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The effective management of traffic flows during convective weather events in congested 

air space requires decision support tools that can translate weather information into 

anticipated air traffic operational impact. In recent years, MIT Lincoln Laboratory has been 

maturing the Convective Weather Avoidance Model (CWAM) to correlate pilot behavior in 

the enroute airspace with observable weather parameters from convective weather forecast 

systems. This paper evaluates the adaptation of the CWAM to terminal airspace with a focus 

on arrival decision making. The model is trained on data from five days of terminal 

convective weather impacts. The performance of the model is evaluated on an independent 

dataset consisting of six days of convective weather over a variety of terminal areas. Model 

performance in different terminal areas is discussed and the sensitivity of prediction 

accuracy to weather forecast horizon is presented.  

I. Introduction 

future air traffic system capable of predicting convective weather impacts and proactively issuing TMIs will 

more effectively use the available airspace, and in turn mitigate the effect of convective weather on the system. 

The Convective Weather Avoidance Model (CWAM) is a probabilistic model of pilot decision making in the 

presence of convective weather. CWAM is based on the correlation of spatially filtered weather observations with 

trajectories of aircraft that penetrated or avoided areas of convective weather in the en route flight regime [1]. The 

output of the en route CWAM is a three-dimensional {cloud tops, flight altitude, precipitation intensity} Weather 

Avoidance Field (WAF) that provides the likelihood that a pilot will deviate at a specific position and time given the 

current and forecasted weather. Outside of the en route phase (e.g. during departure and arrival), aircraft are 

commonly below the tops of most convection and are subject to different decision mechanisms, both of which are 

not modeled in the original CWAM. Therefore, in order to model impacts over an entire flight trajectory, CWAM 

should be adapted to include low-altitude flight phases such as arrival and departure [2]. 

This paper presents an evaluation of the adaptation of CWAM for arrival operations. Arrival CWAM is trained 

on approximately 11,000 flights and 1,900 terminal weather encounters over five convective weather days [3]. The 

training database includes multiple types of weather avoidance decisions that occur during arrival operations to four 

major metroplex areas (ORD, DFW, CLT, DEN). The decisions types distinguish between strategic and tactical time 

horizons and encompass both pilot and air traffic management decisions. Additionally, unlike pilots in en route 

airspace who may have an option to fly at higher altitudes over storms, pilots in arrival airspace are constrained to 

follow descending trajectories that are typically below the cloud tops.  For this reason, the output of the arrival 

CWAM is a two-dimensional WAF {precipitation intensity, cloud tops}. 

The performance of arrival CWAM is evaluated by an independent dataset, where the sensitivity of the model to 

terminal airspace structure and weather forecast horizon are investigated. The independent dataset contains weather 

decisions from six convective weather days in a variety of terminal areas (ORD, DFW, DEN, CLT, BOS, 

JFK/LGA/EWR, DCA/IAD). The most descriptive features of pilot avoidance of convective weather are 

precipitation intensity and storm height, where a 4 km spatial filter on the 90
th

 percentile value of each feature 

corresponds to the best tradeoff between probability of detection and false alarm rate.The performance of the model 
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on the independent dataset matches the training performance well, and is comparable to both en route and departure 

CWAM, especially when terminal area differences are isolated [4].  

II. Arrival CWAM Training 

The arrival Convective Weather Avoidance Model (CWAM) is trained on five days of convective weather 

impacts. Arrival CWAM is based on similar methodology to en route CWAM, which is modeled on weather 

avoidance decisions that correlate to weather features extracted along flight plans using the CIWS suite of weather 

products [1]. Arrival CWAM extends the methodology of en route CWAM to include Air Traffic Management 

(ATM) weather avoidance decisions in addition to pilot decisions.  

For this study, the training database includes weather avoidance decisions from five convective weather days 

from four major airports across the country. The weather avoidance decisions are limited to terminal impacts, where 

the terminal area is defined as the area within 150 kilometers of the arrival airport. Additionally, planning decisions 

(i.e. pre-departure decisions) are excluded from the database. Table 1 lists the trajectory counts for each arrival 

airport, and gives the number of weather encounters and avoidance decisions. A weather encounter is defined to 

occur when a flight either makes a weather avoidance decision, or penetrates weather greater than VIP level 1 

without a weather avoidance decision. 

