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Abstract—We have extended an analytical workload model for 

estimating en route sector capacity to include the impact of 

convective weather.  We use historical weather avoidance data to 

characterize weather blockage, which affects the sector workload 

in three ways: (1) Increase in the conflict resolution task rate via 

reduction in available airspace, (2) increase in the recurring task 

load through the rerouting of aircraft around weather, and 

(3) increase in the inter-sector coordination rate via reduction in 

the mean sector transit time.  Application of the extended model 

to observed and forecast data shows promise for future use in 

network flow models. 
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model; convective weather 

I. INTRODUCTION AND BACKGROUND 

In today’s U.S. National Airspace System (NAS) en route 
air traffic is managed within and between discrete volumetric 
units known as sectors.  One or more human controllers are 
assigned to each sector, and it is their responsibility to maintain 
safe and efficient traffic flow within their sector as well as to 
and from adjoining sectors.  The dual goals of safety and 
efficiency are dependent on traffic density in opposing senses, 
with the former decreasing and the latter increasing with more 
traffic density.  Thus, how much air traffic a sector can safely 
handle (sector capacity) at any given time is a crucial quantity 
in safely maximizing the transport of passengers and cargo 
throughout the NAS. 

The current operational metric for sector capacity is the 
Monitor Alert Parameter (MAP) [1], which is a predetermined 
acceptable aircraft count that air traffic managers use as a 
gauge to limit traffic flow or increase controller staffing.  The 
baseline MAP values are solely dependent on the average 
sector flight time, the rationale being that inter-sector controller 
workload is the main determining factor in sector capacity.  
The MAP rule also includes a fixed upper limit of 18 aircraft 

per sector, and allows discretionary adjustments of 3 aircraft 
per sector as guided by operational experience. 

Because air traffic management largely relies on manual 
procedures, controller workload determines the instantaneous 
maximum number of aircraft that can be safely handled in a 
sector [2-6].  To compute controller workload, two approaches 

have been taken—microscopic workload simulation [7-9] and 
aggregated-task analytical modeling [2, 10-14].  Although the 
former can take into account nearly every task imposed on the 
controller by a specific set of individual aircraft and flow 
conditions, its complexity makes it impractical to run in real 
time for monitor and forecast purposes.  Analytical models, on 
the other hand, are amenable for use in tactical situations with 
rapidly evolving traffic flow and weather conditions.  Detailed 
simulations are also difficult to validate and interpret as there 
are many task types.  The aggregated-task analytical model 
provides less detail, but makes it easier to determine unknown 
parameters using experimental or operational data. 

We have developed an objective and dynamically adaptable 
capacity estimation procedure that accounts for types of 
controller workload other than inter-sector coordination.  This 
analytical sector capacity model appears to work well under 
fair-weather conditions [14], but does not incorporate the 
disruptive effects of convective weather.  Weather can severely 
limit the capacity of the NAS.  Thus, it is necessary for any 
practical application of a capacity model to include the effects 
of inclement weather conditions. 

Previous attempts to include severe weather effects on en 
route airspace capacity have used a ―fractional flow 
availability‖ approach.  That is, some type of physically 
reasonable weather blockage on a flow is computed to yield a 
percentage of flow available.  One model estimates individual 
route availability based on historical weather avoidance data in 
the form of a Weather Avoidance Field (WAF) [15-16].  Other 
approaches model flows with the fractional availability 
computed from the min-cut/max-flow ratio [5, 17] or areal and 
volumetric weather impact or severity indices [18-19].  Yet 
another method scans the sector with a series of parallel lines in 
various cardinal directions to estimate the directional 
permeability through weather [20].  However, none of these 
models consider the fundamental limitation of controller 
workload.  Since weather hazardous to aviation residing within 
a sector most certainly increases the controller’s workload, it is 
imperative to integrate such effects into a workload-based 
sector capacity model.  In this paper we present the initial 
results of our effort to incorporate convective weather effects 
on en route sector workload.  
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II. SECTOR CAPACITY MODEL 

A. Fair-weather Model 

First, we will provide a brief review of our analytical 
workload model without weather effects.  (See [11] for more 
details.)  We aggregate the sector workload into four 
components as shown in (1), 

 G = Gb + Gr + Gt + Gc , (1) 

where G is the total workload intensity, Gb = 0.1 is a constant 
background workload, Gr is the recurring task term, Gt is the 
sector transition workload, and Gc is the conflict resolution 
workload.  When G reaches the sustainable human workload 
limit (0.8 according to simulation experiments [2]), the sector 
is deemed to have reached its capacity. 

