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Automated Storm Tracking for
Terminal Air Traffic Control
Edward S. Chornoboy, Anne M. Matlin, and John P. Morgan

■ Good estimates of storm motion are essential to improved air traffic control
operations during times of inclement weather. Automating such a service is a
challenge, however, because meteorological phenomena exist as complex
distributed systems that exhibit motion across a wide spectrum of scales. Even
when viewed from a fixed perspective, these evolving dynamic systems can test
the extent of our definition of motion, as well as any attempt at automated
tracking of this motion. Image-based motion detection and processing appear to
provide the best route toward robust performance of an automated tracking
system.

official transcripts of the pilot-controller conversation
before the landing show that both the pilot and the
controller were aware of the severe weather condi-
tions, yet neither could anticipate the extreme dy-
namics of the weather. Table 1 gives the transcript of
the conversation between the pilot and controller ap-
proximately ten minutes before the aircraft landed.
Neither of them knew of new storm cells intensifying
in the region, nor were they aware of the forty-knot
motion that would rapidly change route conditions
by placing such dramatic weather in the path of the
plane. The four radar images in Figure 1 illustrate the
rapid development of the severe weather conditions
during a thirty-minute period before and during the
landing of Flight 102.

A High-Payoff Service

Understanding the relationship between weather evo-
lution and cases such as Flight 102 can lead to greater
flight safety during arrival and departure. The evi-
dence is already clear that terminal-area storm track-
ing will lead to a real and tangible payoff for air traffic
control, namely, the improved management of foul-
weather resources, which is easily linked to significant
cost savings. Controllers and controller supervisors—
those who oversee and specify aircraft spacing—need
to plan ahead to maintain a steady (and maximal) ar-
rival stream of aircraft. Abrupt unanticipated chang-
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102 was unable to hold the runway while
landing at Dallas–Fort Worth International

Airport. In the resulting accident there were many in-
juries—two of them serious—and the plane (a DC-
10) was irreparably damaged. It was raining at the air-
port that morning, and numerous thunderstorms
were occurring throughout the area. The darkness of
the early hour, the fatigue of the flight crew after an
all-night flight, and the bad weather were all suspect-
ed causes of the accident. Although the National
Transportation Safety Board officially concluded that
the stormy weather was not a contributing factor to
the crash (despite high cross winds from a severe
storm passing over the airport, the aircraft was able to
touch down on the runway [1]), the weather clearly
did play an important role in the events of that day.

The crew of Flight 102 had access to a variety of
weather information that morning, including their
own radar. Their information sources included Amer-
ican Airlines flight dispatch, Fort Worth Air Route
Traffic Control Center (ARTCC), Dallas–Fort Worth
approach control, and the Automatic Terminal Infor-
mation Service (ATIS). To these sources were added
the verbal information that came from controllers ob-
serving their radar scopes, as well as information re-
ported by other pilots (known as pireps). What is in-
teresting about this particular accident is that the
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es, such as the onset of bad weather or the loss of an
arrival gate, for example, result in unpleasant and
costly delays while planes are rerouted and arrival
queues are reestablished.

At Lincoln Laboratory, our accumulated experi-
ence in the development of the Terminal Doppler
Weather Radar (TDWR) [3, 4], the Airport Surveil-
lance Radar Wind Shear Processor (ASR-WSP) [5],
and the Integrated Terminal Weather System (ITWS)
[6] confirms the utility of (and the controllers’ desire
for) basic services such as precipitation mapping and
storm-motion tracking. With regard to the day-to-
day execution of the controller’s duties, these two ser-
vices produce significant payoffs in the effort to re-
duce weather-related delay [7]. Under ITWS, the
importance of storm-motion tracking can be under-
scored still further because this tracking is used in
turn by many other ITWS product algorithms, such
as storm-cell information, microburst prediction,
anomalous propagation editing, and pilot data link.
For more information on ITWS products, see the ar-
ticle by James Evans and Elizabeth Ducot, entitled

Table 1. Pilot-Controller Excerpts from Flight 102 on April 14, 1993

“On April 14, 1993, about 0659:43 Central Daylight time, American Airlines Flight 102 (AAL102) . . . departed the
right side of Runway 17 left, following landing at Dallas–Fort Worth International Airport, Texas. . . .” [1]

In general, it is the controller’s role to advise the pilot of the thunderstorm situation and, if possible, suggest a
flight path relative to the weather. The pilot makes the final decision on whether to follow the suggested path,
using all the information available to him or her [2]. Here is a transcript of  the conversation between the captain
of Flight 102 and the Dallas–Fort Worth tower controller.

(captain) . . . “One one zero three OK uh, how’s it look on your scope for gettin’ in there?” [0649:34]

(controller) “Well uh, I show an area of  weather at, at fifteen miles either side of  DFW airport pro-
ceeding uh, straight north uh fifteen miles on uh, each side uh, for about thirty miles.”

(captain) . . . “OK uh, and is this stuff moving?” [0650:18]

(controller) “Uh, does not appear to be moving uh, much if any . . . turn right . . . and join the runway
one seven left localizer.”

(captain) “Uh, I don’t think we’re goin’ to be able to do that that’s uh, that’s a pretty big red area on
our scope . . . that’s about what we’re looking at. Uh, we’re gonna have to, just go out I guess and
wait around to see what’s goin’ on here.”

(controller) “. . . Eight miles south of you’s a heavy DC-8 at three thousand joining uh, the final’s uh,
reporting a smooth ride at three.” [0650:46]

(captain) “Oh, OK, eight miles south of us? . . .  OK uh, we’ll head down that way then. . . .” [0650:59]

“The Integrated Terminal Weather System (ITWS),”
and the article by Marilyn Wolfson et al., entitled
“Automated Microburst Wind-Shear Prediction,” in
this issue.