 

Table 1. Trajectory count for each arrival airport in the arrival CWAM training database. 

Airport Trajectories Weather Encounters Avoidance Decisions 

ORD 5602 1722 326 

DFW 2358 457 152 

CLT 679 161 107 

DEN 811 326 269 

All 9450 2666 854 
 

Table 2 presents the frequency of weather decision types in the training database. For a detailed description of the 

decision types, see Ref. 3. The most common decisions are reroutes and deviations, and there are slightly more 

ATM decisions than pilot decisions. 

 

Table 2. Weather decision type frequency in the arrival CWAM training database. 

ATM Decisions Pilot Decisions 

Reroute Holding & Slowdown Deviation & Pathfinding Diversion and Missed 

403 138 285 28 
 

The output of arrival CWAM is a Weather Avoidance Field (WAF) that provides the probability that a flight will 

incur a convective weather-related impact between the top-of-descent and the runway. The WAF is based on the 

observed probability of convective weather impact partitioned into two-dimensional bins of Vertically Integrated 

Liquid (VIL) and Echo Tops (i.e. precipitation intensity and cloud tops, respectively). The WAF look-up table is 

heuristically smoothed and extrapolated to characterize intuitive decision boundary contours. Figure 1 presents the 

WAF look-up tables for arrival CWAM, where (a) contains a coarse distribution of VIL and Echo Tops, and (b) is 

based on the resolution of the current departure WAF in the Route Availability Planning Tool (RAPT) [5]. 
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(a) (b) 

Figure 1. Arrival CWAM weather avoidance field look-up tables. 
 

The performance of the model is evaluated by converting the WAF into a binary decision classification using a 

WAF decision threshold (WAFthreshold). First, the trajectories in the database are assigned WAF values for each time 

step k in the observed trajectory (WAFactual[k]) as well as the corresponding maximum WAF value in the flight plan 

(WAFplan[k]). Each avoidance decision at time step kD is scored based on the difference between WAFthreshold and 

WAFplan[kD]. If WAFthreshold ≤ WAFplan[kD] the decision is labeled a correct avoidance prediction (CAP) and if 

WAFthreshold > WAFplan[kD] the decision is labeled a false penetration prediction (FPP). Trajectories that do not make 

an avoidance decision and are characterized by WAFthreshold ≤ WAFactual[k] for any k, are labeled a false avoidance 

prediction (FAP). Likewise, if WAFthreshold > WAFactual[k] for all k the trajectory is labeled a correct penetration 

prediction (CPP). Figure 2 presents a notional example of the scoring metrics with WAFthreshold = 70. 

 

 
Figure 2. Notional example of trajectory scoring metrics. The WAF threshold is 

70, the flight plan is the magenta line, and the flown trajectory is the blue dashed 

line. 
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Equations 1 and 2 form the metrics that are used to evaluate the effectiveness of the model. 

 

                           
   

       
 (1) 

 

                  
   

       
 (2) 

 

Figure 3 shows a receiver operating characteristics (ROC) curve for models with different spatial filter sizes and 

look-up tables. For this paper, a spatial filter refers to the 90
th

 percentile value in a kernel with length of  x km. For 

example, a 4 km spatial filter generates the 90
th

 percentile VIL and Echo Tops within a 4 km by 4 km kernel. In Fig. 

3, the ideal tradeoff between the probability of detection and false alarm rate occurs at the minimum distance from 

each curve to the top-left corner of the plot. The dots on the curves correspond to a WAF threshold of 70% 

probability of deviation. The blue and red curves show the performance of the look-up table of Fig. 1a (coarse 

resolution) with spatial filters of 1 km (native resolution) and 16 km, respectively. The black and green curves show 

the performance of the look-up table of Fig. 1b (fine resolution) with spatial filters of 4 km and 16 km, respectively. 

The magenta curve shows the performance of the departure WAF look-up table currently utilized in RAPT.  

