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Downdraft 

FIGURE 1. Thunderstorm downdraft and resulting gust 
front. The cool outflow beneath a thunderstorm spreads 
out in all directions. The leading edge, where the cool 
outflow and the warmer ambient air converge, is called 
the gust front. 

between detection rates and numbers of false alarms, 
the issues for gust front detection are 
1. obscuration and camouflage, 
2. sensor limitations, 
3. clutter and decoys, and 
4. stealth. 

Not surprisingly, the overall design of existing gust 
front detection algorithms is similar to that of most 
ATR systems. This traditional design is characterized 
by a hierarchy of modules, typically called detection, 
extraction (or discrimination), and classification. The 
detection process is essentially the application of some 
threshold that has been chosen to maximize the prob- 
ability of detection at some acceptable level of false 
detections. Where signals are found that are above 
threshold, features are extracted, producing an ab- 
straction, or symbolic representation, of the raw data. 
Given the set of extracted features, a signal is then 
classified as either one of the object types being sought 
or as clutter. In both the existing gust front detection 
algorithms and the traditional ATR systems, detec- 
tion is generally unsophisticated: the threshold is 
applied either to raw radar data or to a simple trans- 
formation (such as a matched filtering) of the raw 
data. Sophisticated machine intelligence techniques 
are generally applied in the form of classifiers, e.g., by 
the use of neural network, statistical, or model-based 
classifiers. 

However, the use of machine intelligence only for 
the classification process leads to a problem. With the 
application of a detection threshold, a significant 
amount of information is discarded, including those 
object signatures which are weak or ambiguous. Our 
belief is that increased detection reliability can be 
achieved by applying machine intelligence techniques 
prior to the application of detection thresholds. 

A framework for applying machine intelligence 
techniques at the earliest levels of signal (image) pro- 
cessing is provided by the Experimental Target Recog- 
nition System mTRS) [I], a general-purpose ma- 
chine intelligence approach to ATR developed at 
Lincoln Laboratory. Specific techniques of knowl- 
edge-based signal processing, fuzzy set theory, and 
pixel-level maps of spatial evidence are all part of this 
approach. Based on XTRS, a Machine Intelligent 
Gust Front Algorithm (MIGFA) has been constructed 
for use with both TDWR and ASR-9 WSP imagery. 
Of the two radar systems, the ASR-9 presents the 
greatest challenge to gust front detection because of 
its lower sensitivity and less reliable Doppler measure- 
ments in clear air. Thus, this article will focus on the 
ASR-9 WSP version of MIGFA to demonstrate best 
the algorithm's effectiveness. 

Gust Fronts 

An intense thunderstorm downdraft can arise from 
various processes such as evaporative cooling and fric- 
tional drag between water droplets and the air. Upon 
impact with the ground, the downdraft is deflected 
horizontally (Figure I), producing a local region of 
divergent winds. The downdraft feeds an outflow of 
outwardly expanding cool air. At the leading edge of 
the outflow exists a boundary where cool outflow air 
collides (converges) with the warmer ambient air. 
This leading-edge boundary, called a gust front, can 
grow to be many kilometers long and can propagate 
far away from the generating storm. 

The turbulence within a gust front can be severe 
enough to present a danger to aircraft during takeoff 
and landing. And, because the prevailing winds be- 
hind a gust front can persist for a long time, the 
passage of a gust front over an airport often necessi- 
tates a change of active runway. When unanticipated, 
a gust front can delay airport operations as aircraft are 

188 THE LINCOLN LABORATORY JOURNAL VOLUME 6,  NUMBER 1 ,  1993 



DELANOY AND TROXEL 
Machine Intellgent Gust Front Detection 

rerouted to a different runway. Aside from issues of 
cost and inconvenience, delays can increase the risk 
of potentially fatal human errors as the distance 
between aircraft that are taking off or landing de- 
creases and the work load on air traffic controllers 
increases. With sufficient warning, though, control- 
lers can incorporate in their plans a change in active 
runway at the anticipated time of a gust front's arrival, 
thereby minimizing the hazards and costs associated 
with delays. 

Gust fronts can be detected in Doppler radar im- 
agery on the basis of three physical properties: veloc- 
ity convergence, thin lines, and motion. Figure 2 
shows a typical gust front in both TDWR and ASR-9 
WSP images. 

The air within and behind a gust front converges 
with the ambient air ahead of the gust front. In a 
Doppler velocity image, this activity is observable as a 
boundary between regions of converging velocities. 
When viewed along a single radial, the convergence 

Reflectivity thin-line signature Velocity-convergence signature 

Reflectivity thin-line signature Velocity-variance signature 

FlGURE2. An example gust front in (a) TDWR and (b) ASR-9 WSP images. The left radar plots are reflectivity images with 
units in dBZ. The right radar plots are Doppler images with units in mlsec. The different signatures (see main text) of the 
gust front have been indicated by a human interpreter. 
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signature is characterized by a relatively sharp de- 
crease in radial Doppler values with distance (Figure 
3). Because Doppler radars can measure only the 
component of the wind that is directed along the 
beam, Doppler velocity measurements can often un- 
derestimate the true wind speed. In the extreme, the 
convergence signature of a gust front disappears com- 
pletely when the direction of motion is perpendicular 
to the radar beam azimuth. The TDWR velocity 
image shown in Figure 2(a) demonstrates this prob- 
lem. In the figure, the portion of the front closest to 
the radar site has a direction of motion that is nearly 
radially aligned, resulting in a pronounced conver- 
gent boundary for that area. However, at the ends of 
the gust front, where the direction of motion is more 
azimuthal, the boundary is more difficult to detect. 

The thin-line signature is generally thought to be 
produced by the concentration of scatterers (dust, 
insects, rain droplets) along the leading edge of the 
thunderstorm outflow. Some gust fronts produce a 
distinctive cloud formation along the gust front, which 
can also contribute to the thin-line reflectivity. The 
thin line varies in width but seldom exceeds 3 km. 
Typical maximum reflectivities reported by the ASR- 
9 along gust fronts are in the range of 10 to 20 dBZ. 
But significant portions of many thin lines can have 
reflectivities as low as -5 dBZ, which is near or below 
the threshold of detectability for the ASR-9. (Note: 
The basic unit of measurement for radar reflectivity is 
dBZ. Reflectivities of 50 dB2 or more are typical of 
intense thunderstorms with heavy rain. Background 
typically has reflectivity values between -1 5 and O 
dBZ.) Because of ground-clutter obscuration, the qual- 
ity of a thin-line signature often degrades at close 
range, and the signature can even vanish as the gust 
front passes over the radar. As the front moves out of 
the cluttered region, the signature often reestablishes 
itself. This type of degradation is especially trouble- 
some for the ASR-9 because of the radar's on-airport 
location, which makes it more prone to detection loss 
when a gust front is affecting the airport. 

A final key gust front signature is motion. When 
sequential radar scans are compared, convergence and 
thin-line signatures of a gust front will move con- 
spicuously in a direction perpendicular to the orienta- 
tion of the convergence boundary and reflectivity 

Velocities-convergence zone v 

Range 

FIGURE 3. Example velocity-convergence signature asso- 
ciated with a gust front. 

thin line. Signatures that do not move are either not 
gust fronts--e.g., they could be false alarms from 
range-ambiguous echoes (discussed in the subsection 
"Feature Detection"), edges of storm regions, or ground 
clutter--or they are gust fronts that are not opera- 
tionally significant. Within limits, gust fronts tend to 
move uniformly as outwardly expanding curved 
boundaries; i.e., the propagation speed tends to be 
consistent along the front's length and across time. Of 
course, when gust fronts collide, the motion may 
become more erratic. 

If these signatures were 100% reliable, detection 
would be a trivial task. For some gust fronts, however, 
one or more signatures may be weak, ambiguous, or 
entirely absent. For example, convergence signatures 
disappear when the radar beam is perpendicular to 
the wind velocity. Reflectivity thin lines and thin-line 
motion can disappear when a gust front is obscured 
by storm regions. To complicate matters further, none 
of these signatures are unique to gust fronts. Vertical 
shears, often present in severe thunderstorms, can 
bias low-altitude velocity estimates, producing appar- 
ent convergence signatures. Range-ambiguous ech- 
oes, ground clutter, flocks of birds, and elongated 
patches of low-intensity precipitation can all appear 
as reflectivity thin lines. Motion can be associated 
with anything (e.g., clouds or airborne dust) that 
follows the ambient wind. In short, each signature 
can be missing and each signature can be mimicked 
by other observable phenomena. Consequently, suc- 
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cessful discrimination requires knowledge of the cir- 
cumstances for which these signatures are reliable as 
well as knowledge of gust front behavior. Only by 
weighing the quality of several signatures simulta- 
neously can an automated system detect gust fronts 
with near human performance. 