The individual workload terms other than the background 
workload are further decomposed into the product of the task 
service time and the occurrence rate.   

      
 

 
 

where r is the recurring task service time per flight, N is the 
number of flights in the sector, and P is the mean task 
recurrence period. 

      
 

 
 

where t is the inter-sector hand-off service time per flight and 
T is the mean sector transit time.  Finally, 

      
       

 
 

where c is the conflict resolution task service time per flight, Q 
is the sector airspace volume, and 

            

where Mh and Mv are the horizontal and vertical distances that 
constitute a separation violation and V12 is the mean of the pair-
wise closing speeds of the aircraft in the sector.  (For a 
derivation of this expression, see [13]).  The en route lateral 
separation standard is 5 NM, but in practice controllers add an 
extra margin for safety, making 7 NM a more realistic value for 
Mh.  We use 7 NM for our model. 

If all aircraft in a sector were flying at constant altitude, Mv 

would be constant.  Since altitude changes increase the vertical 
positional uncertainty of the aircraft, we correspondingly 
increase Mv proportional to the fraction of flights that are 
ascending or descending in the sector.  Specifically, we set 

                         ft, (6) 

where Fca is the fraction of flights in the sector that changes 
altitude by more than 2000 ft and Mvmax is the maximum 
vertical miss distance. 

In (2) through (6) there are four unknown factors: r/P, t, 

cV12, and Mvmax.  The physical meanings of the compound 

factors are as follows: r/P is the fraction of the total time 

devoted to recurring tasks per aircraft and cV12 is the mean 
separation lost while resolving each conflict.  In order to obtain 
a value for each factor, a regression analysis was performed to 
fit the model capacity results to observed peak daily counts for 
each of the 790 sectors in the 20 NAS ARTCCs [14].  The 

NAS-wide regression yielded values of r/P = 0.013, t = 13 s, 

cV21 = 1.8 NM, and Mvmax = 1600 ft.  ARTCC-specific 
regression results were also generated. 

B. Weather Impact Model 

There are many types of weather that obstruct safe and 
efficient flight.  On landing and take-off, strong wind shears 
induced by microbursts are extremely dangerous to aircraft.  
Reduced visibility due to fog is an impediment to airport 
operations, and clear-air turbulence is a hazard that pilots and 
passengers alike prefer to avoid.  Here we focus on the effects 
of convective weather on en route traffic management. 

The main operational impact of convective weather on an 
en route sector is the need for aircraft to avoid airspace that is 
deemed dangerous.  The probability that a pilot will deviate 
around a given level of weather severity has been quantified in 
the MIT Lincoln Laboratory Convective Weather Avoidance 
Model (CWAM) [21].  CWAM provides a gridded product, the 
WAF, which can be used to quantify weather blockage within a 
sector.  We compute two-dimensional (2D) WAF values at 
2000-ft altitude intervals from 25,000 ft to 45,000 ft, and 
integrate vertically inside the 80% WAF contours to provide an 
estimate of the volume of airspace blocked by the hazardous 
weather within each sector.  Dividing by the total sector 
volume yields the fractional weather volume blockage, Fw. 

The weather blockage affects the workload terms in several 
ways.  One obvious impact is the reduction in available 
airspace, Q.  Another effect is that rerouting flights around the 
weather blockage increases the recurring workload.  If we posit 
that the number of aircraft requiring rerouting is FwN and that 

w is the controller time consumed per aircraft rerouted, then 
we arrive at the modified workload intensity equation, 

               
 

 
   

 

 
   

       

       
 

Setting G to 0.8 (the human workload limit) and solving the 

quadratic equation for N yields the sector capacity.  As w is 
unknown, it must be determined either by observing controllers 
for long periods of time during severe weather or by fitting the 
model results to observed data.  We chose to do the latter. 