Air Traffic Control Products

The weather-information needs of controllers can be
simply stated: they want someone to provide them
with unambiguous weather products that are free of
any need for interpretation and coordination and that
expedite air traffic control decision making [8]. Gen-
erally speaking, controllers and pilots need to know
where bad weather and its hazards will be and when
these hazards will occur; that is, they require predic-
tions that, among other things, account for storm
motion. Predicting this motion is a difficult task be-
cause, as Figure 1 illustrates, weather events are com-
plex phenomena. Figure 1(a) shows weather cells thir-
ty minutes before Flight 102 landed, and Figure 1(b)
shows weather cells twenty minutes before the land-
ing; both of these figures give little apparent evidence
of the storm to come. In Figure 1(c), which occurs ten
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FIGURE 1. Thirty-minute perspective on storm growth, decay, and motion. These radar images span the thirty-minute
interval prior to the landing of  American Airlines flight 102 (AAL102) at Dallas–Fort Worth Airport on 14 April 1993
(compare to Table 1 time stamps). The images are of weather-radar reflectivity, displayed with the National Weather Ser-
vice (NWS) six-level scale with one modification: two different colors are used for each NWS level to distinguish
weather that, given the prevailing motion, is within thirty minutes of the airport (red icon). (a) At 6:29:40, AAL102 has
begun its preparations for landing, making initial contact with the Fort Worth ARTCC. (b) At 06:37:05, AAL102 is still
some eighty miles from the airport. (c) At about 06:50:00 the captain asks the DFW controller if the weather is moving; he
also expresses doubt about making their way through (he needs to get by at least one storm region in his immediate
view). The controller reports no apparent motion and reassures AAL102 that the DC-8 ahead of them is experiencing a
“smooth ride”; given this information, the captain decides to continue his approach. (d) At the touchdown time of
06:59:43, storm cells sweep the runway, and—for whatever reason—the pilot cannot control the aircraft as it weather-
vanes in heightened winds from the southwest. Under ITWS, there are two display products that could have prevented
this accident: the Storm Motion Product, which consists of vectors illustrating direction with an accompanying speed
report in knots (part d shows a 40-knot NE motion) and the Storm Extrapolated Position Product, which provides direct
visual cues in the form of extrapolated leading-edge contours (part c illustrates the composition of  zero-reference, ten-
minute, and twenty-minute expected-position contours, which together warn of  a potential runway impact in ten min-
utes). If  operational, these products would have provided an easily relayed answer regarding the storm’s movement.
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minutes before the landing (and during the time of
the conversation in Table 1), the cells are just intensi-
fying. Finally, Figure 1(d) shows a mature group of
storm cells sweeping the airport runways with forty-
knot winds at the time Flight 102 lands. Often the
spatial translation of storms will suffice for weather
prediction, but translation alone will certainly not
suffice when storms evolve. During the approximate-
ly thirty minutes a plane is under terminal airspace
control, the morphology of a storm (i.e., its growth
and decay) can change considerably.

Explicit prediction maps are beyond current mod-
eling capabilities. In our work for the Federal Avia-
tion Administration (FAA), we have focused on the
graphical display of frequently updated precipitation
maps augmented by specific weather products that
warn of potential hazards or otherwise provide notifi-
cation of important weather attributes such as storm
motion. Figure 1 illustrates two concepts for the por-
trayal of storm motion. Figure 1(d) shows the Storm
Motion product and Figure 1(c) shows the Storm Ex-
trapolated Position product; both of these are sched-
uled components of ITWS. These particular overlays
were not available at the time of Flight 102 but were
sampled products from a prototype algorithm run-
ning in playback mode. Both of these simple presen-
tations provide a controller with easy-to-relay infor-
mation about storm motion. When the pilot of Flight
102 asks the controller, “Is this stuff moving,” dis-
plays like those shown in Figures 1(c) and 1(d) would
remind the controller that a forty-knot northeasterly
motion is in the area, and that a storm will probably
impact the airport within ten minutes.

Overview of Storm-Motion Tracking

The development of our algorithm for storm-motion
tracking actually has two objectives. First, as present-
ed above, we want to provide reliable motion infor-
mation in a form accessible to controllers. Second,
and equally important, we want to support ITWS al-
gorithms that need to compensate for the relative
movement of data between samplings. Hence our in-
terest in storm motion covers territory that is some-
what general. Many issues specific to our two objec-
tives cannot be covered here; these issues are discussed
elsewhere [9, 10]. We have chosen to accomplish

both of the stated objectives by using a motion-esti-
mation strategy based on local-area correlation, which
is the matching of regionalized image patterns from
one frame to the next. The purpose of this article,
then, is to present a rationale for our decision to use
local-area correlation for storm-motion tracking, and
to describe our adaptation of the local-area correla-
tion method.

Estimating storm motion by tracking regional im-
age patterns is a well-known procedure, with little
change in approach since the 1970s. Attempts to aug-
ment and improve the method have been directed
more toward the context of machine vision and deter-
ministic (rigid body) estimation. To our knowledge,
no study has focused on developing this tracking
method by including evolving and varying data such
as we observe in storm motion. With weather-radar
data, the quality of correlation matching can be quite
variable. Given that our objectives in developing a
storm-tracking algorithm call for reliable, robust, and
autonomous performance, there is a real need for
quality-control mechanisms that can incorporate
constraints and deal with outlying data points, or out-
liers, that affect the quality of motion prediction.

This article is divided into three parts. The first
part provides some historical background and consid-
ers the philosophical pros and cons of correlation
matching versus centroid tracking (which is the most
likely alternative tracking method available for use by
air traffic control). The second part presents a brief
synopsis of new correlation ideas that have been pro-
posed in the context of generic image analysis. The
third part proposes an alternative approach that plac-
es the correlation technique in the context of an im-
age-reconstruction problem. In particular, we present
a linear-estimation framework that is designed to in-
corporate phenomenological constraints as well as
outlier handling.

Historical Background

Automated storm trackers have aligned themselves
(more or less) along one or the other of two philo-
sophical paths, which we refer to here as the centroid
method and the correlation method. In the Laboratory’s
work for the FAA we have had the opportunity to ex-
amine both of these methods carefully [11, 12, 9].
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dar data are first reduced by meteorological analysis
to a small number of large-scale features, which are
then used as tracers of mesoscale movement [13–15].
Thunderstorms provide the best and most important
example of cell tracking because they are typically
viewed as aggregates of component cells that, in this
case, correspond to regions of strong (localized) verti-
cal motion [16, 17]. Because cells are a useful organiz-
ing principle, and because they can be identified and
associated between successive radar scans as regions of
heightened radar reflectivity, it is natural to track
thunderstorms by tracking component cells. Signifi-
cant hazards to aircraft are associated with thunder-

Superficially, these philosophies can be contrasted as
object identification with tracking versus flow-field
estimation. These two methods also represent oppos-
ing positions in estimation policy; one method de-
pends on obtaining a small number of accurate mo-
tion measurements while, in theory, the other
method depends on obtaining many motion mea-
surements with a low overall measurement error as
the only goal.