The task is difficult enough with TDWR data. 
And yet the TDWR is a pencil-beam radar, designed 
for weather sensing, with enough sensitivity to gener- 
ate reliable Doppler values in relatively clear air and 
enough resolution in elevation to provide three- 
dimensional images of weather phenomena. In con- 
trast, the ASR-9 is a surveillance radar that was 
not originally intended for weather imaging. With 
a fan-beam design, the ASR-9 vertically integrates 
signals into a single two-dimensional representation. 
Because the transmitted energy is distributed over a 
wider arc of elevation, the energy returned from a 
low-altitude, low-reflectivity gust front will be small 
relative to the energy filling the remainder of the 
sample volume. With this reduced sensitivity, gust 
front detection is much more difficult. Almost all 
convergence signatures are eliminated for the ASR-9 
because the Doppler values are unreliable since the 
reflectivity returns from clear air are below the thresh- 
old of detectability for the radar. Even for cases in 
which gust fronts pass through regions of high 
reflectivity, convergence cannot be used reliably for 
gust front detection. For example, the signal contri- 
bution from overhanging precipitation near the edges 
of storms can bias the low-level wind-velocity esti- 
mate when there is vertical wind shear. Without con- 
vergence signatures, thin line and thin-line motion 
become the primary signatures for detecting gust fronts 
in ASR-9 WSP imagery. In the example ASR-9 WSP 
reflectivity image of Figure 2(b), the gust front is 
visible. But note that while the TDWR thin line is 
quite strong, the ASR-9 WSP thin line shows less 
contrast, is somewhat more fragmented, and does not 
extend as far as is apparent in the TDWR data. 

Although a convergence signature is missing from 
the ASR-9 WSP velocity image of Figure 2, the gust 
front is still visible. The accuracy of velocity estima- 
tions degrades markedly over the range of signal-to- 
noise values associated with low reflectivity returns. 
For this reason, gust fronts are observable in ASR-9 

WSP velocity images as bands of low-variance Dop- 
pler values, with high variance in the low signal-to- 
noise regions ahead and behind the gust front. This 
velocity-variance thin line is an alternative signature 
used in the ASR-9 WSP version of MIGFA. In addi- 
tion, implicit zones of convergence can be identified. 
Doppler values within the gust front thin line are 
used to estimate winds behind the gust front. The 
environmental low-level wind velocity ahead of the 
storm can be measured by some other means-for 
example, from a network of anemometers at the 
airport. A comparison of these two wind-velocity 
estimates can be used to confirm that convergence 
exists somewhere between the gust front and the 
anemometer site. 

Background 

Automated radar gust front detection algorithms have 
been under development and evolution for almost ten 
years. H. Uyeda and D. ZrniC [2] first described an 
automated detection algorithm, developed for the Next 
Generation Weather Radar (NEXRAD) , that was 
based solely on detecting velocity convergence along 
radials. The algorithm was successful in locating and 
tracking the strong gust fronts that commonly occur 
in Oklahoma during the spring. 

An improved version of the initial algorithm re- 
duces false alarms by requiring vertical association of 
gust front signatures from two different low-altitude 
elevation scans. The improved algorithm, known as 
the Gust Front Detection Algorithm (GFDA), also 
incorporates a technique for estimating horizontal 
winds ahead and behind detected gust fronts [3, 41. 
As with its predecessor, GFDA detects velocity con- 
vergence along radials. GFDA is the algorithm cur- 
rently intended for use in the initial operational de- 
ployment of TDWR systems. 

Briefly described, GFDA begins with a search in 
each radial for runs, or segments, of decreasing radial 
velocity, indicating convergent shear. Segments in 
which the maximum shear exceeds a predetermined 
threshold are logically grouped into features on the 
basis of end-point-proximity and segment-overlap 
tests. The feature attributes are then tested against a 
number of thresholds and are kept, discarded, or 
combined with other features. After separately pro- 
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cessing each of the two full-circle scans from different 
altitudes, the algorithm tests for vertical continuity of 
the features between the scans. Features that exhibit 
vertical continuity and that exceed a minimum-length 
threshold are declared to be gust fronts. The reported 
location of the detected gust front is determined by 
fitting a curved line through the peak shear of each 
segment in the gust front feature. Sequential detec- 
tions are associated over time to build detection histo- 
ries for each gust front upon which propagation speeds 
are estimated and forecasts generated. 

Lincoln Laboratory, in conjunction with the Na- 
tional Severe Storm Laboratory (NSSL), has since 
developed the Advanced Gust Front Algorithm 
(AGFA) [5, GI, which contains several enhancements, 
including reflectivity thin-line detection. AGFA de- 
tects thin lines by finding local maxima of reflectivity 
values that are consistent with the widths and intensi- 
ties associated with gust fronts. Thin-line segments 
are generated twice: once by constructing segments 
over all range gates along a radial and once by con- 
structing segments across radials along arcs of con- 
stant range. The final thin-line features consist of lists 
of the points connecting the centers of each of the 
segments. Convergence and thin-line features are fused 
on the basis of end-point proximity and orientation. 
AGFA does not use motion as a signature for detect- 
ing gust fronts. Motion is used only in heuristics that 
reject false features after they have been extracted. 

During field testing in 1990 and 1991, a custom- 
ized version of AGFA was used for gust front detec- 
tion on an ASR-9 WSP [7, 81. Because of the lack of 
reliable velocity-convergence features, the ASR-9 ver- 
sion of AGFA was configured to operate in a thin- 
line-only detection mode. Although the algorithm 
was successful in detecting gust fronts that had thin- 
line signatures of good quality, it had some difficulty 
detecting gust fronts when the reflectivity was weak 
or fragmented. Lacking convergence signatures to con- 
firm the existence of gust fronts, the algorithm was 
prone to false alarms triggered by elongated low- 
reflectivity weather echoes that are sometimes associ- 
ated with stratiform rain. Installing suboptimal detec- 
tion thresholds to reduce the false-alarm rate further 
reduced the detection probabilities. 

In the above study, the scoring was done against 

human interpretations of the same images used as 
input to the algorithm. The discrepancy between hu- 
man and AGFA performance appears to be partially 
due to AGFKs not making full use of a variety of 
additional information that is available in the ASR-9 
WSP data, including velocity thin lines and thin-line 
motion. Moreover, both GFDA and AGFA rely on 
sequentially applied thresholds to discriminate gust 
fronts from background. When the relevant signals 
are weak or ambiguous, the use of thresholds in the 
early stages of processing can result in the elimination 
of potentially relevant information, thus setting un- 
necessary limits on detection performance. GFDA 
and AGFA also rely on one-dimensional signal pro- 
cessing operations to locate gust fronts. The extrac- 
tion of chains of points across the second dimension 
is done at a higher, heuristic level of processing. In 
contrast, two-dimensional signal processing opera- 
tions can directly establish the shape of gust fronts 
without relying on heuristics. Finally, these early gust 
front algorithms have no systematic means of condi- 
tionally fusing information from various sources by 
taking into account the different reliabilities of the 
sources. Different signatures can have varying reliabil- 
ity depending on the situational context. 

Low-Level Machine Intelligence 

The conventional wisdom in computer visionlobject 
recognition research has been to use general image 
processing operations, ideally devoid of object- &d 
context-dependent knowledge, at the initial stages of 
processing. Such operations might include edge de- 
tection, segmentation, cleaning, ~d motion analysis. 
And yet the ideal has never really been achieved in 
practice. For example, some knowledge of the sensor 
and the expected scene contents must be implicitly 
encoded in the form of thresholds or other similar 
parameters to detect edges effectively. 

From the results of such general operations, image 
characteristics are extracted and represented symboli- 
cally. Machine intelligence is then applied, as if by 
definition, only on the symbolic representations at 
higher levels of processing. 

MIGFA has inherited the development environ- 
ment, control structure, knowledge-based signal pro- 
cessing, and several other important attributes of 
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XTRS. In contrast to more conventional approaches 
to object recognition, sensor-, object-, and context- 
dependent knowledge is applied in the earliest levels 
of processing, i.e., at the image processing stage. As 
used in MIGFA, low-level machine intelligence ap- 
plies knowledge in three ways. 