The number of aircraft needing rerouting due to weather, 
FwN, is an approximation.  This number can vary with the 
interactions between traffic flow pattern and weather 
morphology [18].  For forecasting purposes, however, given 
the large uncertainties in the weather field, we believe that this 
simple estimate is justified and can provide useful output for 
traffic management purposes. 



III. RESULTS 

Validating a sector capacity model is not a straightforward 
task, because there is no ―truth‖ data to which the model output 
can be compared.  The best that we can do is to see how well 
the model is able to bound observed peak sector traffic counts.  
Even this, however, is not exact.  The model should represent a 
sustainable sector capacity, allowing short bursts of peak count 
that exceed the model capacity limit.  Furthermore, it is 
difficult to find appropriate validation cases, because the traffic 
count must be near theoretical fair-weather capacity before 
significant weather moves in—otherwise, one will not see the 
bounding effects of the weather on traffic.  Low traffic counts 
can also be caused by low scheduled demand or up-stream flow 
restrictions.  If bad weather is forecast in advance, then the air 
traffic managers may throttle back the demand on a sector in 
anticipation of a reduction in its traffic handling capacity. 

With these complications in mind, we searched for severe 
weather events that intersected with high-traffic sectors.  We 
looked within the pool of days from the summers of 2006-2008 
for which we had archived Corridor Integrated Weather System 
(CIWS) [22] data and the summer of 2010 for which we had 
archived Consolidated Storm Prediction for Aviation (CoSPA) 
[23] data.  The CIWS or CoSPA vertically integrated liquid 
water (VIL) and echo tops data were necessary for the 
generation of WAF data.  CIWS provides up to a 2-hr forecast, 
while CoSPA generates up to an 8-hr forecast. 

Sector airspace coordinate and traffic data were obtained 
from the Federal Aviation Administration (FAA) Sector Design 
and Analysis Tool (SDAT) [24].  SDAT archives provided the 
peak count (the maximum number of aircraft in a sector), the 
mean sector transit time (T), and the fraction of aircraft 
changing altitude by more than 2000 ft (Fca) at 15-minute 
intervals.  The SDAT data sets were generated in daily 
ARTCC-grouped sectors from 900 to 2400 UT. 

Note that current WAF data are valid for altitudes above 
25,000 ft.  Hence, we applied our model only to en route high 
sectors. 

A. Results for Observed Weather Data 

We discovered that sector ZDC32 was an especially good 
candidate for model evaluation because of its consistently 
heavy traffic.  Fig. 1 shows results from 23 June 2006.  The top 
plot shows the weather volume blockage by percentage.  The 
second plot displays the mean sector transit time and the third 
plot is Fca.  The bottom plot compares the observed peak count 
with the fair-weather model capacity (blue) and weather-

impacted capacity (red) for two different w values. 

Results from another day (21 August 2007) are shown in 
Fig. 2.  In both cases the peak count reached the fair-weather 
model capacity early in the day when there was little or no 
weather blockage.  Then when significant blockage did occur, 
the traffic count dropped as computed by the weather-impacted 

capacity model.  For these (and other) cases, w between 30 and 
60 s appeared to make the model bound the data well. 

 

Figure 1.  Data from sector ZDC32 on 23 June 2006.  From top to bottom, 

the plots vs. time are (first) sector weather blockage volume 

percentage,  (second) mean sector transit time, (third) fraction of sector flights 

that changed altitude by more than 2000 ft, (fourth) sector throughput rate per 

hour, and (fifth) sector peak aircraft count (black), fair-weather sector model 

capacity (blue), sector model capacity with w = 30 s (solid red), and sector 

model capacity with w = 90 s (dashed red). 