Centroid Tracking

Centroid, or cell, tracking methods are a high-level
approach to predicting storm motion because the ra-

FIGURE 2. When thunderstorm cells are isolated and long lived, they are excellent
candidates for object-oriented centroid tracking. This sequence from Dallas–Fort
Worth on 13 September 1993 shows a relatively long-lived thunderstorm cell during
a seventy-minute period. (a) The output of  our automated algorithm is rounded to
the nearest five-knot increment. (b)–(h) Each panel recomputes the speed and di-
rection of the thunderstorm cell relative to the displacement from part a.
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storm cells as well, which alone motivates their track-
ing. In “well-behaved” storms, centroid-based cell
tracking and correlation-based storm tracking are of-
ten interchangeable and can be easily substituted for
each other. Figure 2 shows a single-cell storm whose
motion is indicative of all storm motion in its local
region.

Obvious problems occur in centroid methods,
however, with the subordination of motion estima-
tion to the identification of amorphous and evolving
objects such as thunderstorms. Cells, for example, be-
ing dynamic, commonly merge and split. Hence a
well-known concern with object-oriented cell-cen-
troid tracking is that the incorrect identification or

changing character of an object propagates into track-
ing errors, often with catastrophic results. Centroid
methods for motion tracking are often confused by
highly evolving conditions such as squall-line thun-
derstorms, when cells are poorly isolated.

Refinements in the definition of a cell and the in-
troduction of adaptive techniques can mitigate the
above problem, but the prevention of gross identifica-
tion errors is far from perfect and not the only con-
cern in the development of a centroid-tracking algo-
rithm. Because the data are first reduced to a small
number of tracers (i.e., features that exist from one
frame to the next), the quality of the derived motion
information relies heavily on only these few measure-

FIGURE 3. Organized growth and decay of storm cells can give rise to an apparent storm motion,
as shown in this sequence from Orlando on 13 July 1993. (a) An instantaneous velocity estimate is
output by our storm-tracking algorithm. (b)–(h) The organized appearance of new cells more than
doubles the apparent motion of  this initial storm-cell complex over a seventy-minute period.
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ments. Hence when catastrophic errors occur, recov-
ery is difficult because each error carries significant
weight within the measurement population.

Thunderstorm cells are neither closed nor rigid;
thus with typical radar-data analysis, arbitrary reflec-
tivity thresholding redefines a cell at each analysis in-
stant. Because the centroid method usually doesn’t
track a cell per se but an approximating feature such as
a mass-weighted centroid, the concept of centroid shift
enters as a constant source of error that limits tracking
accuracy. In our experience, centroid methods are in-
adequate for the accurate alignment of data fields un-
dergoing motion.

Growth and Decay

Cells exhibit life cycles with characteristic stages [18],
and a typical cell does not last longer than one hour
(usually less). At any given time a thunderstorm con-
sists of a succession of cells in different stages of evo-
lution. Many factors affect new cell generation, but it
is not uncommon to see new cells appear with life cy-
cles on the order of fifteen to twenty minutes (a time
scale obviously relevant to air traffic control decision
making). New cells often form next to old cells, but
not necessarily along the direction of motion of the
old cell. Organized growth and decay can therefore
result in an apparent storm motion that veers from
cellular advection (the horizontal motion due to air
currents). Figure 3 illustrates just such a case; the or-
ganized growth of new cells doubles the apparent mo-
tion of the storm as a whole. In situations of severe
growth and decay, what should the analysis method
report—the motion of the cell, or the apparent mo-
tion of the storm, or both? This question is not an
easy one because the answer is predicated on the time
frame of the user’s need. In the case of Figure 3, the
advective component of the cell dominates for time
frames of twenty minutes or less (as in predicting part
c  from part a) but predicting part h  from part a
requires the modeling of a growth-induced jump
discontinuity.

As a technical challenge, could we control the sen-
sitivity of the processing to either the motion of the
cell or the motion of the storm? That is, could we
reliably dissect the two forms of motion apart? In this
respect, our own experimentation with tracking the

envelope of a storm (ignoring the cellular content)
has been only partially successful, because it repre-
sents a compromise position between cell motion ver-
sus storm motion [9]. Nevertheless, we have observed
empirically that there is at least a qualitative differ-
ence between the two motions. The translational mo-
tion of storms by steering winds is more or less con-
tinuous in nature. Growth and decay, on the other
hand, are manifest as discrete perturbations of brief
duration. The conceptual rule is illustrated in the
sketch of Figure 4; the top row shows three successive
time frames from a constant flow field, the middle
row illustrates a discrete perturbation in the middle
frame, and the bottom row shows their superposition.
Unfortunately, the interval between growth perturba-

Time

(a)

(b)

(c)

FIGURE 4. Organized growth and decay literally move a
storm by leaps and bounds. This motion is in contrast to
the more or less continuous (although by no means con-
stant) motion effected by wind advection. The motion
fields illustrated here are those of (a) a constant advec-
tive component, (b) an instantaneous growth perturba-
tion, and (c) their sum. The obvious decomposition seen
here becomes more difficult when the measurement field
is corrupted by noise.
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-  pro-
vides a measure of the apparent
motion in an image sequence. It
usually involves an analysis ap-
plied between two time frames, as
shown in Figure A, but local-area
correlation across multiple time
frames is certainly feasible.

Figure A shows a windowed
analysis, with its accompanying
bounds on resolution. A square
image mask is centered over an ar-
bitrary pixel in one image to de-
fine a local subimage, or correla-
tion box. A neighborhood of the
second image is searched to find
an appropriate match to the pic-
ture content of the subimage. In
practice, the search is centered on
zero displacement (or biased to-
ward a prior expectation) and
bounded by an excursion limit.

There are many ways to mea-
sure the goodness of match, but
the more common methods are
based on evaluation of an image
cross-correlation. The cross-cor-
relation computation can be nor-
malized to desensitize the method
with respect to mean-bias or scale

fluctuations. Mean-squared error
also can be used, and is gaining in
popularity. Some comparisons of
these methods have been docu-
mented elsewhere [1].

