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ABSTRACT

Airspace encounter models, covering close encounter situations that may occur
after standard separation assurance has been lost, are a critical component in the
safety assessment of aviation procedures and collision avoidance systems. Of par-
ticular relevance to Unmanned Aircraft Systems is the potential for encountering
general aviation aircraft that are flying under Visual Flight Rules (VFR) and which
may not be in contact with air traffic control. In response to the need to develop
a model of these types of encounters, Lincoln Laboratory undertook an extensive
radar data collection and modeling effort. This report describes the structure and
content of that encounter model. Bayesian networks are used to represent relation-
ships between dynamic variables and to construct random aircraft trajectories that
are statistically similar to those observed in the radar data.

The model described in this report is one of three that are currently under
development by Lincoln Laboratory. An encounter with an intruder that does not
have a transponder, or between two aircraft using a Mode A code of 1200 (VFR),
is uncorrelated in the sense that it is unlikely that there would be prior interven-
tion by air traffic control. The uncorrelated model described in this report is based
on transponder-equipped aircraft using a 1200 (VFR) Mode A code observed by
radars across the U.S. In addition to representing VFR-on-VFR encounters, this
model is representative of encounters between a cooperative aircraft and conven-
tional non-cooperative aircraft similar to those that use a VFR transponder code.
A second uncorrelated model is also being developed based on true primary-only
(non-cooperative) aircraft tracks, though the quality of such tracks is inferior to
that available from the cooperative 1200-code tracks used here. Finally, a corre-
lated encounter model is also under development to represent situations in which it
is likely that there would be air traffic control intervention prior to a close encounter.
The correlated model will apply to aircraft that are using a discrete (non-1200) mode
A code.

A separate electronic file is provided by Lincoln Laboratory that contains
the statistical data required to generate encounter trajectories. Details on how to
interpret the data file and an example of randomly constructing trajectories are
provided in Appendices A and B, respectively.
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1. INTRODUCTION

One of the main challenges to integrating unmanned aircraft into the National Airspace Sys-
tem is the development of systems that are able to sense and avoid local air traffic. If designed
properly, these collision avoidance systems could provide an additional layer of protection that
maintains or even enhances the current exceptional level of aviation safety. However, due to their
safety-critical nature, rigorous assessment is required before sufficient confidence can exist to certify
collision avoidance systems for operational use. Evaluations typically include flight tests, opera-
tional impact studies, and simulation of millions of traffic encounters with the goal of exploring
the robustness of the collision avoidance system. Key to these simulations are so-called encounter
models that describe the statistical makeup of the encounters in a way that represents what actually
occurs in the airspace.

One system that has been rigorously tested in this manner is the Traffic alert and Collision
Avoidance System (TCAS). As part of the TCAS certification process in the 1980s and 1990s,
several organizations tested the system across millions of simulated close encounters and evaluated
the risk of a near mid-air collision (NMAC, defined as separation less than 500 ft horizontally
and 100 ft vertically) [1–4]. This analysis ultimately led to the certification and U.S. mandate
for TCAS equipage on larger transport aircraft. More recently, Eurocontrol and the International
Civil Aviation Organization (ICAO) performed similar sets of simulation studies for European and
worldwide TCAS mandates [5, 6].

The design of a collision avoidance system represents a careful balance to enhance safety
while ensuring a low rate of unnecessary maneuvers. This balance is strongly affected by the types
of encounter situations to which the system is exposed. It is therefore important that simulated
encounters are representative of those that occur in the airspace. Hence, tremendous effort has
been made by various institutions since the early 1980s to develop encounter models based on
radar data [1, 3, 7–10]. The primary contribution of this report is to introduce a new approach to
encounter modeling that is based on a Bayesian statistical framework and which uses recent radar
data collected across the U.S. The advantage of applying a Bayesian framework is that it allows
us to optimally leverage available radar data to produce a model that is representative of actual
operations.

1.1 ENCOUNTER TYPES

The encounters covered by this model are those involving aircraft in the final stages before
a collision over a period of time on the order of one minute. It is assumed that prior safety layers
(e.g., airspace structure, Air Traffic Control (ATC) advisories or vectors) have failed to maintain
standard separation distances between aircraft. The model is therefore useful in describing the
types of situations that need to be addressed by a collision avoidance system, but will not address
earlier aspects such as ATC communications or coordination.

There are two fundamental types of close encounters. In the first, both aircraft involved are
cooperative (i.e., have a transponder) and at least one is in contact with air traffic control. It is then
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likely that at least one aircraft will receive some notification about the traffic conflict and begin
to take action before a collision avoidance system gets involved. We term this type of encounter
“correlated” because the trajectories of each aircraft may involve maneuvers that are correlated to
some degree due to this prior intervention. The second type of encounter we term “uncorrelated”
and involves at least one noncooperative aircraft or two aircraft flying under Visual Flight Rules
(VFR) without flight following (i.e., using a transponder Mode A code of 1200). In these encounters,
it is unlikely that air traffic control would become involved prior to the close encounter; rather the
two aircraft must rely solely on visual acquisition (or some other collision avoidance system) at close
range to remain separated. Such encounters tend to be uncorrelated since there is no coordinated
intervention prior to the close encounter. The assumption behind uncorrelated encounters is that
the two aircraft blunder into close proximity; it is up to the collision avoidance system—not the
encounter model—to describe how the aircraft respond to the encounter. A complete evaluation of
unmanned systems will require analysis using both correlated and uncorrelated models.

This report focuses on uncorrelated encounter modeling. In this report, we base our uncorre-
lated model on beacon reports from aircraft squawking 1200, not radar returns from noncooperative
traffic. Radar surveillance of noncooperative targets is typically complicated due to clutter and
missed detections, making identification of real tracks difficult. The lack of a transponder means
that only position information, and no identity code or altitude, is available.1 Hence, it is difficult
to infer vertical rates, an important component of an encounter model.

Beacon-equipped aircraft can transmit either a discrete Mode A code or the non-discrete
code of 1200. Aircraft using code 1200 tend to be general aviation typically flying VFR. They
generally fly at low altitudes and make significantly more maneuvers than transport aircraft, both
horizontally and vertically. Thus to a large degree they resemble noncooperative aircraft. Due
to the poor quality of noncooperative data, we use 1200 tracks here as surrogates for primary-
only tracks for the construction of this model. Other work is underway toward processing true
non-cooperative tracks and will be described in a future document.

The 1200 tracks are a suitable surrogate for much of the noncooperative traffic in the National
Airspace System, but there are certain categories of noncooperative targets for which they are not
suitable. For example, most balloons, ultralights, and gliders do not fly like transponder-equipped
aircraft squawking 1200. The challenge in developing models for unconventional aircraft such as
balloons, ultralights, and gliders is the lack of high-quality data. As these data become available,
the same processes outlined in this report will be used to estimate a noncooperative model for
unconventional aircraft. Additionally, where such data are not available, a model can be manually
constructed based on knowledge of typical flight trajectories and performance limits. Table 1 shows
which encounter model to use depending on the types of aircraft involved in the encounter.

1Some military radars have height-finding capability, although the accuracy of the altitude generated is significantly
inferior to the transponder Mode C altitude.
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TABLE 1. Encounter model types. There are three types of encounter models: correlated (C), uncorrelated
conventional VFR (V), and uncorrelated unconventional VFR (U). This table shows which model to use depending
on the types of aircraft involved in the encounter. In terms of aircraft types, Discrete indicates a cooperative
aircraft using a non-1200 Mode A transponder code; VFR denotes a cooperative aircraft using the 1200 Mode A
transponder code; Non-coop. Conv. indicates a non-cooperative but conventional fixed-wing aircraft; Non-coop.
Unconv. indicates a non-cooperative and unconventional aircraft (e.g., balloon, ultralight). Only the uncorrelated
conventional VFR model (in bold) is discussed in this report; the other models are under development.