Note also that the mean sector transit time appeared to be 
anticorrelated with the weather blockage.  If this happens in 
general, it means that the weather has an effect on sector 
capacity not only via the two explicit terms involving Fw in (7), 
but also indirectly through T in the inter-sector coordination 
workload term.  Operationally, a weather blockage can 
decrease the mean sector transit time by causing flights to exit 
the sector early or by forcing flights from adjacent sectors to 
make short intrusions into the sector under observation.  The 
top plot of Fig. 3 shows a day on which this latter effect is 
observed.  The bottom plot displays the weather and traffic 
flow situation during a time of heavy sector blockage, and 
flights skirting the leading edge of the storm cut across the 
southwest corner of ZDC32.  In this way the weather blockage 
acted to reduce the mean sector transit time.  Statistical 
confirmation is given in Fig. 4, which shows the relationship 
over all cases between normalized mean transit time (T divided 
by the fair-weather mean sector transit time) and fractional 
weather blockage, Fw.  There is a significant negative 
correlation between the two variables.  This relationship can be 
used to estimate the mean sector transit time based on a 
forecast weather blockage. 



  

Figure 2.  Same as Fig. 1 except date is 21 August 2007. 

 

Figure 3.  An example of the anticorrelation between sector weather blockage 

and mean transit time observed on 10 July 2007 in sector ZDC32 (top), and an 

overlay of flight tracks (altitude 25,000 to 35,000 ft) and NEXRAD composite 

reflectivity data centered around ZDC32 at 2100 UT (snapshot taken from 

Flight Explorer®).  

A similar relationship might be expected to hold between 
Fca and Fw if aircraft flying in a sector with weather blockage 

change their altitude to avoid the obstacle.  However, this 
hypothesis has not been borne out by the data collected so far.  
Fig. 5 shows that there is no significant correlation between Fca 
and Fw, except perhaps a drop in Fca at very high weather 
blockages.  However, the amount of data in such high blockage 
situations is scarce.  We will revisit this issue after more cases 
have been identified for analysis. 

Figure 4.  Normalized mean sector transit time (mean transit time divided by 

the average fair-weather mean transit time per sector) vs. fractional sector 

weather blockage (Fw).  Data from cases listed in Table I were used.  Data 

points were binned into 0.1 Fw intervals and then averaged; the 2D error bars 

denote the standard deviation divided by the square root of the number of 

binned data.  A least-squares fit using the errors in two dimensions was 

performed with the function ―fitexy‖ from Numerical Recipes [25].  The slope 

of the fitted line is –0.49. 

 

Figure 5.  Normalized Fca (Fca divided by the average fair-weather Fca per 

sector) vs. fractional sector weather blockage (Fw).  See Fig. 4 caption for 

methodology. 

We compiled statistics from the 31 ARTCC-day cases 
listed in Table I.  Even though we tried to concentrate on sector 
days with high traffic and significant weather, the SDAT data 
sets were grouped by ARTCCs, thus many sectors experienced 
no weather and/or low traffic volume.  Therefore, we present 
the model sector capacity vs. observed peak count as 2D 

histograms in Fig. 6 (for w = 60 s) and Fig. 7 (for w = 30 s).  
The upper left-hand plots are essentially for fair-weather data, 

and as such, there is no dependence on w.  The 1:1 line is the 



 

model bound under which most of the data distributions fit 
(note that the color-map scale is logarithmic to highlight the 
tails of the distribution).  As the weather blockage increases, 
the distributions shift to lower peak count/capacity values as 
expected, and the model continues to bound the observed data 
well.  The number of data points also decreases with weather 
blockage, so for more robust statistics we need to collect more 
cases with heavy weather. 