In Figure A, the analysis is
mean and variance normalized to
yield a set of correlation coeffi-
cients bound between +1 and –1.
If an excursion limit of M pixels is
used, where M is odd and the
search for best match looks no far-
ther than (M – 1)/2 pixels in any
direction, then the correlation
analysis generates an M × M sur-
face of correlation values. The
mask can be centered, in turn,
over each pixel in the first image,
providing a pixel-level analysis
of the original image pair. Since
each pixel gives rise to an
M × M correlation surface, a com-
plete analysis can produce a meta-
image of M × M correlation surfac-
es (M 2-length vectors) indexed
over the weather-image index set.

In practice, of course, the anal-
ysis is usually limited to a sam-
pling of locations based on image
content, or a sublattice of the im-

age index set. Furthermore, few
analysis methods bother with the
correlation surface itself and seek
only the displacement that yields
the maximum correlation (MAX-
COR), which is then accepted as
the displacement measurement.
Previous attempts to recover a dis-
placement-vector field have taken
these MAXCOR displacement
measurements as the starting
point for reconstruction and
treated them as uniform-quality
measurements. We have been ex-
ploring alternative methods to
improve the quality of motion in-
formation. Just as an intensity
(scalar) image can be viewed as in-
complete or degraded or both, so
can a correlation-surface meta-
image. We are currently interested
in research that centers on recon-
struction of the correlation-sur-
face meta-image.
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1. P.J. Burt, C. Yen, and X. Xu, “Local

Correlation Measures for Motion
Analysis: A Comparative Study,” IEEE
Proc. Pattern Recognition and Image
Processing, Las Vegas, NV, 14–17 June
1982, p. 269.

M O T I O N  A N A L Y S I S  B Y  C O R R E L A T I O N

data in the past, although generally not in automated
settings but in the measurement of global (whole ra-
dar field) displacements [19], regional (whole echo)
movement [20], and even local (internal) motion
[21]. As stated earlier, the technique of basic correla-
tion matching is well known. Many of the image-
based definitions, ideas, and issues in correlation
matching are summarized in more detail elsewhere

tions is not fixed a priori, nor is growth guaranteed to
be continual. Some aspects of growth and decay may
be predictable, given a history of observation (a cur-
rent point of focus), but better meteorological analy-
sis and modeling are needed here.

Correlation Tracking

Area correlation has been applied to weather-radar
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formation, and this turns out to be a strong selling
point because it imparts the desired immunity to cell
splitting/merging. The ability to study storm motion
over a range of spatial and temporal scales is also a
major plus. Because the correlation method can be
applied at the pixel level, it can function as a local
gridded analysis (it can provide a “dense” set of mea-
surements). This type of analysis fits in well with our

[22]. Our particular point of view is outlined in the
sidebar entitled “Motion Analysis by Correlation.”
This technique fits into the category of tracking
methods that correlate regularly spaced local image
segments (square regions) to obtain a grid of displace-
ment (or, equivalently, motion) vectors.

With local-area correlation, no particular effort is
made to interpret the data for its meteorological in-

FIGURE A. Motion analysis by local-area image correlation. A square image mask is centered over an arbitrary
pixel in one image to define a local subimage. An excursion-limited neighborhood of  a second image at a differ-
ent time is searched to find an appropriate match to the first image. A surface of correlation values, shown here
in both three-dimensional and false-color views, is generated for each pixel in the original image.
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objective to support pixel-based meteorological anal-
ysis and parallels the approach used by our group at
Lincoln Laboratory to develop successful gust-front
[23] and microburst prediction algorithms (see the
article “Automated Microburst Wind-Shear Predic-
tion” in this issue). In contrast to the centroid ap-
proach, as the ideal argument goes, local-area correla-
tion can provide a number of overlapping and,
therefore, corroborating measurements, which (to a
degree) relaxes the dependence on the quality of any
individual measurement.

Our interest in the local-area correlation method
stems from consideration of the virtues of the method
stated above and also from the more general notion
that correlation tracking can be applied across a wide
range of data types and morphologies: thunder-
storms, stratiform rain, and snow are all (potentially)
covered. Snowstorms, and their tracking, are a major

concern at many U.S. airports, but neither they nor
stratiform rain exhibits a cellular structure, and there-
fore cannot be tracked by centroid methods. Snow-
storm tracking is a planned component of the ITWS
system, and early results in applying correlation track-
ing to snow data have been encouraging [24].

A Key Challenge

Tracking an organized linear convective system, or
line storm, such as the one shown in Figure 5, is a key
challenge because of its extended evolving nature (ad-
vective motion and aggressive growth are highly inter-
mixed). Figure 6 illustrates many of the tracking
problems in particular. In this figure, raw displace-
ment vectors from a naive analysis (the maximum
correlation, or MAXCOR, displacement measure-
ments receive no additional processing) are shown
aligned with one of two generating frames occurring

FIGURE 5. Organized linear convective systems, or line storms, such as this squall-line
thunderstorm in Kansas City on 26 June 1989 are a problem for centroid trackers because
cellular identities are highly ambiguous. This sequence also illustrates the combined ac-
tions of cell advection and organized growth and decay.
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during the time span covered in Figure 5. In both fig-
ures, there is stratiform rain to the northwest and
convective thunderstorms to the south. Organized
growth and decay is also present, and while steering
winds drive established cells to the northeast, new
cells are added to the southeast, causing the line
storm’s apparent motion to veer. The aperture effect,
which is described below, is an obvious problem at
the radar-data boundary, but here it is also responsi-
ble for large errant vectors (false matches) aligned
with the storm’s southwest-to-northeast structure.
There are suspect vectors aligned northwest to south-
east, too—but are these due to an aperture effect or
do they indicate a growth-and-decay perturbation (as
shown in Figure 3)? Processing with linear and non-
linear filters could obscure the fact that here the algo-
rithm is sensing a growth-induced perturbation.

FIGURE 6. Motion analysis of a convective squall-line
thunderstorm recorded near Kansas City on 26 June
1989. Six-level precipitation maps were analyzed by un-
constrained local-area correlation. The motion-vector
field is 12 x 12, with a corresponding vector separation of
14␣ km. Observations are clearly absent where there is
little or no stormy weather. Steering winds drive estab-
lished cells to the northeast while new cells form to the
southeast, causing the storm’s apparent motion to veer.
Older stratiform storm regions to the northwest no
longer exhibit a cellular structure. Confusion due to line
features is evident as well.