Aircraft of Interest
Intruder Aircraft Discrete VFR

Discrete C C
VFR C V

Non-coop. Conv. V V
Non-coop. Unconv. U U

1.2 PROCESS OVERVIEW

Figure 1 diagrams the steps involved in processing radar data to build the encounter model.
The high-level approach is to model nominal aircraft trajectories using Markov models represented
by Bayesian networks (Section 2). The first step in constructing a Markov model involves extract-
ing features, such as turn rate and vertical rate, from the radar data. From these features, we
collect sufficient statistics that describe the distribution over maneuvers and other properties of
trajectories. We use Bayesian model selection methods to search for the best network structure for
representing the observed data. (Section 3). We use the best network structure and the associated
sufficient statistics to generate new trajectories that are representative of those observed by radar
(Section 4). The trajectories are then used to simulate encounters between aircraft (Section 5). A
Monte Carlo safety analysis involves running a large collection of encounters and collecting data
about near mid-air collision (NMAC) frequency (Section 6).The final section of this report summa-
rizes and discusses further work.

The main outputs of the work described in this report are the sufficient statistics and model
structure. A digital representation of the sufficient statistics and model structure are publicly
available from Lincoln Laboratory (Appendix A). An example of using the data in that file to
construct a random trajectory is provided in Appendix B.

Throughout this report we use the standard units used in aviation. In particular, altitudes
are in feet, positions are in nautical mile coordinates, vertical rates are in feet per minute, turn
rates are in degrees per second, airspeeds are in knots (true airspeed), and accelerations are in
knots per second. Time is reported in seconds.

3



Modeling Simulation

Radar
Data

Feature
Extraction

Sufficient
Statistics

Structure
Search

Network
Structure

Trajectory
Sampling

Trajectory
Database

Dynamic
Simulation

FIGURE 1. Modeling and simulation process overview. The sufficient statistics and network structure (in bold)
are the main elements provided as part of this work.
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2. MODEL

We model nominal flight, i.e. flight without avoidance maneuvering, using a Markov process
represented by a dynamic Bayesian network. A Markov process is a stochastic process where the
probability distribution over future states is conditionally independent of past states given the
present state. In other words, one only needs to know the present state to predict the next state.

The states in our model specify how the position, altitude, and airspeed change over time.
In particular, each state specifies a vertical rate ḣ, turn rate ψ̇, and airspeed acceleration v̇. Given
an initial airspeed v, horizontal coordinates (x, y), heading ψ, vertical rate ḣ, altitude layer L, and
airspace class A, we can infer from our model how the aircraft trajectory evolves over time.

One way to represent a Markov model is with an exhaustive state-transition matrix that
specifies the probability of transitioning between all pairs of states. Unfortunately, the number of
independent parameters required to define the matrix grows super exponentially with the number
of variables defining the model. The more independent parameters there are in the model, the more
data one needs to properly estimate their values. However, by using dynamic Bayesian networks,
we can leverage conditional independence between some variables to greatly reduce the number
of parameters. We can learn the structure of the dynamic Bayesian network by maximizing the
posterior probability of the network structure given the data. Appendix A provides the necessary
background on Bayesian networks. The remainder of this section outlines our approach.

2.1 MODEL VARIABLES

There are six variables in the uncorrelated encounter model:

• Airspace class A: This variable may take on one of four values: B, C, D, and O, indicating
which class of airspace the aircraft is in. The values B, C, and D correspond to the controlled
airspace classes defined by the FAA. The value O represents “other airspace,” that is airspace,
such as Class A, E, G, that is not B, C, or D. The airspace class variable was incorporated
into our model to account for the variation in how aircraft fly in different airspace classes.
Note that there should be no VFR aircraft in Class A due to the requirement that aircraft in
that Class of airspace fly under Instrument Flight Rules.

• Altitude layer L: Airspace is also divided into four altitude layers, in a process similar to
prior encounter models developed by Eurocontrol. The first layer spans from 500 to 1200 ft
Above Ground Level (AGL) to capture aircraft in the traffic pattern or performing low-
level maneuvers. The second layer spans a transition zone from 1200 to 3000 ft AGL, the
cruise altitude where the hemispheric rule begins. The third layer spans from 3000 ft AGL
to 5000 ft AGL covering a mix of low-altitude enroute and maneuvering aircraft. The fourth
layer includes airspace above 5000 ft AGL and would cover most enroute VFR traffic.

• Airspeed v: We model true airspeed and allow it to vary during flight.
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• Acceleration v̇: Unlike previous encounter models, we allow airspeed acceleration to vary
at every second.

• Turn rate ψ̇: Turn rate is permitted to change every second in our model. The prior
European and ICAO cooperative models allowed only a single turn during an encounter.

• Vertical rate ḣ: The vertical rate is permitted to change at every second. All prior cooper-
ative models allowed only a single vertical acceleration period during an encounter.

The remainder of this section explains how we model the joint probability distribution over these
variables. A core concept of the model is that first, parameters are randomly selected to describe
the situation at the beginning of an encounter simulation. Second, certain parameters may vary
dynamically during an encounter so that realistic turning, climbing, or accelerating trajectories
can be generated. Thus there are two separate probability distributions in the model: an initial
distribution to set up an encounter situation, and a transition distribution to describe how the
trajectory evolves over time.

The probability distributions are represented using a Bayesian network. The network de-
scribes which parameters have dependencies on other parameters. For example, it would be ex-
pected that the turn rate of an aircraft would be dependent on its vertical rate. Without properly
capturing this dependency, unrealistic situations may be generated, e.g., involving aircraft with
simultaneously high climb rates and high turn rates. A Bayesian scoring process (Appendix A)
was used to evaluate different Bayesian network structures and arrive at a structure that optimally
represents the observed radar data.

2.2 INITIAL DISTRIBUTION

In our model of aircraft flight, we are concerned with modeling the distribution over the initial
values of ḣ, ψ̇, v̇, v, L, and A. Figure 2a shows the structure we use for our modeling effort. Other
structures are certainly plausible, and it is possible to compare different structures using Bayesian
scoring (Appendix C) to determine which structure is more likely given the data. We chose the
network structure in Figure 2a because it had the highest score among the selection of candidate
networks we considered (see Appendix G).

Given a structure, sufficient statistics extracted from data, and a Bayesian prior, we then
sample from the Bayesian network to produce initial airspace classes, altitude layers, vertical rates,
turn rates, airspeeds, and accelerations that are representative of those found in the data. The
boxes and arrows used in the structural diagram show the order in which this sampling occurs. For
example, based on the structure in Figure 2a, to determine the initial state of the aircraft we first
randomly determine an airspace class A. Once the airspace class has been determined, an altitude
layer L is selected. The probabilities associated with each altitude layer depend on which airspace
class was chosen earlier. Once A and L have been selected, we then randomly select airspeed v,
and so on. An example of working through this process is provided in Appendix B. Alternately,
we could assign outright an airspace class and/or altitude layer for a particular study and then
randomly select values for the remaining variables.
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2.3 TRANSITION DISTRIBUTION

We use a separate Bayesian network to model how the variables ḣ, ψ̇, and v̇ evolve over
time. The structure we use is shown in Figure 2b. In this network, we have a first layer that
represents the state of the system at the present time step and a second layer that represents the
state of the system at the next time step. There may be dependencies between layers and within
the second layer. Such a two-layer temporal Bayesian network is known as a dynamic Bayesian
network [11, 12]. Parameter and structure learning in dynamic Bayesian networks is similar to
regular Bayesian networks (Appendix C). Again, we chose the highest-scoring network structure
among our candidate network structures (see Appendix G). Given a structure, sufficient statistics
extracted from data, and a prior, we then sample from the Bayesian network to determine the next
vertical rate, turn rate, and acceleration command that are representative of what was observed in
the data.