First, knowledge of the current environment is 
used to choose from a library those feature detectors 
which are selectively indicative of the object being 
sought. Using multiple independent feature detec- 
tors, MIGFA can adapt to different contextual cir- 
cumstances. At the beginning of the processing of 
each scan, a rule-based expert examines contextual 
information to select a set of feature detectors known 
through experience to be the most effective for a 
given set of circumstances. In the extreme, this pro- 
cess would enable MIGFA to adapt itself dynamically 
to changes in the environment. Currently, the only 
rule used by MIGFA selects between two fixed alter- 
native sets of feature detectors, one set customized for 
the TDWR and the other customized for the ASR-9 
WSP Because of the redundancy inherent in the use 
of multiple feature detectors, MIGFA tends to be 
robust: the malfunction of a feature detector or even 
the absence of one data source does not necessarily 
halt processing and may have only minor effects on 
detection performance. 

Second, knowledge is also incorporated within fea- 
ture detectors through the design of matched filters 
that are customized to the physical properties of the 
sensor, the environment, and the object to be de- 
tected. A new technique of knowledge-based signal 
processing, calledfirnctional template correlation (FTC) , 
allows the construction of customized signal process- 
ing operations that are more effective than standard 
operations (see the box, "Functional Template Corre- 
lation"). The output of FTC is a map of numeric 
values in the range [0,1] that indicate the degree of 
match between the pattern of pixels in an image 
region and the feature or object encoded in the func- 
tional template. 

Finally, knowledge of the varying reliabilities of the 
selected feature detectors is used to guide data fusion 
and extraction. Conditional data fusion is simplified 
by using "interestyy as a common denominator [9]. An 
interest image is a spatial map of evidence for the 

presence of some feature that is selectively indicative 
of an object being sought (the output df FTC is an 
interest image as long as the functional template en- 
codes an indicative feature). Higher pixel values re- 
flect greater confidence that the intended feature is 
present at that location. Using interest as a common 
denominator, MIGFA fuses data by combining inter- 
est images derived from various pixel-registered sen- 
sory sources. Using simple or arbitrarily complex rules 
of arithmetic, b y  logic, or statistics, MIGFA can 
assimilate pixel-level evidence from several coregistered 
sources into a single combined interest image. Clus- 
ters of high values in such combined interest images 
are then used to guide selective attention and can 
serve as the input for object extraction. If done effec- 
tively, the combined interest image provides a better 
representation of object shape than is evident in any 
single sensor modality. Using these techniques, MIGFA 
performs a significant amount of knowledge-based 
processing before the application of the first discrimi- 
nating threshold. Most traditional perception systems 
apply one or several thresholds early in the processing 
as a way of quickly reducing the amount of data to be 
processed. However, especially with ambiguous data, 
each applied threshold closes off options for detecting 
an object. A better strategy-a strategy attempted in 
XTRS and MIGFA-is to apply thresholds only after 
evidence from many sources of information have been 
meaningfully fused into a single map of evidence. 

MIGFA Design 

The system block diagram in Figure 4 is an overview 
of MIGFA as configured for ASR-9 WSP data. In 
preparation for processing, input images V (Doppler 
velocity) and DZ (reflectivity) from the current radar 
scan are converted from polar to Cartesian represen- 
tation and scaled to a useful resolution. Image SD is a 
map of the local standard deviations of V values. The 
SD and DZ images are then passed to multiple simple 
independent feature detectors that attempt to localize 
those features which are selectively indicative of gust 
fronts. The outputs of each of these feature detectors, 
most of which are based on some application of FTC, 
are expressed as interest images that specify evidence 
indicating where and with what confidence a gust 
front may be present. The different interest images 
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F U N C T J O N 4 L  T E M P L A T E  C O R R E L A T I O N  

FUNCTIONAL TEMPUTE correla- 
tion (FTC) [I, 21 is a generalized 
matched filter that incorporates 
aspects of fuzzy set theory. Con- 
sider, as a basis for understand- 
ing, the basic image processing 
tool autocorrekztion. Given some 
input image I, an output image 
0 is generated by matching a ker- 
nel Kagainst the local neighbor- 
hood centered on each pixel loca- 
tion Iq The match score assigned 
to each pixel Ov is computed by 
multiplying each element value 
of K by the superimposed ele- 
ment value in I and summing 
across all products. If the shape 
to be matched can vary in orien- 
tation, then the pixel IT is probed 
by Kat multiple orientations. The 
score assigned to Ov is the maxi- 
mum across all orientations. 

FTC is hdamentally the same 
operation with one important ex- 
ception: whereas the kernel used 
in autocorrelation is an array of 
image values (the array is essen- 
tially a subimage of the image to 
be probed), the kernel used in 
FTC is an array of scoring fine- 
tiom. The scoring functions re- 
turn scores that indicate how well 
the image values match the ex- 
pectations of the v h  at each 
element of the kernel. The set of 
all returned scores are averaged 
and "dipped" to the continuous 
range [O, 11. (In the dipping pro- 
cess, those averaged scores which 
are less than zero are assigned a 

value of zero while those aver- 
aged scores which are greater than 
one are assigned a value of one.) 
The output of FTC is a map of 
these values, each of which re- 
flects the degree that the shape or 
object implicitly encoded in the 
hctional template is present at 
that image location. 

Consider as an example the 
functional template implementa- 
tion of a simple matched filter 
designed to detect gust fronts in 
reflectivity data (Figure A). Gust 
fronts are observed as thin lines 
of moderate reflectivity (approxi- 
mately 0 to 20 dBZ) that are 
flanked on both sides by low re- 
flectivity (approximately - 1 5 
to 0 dBZ). Figure A(l) shows 
the template kernel consisting 
of integers that correspond to the 
two scoring functions shown in 
Figure A(2). Elements of the 
kernel that do not correspond to 
either of the scoring functions 
form guard regions in which im- 
age (i.e., reflectivity) values are 
ignored and have no effect on 
match scores. Scoring function 0, 
corresponding to the flanking re- 
gions of low reflectivity, returns a 
maximal score of 1.0 for image 
values in the interval of -20 to 
-5 dBZ, a gradually decreasing 
score for image values in the in- 
terval -5 to 10 dBZ, and a score 
of -2.0 for image values larger 
than 10 dBZ. Scoring function 1, 
corresponding to the center of the 

kernel where moderate reflec- 
tivity values are expected, returns 
maximal scores in the interval 
5 to 12.5 dB2 and gradually 
decreasing scores for both higher 
and lower image values. Note that 
although very low image values 
can generate scores of -1.0, a 
slower decline in score with a 
minimum score of 0.0 is returned 
for image values above the maxi- 
mal scoring interval. This asyrn- 
meuy is an attempt to mitigate 
the obscuring effects of storm re- 
gions and other patches of high 
reflectivity. 

In general, by increasing or de- 
creasing the intervals over which 
afErming scores (i.e., scores > 0.5) 
are returned, scoring functions 
can encode varying degrees of un- 
certainty with regard to which im- 
age values are allowable. In addi- 
tion, knowledge of how a feature 
or object appears in sensor imag- 
ery can be encoded in scoring 
functions. The interfering effects 
of ocdusion, distortion, noise, and 
clutter can be minimized by the 
use of various design strategies [3]. 
As a consequence, matched filters 
customized with FTC for specific 
applications are generally more ro- 
bust than classical signal process- 
ing operations. In the thin-line 
matched-filter example shown in 
Figure A, the filter does not sim- 
ply find thin lines, but selects 
those thin lines which have re- 
flectivity values within a particu- 
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Scoring function 0 

FIGURE A. Example functional template for thin-line feature detection: (1) index kernel and 
(2) corresponding scoring functions. By increasing or decreasing the intervals over which affirming 
scores (i.e., scores > 0.5) are returned, scoring functions can encode varying degrees of uncertainty 
with regard to which image values are allowable. In addition, knowledge of how a feature or object 
appears in sensor imagery can be encoded in scoring functions. . . 
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lar range. Furthermore, the 
matched filter can display differ- 
ential tolerances to image values 
that are higher or lower than the 

- expected range of values. In the 
automatic target recognition 
(ATR) systems developed at Lin- 
coln Laboratory, FTC has been 

. used primarily as a direct one- ,. ..I 

" ktep means of three-dimensional 
object detection and extrac- 
tion. In the Machine Intelligent 
Gust Front Algorithm (MIGFA), 

, FTC is used more as a signal pro- 
,. cessing tool for edge detec- 

;+ 
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tion, thin-line filtering and 
smoothing, shape matching, skel- 
etonizing, and erosion. 

