches zero, the emor ti the solution for v &omes

numerically unskble. To conwol this numerical hshbility the

angle htwmn mdw kms, B, is genemlly constined to k

greawr thm 3@.

—



\Vc usc [he assunlptions Iistti ahve regarding the enor

.Itiels. mat is, wc assume the emom in the” and. con>pncnts

of the background arc not comelated with each olher or the enor

in the radar measurements, md we assunle that the emors in the

radar measurements xe not conel ated. We also assume that the

cnorvariance is the sme foreach componenloflhe background

wind, andthat thcenorvxiance is the same foreachradar. ~esc

arc reasonable assunlptions if thetipplervalues are average (or

median) values over a fixed region sumounding the analysis

poin[, and the background is independent of the ~pplcr data.

me background is independent of [be bppler dam, for exam.

pie, if the background comes from a forecast mdel or is derived

from ticradar reflectivity fields. ~t u~dcnOte theerrOrvari”

mceofthe background compnents. ~is gives tbeemorcor-

relation matix

II

a;ooo

ou~oo

c-
000:0”

0000;

kte =o;/o; denote tierelative quality Ofthe~dar Ob-

semations vs. the background obsetiations. Qpically, e is k.

tween 10md20. ~en

rlooo>

0;00
C1-(l/ui)OOe O.

~OOeJ

With these assumptions, the OE solution is computed from

equation 2 giving

.: = au: t (1<)(~ + fi)/2cos0, and

~ = ~% + (t~)(fl –~)/2sinf3, where

~ = (1 t ~si”~o)/(1 + M t @>c0s10s~18),~d

p = (1 t @c0s28)/(1 t W t 4p2ms’0sin20).

The terns 1< md 1# mp~sent the fraction of the OE solu-

tion that is given by the solution to the dud hppler quations
for the u md v components. If a or ~ is xro the coms~ndhg
component of the OE solution is qud to tie dud Ooppler solu-

tion, md if a orb is 1 the a~s~n~mg cOmFnent Of tie OE

solution isqualto tie bwkfloundeslimate.

we see that if e is ve~ l~ge, i.e. the md~ emor Vtimce is

vev small relat ive to the emor vtime of the b%kground, md

0 is not ne~ zero, a ad ~ m neu mra OE is nmly dud

hppler. If 0-0, tbenp-i ~d a~. ad OEyetums a v cOmW-

nent equal to tie backgromd. In Ods Imt case, the u compnent

is tie stindmd least squxes wlution, the bckground md

~ppier values w weightd tiversely to thekvtimces, Figm

2 shows how l+ vties with the mgle ~tw=n the two mti

&ams (M) for different values of e. When the mgle is ~mter

thm shut 3@, OEmmms avdueforvtiat is pfitily the dud

~ppler solution. As the mgle da-ws blow 3@, tie weight
given to the v compnent of the dud Doppler solution &ops
q“ickty to zero, In fact, s 8 demeucs tO ~~.

(1..p)(f -<)/2 sin 0gms[07.crotremOving[hedual~Ppl?’