In general, time steps in dynamic Bayesian networks may be of any duration, but for our
modeling effort we chose steps of 1 s. Shorter time steps allow for more frequent variations in
airspeed, vertical rate, and turn rate, but they require more computation per unit of simulation
time. Time steps of 1 s balance maneuver complexity with computation.

A complete trajectory is constructed by updating the aircraft state in 1 s intervals. Within
each interval, the three derivative variables ḣ, ψ̇, and v̇ are treated as target values and held
constant. A dynamic model (which is beyond the scope of this report) is used to compute and
update the aircraft state at each time step based on these piecewise-constant target values.
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FIGURE 2. Bayesian networks representing the variable dependency structure for the initial and transition
distributions.
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3. ESTIMATION

This section describes the processing required to transform radar tracks into sufficient statis-
tics that may be used to model uncorrelated encounters. Figure 3 outlines this process.

3.1 RADAR TRACKS

Our radar data stream comes from the 84th Radar Evaluation Squadron (RADES) at Hill
AFB, Utah. RADES receives radar data from FAA and Department of Defense sites throughout
the United States. They maintain continuous real-time feeds from a network of sensors, including
long-range ARSR-4 radars around the perimeter of the United States and short-range ASR-8, ASR-
9, and ASR-11 radars in the interior. Radar ranges vary from 60 to 250 NM. Figure 4 shows the
coverage by the more than 120 sensors whose data was used to construct our model. Figure 5 shows
the density of VFR traffic, and Appendix D plots flight hour densities at different altitude layers.
Appendix E summarizes the volume of data received from each sensor.

Note that there are a number of advantages to our RADES data feed compared to the En-
hanced Traffic Management System (ETMS) data often used in airspace analyses. ETMS data
include only cooperative aircraft on filed Instrument Flight Rules flight plans and provides updates
once per minute showing aircraft position after processing by air traffic control automation. In con-
trast, RADES data is continuously streaming directly from the radar, includes primary-only radar
returns as well as all cooperative transponder returns (whether on a flight plan or not), providing
track updates every 5 or 12 seconds without being affected by automation systems. This ensures
that our filters and trackers have the best raw data with which to begin processing.

National Offload Program (NOP) data is another source that we could have used to construct
our model. An advantage of NOP data is the inclusion of flight-plan and aircraft-type information.
However, NOP data is post automation, like ETMS. NOP does not include data from Department
of Defense sensors and does not have as comprehensive coverage as our RADES feed.

To build our model, we collected VFR (1200-code) beacon reports between December 1, 2007
and December 7, 2007, amounting to 30,000,000 reports representing 78,000 flight hours. The raw
radar data is first processed using a tracking algorithm developed at Lincoln Laboratory [13]. A
fusion algorithm, also developed at Lincoln Laboratory [14], then fuses tracks from multiple sensors
to give one global view of all the tracks in U.S. airspace (see Appendix F). We eliminated tracks
that had fewer than ten scans. We found that approximately ten scans are required to accurately
estimate the various maneuver rates. We also eliminated tracks if any of their associated reports
were inside Special Use Airspace whose boundaries are defined in the Digital Aeronautical Flight
Information File (DAFIF), 8th Edition, managed by the National Geospatial-Intelligence Agency
(NGA).
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FIGURE 4. Radar coverage map.
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FIGURE 5. VFR density between 500 ft AGL and FL180 in log10 aircraft per NM3. The locations of the sensors
are indicated by magenta circles.
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3.2 OUTLIER REMOVAL

The first step in processing the raw radar tracks is to detect and remove outliers. In the
horizontal plane, we remove jumps with ground speeds above 600 kt using the following algorithm.
We begin by estimating the speed between each sample point by dividing the distance between
samples by the time interval between samples. Samples on either side of segments where the speed
is above the threshold of 600 kt are stored in a list of candidates for removal. We iterate through
the list of candidates and remove the one that minimizes the sum of speeds above the set threshold.
The process repeats until there are no longer any segments with speeds above the threshold.

In the vertical plane, we remove missing Mode C altitude reports from consideration. Then,
using the same process as used for the horizontal plane, we remove outliers with vertical rates
greater than 5000 ft/min or less than −5000 ft/min. We remove altitude reports that come before
the first position report or after the last position report to prevent extrapolation. We also remove
position reports that come before the first altitude report or after the last altitude report, also to
prevent extrapolation. After outlier removal, we discard tracks with fewer than ten valid scans.

3.3 TRACK SMOOTHING

After removing any outliers from a track, we smooth the remaining data points, first hori-
zontally and then vertically. We use the same smoothing scheme for both horizontal and vertical
smoothing. We use the following general formula to transform a raw trajectory (t1,x1), . . . , (tn,xn)
to a smoothed trajectory y1, . . . ,yn.

yi =

∑
j w(ti, tj)xi∑
j w(ti, tj)

, (1)

where w(ti, tj) is a weighting function that monotonically decreases as the difference between ti
and tj increases. For the weighting function, we use the following definition based on a Gaussian
kernel with standard deviation σ,

w(ti, tj) =
1

σ
√

2π
exp

(
−(ti − tj)2

2σ2

)
. (2)

When smoothing horizontally, we use σ = 5 s. When smoothing vertically, we use σ = 15 s. A larger
σ is required for vertical smoothing because of 100 ft Mode C quantization. We chose these values
for σ after trying different standard deviations on a sampling on horizontal and vertical profiles in
our data set; the chosen values preserve the underlying tracks while removing noise.

3.4 INTERPOLATION

The time interval between radar scans in our data is much longer than the 1 s time step of
our dynamic Bayesian network. Terminal (short range) radars scan aircraft approximately every 5
seconds, and en route (long range) radars scan aircraft every 10 to 12 seconds. Additionally, it is
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common for sensors to skip one or more consecutive scans of a target and some scans produce outliers
that we remove (Section 3.2). Hence, we need to use interpolation to estimate the parameters in
our dynamic Bayesian network. We chose a piecewise-cubic Hermite interpolation scheme that
preserves monotonicity and shape [15].

Figure 6 shows the result of outlier detection, smoothing, and interpolation on a track from
our data set. Figure 7 shows the result of piecewise-cubic Hermite interpolation on a smoothed
track.

3.5 FEATURE EXTRACTION

Feature extraction involves converting an interpolated track into sequences of airspace classes,
altitude layers, airspeeds, vertical rates, turn rates, and accelerations.

• Airspace class: We estimate latitude and longitude of radar returns using an algorithm
developed at Lincoln [16]. From altitude estimates and latitude and longitude estimates, we
determine the class of airspace by searching through the National Airspace System Resources
(NASR) database provided by the FAA. Since the altitude estimates are based on Mode
C reports of pressure altitude, uncorrected for barometric variation, it is possible that the
airspace of some tracks are identified incorrectly. We expect that some inaccuracy in airspace
class identification due to barometric variation has a negligible impact on our model.

• Altitude layer: Altitude above ground level (AGL) determines the altitude layer in our
model. We estimate altitude AGL by subtracting an estimate of ground elevation from
pressure altitude. Our estimates of ground elevation come from Digital Terrain Elevation Data
(DTED) provided by the National Geospatial-Intelligence Agency (NGA). We use DTED
Level 0, which has post spacing of 30 arcseconds (approximately 900 meters).

• Airspeed: The true airspeed at time t is given by

v(t) =
√

(x(t+ 1)− x(t))2 + (y(t+ 1)− y(t))2 + (h(t+ 1)− h(t))2 .

• Vertical rate: The vertical rate is estimated from the smoothed and interpolated altitudes
estimated from Mode C reports. The vertical rate at time t is given by ḣ(t) = h(t+ 1)−h(t).

• Turn rate: We first compute the heading along the interpolated track. The heading at time
t is given by ψ(t) and corresponds to the direction from (x(t), y(t)) to (x(t + 1), y(t + 1)).
To compute the turn rate at time t, we find the acute change in heading between ψ(t) and
ψ(t+ 1). Turns to the right have positive turn rates, and turns to the left have negative turn
rates.