 

 
Figure 3. Receiver operating characteristics curve for 

difference spatial filters and look-up tables. The dots 

correspond to a WAF threshold of 70% probability of 

deviation. The “Low-Res WAF” corresponds to the look-up 

table of Fig. 1a, and the “High-Res WAF” corresponds to the 

look-up table of Fig. 1b. 
 

Figure 4 shows the sensitivity of the ROC curves to spatial filter size. The look-up table for all three filters is the 

high-resolution table shown in Fig. 1b. As expected, increasing the spatial filter size raises the probability of 

detection at low WAF thresholds. However, at high WAF thresholds, the 16 km spatial filter results in the highest 

false alarm rate. This is an artifact of large filters that tend to artificially grow the cores of small storms such that 

they intersect with the paths of the flights in the database. The 4 km filter results in the best tradeoff between false 

alarm rate and probability of detection (minimum distance to the top-left corner) for a WAF threshold of 70%. 
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Figure 4. Receiver operating characteristics curve showing the 

sensitivity of performance to spatial filter size for the “High-

Res” look-up table in Fig. 1b. The dots correspond to a WAF 

threshold of 70% probability of deviation. 
 

Figure 5 shows the sensitivity of the ROC curves to different WAF look-up tables with a fixed 4 km spatial 

filter. The RAPT departure look-up table generates a slightly lower probability of detection for a given false alarm 

rate, however the overall effect of look-up table is largely negligible, especially with a WAF threshold of 70%.  

 

 
Figure 5. Receiver operating characteristics curve showing the 

sensitivity of performance to look-up table for a fixed 4 km 

spatial filter. The dots correspond to a WAF threshold of 70% 

probability of deviation. The “Arrival WAF” corresponds to 

the look-up table of Fig. 1a, and the “Arrival HD WAF” 

corresponds to the look-up table of Fig. 1b. 
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With these sensitivities in mind, the high-resolution arrival CWAM look-up table with the 4 km filter is chosen as 

the “best” WAF for the arrival model. The 4 km spatial filter provides the best tradeoff between probability of 

detection and false alarm rate, and the high-resolution look-up table is an ideal platform for further analysis. This is 

the WAF that is evaluated in the next section. 

III. Arrival CWAM Evaluation 

The performance of the arrival adaptation of CWAM is evaluated on an independent dataset of 12,064 trajectories 

in which 5,097 weather decisions are made. Like the training dataset, the testing dataset is structured to include 

multiple decision classes that are initiated by both pilots and air traffic management. Weather avoidance decisions 

are determined in the same fashion as in the training dataset, where decision classification is performed manually for 

each trajectory. Table 3 lists the trajectory counts for each arrival airport, the number of weather encounters, and the 

number of weather avoidance decisions.  

 

Table 3. Trajectory count for each arrival airport in the arrival CWAM testing database. 

Airport Trajectories Weather Encounters Avoidance Decisions 

ORD 3218 709 285 

DFW 942 64 7 

CLT 778 279 174 

DEN 1052 311 152 

BOS 522 185 97 

DCA/IAD 1722 317 141 

JFK/LGA/EWR 3830 476 212 

All 12064 2341 1068 
 

Table 4 presents the frequency of weather  avoidance decision types in the testing database. The most common 

decisions are reroutes and deviations, and there are slightly more ATC decisions compared to pilot decisions. 

 

Table 4. Weather avoidance decision type frequency in the arrival CWAM training database. 

ATC Decisions Pilot Decisions 

Reroute Holding & Slowdown Deviation & Pathfinding Diversion & Missed 

534 122 352 60 
 

The objective of this evaluation is to verify the correctness of the model such that it can be utilized in the 

prediction of weather impacts in the terminal area. However, there are limitations in scoring the performance of air 

traffic management decisions because the trajectory data used to validate the model is insufficient to identify false 

avoidance predictions.  For example, consider the case in which weather impacts the terminal area, with  