If FTC were implemented lit- 
erally as described here, the com- 
putational expense would be pro- 
hibitive for most useM tasks. But 
FTC is actually faster than auto- 
correlation if the input data are 
scaled to a fixed integer range (e.g., 
0 to 255) and the scoring func- 
tions are implemented as a 
precomputed ouo-dimensional 
lookup table that is indexed by 
a scoring-function number and 

an image value. 
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FIGURE 4. Block diagram of the Machine Intelligent Gust Front Algorithm (MIGFA). For a description of the different 
feature detectors, see the subsection "Feature Detection" in the main text. 

are fused to form a combined interest image, thus 
providing an overall map of evidence indicating the 
locations of possible gust fronts. 

From the combined interest image, fronts are ex- 
tracted as chains of points. The chains extracted from 
a radar scan, collectively called an event, are inte- 
grated with prior events by establishing a point-to- 
point correspondence. Heuristics are then applied to 
reject those chain points which have an apparent 
motion that is improbable. The updated history 
is used to make predictions of where points along 
the front will be located at some future time. Such 
predictions are used in the processing of subse- 
quent images, specifically in the feature detec- 
tor called ANTICIPATION. In the output of 
ANTICIPATION, high interest values are placed 
wherever fronts are expected to be, thereby selectively 
sensitizing the system to detect gust fronts at specif- 

ic locations. ANTICIPATION is tuned so that it 
will not automatically trigger a detection by itself 
but, when its output is averaged with other interest 
images, it will support weak evidence that would 
otherwise be insufficient to trigger a detection. Fig- 
ure 5 is a summary of the processing steps for an 
example ASR-9 WSP scan. 

Image Preparation 

As discussed earlier, velocity convergence is an unreli- 
able signature for detecting gust fronts in ASR-9 WSP 
data. Gust fronts, nevertheless, are visible in velocity 
images. Because of the tendency for high-pass clutter- 
filtered pulse-pair Doppler estimates in a velocity im- 
age to have high variance in regions of low signal-to- 
noise ratios (SNR), the local velocity variance is higher 
for an area of clear air than for an area associated with 
slightly higher reflectivity values. This information is 
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translated into a usable form by transforming the 
velocity image V into a map of local standard devia- 
tions (the SD image). At each pixel of V, the standard 
deviation was computed in the surrounding 5 x 5 
pixel neighborhood and assigned to the correspond- 
ing pixel in SD. 

Pixel values for all images are scaled to the interval 
O to 255 to support subsequent FTC operations on 
the input imagery. Each image is tagged with the 
scaling factor and offset necessary to translate scaled 
values back to the original physical values. 

Finally, the DZ and SD images are converted 
from polar arrays (240 range bins x 256 radials) to 
Cartesian arrays (130 x 130). Mapping is done by 

computing for each element of the Cartesian array 
the range bin and radial at which the corresponding 
value is to be found in the polar array. During the 
mapping process, an implicit subsampling of the data 
occurs. From an initial radial resolution of 120 m per 
range bin and pixel size in the azimuthal dimension 
decreasing from 680 m at 28 km, the final Cartesian 
image has a pixel resolution of 480 m per pixel. 

Feature Detection 

Given contextual information of the sensor being 
used, the location of that sensor, and the environmen- 
tal conditions, a rule-based expert selects an appropri- 
ate set of feature detectors for application to the input 

E T A  A T  
VELOC I TY 

FIGURE 5. Processed scan summary. In the first row are the DZ (reflectivity) image, SD (standard 
deviation of velocity) image, and the combined interest image that has been computed from the DZ 
and SD images. The second row begins with the extracted indexed event. White pixels are those 
points which have been declared as part of a gust front, Gray pixels are those points which have not 
been tracked long enough to establish sufficient confidence. In the history frame, the current chain 
is shown in white and the preceding scans are shown in shades of gray (darker shades indicate 
more distant events in time). In the predictions frame, fat gray pixels indicate the 10- and 20-min 
forecasts of where the fronts are expected to be. Also shown at the bottom right corner are the 
estimated time of arrival of the next gust front to cross the radar site, the speed of the winds 
measured inside the front (in mlsec), and the direction (in degrees) from which the front is coming. 
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INTEREST 
I MAGES 

FlGURE6. Combining interest images: strong evidence. A n  example DZ and SD image of two gust fronts are shown, along 
with the output images of the different feature detectors of Figure 4. Regions of red pixels indicate areas where specific 
feature detectors have not expressed an opinion regarding the presence of a gust front, deferring instead to the evidence 
generated by other feature detectors. The last two frames (the center and right frames of the third row) show the images 
that resulted from combining the different interest images. 

data. For the moment, the only rule that is available 
chooses between two sets of feature detectors: one set 
customized for the ASR-9 WSP, the other for the 
TDWIL These two sets alone may be sufficient. As 
MIGFA testing is expanded, however, additional rules 
adapting the feature-detector set for sites other than 
central Florida and seasons other than midsummer 
may be added as required. Although we do not antici- 
pate the need, the set of feature detectors could be 
designed to adapt dynamically from one scan to the 
next as changes in weather conditions are detected. 
The feature detectors that follow are the ones that 

were tested for the ASR-9 in Orlando during 1992. 
TL-DZ and TL-SD (Figure 4) are two simple thin- 

line feature detectors that are used for the input im- 
ages DZ and SD, respectively. The TL-DZ feature 
detector is based primarily on the application of the 
functional template illustrated in Figure A of the box, 
"Functional Template Correlation." An example DZ 
image and the interest image generated by TL-DZ 
and other feature detectors are shown in Figures 6 
and 7. Although the thin-line functional template 
applied to SD has the same kernel as the template for 
TL-DZ, the scoring functions are different: thin lines 
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INTEREST 
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rn 
NTEREST 

ZIGURE 7. Combining interest images: weak evidence. This figure is similar to Figure 6 except that here the two gust fronts 
tre not clearly visible in any of the single interest images except for the anticipation image. In the combined interest images, 
iowever, the gust fronts are much more apparent, illustrating how the fusion of weak evidence from multiple sources 
nhances gust front detectability. 

associated with gust fronts have low Doppler velocity 
standard-deviation values within the front and high 
values ahead and behind the front. Consequently, the 
scoring function for the center strip returns maximal 
scores for low values while the scoring function for 
the flanking regions returns maximal scores for high 
values. 

DZ-MOTION and SD-MOTION are two thin- 
line motion detectors that are very similar to the basic 
thin-line detectors TL-DZ and TL-SD. The detec- 
tion of motion is based on simple differencing. For 
example, in DZ-MOTION the DZ image from a 

previous scan produced approximately 4 min before 
the current scan is subtracted from the current DZ 
image. In the differenced DZ image, gust fronts ap- 
pear as white lines (positive values at the front's posi- 
tion in the current scan) that are trailed by parallel 
dark lines (negative values at the front's position in 
the previous scan). Although functional templates 
that can scan for parallel white and dark thin lines 
simultaneously are feasible, these types of templates 
have so far proven to be too computationally expen- 
sive to operate within the real-time constraints of the 
available computer resources. Thus the existing 
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DZ-MOTION simply looks for thin lines of positive 
values. The functional template used has a kernel that 
is identical to the one shown in Figure A of the box, 
"Functional Template Correlation," but the scoring 
functions are somewhat different because of the con- 
sequences of differencing. The feature-detector SD- 
MOTION is similar to DZ-MOTION in that SD- 
MOTION also applies to the difference of two 
sequential images a thin-line filter with customized 
scoring functions. With this approach, thin lines that 
do not move are given low interest values, reflecting 
the belief that a stationary thin line is either not a gust 
front or is a gust front that may be ignored. Because 
the background in differenced images is reduced to 
values near zero, DZ-MOTION and SD-MOTION 
tend to be more sensitive than TL-DZ and TL-SD. 

One disadvantage of DZ-MOTION and SD- 
MOTION is that they tend to produce false alarms 
when moving storms are present because the leading 
edge of the storm may appear in the differenced 
image as a thin line of positive values. For reducing 
the likelihood of such false alarms, an image of storm 
regions is generated with a round functional template 
whose kernel has a diameter of 13 pixels (6.25 km). 
Wherever storm regions are detected with this tem- 
plate, interest values are decreased in DZ-MOTION 
and set to nil (i.e., no opinion) in SD-MOTION. 