• Acceleration: To find the acceleration at a particular point, we average the change in
airspeed per unit time looking forward one time step and looking back one time step.

Figure 8 shows the result of feature extraction on the same track shown in Figure 6.
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TABLE 2. Cut points used for feature quantization.

Cut Points
A B, C, D, O
L 1200, 3000, 5000
v 30, 60, 90, 120, 140, 165, 250
v̇ −1,−0.25, 0.25, 1
ḣ −1250,−750,−250, 250, 750, 1250
ψ̇ −6,−4.5,−1.5, 1.5, 4.5, 6

3.6 FEATURE SMOOTHING

We then smooth the extracted features using the same smoothing scheme we used for tracks
(Section 3.3). For turn rate, airspeed, and acceleration, we set σ to 10 s, 20 s, and 20 s respectively.
We choose these numbers large enough so that noise is removed from the measurements but low
enough so that the underlying properties of the maneuvers are not lost. We do not smooth vertical
rates in this step because the altitudes are already smoothed (Section 3.3).

3.7 QUANTIZATION

In order to be modeled by a discrete Bayesian network, it is necessary to quantize the features.
We quantize continuous values by defining a sequence of cut points c1, . . . , cn. Values less than c1

are in the first bin, values greater than cn are in the (n + 1)th bin, and values in the half-open
interval [ci−1, ci) are in the ith bin. The cut points we used for quantization are listed in Table 2.
The cut points were chosen to capture the variation of the features as shown in the histograms in
Figure 9.

3.8 STATISTICS EXTRACTION

With structures for the initial and transition distributions and the quantized features from
a set of tracks, we are able to collect the sufficient statistics to estimate the parameters for our
model. For the two Bayesian networks, the sufficient statistics are simply the counts Nijk of the
various features (see Appendix C).2 Appendix A describes the sufficient statistics extracted from
our data.

Figure 10 illustrates the convergence of the Bayesian network parameters. The horizontal axis
represents the number of samples used to estimate the parameters of the Bayesian network, and
the vertical axis represents the maximum difference between elements in the conditional probability
tables with the addition of more data. As the figure shows, the change in the probabilities in the
conditional probabilities converges to zero.

2The counts are called sufficient statistics because they provide a summarization of the data that is sufficient to
compute the posterior distribution from the prior. For an introduction to Bayesian statistics, see [17].
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This section has described how to construct a model of nominal VFR flight based on radar
data. The next section describes how to use this model to produce new trajectories through
sampling.
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FIGURE 6. Preprocessing. Blue lines show an example raw track. Red lines show the track after outlier removal,
smoothing, and interpolation.
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FIGURE 7. Piecewise-cubic Hermite interpolation on a smoothed track. Red crosses indicate smoothed data
points, and the blue curve shows the interpolation.
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FIGURE 8. A plot of extracted features over time. Blue lines show features before smoothing, and red lines
show features after smoothing. The green blocks show the outlines of the bins to which the features belong.
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FIGURE 10. Convergence curve for Bayesian network conditional probabilities.
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4. SAMPLING

Once we process the data as described in the previous section, we can use the model structure
and sufficient statistics to produce new tracks that are representative of the ones observed by radar.
The first step involves sampling from the discrete Bayesian networks representing the initial and
transition distributions. The second step involves converting the discrete sample into a continuous
sample by sampling within bins. Figure 11 illustrates this process. An example of working through
this process using the data provided for this encounter model is given in Appendix B.

Discrete
Sampling

Continuous
Sampling

Track

Model
Structure

Sufficient
Statistics

FIGURE 11. Sampling process flow.

4.1 DISCRETE SAMPLING

We begin by sampling from the Bayesian network representing the initial distribution. As
outlined in Appendix Cand shown in more detail in Appendix B, we randomly assign value k to
variable Xi with probability

αijk +Nijk∑ri
k′=1(αijk′ +Nijk′)

, (3)

where

• j is the instantiation of the parents of Xi in the Bayesian network,

• Nijk is the number of times Xi was equal to k when its parents were instantiated to j in the
data,
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• αijk is a Dirichlet prior parameter, and

• ri is the number of ways to instantiate the parents of Xi.

We use αijk = 1, which corresponds to the prior assumption that all combinations of relative
frequencies for k are equally probable. Sampling from the posterior distribution with αijk = 1 is
equivalent to adding 1 to all the counts in the tables in Appendix A and sampling according to the
resulting relative frequencies. This ensures that there are no transitions with zero probability in
our Markov model.

Our sample from the Bayesian network tells us into which bins airspeed, vertical rate, turn
rate, and acceleration fall. We then sample within the bins as discussed in Section 4.2.

Once we have the initial state of the trajectory, we can sample from our dynamic Bayesian
network representing how the state changes. We fix ḣ(t), ψ̇(t), and v̇(t), and then use the standard
Bayesian network sampling scheme to determine ḣ(t+ 1), ψ̇(t+ 1), and v̇(t+ 1). The process may
be repeated for as long as we wish to run the trajectory.

4.2 CONTINUOUS SAMPLING

To produce a continuous sample from the discrete sample from the initial distribution, we
simply sample uniformly within the bins. For example, if we determine that the initial airspeed
is within the bin [60, 90), i.e. the second bin according to the quantization scheme in Table 2, we
simply sample from the uniform distribution over the half-open interval [60, 90). Because the first
and last bins associated with each interval are unbounded and uniform sampling on an unbounded
interval is undefined, it is necessary to impose some bounds. Table 3 shows the boundaries in our
quantization based on the limits observed in the radar data.

TABLE 3. Sampling boundaries.

Boundaries
h 500, 1200, 3000, 5000, 12500
v 0, 30, 60, 90, 120, 140, 165, 250, 300
v̇ −2,−1,−0.25, 0.25, 1, 2
ḣ −2000,−1250,−750,−250, 250, 750, 1250, 2000
ψ̇ −8,−6,−4.5,−1.5, 1.5, 4.5, 6, 8

To produce a continuous sample of the trajectory produced by the transition network, we
iterate through the arrays of climb rates, turn rates, and accelerations. Instead of sampling within
bins at every time step, we only produce a new continuous sample at some fixed rate estimated
from the data. The rates we used are 0.0211495, 0.0412835, and 0.0885336 changes per second for
acceleration, vertical rate, and turn rate respectively. We estimated these rates from the data by
introducing 3 smaller bins within each bin and computing the relative frequency that tracks stay
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within a single smaller bin (versus moving to another small bin within the same coarse bin). A
similar strategy was used by Eurocontrol for their cooperative encounter model.

When producing continuous samples from bins that include zero in their range, we simply
produce zero instead of sampling uniformly in order to prevent very small vertical rates, turn rates,
and acceleration.

Figure 12 plots an example of vertical rates, turn rates, accelerations, and airspeeds generated
by sampling from the Bayesian networks. Figure 13 shows the resulting track produced by the
sampled features shown in the previous figure. Translation of features into tracks involves running
a discrete-time simulation, described in the next section.
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FIGURE 12. A plot of sampled features over time. Blue lines show continuous samples, and green blocks show
the outlines of the discrete samples.
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5. SIMULATION

Earlier sections explained how to build a dynamic probabilistic model of aircraft and how to
sample from the model to produce nominal trajectories that are representative of what we observed
in our radar data. The same modeling techniques discussed earlier may be used to build a model
of the manned or unmanned aircraft with the collision avoidance system to be evaluated. This
section explains how to combine a model of the aircraft with the collision avoidance system to be
evaluated, which we call AC1, with a model of an intruder, which we call AC2, into a simulated
encounter.