TABLE I.  CASE LIST 

Date ARTCC 

2006-6-1 ZOB 

2006-6-2 ZDC 

2006-6-14 ZDC 

2006-6-21 ZOB 

2006-6-23 ZDC 

2006-6-26 ZDC 

2006-6-27 ZDC 

2006-7-5 ZDC 

2006-7-12 ZOB 

2006-7-22 ZOB 

2006-7-26 ZAU, ZID 

2006-7-27 ZOB 

2007-6-27 ZOB 

2007-7-10 ZDC 

2007-7-17 ZDC 

2007-7-19 ZOB 

2007-7-20 ZDC 

2007-7-25 ZAU 

2007-7-26 ZID 

2007-8-10 ZBW 

2007-8-16 ZOB 

2007-8-21 ZDC, ZOB 

2007-8-26 ZDC 

2007-9-27 ZTL 

2008-6-4 ZDC 

2008-6-12 ZME 

2008-7-23 ZDC 

2010-7-16 ZHU, ZME 

 

Figure 6.  2D histograms of observed sector peak count vs. model sector 

capacity for w = 60 s.  The histograms are subdivided according to different 

ranges of sector weather blockages as shown. 

It is difficult to judge exactly what value of w yields the 
best fit to the data.  Since the model sector capacity should be a 
sustainable quantity, we need to allow the observed peak count 

to overshoot the model bound for a small fraction of the 
distribution.  For the purposes of this paper, we have deemed 

w = 45 s to provide a reasonable fit to the data.  But in the 
future we will seek a more objective criterion for determining 

w.  One possibility is to select a maximum acceptable ―false 
alarm‖ rate, i.e., the percentage of time that the observed peak 
count is allowed to go over the model capacity.  For example, 
Fig. 8 shows the percentage of observed peak counts bounded 
by the model.  If a maximum false alarm rate of 1% is chosen, 

then the resulting w is ~50 s.  We also solicited the opinions of 
a former air traffic controller with many years of experience.  
He estimated a task completion time, assuming no 
communication errors, of 45-60 s to alert the aircraft, issue the 
reroute, verify the read-back, and complete any necessary 
coordination with the next sector (M. Evans, personal 
communication).  This agrees well with our estimates. 

 

Figure 7.  Same as Fig. 6 except for w = 30 s. 

 

Figure 8.  Percentage of observed sector peak counts bounded by the capacity 

model vs. w.  Only data points with Fw > 0 were used. 

B. Model Dependencies 

To illustrate the relative contribution from each of the terms 
in (7), Fig. 9 displays plots of workload intensity (G) vs. 
fractional weather volume blockage (Fw).  The three rows 
represent sector volume increasing top to bottom, and the three 
columns correspond to the number of aircraft in the sector 



increasing left to right.  Of particular interest are the terms 
affected by Fw.  The increase in conflict resolution workload 
due to the shrinkage in available airspace is the least significant 
factor, except at very high Fw.  Under most circumstances, the 
weather-reroute term, with its linear dependency on Fw, is the 
most important contributor in raising the workload, followed 
by the increase in inter-sector coordination workload due to the 
decrease in mean sector transit time.  This implies that when 
the model is used in forecast mode, it is important to have 
accurate predictions of baseline (fair-weather) mean sector 
transit times. 

 

Figure 9.  Plots of the individual workload terms from (7) vs. weather 

blockage, Fw.  The plots are arranged according to increasing sector volume 

(downward) and increasing traffic count (rightward) as labeled.  The conflict 

resolution term was decomposed into fair-weather and weather-blockage-

dependent terms. 

Fig. 10 summarizes the dependence of the model sector 
capacity on weather blockage.  Without considering workload, 
a common estimate for the relationship between sector capacity 
and weather blockage fraction is a linear drop to zero capacity 
under total blockage conditions.  However, the relationship 
between capacity and conflict workload is quadratic, and the 
actual relationship between capacity and Fw is nonlinear. This 
figure illustrates that relationship for three different sector 
sizes.   Here we assume that the sectors are of fixed height so 
that their mean transit times vary as the square root of the 
sector volume.  NAS-averaged values are used for other model 
input parameters.  This figure accounts for the growth in 
recurring service time, the linear decrease in mean transit time, 
and the reduction in usable sector volume with increasing 
weather blockage.  Sector capacity declines in a roughly 
exponential manner until the blockage exceeds 0.8 and the 
resulting growth in traffic density causes conflict workload to 

dominate.  The capacity then drops sharply to zero when the 
sector is totally blocked.  Although the capacity dependence on 
Fw is steeper for larger sectors, it is easier for smaller sectors to 
be highly blocked by weather. 