A fifth feature detector, OUT-OF-TRIP, highlights 
range-ambiguous echoes. Range-ambiguous echoes 
occur when signals are reflected by weather more 
distant than the maximum unambiguous range. Be- 
cause the signals have traveled farther, they arrive 
back at the radar receiver at the same time as signals 
that are transmitted later and reflected from nearer 
weather (hence the name OUT-OF-TRIP). For these 
range-ambiguous echoes, the apparent range extent is 
maintained while the azimuthal extent is reduced 
proportional to the range; thus the signals have a 
distinctive appearance as reflectivity thin lines that are 
radially aligned and that are associated with high local 
variance in the Doppler data. Because of their thin- 
line appearance, range-ambiguous echoes are often 
inappropriately given high interest values by both 
TL-DZ and DZ-MOTION. 

The detection of out-of-trip signals is performed 
by applying two functional templates simultaneously. 

One template looks for radially aligned thin lines in 
the DZ  image, while the other requires that the corre- 
sponding SD values are high. The result is an interest 
image that highlights out-of-trip signals. After the 
combination of all other interest images, the out-of- 
trip interest image is subtracted from the combined 
interest image, thus selectively suppressing evidence 
for the presence of gust fronts where out-of-trip sig- 
nals are found. Example outputs of the OUT- 
OF-TRIP feature detector are shown in Figures 6 
and 7. 

The ANTICIPATION feature detector provides a 
mechanism, based on situational context, for spatially 
adjusting the detection sensitivity of MIGFA. High 
anticipation values get averaged with interest values 
from other feature detectors to increase the likelihood 
of detection at specific locations. Similarly, low antici- 
pation values suppress the likelihood of detection. 

The most important use of anticipation is as a 
replacement for coasting. Simply defined, coasting is 
the continued tracking of a target on a radar screen 
for some time interval after the target has disappeared 
(i.e., after the target's signal has fallen below some 
detection threshold). Coasting assumes that the loss 
of a target's signal is not due to a change in the target's 
behavior (e.g., a change in velocity or perhaps the 
disappearance of the target). Gust fronts, however, do 
change their behavior, as in cases in which gust fronts 
collide. Consequently, the blind coasting of a signal 
after the signal's loss is a potential source of false 
alarms. As an alternative to blind coasting, anticipa- 
tion provides a mechanism for progressively increas- 
ing the sensitivity of a detection system, supporting 
weak evidence that would otherwise fall below detec- 
tion thresholds. 

In MIGFA, prior history of the behavior of a par- 
ticular gust front is used to predict where that front is 
expected to be in the current scan. The predictions 
are used to create a band of elevated interest values, 
typically not so high as to trigger a detection by 
themselves, but high enough to raise collocated weak 
signals above threshold. In general, as the length of 
time a gust front has been tracked increases, the an- 
ticipation interest values can also be increased. If ab- 
solute coasting is desired, interest values can be in- 
creased to a level high enough to trigger a detection 
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without any other supporting evidence. Examples of 
anticipation interest images are shown in Figures G 
and 7. 

Anticipation can also be used to adjust the sensitiv- 
ity of gust front detections on the basis of contextual 
knowledge. Some examples follow: 
1. Many gust fronts are not observable in radar 

data when the fronts are directly over the radar 
site because of obscuration by intense ground 
clutter. Even with anticipation of where a gust 
front is expected to be, the radar system can 
often lose the front as the front crosses over the 
radar site. To prevent such a loss, absolute coast- 
ing over the radar site can be accomplished by 
setting interest values within 2 km of the radar 
site to nil (i.e., missing values) for all interest 
images except the anticipation image. Conse- 
quently, the anticipation interest image will be 
the only image allowed to have an opinion of 
what exists directly over the radar site. 

2. Gust front false alarms often occur from thin, 
elongated bands of low-reflectivity stratiform 
rain. In central Florida at least, gust fronts are 
seldom associated with the stratiform rain that 
often follows intense storm activity. Hence, un- 
der such conditions, the ANTICIPATION fea- 
ture detector suppresses the background antici- 
pation interest values. 

3. False alarms are rare in the absence of any pre- 
cipitation. Thus, when no precipitation is vis- 
ible on the radar screen, the background antici- 
pation interest values may be safely raised, 
thereby increasing the likelihood of detecting an 
incoming gust front that is generated by a more 
distant storm. 

Com bining Evidence 

During the feature-detector selection process, a rule 
of combination is also chosen to govern the combining 
of evidence-an example of data fusion. In principle, 
the rule of combination can be as simple as the aver- 
aging of pixel values across all interest images. How- 
ever, for the set of ASR-9 WSP feature detectors 
described earlier, a somewhat more complicated rule 
has been used. 

The four interest images generated by TL-DZ, 

TL-SD, DZ-MOTION, and SD-MOTION are av- 
eraged together. During the process, any missing val- 
ues are ignored. The resulting averaged interest image 
and the anticipation interest image are combined as a 
weighted average: the average of the first four interest 
images is given a weight of 0.75 while the anticipa- 
tion image is given a weight of 0.25. Finally, elements 
of the out-of-trip interest image are multiplied by 
0.25 and subtracted from the elements of the weighted 
average. The resulting image is called the combined 
interest image. 

Figure 6 shows an example ASR-9 WSP DZ im- 
age, the outputs of each feature detector, and the final 
interest image. In this case, strong evidence for the 
two fronts is visible in each of the component interest 
images (except, of course, for the out-of-trip image). 
Clearly, any one of the feature detectors acting alone 
would have been adequate. Now consider Figure 7, 
which summarizes the evidence for the presence of 
the two gust fronts in a later scan in which detection 
has become more difficult as accumulating storm re- 
gions have occluded the fronts. Note that although 
different parts of the gust fronts are highlighted in 
different interest images, the gust fronts are not un- 
ambiguously visible in any single interest image (ex- 
cept the anticipation image). In the combined inter- 
est image, however, the gust fronts are much more 
apparent. This example illustrates how evidence de- 
rived from multiple feature detectors can be com- 
bined so that the various detectors mutually support 
and compensate for one other. 

In MIGFA, no one feature detector is meant to 
be a perfect, or even necessarily a good, discrimi- 
nator of gust fronts and background. When used 
together, however, several weakly discriminating 
feature detectors can achieve robust performance 
depending on how the detector outputs are 
combined. 

Extraction 

Algorithms, such as AGFA, that track gust fronts as 
entities must identify gust fronts prior to tracking. 
The algorithms rely on the assignment of unique 
labels that permit the establishment of correspon- 
dence across time. Gust front statistics, such as propa- 
gation speed and location, are computed for the front 
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FIGURE 8. The bow-tie functional template used for thin-line smoothing: (a) index kernel and 
(b) corresponding scoring functions. (For an explanation of functional templates, see the box, 
"Functional Template Correlation.") 

as a whole. This approach is adequate for simple 
cases. Inevitably, however, complex rules are required 
to handle the labeling, correspondence, and tracking 
for cases in which a single front breaks up into dis- 
joint fragments or for cases in which multiple fronts 
merge or collide. Given the variable nature of gust 
front behavior, the construction of a fully compre- 
hensive set of rules that are correct for all possible 
circumstances is a difficult task. 

The problem is bypassed in MIGFA by making the 
goal of extraction the identification of all points (col- 
lectively called an event) that lie in any gust front. 
Certainly, some chains of points are spatially segre- 
gated or have different velocities. For purposes of 
reporting, such chains can be inferred to belong to 
separate gust fronts even though there is no concerted 
attempt to label or track gust fronts as entities. In- 
stead, individual points are tracked across time; that a 
point belongs to one gust front or another is irrele- 
vant to processing. MIGFA predictions are elastic in 

that the variable velocities of different points along 
the gust fronts are each used to make predictions of 
what the gust front appearance will be at some time in 
the future. 

Thin lines in the combined interest image can be 
fragmented for gust fronts that intersect with out-of- 
trip weather or for fronts obscured by storm regions. 
To bridge gaps between collinear fragments and to 
suppress random unaligned high-interest values, 
MIGFA uses thin-line smoothing of the combined 
interest image. Figure 8 shows the bow-tie functional 
template used as the basis for thin-line smoothing. 
The template, inspired by the receptive field of the 
cooperative cell of the Boundary Contour System 
developed by S. Grossberg and E. Mingolla [lo], has 
a bow-tie shape that weights the influence of the end 
regions over that of the center by placing more kernel 
elements at the ends. Consequently, the template gen- 
erates high output interest scores for an image point 
between two collinear high-interest segments, even if 
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that middle point itself has a low input interest value. 
Because of the scoring-function design, the bow-tie 
filter suppresses those collinear interest values which 
are below the level of ambiguity (0.5), and amplifies 
those values which are above the level of ambiguity. 
With this design, the boundaries between gust fronts 
and background are sharpened, resulting in cleaner 
shapes for subsequent processing. An example of an 
input image of combined interest and an output 
smoothed image are shown in Figure 9. 