The trajectory for AC1 may be specified by the analyst (e.g., to focus on a particular phase
of flight), based on actual flight paths from mission planning or radar data, or randomly generated
using a statistical model representative of that aircraft’s typical flight profiles. In a study of VFR-
on-VFR encounters, for example, trajectories for both AC1 and AC2 could be generated using the
uncorrelated encounter model described here.

We avoid simulating encounters that are extremely unlikely to result in NMACs by focusing
our computational effort on encounters that occur in an encounter cylinder centered on AC1. AC2
is initialized on the surface of the encounter cylinder and the dynamic models are used to update
the states of AC1 and AC2 over time. If the collision avoidance system on AC1 or AC2 suggests an
avoidance maneuver, it overrides the nominal rates commanded by the encounter model. If AC2
enters an NMAC cylinder or exits the encounter cylinder, the encounter run is terminated. The
NMAC cylinder has radius rnmac and height 2hnmac. We use rnmac = 500 ft and hnmac = 100 ft.

Running millions of randomly generated encounters allows us to estimate the probability
that an aircraft that enters the encounter cylinder penetrates the NMAC cylinder before exiting
the encounter cylinder. We use P (nmac | enc) to represent this probability. Section 6 explains how
to use this probability to estimate the mean time between NMACs.

5.1 ENCOUNTER CYLINDER DIMENSIONS

The encounter cylinder has radius renc and height 2henc. The appropriate dimensions of the
encounter cylinder depend on the aircraft dynamics and collision avoidance system. If the encounter
cylinder is too small, the collision avoidance system will not have enough opportunity to be fully
exercised before a collision. If the encounter cylinder is too large, then computation is wasted.

An upper bound for renc is the amount of time required by the collision avoidance system to
detect and track a target multiplied by the sum of the maximal airspeeds of AC1 and AC2. An
upper bound for henc is the amount of time required by the collision avoidance system to detect
and track a target multiplied by the sum of the maximal vertical rate magnitudes of AC1 and AC2.
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ḣrel < 0

ḣrel > 0

R̂ · (v2 − v1) < 0

FIGURE 14. Depending on where on the encounter cylinder the intruder is initialized, different criteria must be
met in order to accept a given trajectory for further simulation.

5.2 INITIAL CONDITIONS

We use rejection sampling to generate the initial conditions of an encounter. Rejection sam-
pling involves proposing a series of candidate samples from a random distribution until choosing
one that meets a set of criteria (summarized in Figure 14). The process we use for generating initial
conditions for encounters is as follows:

1. Generate airspeeds, vertical rates, turn rates, and accelerations for AC1 and AC2 according
to their models.

2. Randomly initialize the position of AC2 on the surface of the encounter cylinder centered on
AC1. AC2 is not restricted to being on the side of the cylinder; it may be initialized on the
top or bottom. The probability of being initialized on the top, bottom, or side is proportional
to its surface area. The bearing of AC2 relative to AC1 is denoted χ.

3. The heading of AC1 is set to 0. The heading of AC2, denoted ψ, is randomly selected from
a uniform distribution over [0, 2π).

4. If AC2 was initialized on the top of the encounter cylinder, accept the sample if the vertical
rate of AC2 relative to AC1, denoted ḣrel, is negative. This ensures that AC2 is penetrating
the encounter cylinder in the first time step.

5. If AC2 was initialized on the bottom of the encounter cylinder, accept the sample if the
vertical rate of AC2 relative to AC1, denoted ḣrel, is positive. This ensures that AC2 is
penetrating the encounter cylinder in the first time step.

6. If AC2 was initialized on the side of the encounter cylinder, accept the sample if R̂ · (v2−v1)
is negative, where R̂ = (sinχ, cosχ) is the unit vector from AC1 to AC2. The vectors v1

and v2 are the velocities of AC1 and AC2 respectively. When R̂ · (v2 − v1) is negative, the
relative velocity of AC2 is into the encounter cylinder, and therefore should be accepted. See
Figure 15.
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FIGURE 15. Variables relevant to rejection sampling in the horizontal plane.

The process is repeated until a candidate initialization is accepted.

A byproduct of rejection sampling is that the bearing distribution is nonuniform. As one would
expect, more encounters occur head on than from the side. Figure 16 shows bearing distributions
of VFR/VFR encounters.

5.3 TRAJECTORY CONSTRUCTION

Once the initial conditions are selected, the dynamic models of AC1 and AC2 are used to
update their trajectories over time.

Given the initial state of an aircraft (including at a minimum: position, altitude, heading,
climb rate, turn rate, and velocity) and its control variables (ḣ, ψ̇, and v̇) the aircraft state is
updated in 1 s time steps using a dynamic model. Due to the wide variety of possible dynamic
model implementations, details for computing this state update are not provided here. A basic
approach would be to apply simple point-mass kinematics to update the aircraft state without
considering what the aircraft may actually be doing in terms of bank angle, pitch rate, etc. More
complex implementations could include 6 degree-of-freedom dynamic models in which the control
variables are treated as target states provided to an autoflight control system which then applies
the necessary control deflections to attain those targets. Lincoln Laboratory’s Collision Avoidance
System Safety Assessment Tool (CASSATT) typically uses a 4 degree-of-freedom model to update
aircraft state by applying the necessary airspeed acceleration, roll rate, and pitch rate to achieve
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FIGURE 16. Initial bearing distributions produced by rejection sampling for two randomly-generated VFR
aircraft.

the target values for ḣ, ψ̇, and v̇ assuming curvilinear motion with a zero-sideslip constraint. The
zero-sideslip constraint can be relaxed, for instance, if it is necessary to model transient dynamics
with higher fidelity.

A simulation run terminates when the intruder either exits the encounter cylinder or pene-
trates the NMAC cylinder. After running many simulations, we estimate P (nmac | enc) by dividing
the number of runs that resulted in an NMAC by the total number of runs.

5.4 MULTIPLE ENCOUNTERS

The approach discussed in Section 5.2 only handles pairwise encounters. The probability
of an intruder penetrating the encounter cylinder while another intruder is within the encounter
cylinder is likely to be very small. One may compute this probability using∫ ∞

0
p(t)[1− eλenct]dt = 1−

∫ ∞
0

p(t)eλenctdt , (4)

where p(t) is the distribution over the amount of time intruders spend in the encounter cylinder and
λenc is the rate at which new intruders penetrate the encounter cylinder. In the above equation,
1−eλenct comes from the cumulative density function for an exponential distribution. The possibility
of simultaneous multiple intruders needs to be examined and will be an area of future work.
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6. SAFETY EVALUATION

The previous section described how to compute P (nmac | enc), the probability that an aircraft
that enters the encounter cylinder penetrates the NMAC cylinder before exiting the encounter
cylinder. This section explains how to compute the rate at which aircraft enter the encounter
cylinder, λenc. Once we know P (nmac | enc) and λenc, we may estimate the NMAC rate

λnmac = P (nmac | enc)λenc .

The mean time between NMACs is simply λ−1
nmac.

We begin with the assumption that the density of traffic outside the encounter cylinder is
fixed and known. This density, ρ, has units (NM2 × ft)−1. The rate at which aircraft enter the
encounter cylinder depends on ρ and the average volume of new airspace the encounter cylinder
sweeps through per unit time.

If the average relative horizontal speed is s̄rel
horiz and the average relative vertical speed is s̄rel

vert,
then the average volume of new airspace the encounter cylinder sweeps through per unit time is

4renchencs̄
rel
horiz + πr2

encs̄
rel
vert . (5)

The average relative vertical speed is given by

s̄rel
vert =

∫ ∞
−∞

∫ ∞
−∞

p(ḣ1)p(ḣ2)
∣∣∣ḣ1 − ḣ2

∣∣∣ dḣ1dḣ2 , (6)

where ḣ1 is the vertical rate of the unmanned aircraft and ḣ2 is the vertical rate of the intruder.
The average relative horizontal speed is given by

s̄rel
horiz =

1
π

∫ π

0

∫ ∞
0

∫ ∞
0

p(vg1)p(vg2)
√

(vg1 + vg2 cosα)2 + (vg2 sinα)2 dvg1dvg2dα , (7)

where vg1 is the groundspeed of the unmanned aircraft and vg2 is the ground speed of the intruder.
Both Equations 6 and 7 may be estimated through sampling. We estimate s̄rel

horiz to be 147 kt for
VFR/VFR encounters. We estimate s̄rel

vert to be 260 ft/min for VFR/VFR encounters.