The Aperture Effect

Storm growth and decay aside, local-area correlation
still measures an apparent motion because any local
measurement can be biased toward a particular compo-
nent of motion. This happens because the matching of
local (i.e., windowed) features is fundamentally limited
in that linear features yield motion information only in
the direction orthogonal to their edge. Figure 7 shows
the degenerate case of a line that extends beyond the
view window. This limitation is explicit in gradient-
based techniques, such as Optic Flow, because they al-
ways track lower-dimensional features [25, 26]. With
correlation matching, because of its use of local image
regions, the problem is more implicit, existing to vary-
ing degrees depending on the local image content. The
case illustrated in Figure 7, then, is an extreme example
of the general problem that motion sensitivity is rarely
homogeneous in direction.

Augmenting Local-Area Correlation

Off-line analysis gives us the opportunity to do a
thorough local-area correlation analysis centered on
each image pixel. This analysis provides a natural
“safety in numbers” because it is more likely that the
correct displacements will outnumber the outlier dis-
placements, leading to an easy detection of the latter.
Because we have real-time processing constraints (our
algorithms typically run on workstation platforms,

FIGURE 7. The aperture effect. A linear edge (black line)
moves with velocity V to its new position (blue line).
Viewed through the red analysis window, the line ap-
pears to move only in the direction orthogonal to the
edge.
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FIGURE 8. Correlation surface (CS) meta-image. These unconstrained (raw) data correspond to the
vector displacements shown in Figure 6. Each vector shown in Figure 6 corresponds to its similarly
positioned correlation surface here. The vector is the scaled displacement corresponding to the sur-
face maximum. A (0,0) displacement corresponds to the center of each CS image. The color scale is
the same as the scale used in Figure A in the sidebar entitled “Motion Analysis by Correlation.”
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and two or more algorithms often share a single pro-
cessor), we avoid thorough sampling and settle in-
stead for a subsampling of the image lattice. Our
measurement set is dense only in the sense that we
have more measurements than would be obtained by
centroid analysis. By looking at Figure 6 we can clear-
ly see that filtering the displacement field is problem-
atic; the actual measurements are never fixed in loca-
tion (they move with the weather) and local ratios of
outlier displacements to correct displacements can be
large. For our application, the basic correlation mech-
anism is inadequate. In trial studies, we considered
three improvement methods previously (and more
than once) suggested in the context of generic motion
analysis. These three improvement methods are sum-
marized below.

Outlier Detection and Confidence

Figure 8 is the correlation surface (CS) meta-image
corresponding to the raw vectors of Figure 6. A
knowledgeable observer who looks at such a map can
infer much about the true displacement field, the re-
spective quality of measurements, and often where
correction is needed. A useful local-area correlation
algorithm should be capable of making the same kind
of inferences. The ranking of displacement measure-
ments (surfaces) for confidence, or at least the flag-
ging of outlier candidates, seems a logical next step,
and we considered one idea similar to suggestions
found elsewhere [27, 28].

In our trial study we first tested the lesser goal of
merely flagging outliers. The untested premise is that
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face. In this normalized form, the
autocorrelation surface is guaran-
teed to exhibit a maximum peak at
zero displacement. The two sur-
faces side by side evoke the image
of a matched-filter strategy for lo-
calization (we want to find the
amount by which the cross-corre-
lation surface has been displaced
from zero). The cross-correlation
image can be viewed as a signal
plus noise, while the autocorrela-
tion image represents the translat-
ed signal component. Hence a
correlation analysis of these two
images would provide a more ro-
bust estimate of the displacement.

H I G H E R - M O M E N T  A N A L Y S I S

    cross-correla-
tion surface provides information
regarding the quality of the corre-
lation analysis. Some surface
properties are derived from the
local image structure, as can be
seen by comparing autocorrela-
tion and cross-correlation surfac-
es. Some surface properties result
from the evolutionary changes in
image structure and can be inter-
preted as a distortion, or noise,
component.

The cross-correlation surface
shown in Figure A in the sidebar
entitled “Motion Analysis by Cor-
relation” is a good example of an

analysis that yields high-confi-
dence information, namely, a
well-isolated peak that slopes
sharply and uniformly with direc-
tion. Unfortunately, such mea-
surements are more the exception
than the norm. The cross-correla-
tion surface shown in Figure A in
this sidebar is closer to reality. In
this case, the peak is not well de-
fined and the surface shows clear
signs of the aperture effect (in oth-
er words, motion sensitivity is not
uniform in direction).

The autocorrelation surface il-
lustrates the expected morpholo-
gy for the cross-correlation sur-
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FIGURE A. A cross-correlation surface and its corresponding “reference” autocorrelation surface.

there is essentially a class of measurements that are ac-
curate enough (they require little or no correction),
and the rest of the measurements require attention
and adjustment. We could either censor detected out-
liers or perhaps appeal to higher-moment correlation,

such as described in the sidebar entitled “Higher-Mo-
ment Analysis,” potentially recovering these analyses.
A higher-moment analysis would be more robust but
also computationally expensive, so it would be neces-
sary to limit its use.
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Could the qualitative assessment of the CS data be
captured by a few easily computed CS statistics? For
example, when viewed from above, each correlation
surface typically exhibits a major and minor axis (due
to the nonhomogeneous sensitivity of the aperture ef-
fect). We computed six primary statistics, including
surface spread about each axis, surface eccentricity,
surface curvature at the MAXCOR value (along ma-
jor and minor directions), and, of course, the number
of modes (peaks). In all, nine characterizing statistics
were compiled (the six listed above, plus statistics for
CS signal-to-noise, weather stratiformness [i.e., diver-
sity/entropy of intensity values], and a propensity for
occlusion [at present, proximity to the data
horizon]). Test subjects, working with precipitation-
map movies, subjectively scored displacement mea-
surements for consistency (but not accuracy—a vec-
tor was either “good” or “bad”).