 

Figure 10.  Model sector capacity vs. fractional weather blockage volume for 

varying sector volumes. 

C. Results for Forecast Weather Data 

We now apply forecast weather data to our sector capacity 
model.  Fig. 11 shows a case from 21 August 2007 (same as the 
case in Fig. 2).  At that time, forecasts beyond 2 hours were not 
available on CIWS.  In this instance, the weather blockage 
forecast was excellent, and the agreement between the model 
capacity based on observed and forecast weather is very good.  
For the forecast model input, long-term average values of T and 
Fca for ZDC32 were used.  The mean sector transit time was 
further modified as 

             

where T0 is the historical mean sector transit time and 
m = −0.49 is the linear slope obtained from the regression 
analysis of normalized mean sector transit time vs. Fw 
demonstrated in Fig. 4.  The difference between using the 
observed T values and modified average T with (8) is 
manifested in the variability of the blue curve vs. the 
smoothness of the green and red curves in the bottom plot of 
Fig. 11.  Although the fluctuating blue curve may reflect true 
capacity, for operational use it would be desirable to have a 
smoother metric; thus, an averaged input for T may be better as 
long as it is accurate and robust. 

In the 16 July 2010 case shown in Fig. 12, however, the 
weather blockage forecasts were not as good.  An examination 
of the atmospheric conditions at that time indicated a situation 
favorable to rapid development and decay of localized 
convective cells.  This weather type is very difficult for current 
forecast models such as CoSPA to handle correctly.  The 
tendency is to under-forecast growth and overshoot decay—
hence, the distinct ―time lag‖ seen in the forecast curves in 
Fig. 12.  The consequence, in this case, was the increasing 
over-forecast of sector capacity as the forecast horizon 
increased. 



 

Figure 11.   Plots of forecast fractional sector volume weather blockage (top) 

and forecast sector capacity compared with observed peak count (bottom).  

The line colors correspond to output using observed (blue), 1-hr forecast (red), 

and 2-hr forecast (green) weather. 

 

Figure 12.  Plots of forecast fractional sector volume weather blockage (top) 

and forecast sector capacity compared with observed peak count (bottom).  

The line colors correspond to output using observed (blue), 1-hr forecast (red), 

2-hr forecast (green), 3-hr forecast (cyan), 4-hr forecast (magenta), and 5-hr 

forecast (yellow) weather.  

To quantify the weather blockage forecast errors, we 
compiled statistics for the year 2010 cases in Table I plus six 

other ARTCC-days (2010-6-16, 2010-7-19, and 2010-7-20 
ZDC; 2010-9-16 ZNY and ZOB; and 2010-7-16 ZTL).  These 
additional cases were not included in the earlier analyses, 
because the traffic was light.  We included only days from year 
2010, because all earlier cases were limited to 2-hr forecasts.  
(Note that because sector weather blockage is a scalar quantity 
derived from volumetric averaging, we do not encounter the 
usual degree of difficulty with weather forecast validation of 
evaluating spatial misalignments.) 

Fig. 13 displays scatter plots of forecast vs. observed 
fractional sector weather blockage.  The tight cluster around the 
1:1 line starts to break up rather precipitously after 1 hour.  The 
statistical summary given in Fig. 14 shows that the correlation 
coefficient falls below 0.5 after 2 hours and that a noticeable 
negative bias develops.  Because many of the cases collected 
here occurred during situations of localized convective storms, 
we would expect the long-range forecast statistics to improve 
with the inclusion of more cases of widespread synoptic-scale 
systems that are easier to forecast. 

 

Figure 13.  Scatter plots of forecast fractional sector weather blockage vs. 

observed fractional sector weather blockage. 