If we make the following two assumptions:

1. the density of air traffic outside the encounter cylinder is uniform, and

2. the trajectories of aircraft outside of the encounter cylinder are independent of the trajectories
of aircraft within the encounter cylinder,

then the encounter rate is

λenc = ρ
(

4renchencs̄
rel
horiz + πr2

encs̄
rel
vert

)
. (8)

The NMAC rate is simply the product of λenc and P (nmac | enc).
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7. SUMMARY AND FURTHER WORK

This report has presented a new approach to encounter modeling that allows for the generation
of more realistic encounters than previous models. The approach involves modeling the dynamics
of aircraft state based on a Markov model where the probability of the next state depends only
upon the current state. One way to represent a Markov model is with an exhaustive state-transition
matrix that specifies the probability of transitioning between all pairs of states. Unfortunately, the
number of independent parameters required to define the matrix grows super exponentially with
the number of variables defining the model. The more independent parameters there are in the
model, the more data one needs to properly estimate their values. However, by using dynamic
Bayesian networks, we can leverage conditional independence between some variables to greatly
reduce the number of parameters. We can learn the structure of the dynamic Bayesian network by
maximizing the posterior probability of the network structure given the data.

The work presented in this report has focused on a model where the trajectories of the
aircraft involved in the encounter are independent of each other prior to intervention by a collision
avoidance system, human or automated. This model assumes that aircraft blunder into close
proximity without prior intervention. We are currently developing a separate model for aircraft
under air traffic control, where intervention may impact the way in which aircraft encounter each
other. Such a correlated encounter model is similar to the uncorrelated encounter model described
here except that the variables defining the state of the aircraft in the encounter are tied to each other
in the dynamic Bayesian network. We are also developing a noncooperative model of unconventional
aircraft such as balloons, ultralights, and gliders.

The uncorrelated encounter model presented in this report along with a correlated encounter
model under development will be used to generate encounter situations for use in Monte Carlo
safety analyses of collision avoidance systems for manned and unmanned aircraft. The results of
these robustness studies will inform the development and certification of new systems.

The model presented in this report will be reevaluated over Spring and Summer 2008, and a
final version will be published in September 2008.
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APPENDIX A

MODEL PARAMETERS

This appendix describes the sufficient statistics, Nijk (see Appendix C), used to estimate the
conditional probabilities associated with the initial and transition distributions. These sufficient
statistics are based on beacon reports from aircraft squawking VFR (Mode A code 1200) between
December 1, 2007 and December 7, 2007. This amounts to 30,109,411 reports representing 78,000
flight hours from across the United States. Other parameters that are relevant to generating new
encounters from the model are also described in this section.

A text file, available electronically from Lincoln Laboratory, describes the following model
parameters:

• Variable labels: A quoted, comma-delimited list specifies the variable labels, e.g. \dot \psi,
as would be used by LATEX. There are different variable labels for the initial network and the
transition network.

• Graphical structure: A binary matrix is used to represent graphical structure. A 1 in the
ith row and jth column means that there is a directed edge from the ith variable to the jth
variable in the Bayesian network. The text file specifies two graphical structures; one for the
initial network and the other for the transition network. The element in the ith row and jth
column is represented by G(i, j).

• Variable instantiations: For each network, a list of integers specifies the number of instan-
tiations that exist for each variable.

• Sufficient statistics: For each network, a list of integers specifies the sufficient statistics.
We explain how to interpret the array of integers below.

• Boundaries: The boundaries of the variable bins are specified by a row of numbers. The
variables A and L are not quantized because they are already discrete, and so boundaries do
not exist. A * is used for these variables.

• Resampling rates: A list of numbers specify the resampling rates (Section 4.2).

The list of numbers describing the sufficient statistics, Nijk, requires explanation. The array
is ordered first by increasing k, then increasing j, and then increasing i. For some specified variable
i, parental instantiation j, and variable instantiation k, the value Nijk is given by the following
element in the list

k + ri(j − 1) +
i−1∑
i′=1

qi′ri′ , (A-1)

where q and r are as specified in Appendix C. It is important to clarify the ordering of the parental
instantiations. If the variables are instantiated to bins b1, . . . , bn, the parental instantiation of
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variable i is given by

j = 1 +
n∑

i′=1

G(i′, i)(bi′ − 1)
i′−1∏
i′′=1

r
G(i′′,i)
i′′ . (A-2)

The following is a fragment of the parameter file. The lines that describe the sufficient
statistics are truncated due to length.

# labels_initial
"A", "L", "v", "\dot v", "\dot h", "\dot \psi"
# G_initial
0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
# r_initial
4 4 8 5 7 7
# N_initial
487885 517728 10285433 86339819 249426 130407 78279 29773 302812 182518 ...
# labels_transition
"A", "L", "v", "\dot v(t)", "\dot h(t)", "\dot \psi(t)",

"\dot v(t+1)", "\dot h(t+1)", "\dot \psi(t+1)"
# G_transition
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0 0
# r_transition
4 4 8 5 7 7 5 7 7
# N_transition
135 1 0 0 0 168 1 0 0 0 39 0 0 0 0 59 0 0 0 0 3 921 46 0 0 3 902 20 0 0 ...
# boundaries
*
*
0 30 60 90 120 140 165 250 300
-2 -1 -0 0 1 2
-2000 -1250 -750 -250 250 750 1250 2000
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-8 -6 -5 -2 2 5 6 8
# resample_rates
0 0 0 0.0211495 0.0412835 0.0885336

This document and the parameters file is available for download from ftp://duke.atc.ll.
mit.edu as a ZIP file located at /pub/outgoing/encounter_model/uncor-20080303.zip. This
FTP site allows for anonymous access. Sign in with the username anonymous and your email
address as your password.
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APPENDIX B

TRAJECTORY GENERATION

This appendix explains how to generate a trajectory from our model.

B.1 INITIAL NETWORK SAMPLING

The first step in generating a random trajectory using our model is to sample from the
Bayesian network representing the initial state distribution. To sample from a Bayesian network,
as explained in Appendix C, is to produce a topological sort of the nodes in the network. A
topological sort orders the nodes of the network so that parents come before their descendants.
The following is the graphical structure of the initial network as specified in the parameters file
(see Appendix A) and shown in Figure B-1:

0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0

As can be seen, this ordering of the nodes is already topologically sorted: the first node
(airspace class) is connected to all other nodes. The second node (altitude layer) is connected to
all following nodes, and so on. The final node (ψ) is not connected to any other nodes. We will see
later that the transition network, in contrast, requires a topological sort.

With the nodes being topologically sorted, we begin by sampling the first variable. As specified
in the parameters file, the first variable is A, airspace class. Equation C-5, reproduced below, shows
how to produce a random sample:

P (Xi = k | πij , D,G) =
αijk +Nijk∑ri

k′=1(αijk′ +Nijk′)
.