A threshold of 0.5 is then applied to the smoothed 
image to create a binary image of candidate fronts. 
The lengths of resulting elongated shapes are then 
computed, and the elements of those binary shapes 
which are too short (KG km for the ASR-9 WSP) are 
set to 0. The result of this process is shown in the 
frame labeled "match > 0.5" in Figure 9. 

The bow-tie functional template also generates a 
map of orientations. In the orientation image, each 
element indicates the orientation that is associated 
with the highest-scoring bow tie rotated at 10" incre- 
ments from 0' to 170". Black pixels correspond with 
best matches at 0"; white pixels correspond with best 

matches at 170". An example orientation image is 
shown in Figure 9. 

The elongated binary shapes of the "match > 0.5" 
image can be thinned down to a single-pixel-width 
skeleton by using an FTC implementation of a modi- 
fied version of S. Levialdi's homotopic thinning [Il l .  
The result of thinning is shown in the frame labeled 
"marked thinned in Figure 9. 

The chains of points resulting from thinning are 
then extended along ridges of relatively high interest 
by using what is essentially a road-following algo- 
rithm. At each end point, the pixels immediately 
surrounding that point are examined by looking out- 
ward from the rest of the chain for the maximum- 
interest pixel with an orientation (found in the orien- 
tation image) that is within a specified angle from 
that of the initial end point. When the maximum 
interest score of a new point falls below 0.2 or when 
no new point has an orientation consistent with the 
initial end point, extending halts. The result of the 
extending process is shown in the frame labeled "ex- 
tended in Figure 9. 

After the chain-extension process has been com- 

SHOOTHED INTEREST HATCH > 8.5 

FIGURE 9. Extraction steps. Candidate gust fronts are extracted from a combined interest image. For a description of the 
different steps involved, see the subsection "Extraction" in the main text. 
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pleted, the resulting image may be highly branched 
and it may contain loops. For further refinement of 
the image, chain segments are assigned scores based 
on the sum of the corresponding interest values found 
in the smoothed interest image. In each disjoint net- 
work of chain segments, the single most interesting 
(usually, but not always, the longest) non-looping 
combination of chain segments is extracted as the 
candidate gust front. Once the most interesting chain 
has been extracted, the process is repeated on the 
remaining unextracted chain segments to find the 
next most interesting combination of chain segments. 
The extraction process is repeated until the most 
interesting remaining chain is below an empirically 
determined interest threshold. In Figure 9, the frame 
labeled "selected chains" shows the set of above-thresh- 
old combined chain segments that were extracted 
from the "extended image. 

As stated earlier, each point in the extracted event 
is tracked individually. The tracking of a particular 
point requires that the corresponding point in the 
event immediately prior to the current event be found. 
Correspondence can be difficult to establish when 
several gust fronts collide; in such cases, the point 
in the prior event that is closest to a point in the 
current event might not necessarily be the correct 
corresponding point. Consequently, the correspond- 
ing point is chosen to be the closest point in the 
immediately prior event for which the orien- 
tation and speed are consistent with the given 
point in the current event. If no such point in 
the prior event is found, then the corresponding point 
is assumed to be the closest point. Once cor- 
respondence for a point is established, the point 
is indexed by creating a pointer linking that point 
to the corresponding point in the immediately 
prior event. If the distance between the two corre- 
sponding points is too large or if the distance is 
inconsistent with prior history, then the point is 
unindexed (i.e., the link is broken). Through the 
index links, a point can be tracked backwards 
in time to its first recorded instance. The number 
of prior events through which a point can be 
tracked is called the point's depth. (A depth of 

O means that the point is unindexed.) Once 
indexed, each point is assigned the follow- 
ing attributes: coordinates, distance moved, di- 
rection moved, depth, Doppler value, interest 
value, and propagation speed. 

After indexing, each extracted chain of points is 
edited: 
1. If the direction a single point moves is opposite 

(approximate difference of 180") from its neigh- 
bors, the direction of the point is reversed. 

2. Single chains may be divided into two subchains 
if a persistent discontinuity in velocity or a per- 
sistent change in orientation is detected at some 
point along the chain. 

3. Various parameters such as propagation speed, 
Doppler value, and direction of motion are 
smoothed along the length of each chain. 

4. Heuristics are applied that, when satisfied, 
unindex individual points in a chain. If more 
than half of any chain's points become unindexed, 
all points in the chain are unindexed. 
The heuristics mentioned in item 4 above are based 

on knowledge of how false alarms can be distin- 
guished from real gust fronts. For example, if the 
direction a point moves is inconsistent with the mea- 
sured Doppler value, the point is unindexed. Or, if 
the point is approaching the radar site and moving in 
the same direction and no faster than the winds mea- 
sured by anemometers at the radar site (i.e., there is 
no convergence), the point is unindexed. 

In the final stage of tracking, a binary decision is 
made for each chain as to whether the chain should 
be declared a gust front. A chain's summed interest 
score and the depths of its constituent points are used 
to make the decision. For chains with high summed 
interest scores (reflecting a higher degree of con- 
fidence), points with lower depths may be in- 
cluded. On the other hand, chains that have low 
summed interest scores are less likely to be gust 
fronts and are thus required to accumulate 
higher depths before being included in the an- 
nounced gust front detections. The frame labeled 
"indexed event" in Figure 5 shows the set of all 
extracted points. White pixels represent those 
points which have the sufficient depths and interest 
scores to be reported. Gray pixels represent those 
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points which will not be reported due to a lack of 
confidence. In the frame labeled "history," the re- 
ported points are shown in context with previously 
reported events. 

Prediction 

The current extracted event, indexed into the prior 
history, is used to predict the future locations of those 
points which have the sufficient depths and interest 
scores. Given the direction moved, the propagation 
speed, and the current coordinates of a point, a new 
coordinate is computed for some specified time in the 
future. Gaps can arise between the projected future 
coordinates of two adjacent gust front points when 
the orientations and velocities of the points are not 
identical. In such cases, the gaps are filled in. An 
example showing the reported chains and their ex- 
pected locations after 10 and 20 min is shown in the 
frame labeled  prediction^^^ in Figure 5. 

Results 

The performance of MIGFA has been scored against 
human interpretations of the same input radar data. 
Implicit in this statement is the assumption that hu- 
man interpretations are 100% accurate. As we will see 
later, this assumption is not always correct. 

The human interpreter had access to both Doppler 
- - 

and reflectivity images for an entire sequence of ASR- 
9 WSP scans, which could be viewed separately or in 
sequence as a movie. For each scan, a description of 
"truth" (i.e., the interpretation of the scan by a hu- 
man) was stored in a table as a list of coordinates 
marking the gust front end points and an intermit- 
tent sampling of points in between. For categoriza- 
tion of results, the estimated maximum wind shear in 
the zone of convergence was also stored. This scoring 
exercise was intended to measure MIGFA's detection 
performance, not the end-to-end gust front detection 

time: 91/08/25 20:55:40 1 degrees 
I time: 91/08/25 2 - 

FIGURE 10. Human versus MIGFA interpretation of ASR-9 WSP data. The 5-km-wide box denotes a region where a hu- 
man interpreter has detected a gust front. The single line represents a detection by MIGFA. Note that the human interpreter 
did not include the extreme ends of the front because the ends were nearly radially aligned and had weak reflectivity 
values-characteristics of out-of-trip weather. However, because the extended thin line moved consistently with the center 
of the front and because the variance of Doppler velocity values associated with the thin line was too low to be out-of-trip 
weather, MIGFA probably gave the more likely interpretation. The reflectivity is given in dBZ, and the velocity in mlsec. 
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capability for the ASR-9 WSP. Consequently, the hu- 
man interpreter was restricted to including in the 
truth set only those gust fronts which had some vis- 
ible signature, however subtle. Other data sources, 
such as matching TDWR data and anemometer mea- 
surements of winds over the radar site, were used to 
confirm or deny the existence of gust fronts that had 
an ambiguous appearance in ASR-9 WSP data. The 
interpreter, however, did not use these other data 
sources to define gust fronts in the absence of visible 
ASR-9 WSP signatures. For cases in which MIGFA 
detections in ASR-9 WSP data were scored against a 
human interpreter looking at TDWR data, the same 
procedures were used to generate the TDWR truth 
tables. 