instatilily for smalt 6.

~~~~

O ‘IO 20 30 @ 50 60 ~OT90
20 (in degrees)

Figure 2: Weight given unstable dust Ihppler component
as a function of fbe angle &tween md~ kams.

~e emor variances for tbe OE solution, computd from

equation 3,Ue

Var(woE)= o~/(1 + @c0s2@), and

v21(tcOE) = 0:/(1 t QSin2@),

again demonstmting the numerical stability of the methd; the-

emor varimce of the OE solulion is bundti ahve by the emor

vwiance of the background. It is also easy to showf hat the emor

variances m. bundd abve by the dual hpplcremorvai.

antes giving:

Vafi tied ~ min(vti ‘DD)! v~ ‘EB)), and

vu( .&OE) < min (vti.; DD), var( ~:B) ).

4. EVA1,UA~ON R~ULTS

The Teminal Win& 10 km md 2 km analyses andMAPS

for%asts for the @lmdo Egion WC= evatuated on the

1992-193 data set. me basis of the evaluation is the compari-

son of obsematiom with andy=d md fo~cat winti at newty

coincident pohw. ~ls mounts to spt checks, since we cmot

conwol the availability ofobsemations, except to select dayson

which they wemplenfiful. fich algoriti was evaluatsd on 820

day subset of the I W2 wd 1993 MCO dam mchive. These days

were chosen to hclude a vmiety of weather, md gd compsi-

son tits.

me comptison obsemation&U sets wemusti,~RS

re~fis, CLASS soundings (Cross-hm Atmospheric Sound-
~D duil hppler wind fields.ing System), ad ~

me M~RS md CLASS sounding obsewat ions w indewn-

dent of the malyd wind fields. me dati used to genemte the

dual ~pplerdata set were usd k fhe Teminal Winds malyses

so they do not provide inde~ndenl obsewations. Sin@ cue was

wken to ensure that dud bppler wbds we= only pducd

when gd Doppler dati wem available, md only in regions

where tic dual Bpplerpmss is numerically s[able, the ability

to match the dual Doppler wtids is imWmt.

Comptisons ktw=n amlywd md fomcmt wind fields

and obsewed wh& we~ constitied to the 2 h @d to ensure

consistent cvduation data sets md tiause prtiuct accuracy is

pmmount h this region. We uti b>lhem tite~olation of the

10 h mdyses md ws fO~a$ts tO tie 2 ~ grid FOr emh

6TH C~F. WAVIATIWWTHER SYSTWS 387



analysis, the obsewations were compued to the uind vcclor

from the 2 km grid point newest the obsewa! ion.

The statistical evaluation indicates how well [he Tcmlinal

Winds algorithm malches the conlparison obscwations over a

large perid of time. Statistics collected over a large pcriti of

tinle do not allow petiomlmce quantification for different

n,eather situations. For example, when the wtids are relatively

unifom. a 2 km analysis is not expected to pctiom kt[er than

a 10kmanalysis since rhewind field dmsnotcontain stmct. res

smaller than 10’sofkm. When thcwind fields are more con>-

plcx, we expect 10 SW a vuiation in petiomlance.

~e comp~isons of [he Teminal Winds analyses and

MAPS forecasts to MDCRS, CLASS soundings, and dual

Doppler winds areprovidd in Table 2, figures >5 are cumula-

tive probability plots for tie nom of the vector difference &-

tween each analysis md forecast, and each of the tiee sets of

comparison obsemation data sets. For example, figu= 3 shows

tha[thevectordiffemncekt w&n MAPS forecasts md MNRS

is5 tisOrless abut 70%0 ftie time.

Table 2: RMS md median (in pmntheses) values for the

nom of the vec[or difference blwmn the Teminal Winds

analyses and MAPS fo~casts, and the comparison

obsewalions (ds)

MAPS

MMRS 4,1 (3.1) 3,8 (2.8) 4.6 (3,6)

CLASS 2,9 (2,2) 2.7 (2.2) 3,7 (3.0)

ha] ~ppler 2.0 (I .0) 3,8 (2.6) 5.4(4,1)

%
Im.

Nom of tie vwtor diffe%nm (tis)

Figure 3: Petiommce vs. MDCRS

me comptiwns to ~RS md CLASS soundings indi-

catefhat bththe2 tired 10h analyses consistenffyhave kt-

teragreemenl wifhtheob%mations fhmdothe MAPS for%asts.

~ese comptisons do not indicate that the 2 b analysis pm-

videsmimprovement overthe 10kmmdysis. ~isisnottm

su~ristig since these m average values over d wather situa-

tions. ~e similtity h ~fiommce of fbe lwoscdes of mtiysis

may also refl=t that we have r=ched the Itih of these dam set3

to discern algoriti ~flommm. Agtist MDCRS the two

malyses have approximately a 4 tis RMS emor, md agatist

CLASS the two analyses have approximately a 3 ds RMS er-

ror, wtich me the repond RMS accuracies of the MDCRS md
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Figure 4 Petiormmce vs. CLASS Soundings
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Figure 5: Pefiommce vs. tial &ppler