In other words, the probability of selecting a particular airspace class is proportional to the prior
(αijk) plus the frequency that airspace class appeared in the data (Nijk). Following Cooper and
Herskovits [18], we use an objective prior and set αijk to 1. To determine the values for Nijk, we
need to look at the sufficient statistics recorded in the parameters file. The sufficient statistics
for the initial network is recorded as a long series of numbers. We use the scheme described in
Appendix A to determine the actual values. These values turn out to be the first four numbers in
the sufficient statistics sequence and are shown in the following table.
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FIGURE B-1. A graphical representation of the initial network.
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TABLE B-1. N(A)

A

B C D O

487885 517728 10285433 86339819

Now, we may compute the probability of selecting the different values of A using Equation C-5:

• P (A = B) = (487885 + 1)/(487885 + 1 + 517728 + 1 + 10285433 + 1 + 86339819 + 1) =
487886/97630869 = 0.00499725143284344

• P (A = C) = (517728 + 1)/(487885 + 1 + 517728 + 1 + 10285433 + 1 + 86339819 + 1) =
517729/97630869 = 0.00530292319737521

• P (A = D) = (10285433 + 1)/(487885 + 1 + 517728 + 1 + 10285433 + 1 + 86339819 + 1) =
10285434/97630869 = 0.105350224835139

• P (A = O) = (86339819 + 1)/(487885 + 1 + 517728 + 1 + 10285433 + 1 + 86339819 + 1) =
86339820/97630869 = 0.884349600534642

We use a random number generator to choose an airspace. For this example, let us choose O, the
fourth instantiation of A.

The next step is to instantiate the second variable, L, which is altitude layer. Choosing a
random instantiation for L is not quite as easy as for A because L depends upon other variables,
namely A. We need to compute the conditional probability distribution P (L | A = O), i.e. the
distribution over the values of L given that A is O. We consult the sufficient statistics table N(L | A)
which is extracted from the parameters file (using the process explained in Appendix A) and is
displayed in the table below.

TABLE B-2. N(L | A)

L

A [500, 1200) [1200, 3000) [3000, 5000) [5000, ∞]

B 249426 130407 78279 29773

C 302812 182518 32339 59

D 8383276 1901858 299 0

O 27280449 39197911 13704707 6156752

Since we are only interested in the counts associated with A = O, we consider only the last
row in the table. To translate the counts into probabilities, we add 1 to each element in the last row
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and then divide by the total resulting sum of that row. Again, we use a random number generator
to select an airspace layer according to these probabilities. This process of randomly assigning
values to each of the variables conditional on the values of their parents continues until all of the
variables have been assigned. For this example, assume that the following assignments have been
made:

• A = O

• L = [3000, 5000)

• v = [120, 140)

• v̇ = [−0.25, 0.25)

• ḣ = [250, 750)

• ψ̇ = [−1.5, 1.5)

Specific values within each bin are then determined based on a different uniform random
number for each. In the case where a bin spans 0 (as it does in this example for v̇, and ψ̇), the
value 0 itself is assigned.

B.2 TRANSITION NETWORK SAMPLING

We have described how to sample from the initial Bayesian network to generate a random ini-
tial state. The next step is to use the dynamic Bayesian network representing the transition distribu-
tion to generate the state at the next time step based on the initial state. The parameters file defines
the following sequence of variables in the dynamic Bayesian network: A,L, v, v̇(t), ḣ(t), ψ̇(t), v̇(t+
1), ḣ(t + 1), ψ̇(t + 1). The parameters file also defines the following graphical structure for the
network:

0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0 0

The graphical representation of this matrix is shown in Figure B-2. As can be seen, the
ordering in the parameters file is not topologically sorted because there are arrows from ḣ(t + 1)
and ψ̇(t+ 1) to v̇(t+ 1) but v̇(t+ 1) comes before both ḣ(t+ 1) and ψ̇(t+ 1) in the list. We need to
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ḣ(t)

ψ̇(t)

v̇(t+ 1)

ḣ(t+ 1)

ψ̇(t+ 1)

FIGURE B-2. A graphical representation of the transition network.

topologically sort the list of variables to make sure that we assign values to variables in the right
order. One possible topological sort involves simply moving v̇(t+ 1) to the end of the list.

We are only interested in assigning new values to the dynamic variables, namely ḣ(t + 1),
ψ̇(t+ 1) and v̇(t+ 1). The process is similar to the process used to sample from the initial network.
First, we consult the table of sufficient statistics for ḣ(t + 1). This table of conditional counts is
shown below. For sampling purposes, we are only interested in the row that represents the current
variable assignment, i.e. A = O, L = [3000, 5000), and ḣ = [250, 750). The relevant line highlighted
in the table:

TABLE B-3. N(ḣ(t+ 1) | A,L, ḣ(t))

ḣ(t + 1)

A L ḣ(t) [−2000, −1250) [−1250, −750) [−750, −250) [−250, 250) [250, 750) [750, 1250) [1250, 2000]

B [500, 1200) [−2000, −1250) 437 13 0 0 0 0 0

C [500, 1200) [−2000, −1250) 1436 23 0 0 0 0 0

D [500, 1200) [−2000, −1250) 32319 1059 0 0 0 0 0

O [500, 1200) [−2000, −1250) 44854 1503 2 0 0 0 0

B [1200, 3000) [−2000, −1250) 576 14 0 0 0 0 0

C [1200, 3000) [−2000, −1250) 1202 45 0 0 0 0 0

D [1200, 3000) [−2000, −1250) 14412 450 0 0 0 0 0

O [1200, 3000) [−2000, −1250) 73685 2484 2 0 0 0 0

B [3000, 5000) [−2000, −1250) 1137 34 0 0 0 0 0

C [3000, 5000) [−2000, −1250) 551 16 0 0 0 0 0

D [3000, 5000) [−2000, −1250) 32 1 0 0 0 0 0

O [3000, 5000) [−2000, −1250) 49962 1567 2 0 0 0 0

B [5000, ∞] [−2000, −1250) 1452 16 0 0 0 0 0

C [5000, ∞] [−2000, −1250) 0 0 0 0 0 0 0

D [5000, ∞] [−2000, −1250) 0 0 0 0 0 0 0

O [5000, ∞] [−2000, −1250) 75599 1325 0 0 0 0 0

B [500, 1200) [−1250, −750) 23 2229 66 0 0 0 0

C [500, 1200) [−1250, −750) 48 3693 81 0 0 0 0

D [500, 1200) [−1250, −750) 1318 176114 5157 0 0 0 0

O [500, 1200) [−1250, −750) 1807 259491 8025 0 0 0 0

B [1200, 3000) [−1250, −750) 18 1490 55 0 0 0 0

C [1200, 3000) [−1250, −750) 52 5107 187 0 0 0 0

Continued on next page. . .
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TABLE B-3. Continued
ḣ(t + 1)

A L ḣ(t) [−2000, −1250) [−1250, −750) [−750, −250) [−250, 250) [250, 750) [750, 1250) [1250, 2000]