It is not possible to do an analogous forecast error analysis 
for sector capacity, because the true sector capacity is 
unknown.  Instead, we can only compare the sector capacity 
forecast to the sector capacity estimated using observed 
weather blockage, mean sector transit time, and Fca.  The 
scatter plots of these comparisons are shown in Fig. 15. 

In Fig. 16 we plot the contributions of the different model 
input terms to the forecast error statistics.  For these data, it 
appears that the largest error contribution comes from the 
uncertainties in the mean sector transit time (the difference 
between the blue and red curves is larger than the difference 
between zero error/unity correlation and the blue curves).  
There is a significant positive bias in the forecast that is caused 
by overestimates in mean sector transit times, which implies 
that the fair-weather-averaged values of T tended to be longer 



than those encountered in the study cases.  The error caused by 
the uncertainty in Fca is negligible (the red and black curves are 
virtually equivalent).  Note, however, that many of these days 
experienced very small fractions of weather volume blockage.  
This naturally biases the weighting of the total error away from 
the weather forecast error.  If the data are filtered for strong 
weather blockage only, then the weather uncertainty 
contributions grow larger as expected.  In any case, the 
importance of accurately forecasting the mean sector transit 
time is clear, for fair-weather and weather-impacted sector 
capacity forecasts alike. 

 

Figure 14.  Plots of forecast fractional sector weather blockage bias (top), rms 

error (center), and correlation coefficient (bottom) relative to observed values 

for 1- to 6-hr forecasts. 

 

Figure 15.  Scatter plots of forecast sector capacity (vertical axis) vs. sector 

capacity estimated using observed Fw, T, and Fca (horizontal axis). 

 

Figure 16.  Plots of sector capacity forecast bias (top), rms error (center), and 

correlation coefficient (bottom) relative to sector capacity estimated using 

observed Fw, T, and Fca for 1- to 6-hr forecasts.  The dashed blue line is for 

forecasts using observed T and Fca and forecast Fw.  The red dash-dotted line 

is for forecasts using observed Fca, forecast Fw, and fair-weather mean T 

(adjusted for weather blockage with (8)).  The solid black line is for forecasts 

using historical mean Fca, forecast Fw, and fair-weather mean T (adjusted for 

weather blockage with (8)).  Note that the black and red curves are nearly 

indistinguishable. 

IV. DISCUSSION 

Extending our sector capacity model to include convective 
weather impacts yielded reasonable results with observed input 
data.  Using this model in forecast mode, however, presented 
additional complications.  Two major factors contribute to 
uncertainty in the capacity forecast: (1) predicted mean sector 
transit time and (2) fractional weather blockage forecast.  The 
first factor influences capacity forecasts whether or not there is 
weather blockage present.  The leverage that T has on capacity 
estimation can be seen in the black dash-dotted curves in Fig. 
9, the differences between the blue curve and the forecast 
curves in Fig. 11 and Fig. 12, and the difference between the 
blue and the red curves in Fig. 16.  (It could be argued, 
however, that the mean sector transit time input to the model 
should always be smoothed for operational use, since a 
fluctuating estimate of capacity would be difficult to use.)  As 
the MAP values are explicitly based on (constant) estimates of 
T, this strong relationship has long been acknowledged.  Thus, 
for our sector capacity model to yield significantly improved 
forecasts relative to the static MAP forecasts in both fair and 
inclement weather, accurate and reliable forecasts of mean 
sector transit time are needed.  Since T is dependent on flow 
patterns, this means that future demand must be modeled well. 

Uncertainties in weather forecasts are dependent on weather 
type.  The example forecast cases analyzed statistically (Fig. 13 
and Fig. 14) were dominated by localized convective storms, 
which were not well forecast beyond 2 hours.  Better accuracy 
beyond that time frame will typically be obtained for larger-
scale synoptic disturbances.  (We will check this assertion in 
future studies.)  It is not clear how much more overall 
improvement can be expected in the next decade or so in 
weather forecast accuracy over the time and spatial scales of 
interest.  This is one of the arguments against investing 



significant effort into developing an elaborate airspace capacity 
forecast model, since models are only as good as the input data 
that go into them.  Under the Next Generation Air 
Transportation System (NextGen), however, automation of 
separation assurance may reduce controller workload so that 
sectors much larger than those of today (―super sectors‖) may 
be formed [26].  Integrated over these larger scales, multiple-
hour weather blockage volume forecast accuracy may be good 
enough for useful application to operational capacity forecasts. 