Of the nine statistics we considered, no one statis-
tic could adequately separate the two subjective pop-
ulations. By resorting to a canonical analysis (such as
given in chapter 12 of Reference 29) and linearly
combining all nine measures, we were able to demon-
strate some discrimination capability. This finding
is summarized in Figure 9, which shows that the ca-

nonical score can be used to censor some measure-
ments. A vertical line through canonical score “0.0” is
a good first cut at separating the two classes of mea-
surements. As would be expected, not all consistent
displacements were derived from ideal correlation
surfaces, and errant vectors occurred for a variety of
reasons.

Field Constraints

The assumption of two modes only, of course, is
weak. Gross errors aside, the estimate of storm mo-
tion in Figure 6 lacks a smoothness expected of this
flow field. Because there is too much uncertainty in
the outcome of many correlation analyses, constraints
that apply to and that can be enforced upon the velocity
field are needed. For example, in wind-field recovery,
restrictions are often placed on rotational and diver-
gent components [30, 31]. Unfortunately, that type
of decomposition does not work in view of the
growth phenomenon illustrated in Figure 4.

Some degree of smoothness is reasonable, and else-
where it was suggested that a penalty function be used
to find a smooth field that best approximates MAX-
COR (or similar criterion) measurements [32]. How-
ever, just as with similarly suggested projection
methods (raw measurements, including noise, are or-
thogonally projected onto a suitably smooth vector
space [33]), this use of a smoothness penalty function
is not the same as a correlation analysis subject to a
smoothness constraint. In addition, the current state
of such constraint methods is that they lead to itera-
tive, not explicit, solutions, which is limiting for our
FAA application. In any event, a smoothness penalty
function should be weighed against correlation-evi-
dence strength, which is a difficult global optimization
task.

Hierarchical Search

Hierarchical themes are popular in image processing,
and central to many recent treatments of motion
analysis. Here, we refer to the advantages, both orga-
nizational and computational, of a processing-pyra-
mid approach [34, 35]. Generally speaking, pyramids
are regular structures upon which processing is orga-
nized into layers of increasing or decreasing resolu-
tion, as in a coarse-to-fine strategy.

FIGURE 9. Canonical discriminant analysis of  a two-
class subjective labeling of raw displacement vectors.
Raw displacement vectors for selected data collected
during 1989 Kansas City demonstrations were human
(consensus) classified as “good” or “bad.” In the opin-
ion of the scorer, a bad vector is equivalent to censure.
Nine CS statistics were combined linearly to form a nor-
malized canonical score in an attempt to match the hu-
man discrimination. Empirical distribution functions for
the two populations are plotted versus canonical score.
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With motion detection, the most common such
hierarchy is one based on image resolution. That is,
we construct a pyramid from a sequence of enlarged-
pixel images obtained by means of repeated image
coarsening [35, 22]. The idea is to use lower-resolu-
tion images to match large (low frequency) features
and focus (constrain) the search space at the neigh-
boring analysis level. Ultimately, at the finest level,
the analysis duplicates that of the non-hierarchical
approach except that the correlation computations
are computed over what amounts to a fraction of the
original search space. In this way, global and regional
information is filtered through the hierarchical struc-
ture to focus the analysis and thereby reduce overall
computation cost [22]. This sharing of information
among levels lends an aspect of continuity as well.

In our experience, the above hierarchical search
does reduce false matches from multimodal surfaces
and can be augmented by temporal focusing as well.
However, because this solution seeks only to localize
computation of the unconstrained CS surface (it con-
strains only the search space), the quality of the dis-
placement estimate is still subject to the local proper-
ties (noise) of the unconstrained CS surface (as shown
in the cross-correlation surface in Figure A in the
sidebar entitled “Higher-Moment Analysis”). Search-
space censoring is also vulnerable to catastrophic
(propagating) errors if the forcing information be-
comes corrupted.

Displacement-Field Estimation

What hasn’t been suggested, to our knowledge, is the
notion of smoothing the CS meta-image. In many re-
spects, the estimation problem is better posed in the
CS domain: all displacement errors are easily associat-
ed with CS quality, and gross errors typically result
because a nonlinear threshold operation has been ap-
plied to a noisy surface. Furthermore, neighboring
correlation surfaces often complement one another in
motion sensitivity. This all leads quite naturally to the
notion of CS meta-image modeling, which has be-
come a focal point for our study.

Our intent in this final section is to motivate the
above idea further while providing an overview of the
strategy. To begin, our current FAA application moti-
vates four (self-imposed) design requirements, which

are as follows. First, because it is limited to a fixed and
incomplete correlation sampling, the estimation
method must nevertheless support analysis centered
at each image pixel (it must solve the interpolation
problem). Second, the estimation model should ac-
count for spatial structure (continuity and smooth-
ness) by incorporating prior understanding and/or
observational evidence. Third, there should be a
mechanism to remove or de-emphasize outliers.
Fourth, the method must remain simple; i.e., it must
stay within our computational bounds.

Hierarchical Averaging

To motivate our model, we present a smoothing anal-
ysis argued from a second hierarchical pyramid. In
contrast to the image-resolution pyramid described
above, we let each level of a pyramid represent an
analysis with increasingly larger image masks (or, in
other words, decreasing levels of analysis resolution).
At one extreme, the apex can be a correlation analysis
that pattern-matches the whole image. Let the dis-
placement estimates be derived from the average of
global, regional, and local surfaces. Hence correlation
surfaces computed at one level act as a biasing “data
prior” for the level below.

A Computational Note

Correlation surfaces do not need to be computed for
each pyramid level. When the error measure em-
ployed for CS construction is additive (unnormalized
correlation and mean-squared error fall into this cate-
gory; when image scale and offset are not issues,
which is more or less the case for our meteorological
application, these criteria work well), and when the
resolution masks are defined accordingly (upper-level
masks are derived from the union of lower-level
masks), upper-level correlation surfaces can be ob-
tained by adding base-level correlation surfaces. In
that case, hierarchical averaging reduces to a weighted
sum of primitive (i.e., base level) CS measurements.
Figure 10(a) illustrates the four-level partitioning re-
lationships in a quadtree arrangement.

Smoothing Results

Figure 10(b) shows the CS pyramid using the precip-
itation data of Figure 6. Motion estimates at the base
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FIGURE 10. (a) Hierarchical analysis structured on decreasing/increasing analysis resolution. At the pyramid base, the
image is partitioned into primitive correlation boxes (here, 14 km x 14 km image blocks). At level two, the partition is col-
lapsed into four primitives per correlation box; this process is repeated at level three. At the apex whole-image correla-
tion is used. (b) Quadtree pyramid of CS surfaces. A motion estimate at the base level is obtained from an average of the
base surface and its relations up the pyramid.