CLASS obsewations. The wind fields, kcluding MAPS fore-

CNIS, ag~e more closely with the CLASS soundings than tbe

MDCRS repns. This may h due to su~rior accuracy of the

CLASS sounding me=urements, or it may & due to the ex-

pwted vtiation in the statistics when small data sets me used.

me wmptison with the dual hppler wkds mdysis prm

vides g=aterdlstinction ktw=n the v=ious mdysez tie 2 h

analysis matches tie dual bppler whds mo~ closely than the

10 h mdysis. The 2 km m~ysis match= the dud bppler

whds mow closely thm the RMS vwtor enor of the dual

hppler winds (2.4tis)mftecthg the smtistical dcpndence&-

1wmn the two esthates of the whd field. Boti scales of Temi-

nal Winds mdyses show a water improvement over MAPS

forwasts thm shorn h the wlier mmptisons, ~Is is ex-

~td. me dud ~ppler dam set conttins ohwations from

mom complex whd fields fhm the other two comptison dati

sets since the hpplerdati m domhatd by obsewations in the

PBL, and relatively more Doppler ~tums m available during

and nemconvmtive weatherfhm in weather with mo~ clea air.

~us, the dual Dopplcrdata set conmins obsemations h regions

where MAPS is not exWctti to wfiom well. The relationship

ktwun tie OE dgoriti md the dual Wppler algoriti is

alw b evidenw.

5. ~ WORK

~e ~S griti mdysis system is unde%ohg refine-

ment mdbsting. Anum&rofmdysis upgmdesmplmed, in-

cluding the u% of the last mdysis torefme the background wind

field, tbeestimation md~movti of emos tisingfrom using m



obsewatio” a[ Iwatio”s away from lheobsew at ion lwation, a“d

the usc of lTWS gust front detections to increase the wind field

accuracy. A nlajor cffoti will k “ndcnaken 10add surface forc-

ing to refine the winds in fhe PBL. We are also assessing the abil-

ity of devclopi”giecbnolo gies to derive wind i“foml at ion fr”m

radar reflectivity fields (Tuttle and Fwle, 1990)(Qui and Xu,

1992). When sufficiently developed, !hese rechnologics will k

an impoflanl “ew source of wind information. An FAA kmo”.

stratio” and Evaluatio”of the ffWS was co”d”cted in Memphis

i“ the sumn)er of 1994. The hmonsva[ ion a“d Evalualio” will

continue in Orlando in the fall of 1994, and possibly in Dallas

– Fon Woti stming in !he summer of 1995,

6. SUMMARY

me Teminal Winds malysis is an impomt compo”e”! of

the ffWS.TbeTeminal Winds provides m accurate, high Eso-

Iution analysis of the horizonbl winds inattiee dimensional !er.

minal domain, me wind in fomatio” from this system is pro-

vided to a numkr of usen, including air ua~ic automation

systems md otier JTWS algorithms. ~is system combmes

wind i“fomation from ana!ional scale numerical for=ast m&-

e], meteorological &ppler radas, commercial aimraff, and

anemometer networks. 1( is JJetible enough to mn reliably with

my available subset of these dam, adding value to fhe national

winds forecast h tbe temind uea as Iwal senson provide in-

formation. ~eTeminal Win&system opemted in tie summen

of IW2 md 1993 in the Lincoln ~S testkd at Orlmdo, FL,

md in tbe summer of 1994h the Lcncoln lTWS test~al Mere.

pbis TN, demonstrating a reliable o~mtional system i“co~.

mting data from multiple soumes, including TOM md NSX-

RAD mdm,

me temilld aimpace isdividti htotworegimcs.~e plm.

ew ~undq layer @BL) contis the atiospbere nem the
emh’s sutiace, md often conttins fine wale wind stictms,

Akve the PBL, wind smctms typically have Iwger wtdes,

hppler mtis provide bigb Rsolution hfomation ti tie PBL,

but abve the PBL, hpplw btfomation kcomes mo~ spu

md the MAPS md ~RS m imp~t soumes of additiond

information. h mdysis cwcad~f–scdes is U4 to captu~

these diffe~nt scti- of atmospheric activity,

A new win~ mdysis twbtdque, Optimal fitimation, wm

develop for the Temind Wm& prtiucl that is m extension

of btb Optimti Inte~lation md multiple bppler mdysis,

~e JTWS will usually have data from at lc~t Iwo hppler m.

dm. Undercenainmstictivehypotbeses,highqudityesthates

of the horizontal whds cm k derivd tiom multiple ~ppler

data sets. Dpikal InteWolation, a statistical hte~lation mcb-

nique, provides the cumnt skt~f-ti~~ o~mtional no-

tippler wh& mdysis, Opthd Btiationprovides whdesti-

mates that m of higher quality tbm multiple hppler malysis,

md dws not suffer from the numerical tismbflities that tise h

multiple Wppler mdysis. ~e OE mdysis dso prdums

smmth wmsitions &tween ~gions with differing density of

data.
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