An automatic scoring procedure, described in de- 
tail by D. Klingle-Wilson et al. [12], compares com- 
puted gust front detections with human-generated 
truth (see Figure 10). Briefly described, the scoring 
algorithm draws lines that connect the sequence of 
coordinates encoding the human-estimated limits of 
a gust front. The lines are then expanded to a 5-km- 
wide region that is called, in this article, a truth box. 
Computed gust front detections overlapping with some 
portion of the truth box are counted as successful 
detections while those not overlapping are counted as 
false alarms. A probability of detection (POD) is 
computed by dividing the number of successfully 
detected fronts by the number of fronts identified by 
the human interpreter. The probability of a false alarm 
(PFA) is the number of false alarms divided by the 
total number of algorithm-generated detections. (Note: 
In this article, POD and PFA values will be expressed 

as percentages.) In addition to the hit-or-miss POD 
and PFA scores, scoring is also done in terms of the 
percent overlap of computer-generated detections and 
truth boxes. The percent length detected (PLD) is the 
number of points in an algorithm-generated detec- 
tion that fall within a truth box divided by the length 
of that truth box (in pixels). The percent false length 
detected (PFD) is the number of points in an algo- 
rithm-generated detection that fall outside any truth 
box divided by the total number of algorithm-gener- 
ated gust front points. 

One improvement to this method is the use of a 
MAYBE category of truth. Often gust fronts or parts 
of gust fronts are only marginally detectable, forming 
a gray area in which the human observer is undecided 
or uncertain. If an algorithm detects a weak gust front 
associated with an ambiguous signature, the detection 
should not count as a false alarm. Similarly, if the 
algorithm misses a gust front that is too weak to have 
any operational significance, the miss should not af- 
fect the POD and PLD scores. Radar image features 
that are categorized as MAYBE are omitted from 
scoring. 

Table 1 compares the performance of MIGFA 
against the latest version of AGFA, which uses more 
conventional methods of signal processing and com- 
puter vision. The test set of ASR-9 WSP data col- 
lected in Orlando, Florida, during field testing in 
199 1 contained nine different moderately strong gust 
fronts tracked through 15 hours (372 images). A 
human interpreter looking at the same data detected 
280 instances of the nine gust fronts. The first two 
columns of Table 1 indicate that MIGFA increased 

* A s  scored against human interpretations of ASR-9 W S P  data 

** Expressed as a percent 
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Table 2. AGFA and MIGFA Performance* on ASR-9 WSP Data 

Gust Fronts Gust Front Length 

Probability of Probability of a Percent Length Percent False Length 
Detection (POD)** False Alarm (PFA)** Detected (PLD) Detected (PFD) 

Baseline (AGFA) 42.6 3.2 21 .O 4.2 

MlGFA 75.1 0.0 58.7 6.4 

* A s  scored against human interpretations of matching TDWR data 
** Expressed as a percent 

by more than 50% the number of fronts detected by 
AGFA, while decreasing the false-alarm rate. Simi- 
larly, the PLD scores (column 3) indicate an improve- 
ment in detection performance. The increase in PFD 
(from 12.9% to 33.4%), however, appears to suggest 
that MIGFA is not as good as AGFA at discriminat- 
ing the extent of individual fronts. 

For a better understanding of why MIGFA was 
extending fronts beyond what the human interpreter 
believed appropriate, we examined several cases in 
which the PFD was high. In most of those cases, we 
found the extra points that MIGFA included in the 
gust front detections were believable. For example, 
Figure 10 shows a gust front truth box that overlays a 
MIGFA-generated detection. The human interpreter . 
was reluctant to include the extreme ends of the front 
because the ends were nearly radially aligned and had 
weak reflectivity values-characteristics of out-of-trip 
weather. However, because the extended thin line 
moved consistently with the center of the front and 
because the variance of Doppler velocity values asso- 
ciated with the thin line was too low to be out-of-trip 
weather, MIGFA probably gave the more likely inter- 
pretation of the scene. 

To substantiate such anecdotal observations, we 
took the gust fronts that MIGFA and AGFA had 
detected in ASR-9 WSP data and scored the fronts 
against human interpretations of TDWR data that 
had been taken at the same time. Although the result- 
ing scores (Table 2) support the general trend of the 
first three columns of Table 1, the PFD for MIGFA 
(6.4%) is now roughly the same as that for AGFA 
(4.2%). Because gust fronts are more readily observ- 

able in TDWR imagery, we assume that the TDWR 
truth (i.e., the TDWR data as interpreted by a hu- 
man) is more accurate than the ASR-9 WSP truth 
(i.e., the ASR-9 WSP data as interpreted by a hu- 
man). Thus the difference between the PFDs as scored 
against ASR-9 WSP and TDWR truths crudely ap- 
proximates the percentage of detected gust front points 
missed by the human interpreter. For MIGFA, this 
difference (33% - 6% = 27%) added to the PLD 
scored against the ASR-9 WSP truth (86%) is 113%; 
i.e., MIGFAYs performance was 13% better than that 
of the human interpreter. For AGFA, the comparable 
result is 13% - 4% + 39% = 48%. 

MIGFA was installed at the ASR-9 WSP site at 
Orlando International Airport in the spring of 1992 
and was part of a formal operational test from 8 July 
to 20 September. During this time, gust front detec- 
tions and predictions were relayed to air tr&c con- 
trollers for their use in planning air traffic operations. 
During the early part of the summer, several minor 
problems and algorithm deficiencies were identified, 
and several fures and enhancements were added dur- 
ing the middle of July. Careful interpretation, or 
"truthing," of the ASR-9 WSP data by a human was 
done from 1 August to 20 September. 

As with the off-line testing described earlier, the 
on-line performance was scored against human inter- 
pretations of the same data. Table 3 shows the per- 
formance statistics for the test period. In general, the 
on-line test results substantiate the off-line re- 
sults. Not surprisingly, the POD (75%) and PLD 
(81%) were somewhat lower than for the off-line 
test results shown in Table 1. Most of this differ- 
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Table 3. MIGFA Results* on ASR-9 WSP Data 
v I 

Gust Fronts Gust Front Length 

Probability of Probability of a Percent Length Percent False Length 
Detection (POD)** False Alarm (PFA)** Detected (PLD) Detected (PFD) 

1 MlGFA 75.4 1.8 80.8 21.1 

* Results are scored against human interpretations of the same ASR-9 W S P  data 

** Expressed as a percent 

Note: The data are for the period 1 August to 20 September 1992 in Orlando, Florida 

ence can be explained by two problems. 
First, several gust fronts had reflectivity values at or 

below the sensitivity limits of the ASR-9. Of course, 
those fronts with reflectivity values below the ASR-9 
limits were missed by both MIGFA and the human 
interpreter. But there were a few cases of marginal 
contrast in which the human could detect a gust front 
while MIGFA had not accumulated enough confi- 
dence to declare an alarm. Note that, unlike MIGFA, 
the human interpreter had the opportunity to exarn- 
ine the sequence of radar images repeatedly and could 
use information from scans late in the sequence to 
confirm or deny the existence of the gust front in 
early scans. Not much can be done to overcome the 
sensitivity limits of the ASR-9. In most (but not all) 
cases, however, gust fronts with marginal reflectivity 
levels were associated with weak wind shears. Because 
these weak fronts had a minimal impact on airport 
operations, a failure to detect such fronts was not a 
significant liability. 

The second problem was that several gust fronts 
were missed due to obscuration. In these cases, storm 
regions or out-of-trip weather were extensive enough 
to hide or fragment the thin-line signatures so that 
some gust fronts were detected late, dropped early, or 
sometimes missed altogether. 

The PFA (1 -8%) represents 19 false detections out 
of 1080 total detections generated by MIGFA in 
more than 14,000 scans processed. The high PFD 
(2 1.1 %) is almost entirely the result of MIGFA7s ex- 
tending gust fronts beyond the ends delimited by the 
human interpreter. With the use of anticipation based 
on prior tracking data, MIGFA was able to extend the 

detected gust front lengths through areas where the 
signatures appeared ambiguous. As was seen with the 
off-line testing described earlier, a case-by-case analy- 
sis indicates that most of these extensions were in fact 
justified even though they were inappropriately scored 
as false lengths. Rescoring the results against TDWR 
data should improve the PFD score. 