(b)(a)

different from convective environments, which sug-
gests we should perform smoothing as conditions dic-
tate. This suggestion has been confirmed as an empir-
ical observation from earlier attempts to smooth
displacement-vector fields. Hence we have been led
to consider a simple extension: a conceptualization
that puts CS computation in the context of a linear-
estimation problem.

Linear estimation is a good next step because it
builds on the smoothing results, it requires a model-
ing of no more than first-order and second-order
properties, and it maintains computationally simple
solutions. For our estimation problem, then, the ob-
servations are defined to be the fixed-location CS
primitives (data-optimized positioning is also possible
but not in our current plans). In contrast to the high-
er-moment analysis technique presented in the side-
bar “Higher Moment Analysis,” each unobserved
variate is not likened to an autocorrelation surface;
rather, it represents an idealized version of what a cor-
relation surface should look like. Each observed vari-
ate contains an additive measurement noise repre-
senting the combined degrading effects of image

are derived from the average of surfaces in the lineage
of each base-level location. In actuality, a weighted
sum of base-level surfaces is computed. In general, the
weights are not constant because of the random holes
corresponding to missing data, such as the blank re-
gions at each level in Figure 10(b). The potential of
such an averaging scheme is illustrated in Figure 11,
which shows the corresponding displacement vectors.
Most of the gross errors seen previously in Figure 6
are corrected; (human validated) growth-and-decay
perturbations remain, however, because of their CS
measurement strength.

Linear CS Estimation

The pyramidal averaging procedure amounts to CS
smoothing and appears to provide greatly improved
displacement measurements. However, it has two de-
ficiencies: it does not model CS quality and the pyra-
mid weights are arbitrary. Since a “good” correlation
analysis has certain characteristic properties that we
can detect, we should utilize this information when
obtaining the pyramid weights. With regard to the
pyramid weights, stratiform rain and snow are quite
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Equation 1 represents an interpolation formula.
We can appeal to the minimum mean-squared er-

ror (MMSE) criterion to determine an optimal ai .
The classic and well-known formulation of MMSE
often begins with the assumption of a known mean
and covariance for zi , which is all that’s needed, and
from which suboptimal formulations are built when
neither is actually known. A zero-mean assumption is
inappropriate, and modeling and/or estimating the
mean departs from our estimation objective. Given
its hypothetical status, we would rather not make any
statement regarding the mean of zi (other than that
we don’t know it).

Luckily, there is an alternative to covariance mod-
eling that does not require knowledge of the mean
and is arguably equivalent when the mean is un-
known. This is the use of the variogram function to
capture second-order properties. The variogram
seems particularly suited to spatial-estimation prob-
lems, and its merits are further argued in the appen-
dix. Let vec(zi ) represent a vector created from sur-
face zi by a prescribed stacking of its pixel values. If

E z E zi j[ ] [ ]=

for all pixels i and j , the CS variogram can be defined
as

γ ij i j
T

i jE z z z z= − −[ ]1

2
vec vec( ) ( ) .

The formulation for the MMSE weight âi , given a
known variogram, essentially parallels the develop-
ment for covariance modeling (see the appendix,
“Linear Estimation of Random Fields”). Of course,
the variogram is not known either, although a num-
ber of similar models are routinely used in the geo-
sciences. Even with a stationarity assumption, i.e.,
γ γij i j= −| |, finding an estimate for the variogram in
real time would be difficult. What is feasible is adap-
tively selecting one from a fixed number of variogram
models conditioned on the meteorological setting
(convection, stratiform, snow). In real time, we
would adaptively select the most appropriate vario-
gram to use and thereby specify the degree of local
smoothness. We plan to assess this technique quanti-
tatively in the near future.

content (as represented in an autocorrelation analysis)
and evolution.

For any image pixel i , we hypothesize a corre-
sponding ideal surface zi that describes the motion
(as a likelihood, say). Let ′ = ′ ′Z z zN{ , , }1 K  represent
the computed CS measurements from N  locations.
The form of the model is then

′ = + =z z j Nj j ijη ( , , ) ,1 K

where η η η= { , , }1 K N  represents an image noise
process, which (for first approximations) is assumed
to be zero mean, uncorrelated, and white (see Equa-
tions 8–10 in the appendix, entitled “Linear Estima-
tion of Random Fields”). The generalized objective is,
for any pixel i , take as displacement measurement the
MAXCOR displacement of the estimated surface

ˆ ,z a zi ij j
j

N

= ′
=

∑
1

(1)

where a a ai i iN= { , , }1 K  is the weighting of data
sample Z ′ for pixel i . Pixel i does not have to corre-
spond to one of the measurement locations j . When
the index i is not one of the measurement locations,

FIGURE 11. A motion analysis using the hierarchical av-
eraging approach. The weather reflectivity data are the
same as in Figure 6. This figure clearly illustrates a more
accurate estimation of storm motion.
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In the absence of measurement noise η, the
weighting ai is determined by the spatial structure
captured in the variogram. If we assume that γii = 0,
the result is an exact interpolator. To deal with the
discontinuity of outliers we must have a mechanism
for de-emphasizing a particular measurement, essen-
tially to adjust weighting ai . For example, in linear re-
gression a residual analysis often can be used to adjust
weights [36]. In our case, we have the ancillary infor-
mation of our canonical score function, which indi-
cates a degree of corruption of the data. The modifi-
cation of weighting ai according to this confidence
can follow from Equation 7 in the appendix and a
model of the noise variance σi

2 that is indexed by ca-
nonical score.

Concluding Remarks

Accurate depictions of both current and future storm
locations are necessary in the exchange of weather in-
formation between controller and pilot. With a rapid-
ly updated display, systems like ITWS can easily
achieve accurate depictions of current storms, but the
accurate portrayal of future storms remains a difficult
challenge well beyond the scope of mere tracking.
Nevertheless, to achieve a practical goal, we can cate-
gorize storm motion and storm growth and decay to
satisfy two of the more critical weather-information
needs of air traffic controllers.