WAFplan>WAFthreshold, but no decision is made by ATM to close the route and the flights filed on the route are not 

close enough to the weather to deviate.  In this instance, the ATM decision to keep the route open cannot be judged 

because there is no traffic data (e.g., pilots refusing to use the airspace) to suggest that the airspace is unacceptable 

to the pilot.  In other words, pilot decisions are made on a very tactical timescale, where the decisions can be easily 

correlated with the current weather. ATM decisions are made with a variable time horizon, increasing the ambiguity 

of what is driving the decision (i.e. the decision point cannot be clearly identified). For this reason the focus of the 

performance evaluation will be on pilot decision modeling 

The first step in the evaluation is to assess the statistical goodness of the model. In the context of this evaluation, 

statistical goodness is interpreted by observing the frequency of weather decisions in a specified range of weather 

avoidance field values. Figure 6 presents a histogram of the testing dataset, where the bars represent the frequency 

of pilot deviation decisions and pilot penetration decisions for bins of predicted weather avoidance probability. As 

expected, the vast majority of penetrations occur at a low maximum probability of avoidance, whereas deviation 

decisions dominate high values of maximum probability of avoidance. The frequency of penetrations and deviations 

is approximately equal when the maximum probability of avoidance is 0.7 in both the training and testing datasets. 

An additional characteristic of the model is that the penetrations and deviations predominately occur at either high or 

low values of predicted probability of avoidance. In other words, the model is able to decisively predict deviations 
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and penetrations. This is a very beneficial characteristic in decision support, where in many cases the usability of the 

tool is directly related to its decisiveness.  

 

 
Figure 6. Frequency of deviations and penetrations in the testing dataset. 

 

Figure 7 compares the ROC performance of the model using the testing and training datasets, where a measure 

of ideal performance is the minimum distance between the curve and the top-left corner of the plot. The overall 

shape of the curves is similar, however the testing curve is rotated slightly counter-clockwise. The difference is most 

likely explained by variation in weather type and/or terminal area between the datasets. 

 

 
Figure 7. A comparison of the receiver operating characteristics curves for 

the training and testing datasets. 
 

The training dataset is composed of weather encounters in terminal areas that are structured in a “corner post” 

fashion. The testing dataset includes both “corner post” and highly dense “complex” terminal areas (DCA/IAD, 
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JFK/LGA/EWR). Figure 8 compares the ROC curves for the training and testing datasets, but partitions the testing 

dataset by the terminal area type.  

 
Figure 8. A comparison of the receiver operating characteristics curves 

for the training and testing datasets, where the testing dataset is 

partitioned by terminal area type. The dotted line represents model 

performance in “corner post” terminal areas and the dash-dot line 

represents model performance in “complex” terminal areas. 
 

As expected, when the testing dataset is restricted to weather encounters in corner post terminal areas, the ROC 

curve more closely matches the training dataset. This implies that the performance of arrival CWAM is sensitive to 

the geographical area in which it is applied. At high probabilities of detection (greater than 0.6), the model performs 

better on the testing dataset than the training dataset, which is most apparent when the model is tested on data from 

the more dense terminal areas (DCA, IAD, JFK, LGA, EWR). In other words, the model evaluated on dense traffic 

data is less likely to have more false weather penetration predictions than the model evaluated on corner post traffic 

data. 

Often it is useful to have a single metric to describe the performance of a predictive model. One such metric is 

the critical success index (CSI), which is a measure of correct avoidance prediction accuracy discounted by all 

model errors. The CSI is given by Eq. (3). 

 

 
FAPFPPCAP

CAP


Index Success Critical  (3) 

 

Figure 9 shows the variation of CSI with WAF threshold for the corner post and complex partitions of the testing 

dataset. The blue line shows the CSI of the model using the corner post partition and the red line uses the complex 

partition. The arrows indicate the WAF threshold corresponding to the maximum CSI. The model performs slightly 

better in the complex TRACON compared to the corner post TRACON based on the maximum CSI value. 

Additionally, the WAF threshold corresponding to the maximum CSI is higher for operations in a complex 

TRACON.  
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Figure 9. Variation of critical success index with WAF threshold for 

the corner post and complex partitions of the testing dataset. The 

arrows indicate the WAF threshold for maximum CSI. 
 