Another way to assess detection performance is to 
score only those gust fronts which had an impact on 
airport operations. From 20 July to 20 September, 
14 convergent wind shears of greater than 15 kn were 
recorded on the anemometer network at the airport. 
Two of the wind shears were the result of short-lived 
localized winds beneath storm regions that were di- 
rectly over the airport. The cause of a third wind shear 
could not be determined for certain, but was prob- 
ably due to a microburst that was reported at the 
south end of the airport just as the wind shear was 
recorded. In none of these three instances could hu- 
man interpreters find evidence of gust fronts in the 
ASR-9 data. 

Of the 11 remaining wind shears, which were all 
verified later as gust fronts by human interpreters, 
MIGFA correctly tracked eight at least up to (but not 
always over) the airport. In the eight cases, air traffic 
controllers were given initial warnings from 18 to 79 
min prior to the arrival of the front. Of the three 
missed gust fronts, one was occluded by fast-moving 
storm regions that were trailing the front. The second 
missed gust front had a very weak fragmented thin- 
line signature that was missed both by MIGFA and 
the human operators at the radar site who were log- 
ging weather and system activity. The third missed 
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case was a young gust front that had been generated 
by a large microburst only 5 km away from the run- 
ways. Because of its youth, the gust front had not yet 
developed a thin-line signature. Human interpreters 
who studied the radar scans dter the testing was 
completed could find no evidence of this particular 
gust front in the ASR-9 WSP data, but could see a 
small zone of convergence without a corresponding 
thin-line signature in the data from TDWR. In sum- 
mary, although MIGFA correctly detected and tracked 
(up to the airport) 8 out of 11, or 73%, of the gust 
fronts that had an impact on airport operations (wind 
shear > 15 kn), human operators working at the radar 
site were able to log 9 out of 11, or 82%, of the same 
gust fronts. 

False gust front detections that are reported to be 
approaching an airport can also adversely affect air- 
port operations. If a false alarm were trusted, inappro- 
priate changes in airport operations planning might 
be made and the resulting delays could be just as bad 
as when a gust front is missed. During the test period, 
three incoming events-covering a combined time of 
24 min (12 scans)-were scored as false alarms. Only 
one event generated a false wind-shear hazard alert 
(wind shear > 15 kn). All three were probably the 
result of thin lines from stratiform rain. None of these 
false alarms should have influenced airport operations 
planning because in each case tracking was dropped 
when the estimated time of arrival at the airport was 
more than 40 min. 

Evaluation 

Using the same input ASR-9 WSP data, we have 
shown by direct comparison that MIGFA provides a 
substantial improvement over AGFA in detection per- 
formance. We have also provided indirect evidence 
suggesting that, given the same input data, MIGFA 
may be nearly as good as human interpreters. How- 
ever, the absolute reported POD scores for MIGFA 
(88% when scored against ASR-9 truth and 75% 
when scored against TDWR truth) are potentially 
misleading and should be regarded with caution be- 
cause the dataset used for comparison testing was 
relatively small and from only one season at one site. 
Thus the off-line test probably did not contain a good 
representative sampling of gust fronts. The test did, 

however, provide a reasonable basis for comparing 
MIGFA against the older algorithm. 

The results for the operational test period should 
be more representative of MIGFA performance. In 
the on-line testing, the POD and PLD scores re- 
mained high (in fact, the scores were only somewhat 
lower than those reported for the off-line testing), but 
an apparent problem in the relatively high PFD score 
(21%) persisted. Again, as was shown in the initial 
off-line testing, many of the false detections were in 
fact weak gust fronts or parts of gust fronts that the 
human interpreter had overlooked. Although these 
results have not been rescored against TDWR truth, 
the existences of gust fronts were established for sev- 
eral cases by the examination of matching TDWR or 
anemometer data. 

An analysis of results accumulated during the 1992 
operational test period has identified three main classes 
of failure modes for the ASR-9 WSP version of 
MIGFA. The failures within the first class are a direct 
result of the limited sensitivity of the ASR-9. Some 
gust fronts that were visible in TDWR data and that 
had an impact on the Orlando airport with moderate 
wind shear had reflectivity returns below the sensitiv- 
ity of the ASR-9. Like MIGFA, experienced human 
observers using ASR-9 data did not see such gust 
fronts, although with the benefit of hindsight the 
observers could sometimes detect above-threshold frag- 
ments of what must have been the approaching front. 
In general, gust fronts with thin-line signatures that 
have reflectivity levels at or below the sensitivity limits 
of the ASR-9 usually (but not always) exhibit 
weak wind shears, making them operationally less 
significant. 

The second failure mode was due to a lack of 
reliable Doppler estimates of velocity in clear air. 
Because of the unreliability of these values, the ASR-9 
version of MIGFA had to rely on thin-line signatures 
for detecting gust fronts. As discussed earlier, how- 
ever, not all thin lines are caused by gust fronts. For 
example, elongated low-reflectivity storm echoes as- 
sociated with extensive areas of stratiform rain mov- 
ing with the ambient wind were a source of false 
alarms in the operational testing. Because the 
reflectivity levels of light-rain echoes overlap with the 
range of reflectivity levels exhibited by gust fronts, the 
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thin-line feature detectors produced high interest val- other words, when obscuration is detected, the antici- 
ues. In most of these cases, the thin-line features pation interest image becomes absolute, resulting in 
associated with the stratiform rain were transient and spatially restricted coasting. 
did not accumulate enough confidence through time 
for the system to declare a gust front. Some false 
alarms could be dismissed because of the lack of 
implicit convergent wind shears, which were com- 
puted by comparing the radar-measured winds in 
incoming candidate gust fronts with the winds mea- 
sured by the airport anemometers surrounding the 
radar site. In at least one case, however, a false alarm 
could not be rejected with this criterion. The winds at 
the airport were variable and not representative of the 
winds immediately in front of the feature, which was 
15 krn away from the airport. 

The third failure mode was caused by obscuration. 
During the 1992 operational test period, several gust 
fronts were either detected late, prematurely lost, or 
not detected at all due to obscuration by patches of 
high reflectivity that were caused by storms, range- 
ambiguous echoes, or ground clutter. Even in places 
where the thin-line features were visible, such patches 
of high reflectivity had sometimes fragmented the 
features into short segments. One missed gust front is 
known to have had an impact on the airport with a 
wind shear greater than 15 kn. - 

Experience gained from the operational test period 
has led to the implementation of a partial solution to 
the obscuration problem. The solution uses anticipa- 
tion and the system's ability to detect obscuring weather 
patterns. Given a sequence of images, there often 
exists some time interval when a significant part of 
the gust front is not obscured and tracking can be 
initiated. Once sufficient confidence has accumulated, 
the system begins to anticipate where the gust front 
ought to be inthe next scan. In normal operation, the 
thin lines of increased interest in the anticipation 
interest image are used to boost weak signals that 
would otherwise be below threshold for detection. 
(During the operational testing, obscuration sup- 
pressed all interest, eliminating any signals for antici- 

Summary 

The identifying signatures for gust fronts-thin lines 
of increased reflectivity, boundaries of converging 
Doppler values, and motion perpendicular to the thin 

- - 

lines and convergence boundaries-are conceptually 
easy to define and exploit as the basis of detection 
algorithms. And yet, although several research groups 
have worked collectively for nearly 10 years to de- 
velop reliable automatic gust front algorithms, none 
of the algorithms has demonstrated performance com- 
parable to the ideal of human performance. 

The problem is that automatic gust front detec- 
tion, like other applications in computer vision, is 
deceptively much more difficult than the task of sim- 
ply finding one or more signatures. Human observers 
use a variety of perceptual skills that have been noto- 
riously and surprisingly difficult to implement in com- 
puter-vision systems. For example, humans have a 
talent for dealing with uncertain, ambiguous, and 
even contradictory evidence. Humans use specific 
knowledge of the object being sought and the context 
of observation as well as the object's spatial and tem- 
poral context. Unlike most other computer-vision 
and automatic target recognition (ATR) methodolo- 
gies, the Experimental Target Recognition System 
(XTRS) and the Machine Intelligent Gust Front Al- 
gorithm (MIGFA) do not rely on machine intelli- 
gence only at the higher symbolic levels of processing. 
XTRS provides a framework for applying knowledge 
at the level of raw data by using specialized techniques 
for knowledge-based signal processing and pixel-level 
processing of evidence. The fact that MIGFA perfor- 
mance is competitive with that of human observers is 
at least partially due to this use of low-level machine 
intelligence. 
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