Historically, the automation of storm tracking has
not been a simple task. The tracing of features, as
from a meteorological analysis, is limited because of
the uncertain (dynamic) nature of weather and the
ambiguity in sampled radar images between storm
growth and decay and storm motion. We have found
local-area correlation to be the most robust approach
precisely because it does not rely on explicit (invari-
ant) features. In our work for the FAA, we have
shown that reliable automated tracking can be
achieved [9, 10].

To tackle storm growth and decay, we must mea-
sure and quantify it apart from any intertwined ad-
vective motion. The characteristic projection of
growth and decay onto correlation measurements is
promising in this respect, but more study is needed
regarding the filtering of motion components and
differencing of data fields. A “well-behaved” motion

field is crucial to such decomposition. Our experience
with traditional (centroid) tracking methods leaves
no doubt that their error performance is inadequate
for such growth-and-decay computations. Local-area
correlation is also subject to error, but in this method
there is considerable room for improvement that
comes with an understanding of the correlation “sen-
sor” (measurement inhomogeneity, for example) and
modeling of the motion-estimation process.

In dealing with correlation degradation, we have
often used the heuristic relations “convection equals
noise” and “stratiform equals weak signal,” and we
view our motion problem in the context of image re-
construction from incomplete and noisy observa-
tions. As a result, we herein propose an extension to
local-area correlation following a somewhat classical
approach to the signal-in-noise problem. We have at-
tempted to motivate our new approach through rec-
onciliation with other image-processing heuristics.
Our extension is significant in that it deals with the
important issues of measurement variability (includ-
ing outlier handling) and model-based constraint. In
deference to covariance modeling, we believe the var-
iogram might be better suited to our particular spatial
problem. Because our approach follows a linear-esti-
mation framework, it offers practical solutions suit-
able to a limited-resource environment. Future efforts
directed at the issue of storm growth and decay will
include the further development and validation of
this estimation strategy.
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A P P E N D I X :  L I N E A R  E S T I M A T I O N  O F
R A N D O M  F I E L D S

Linear Mean-Square Estimation

Let z x x D R( ) ( )∈ ⊆ 2  be a random field and let
Z z zN= { , , }1 K  be a finite realization from N  scat-
tered measurement locations in D. The minimum
mean-squared error (MMSE) estimate for z at x 0,
where x D0 ⊆  is arbitrary, is easily formulated from
standard theory. For example, assuming the mean,

m E z x= [ ]( ) ,

and covariance,

R E z x m z x mij i j= − −{ }[ ][ ]( ) ( ) ,

are known, the (unbiased) linear MMSE is

ˆ ˆ( ) ( ) ,z z x m z mi i
i

N

0 0
1

= = + −
=
∑α (1)

where the weighting coefficients { , , }α α1 K N  solve the
N equations

R R i Ni j ij
j

N

0
1

1= =
=

∑α ( , , ) ,K (2)

(see Reference 1, for example). Of course, in practice
the mean and covariance must both be given an as-
sumed form, or they must both be estimated; clearly,
the latter is difficult with random-field samples that are
scattered and few.

Kriging

In the 1950s, D.G. Krige, a South African mining
engineer, established the foundations for a practical
2-D interpolation method now known as kriging.
G. Matheron later established much of the theory for
this estimation method [2, 3], which is based on mod-
eling a phenomenon’s so-called variogram. Assuming a
constant mean as above, the spatial variogram for z  can
be written as

γ γij i j i jx x E z x z x= = −[ ]







( , ) ( ) ( ) .
1

2

2

As a characterization of second-order properties, the
variogram places the focus on the process increments.
When Rij < ∞, the relationship between variogram
and covariance is

γ ij ii jj ijR R R= + −1

2

1

2
,

and the continuity of one implies that of the other.
Relationships between process and covariance are
mimicked by those of process and variogram. In partic-
ular, mean-square continuity of z (x ) implies continu-
ity of the variogram and

γ ij i jx x↓ →0 ( ) .

Although a common device in the geosciences, the
variogram is not as well known to systems engineers,
but it is finding application as a statistic for image/
scene analysis [4, 5].

If the mean is unknown, a linear estimate for z0 may
have the form

ˆ ,z zi i
i

N

0 0
1

= +
=
∑β β (3)

but if ẑ0 is to be unbiased, the relations

β β0
1

0 1= =
=
∑ and i
i

N

(4)

must hold. Minimizing Equation 3 subject to the con-
straints of Equation 4 leads to the system

γ β γ µ0
1

1i j ij
j

N

i N= + =
=

∑ ( , , ) ,K (5)

β j
j

N

=
=

∑ 1
1

, (6)
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where µ is the Lagrange multiplier for the constraint
in Equation 6.

When both mean and covariance are known, Equa-
tion 3 (with Equations 5 and 6) is suboptimal in com-
parison to Equation 1 (with Equation 2) [6], but there
is no apparent advantage should the mean be un-
known. In fact, since the variogram estimator does
not require knowledge of the mean, the variogram
should be preferred over Equation 1 when the mean is
unknown.

Given the need to estimate variogram or covariance,
it is usually necessary to include an assumption of sta-
tionarity to make practical headway. An intrinsic ran-
dom field is one for which both mean and variogram
are stationary; that is, in addition to a constant mean,

γ γ( , ) ( ) ,x x di j ij=

where d x xij i j= −| | . The class of intrinsic random
fields includes the covariance stationary fields and also
includes those nonstationary random fields with sta-
tionary increments. Hence, the intrinsic-field assump-
tion is a weaker requirement (safer modeling choice).
Phenomena with large dispersive capacities are good
candidates for variogram modeling.

Extensions

The above estimators are exact interpolators. The situ-
ation in which we observe a noise-corrupted version of
Z , i.e.,

′ = + =z z i Ni i iη ( , , ) ,1 K

is straightforward [7] and leads to a modified Equation
5. This modified equation can be written as

γ β γ σ β µ0
2

1

1i j ij i i
j

N

i N= + + =
=

∑ ( , , ) ,K

(7)

where σi
2 is the noise variance, and where it has been

assumed that

E i[ ] ,η = 0 (8)

E i j i ij[ ] ,η η σ δ= 2 (9)

and

E zi j[ ]η = 0 (10)

(for all i and j). Finally, all of the above can be extended
to higher dimensions (M  × M  CS vectors, for example)
by using Euclidean distance to interpret all errors.
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