In a sense, the maximum CSI value corresponds to the best tradeoff between the ability to predict avoidance and 

non-avoidance decisions. The fact that the model generates a higher CSI in a complex TRACON indicates that, on 

average, the model has more skill in predicting pilot behavior in complex terminal areas. However, differences in 

model performance between disparate TRACON types does not necessarily mean that distinct CWAM models 

should be developed for each specific area. One potential solution is to utilize an adjustable WAF threshold to 

maximize the model performance given the terminal area. In essence, an adjustable WAF threshold enables the 

model to operate at the ideal tradeoff over a range of terminal areas.  The approach of adjusting WAF threshold 

values for different airspace characteristics has been used successfully in the operational RAPT prototypes in New 

York and Chicago. 

For the remainder of this section the performance of the model is described from the perspective of the decision 

maker, where Eqs. (4-5) calculate the metrics used to evaluate the model. 

 

  
FAPCAP

CAP


Prediction AvoidanceCorrect  ofy Probabilit  (4) 

  
FPPCPP

CPP


Predictionn PenetratioCorrect  ofy Probabilit  (5) 

 

The variable CAP represents correct avoidance prediction, FAP is a false avoidance prediction, CPP is a correct 

penetration prediction, and FPP is a false penetration prediction. In practical terms, the probability of correct 

avoidance prediction (PCAP) is the probability that a deviation prediction is true, given that a deviation is predicted. 

Essentially, it measures the accuracy of a deviation prediction. The probability of correct penetration prediction 

(PCPP) is the probability that a penetration prediction is true, given that a penetration is predicted. The ideal 

predictor corresponds to a curve that has a point on the top-right corner, where the PCAP = PCPP = 1. 

The effect of weather forecast horizon on model accuracy is especially important for application to ATM 

decision support tools. Figure 10 shows the tradeoff between the PCAP and PCPP of the model on observed 

weather, the 60 minute CIWS forecast, and the 120 minute CIWS forecast. It is obvious that forecast uncertainty 

significantly affects the overall performance of the model. The probability of correct penetration prediction remains 

above 0.8 for both forecast horizons, but the probability of correct avoidance prediction drops from approximately 

0.7 to 0.38 in the 60 minute forecast to 0.25 in the 120 minute forecast. The steep decrease in performance is, in 

part, a result of small scale forecast errors that affect the performance of the model but are not necessarily 

operationally significant. Additional spatial filtering such as the route blockage algorithm in RAPT would increase 

the operational performance of the model.  
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Figure 10. Arrival CWAM performance using observed CIWS weather 

(blue), the 60 minute CIWS forecast (red), and the 120 minute CIWS 

forecast (black).  
 

IV. Conclusions 

This report presents an evaluation of the arrival convective weather avoidance model (CWAM). Arrival CWAM 

is based on approximately 11,000 flights and 1,900 terminal weather encounters over five convective weather days. 

The training database includes weather avoidance decisions of multiple types that occurred during arrival to four 

major metroplex areas (ORD, DFW, CLT, DEN). The most descriptive features of the model are VIL (precipitation 

intensity) and Echo Tops (cloud height), and a 4 km spatial filter on the 90
th

 percentile value of each feature 

provides the model the best tradeoff between probability of detection and false alarm rate.  

The performance of arrival CWAM is evaluated by an independent dataset of 12,064 trajectories and 5,097 

weather decisions, where the sensitivity of the model to both terminal airspace structure and forecasted weather are 

investigated. The independent dataset contains weather decisions from six convective weather days in a variety of 

terminal areas (ORD, DFW, DEN, CLT, BOS, JFK/LGA/EWR, DCA/IAD). The performance of the model on the 

testing dataset is similar to the training performance, especially when terminal area differences are isolated. The 

model does not perform as well on forecasted weather data, which is primarly a result of small scale forecsting 

errors in the 60 and 120 minute CIWS forecasts. However, many of these errors are not operationally meaningful 

and can be removed by post-processing the WAF such as done in RAPT. Further work is needed to investigate the 

true impact of weather forcast horizon on arrival CWAM performance. This includes a study on the effect of spatial 

filtering on the performance of the model with forecasted weather data as input. For example, it is possible that a 

larger spatial filter in the model will decrease the sensitivity to weather forecast uncertainty and result in better 

performance. 
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