Although it is not exactly an apples-to-apples comparison, 
it is encouraging that the forecast errors in Fig. 16 are less than 

the heuristically adjustable 3 aircraft range of the MAP 
threshold. 

Another issue that must be addressed (in general) is one of 
directional capacity.  The capacity metric used in this paper 
(and as represented by the MAP) is a scalar value of aircraft 
count within a volume.  Although the historical mean sector 
transit time for an elongated sector confers some information 
about flow direction, it does not explicitly specify how many 
flights are allowed to go in one direction or another.  Consider 
the cartoon illustration of Fig. 17.  This hypothetical sector 
elongated in the east-west direction to accommodate major 
flow in that orientation has a north-south line storm blocking its 
middle.  The fractional volume blockage is small, so the sector 
capacity is not diminished significantly.  However, because 
there is no physical gap through which aircraft can fly east-
west within the sector, the flow capacity in that direction is 
essentially zero.  This does not mean that the sector capacity 
model is wrong.  The theoretical capacity for the north-south 
flow will be correct if the mean transit time is consistent with 
that flow direction.  But in practice, because most of the 
demand is normally east-west, the maximum peak count is 
unlikely to reach the model capacity.  Therefore, for 
operational use where directionality is important, knowledge of 
the sector capacity may need to be complemented by a model 
for directional flow limits, possibly via application of one of 
the existing techniques [5, 15-20].  In a network flow model 
each sector could perhaps be modeled by a combination of 
scalar ―capacitance‖ and directional ―resistances.‖ 

 

Figure 17.  Illustration of a sector elongated in the east-west direction along 

the major flow.  A line storm bisects it blocking the east-west flow, but 

allowing north-south flights. 

Before modifying the model for directionality we will 
determine the frequency of occurrence of narrow, impermeable 
storms of the type illustrated in Figure 17.  If they rarely occur, 
the scalar model will suffice.  If they occur frequently and are 

predictable, knowledge of trajectory directionality may allow 
us to adequately forecast their effect on directional capacity. 

An additional point can be made with Fig. 17 sans the 
weather blockage.  However much one would like sector 
capacity to be independent of demand, such is not the case.  
(The same observation has been made from a flow complexity 
viewpoint [5].)  As pointed out earlier, the capacity is strongly 
dependent on the mean sector transit time.  If most of the traffic 
through the sector in Fig. 17 is flowing east-west, then the 
capacity is much greater than if most of the traffic flows north-
south.  This is the reason why sectors are elongated in the 
direction of the major flow.  Again, this points out the need for 
accurate and reliable forecasts of mean sector transit time, i.e., 
future demand patterns. 

V. CONCLUSION 

We have extended our analytical workload model for sector 
capacity estimation to include the impacts of convective 
weather.  The airspace blockage induced by severe weather 
affects the controller workload equation in three ways (in order 
of decreasing importance): Increase in the recurring task load 
through the rerouting of aircraft around weather, increase in the 
inter-sector coordination rate via reduction in the mean sector 
transit time, and increase in the conflict resolution task rate via 
reduction in the available airspace. 

The model was tested on high-altitude en-route sector data.  
Comparisons between observed sector peak counts and model-
estimated capacity yielded reasonable results, both case-by-
case and statistically.  More case data, especially with high 
weather blockages, will be identified and analyzed in the 
future. 

We also compared model capacity estimates using observed 
input vs. forecast input data.  The uncertainty in forecast mode 
depended largely on weather blockage forecast and predicted 
mean sector transit time errors.  The latter factor degrades fair-
weather capacity estimates as well.  Improving the forecast 
accuracy and robustness of these model input parameters will 
be the key to making this model useful for operational use. 
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