D [1200, 3000) [−1250, −750) 494 58181 1782 0 0 0 0

O [1200, 3000) [−1250, −750) 2726 314132 10417 1 0 0 0

B [3000, 5000) [−1250, −750) 42 1445 82 0 0 0 0

C [3000, 5000) [−1250, −750) 15 865 39 0 0 0 0

D [3000, 5000) [−1250, −750) 1 0 1 0 0 0 0

O [3000, 5000) [−1250, −750) 1620 167085 4740 0 0 0 0

B [5000, ∞] [−1250, −750) 22 428 16 0 0 0 0

C [5000, ∞] [−1250, −750) 0 0 0 0 0 0 0

D [5000, ∞] [−1250, −750) 0 0 0 0 0 0 0

O [5000, ∞] [−1250, −750) 1345 111865 2811 1 0 0 0

B [500, 1200) [−750, −250) 0 100 15290 186 0 0 0

C [500, 1200) [−750, −250) 0 160 37490 500 0 0 0

D [500, 1200) [−750, −250) 0 7037 1712037 23271 0 0 0

O [500, 1200) [−750, −250) 2 10383 2919815 41529 0 0 0

B [1200, 3000) [−750, −250) 0 61 11823 217 0 0 0

C [1200, 3000) [−750, −250) 0 209 45446 639 0 0 0

D [1200, 3000) [−750, −250) 2 1997 388905 5752 0 0 0

O [1200, 3000) [−750, −250) 1 11662 2796178 41758 0 0 0

B [3000, 5000) [−750, −250) 0 91 9007 165 0 0 0

C [3000, 5000) [−750, −250) 0 41 4714 103 0 0 0

D [3000, 5000) [−750, −250) 0 1 30 1 0 0 0

O [3000, 5000) [−750, −250) 1 5082 1001108 12656 0 0 0

B [5000, ∞] [−750, −250) 0 23 1193 28 0 0 0

C [5000, ∞] [−750, −250) 0 0 0 0 0 0 0

D [5000, ∞] [−750, −250) 0 0 0 0 0 0 0

O [5000, ∞] [−750, −250) 2 2937 490952 4873 0 0 0

B [500, 1200) [−250, 250) 0 0 380 128943 265 0 0

C [500, 1200) [−250, 250) 0 0 1021 300731 632 0 0

D [500, 1200) [−250, 250) 0 0 39831 11486322 20842 0 0

O [500, 1200) [−250, 250) 0 0 66410 22520261 36293 1 0

B [1200, 3000) [−250, 250) 0 0 247 79669 179 0 0

C [1200, 3000) [−250, 250) 0 0 840 267771 482 0 0

D [1200, 3000) [−250, 250) 0 0 7390 2275618 4651 0 0

O [1200, 3000) [−250, 250) 0 0 52430 18977463 29588 1 0

B [3000, 5000) [−250, 250) 0 0 187 61715 161 0 0

C [3000, 5000) [−250, 250) 0 0 111 18816 85 0 0

D [3000, 5000) [−250, 250) 0 0 1 152 1 0 0

O [3000, 5000) [−250, 250) 0 1 14992 5695017 8068 0 0

B [5000, ∞] [−250, 250) 0 0 33 12535 36 0 0

C [5000, ∞] [−250, 250) 0 0 0 0 0 0 0

D [5000, ∞] [−250, 250) 0 0 0 0 0 0 0

O [5000, ∞] [−250, 250) 0 0 5706 2621051 2624 2 0

B [500, 1200) [250, 750) 0 0 0 479 23748 96 0

C [500, 1200) [250, 750) 0 0 0 1153 70327 147 0

D [500, 1200) [250, 750) 0 0 0 38448 1993067 8258 0

O [500, 1200) [250, 750) 0 0 0 59198 3089682 11222 0

B [1200, 3000) [250, 750) 0 0 0 202 12523 39 0

C [1200, 3000) [250, 750) 0 0 0 580 39857 177 0

D [1200, 3000) [250, 750) 0 0 0 6300 345205 1905 0

O [1200, 3000) [250, 750) 0 0 0 36232 1845196 8232 2

B [3000, 5000) [250, 750) 0 0 0 185 8620 63 0

C [3000, 5000) [250, 750) 0 0 0 96 2607 23 0

D [3000, 5000) [250, 750) 0 0 0 1 37 1 0

O [3000, 5000) [250, 750) 0 0 0 9269 462258 2288 2

B [5000, ∞] [250, 750) 0 0 0 42 2273 13 0

C [5000, ∞] [250, 750) 0 0 0 0 0 0 0

D [5000, ∞] [250, 750) 0 0 0 0 0 0 0

O [5000, ∞] [250, 750) 0 0 0 3037 137408 988 2

B [500, 1200) [750, 1250) 0 0 0 0 162 3778 25

C [500, 1200) [750, 1250) 0 0 0 0 229 7429 31

D [500, 1200) [750, 1250) 0 0 0 0 10921 304726 1171

O [500, 1200) [750, 1250) 0 0 0 1 13859 388637 1555

B [1200, 3000) [750, 1250) 0 0 0 0 40 1464 12

C [1200, 3000) [750, 1250) 0 0 0 0 188 6213 38

D [1200, 3000) [750, 1250) 0 0 0 0 2059 68013 462

O [1200, 3000) [750, 1250) 0 0 0 1 8705 256042 1900

B [3000, 5000) [750, 1250) 0 0 0 0 68 1059 26

C [3000, 5000) [750, 1250) 0 0 0 0 25 360 10

D [3000, 5000) [750, 1250) 0 0 0 0 1 9 1

Continued on next page. . .
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TABLE B-3. Continued
ḣ(t + 1)

A L ḣ(t) [−2000, −1250) [−1250, −750) [−750, −250) [−250, 250) [250, 750) [750, 1250) [1250, 2000]

O [3000, 5000) [750, 1250) 0 0 0 0 2423 68127 717

B [5000, ∞] [750, 1250) 0 0 0 0 16 258 5

C [5000, ∞] [750, 1250) 0 0 0 0 0 0 0

D [5000, ∞] [750, 1250) 0 0 0 0 0 0 0

O [5000, ∞] [750, 1250) 0 0 0 1 1105 31246 544

B [500, 1200) [1250, 2000] 0 0 0 0 0 44 2282

C [500, 1200) [1250, 2000] 0 0 0 0 0 73 2046

D [500, 1200) [1250, 2000] 0 0 0 0 3 1694 42489

O [500, 1200) [1250, 2000] 0 0 0 0 3 2151 57621

B [1200, 3000) [1250, 2000] 0 0 0 0 0 12 556

C [1200, 3000) [1250, 2000] 0 0 0 0 0 36 1177

D [1200, 3000) [1250, 2000] 0 0 0 0 0 503 15598

O [1200, 3000) [1250, 2000] 0 0 0 0 2 1980 63193

B [3000, 5000) [1250, 2000] 0 0 0 0 0 29 986

C [3000, 5000) [1250, 2000] 0 0 0 0 0 10 482

D [3000, 5000) [1250, 2000] 0 0 0 0 0 1 15

O [3000, 5000) [1250, 2000] 0 0 0 0 1 733 27729

B [5000, ∞] [1250, 2000] 0 0 0 0 0 8 252

C [5000, ∞] [1250, 2000] 0 0 0 0 0 0 0

D [5000, ∞] [1250, 2000] 0 0 0 0 0 0 0

O [5000, ∞] [1250, 2000] 0 0 0 0 0 577 24900

We look at the row of interest and randomly assign a value to ḣ(t + 1) with probability
proportional to the corresponding elements plus 1. We then assign ψ̇(t + 1) to a random value
conditional on A, ψ̇(t), L, and ḣ(t+ 1). Finally, we assign v̇(t+ 1) based on the assignments of L,
v̇(t), ḣ(t+1), and ψ̇(t+1). The process is repeated for each time step. The length of the trajectory
may be made as long as desired.

Sampling from the Bayesian networks produces a sequence of assignments of variables to
bins, e.g. [250, 750). As described above, the next step is to sample uniformly within the bins to
produce real values (with the exception of a bin spanning 0 in which case 0 itself is selected). If we
simply sample within each bin at each time step, there would be excessive variability in the vertical
rates, turn rates, and acceleration. We therefore only resample within bins at rates specified in the
parameters file:

0 0 0 0.0211495 0.0412835 0.0885336

The first three variables have zero as their rates because they do not change during the course of
the trajectory. The last three elements specify the rates with which v̇, ḣ, and ψ̇ change within bins.
As the trajectory evolves, whenever a variable switches to a new bin we must sample within the
bin. Typically, the values of variables continue in the same bin at the next time step. If the bin
remains the same, we either continue with the same value or resample within the bin according to
the specified rates.

Once the initial conditions and a series of control variables (v̇, ḣ, and ψ̇) have been selected,
the aircraft trajectory is constructed or simulated using an appropriate dynamic model. The control
variables are assumed to be held constant across each 1 s time step.
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APPENDIX C

BAYESIAN NETWORKS

This appendix briefly reviews Bayesian networks. Further discussion of Bayesian networks
may be found elsewhere [19–21].

C.1 DEFINITION

A Bayesian network is a graphical representation of a multivariate probability distribution
over variables X = X1, . . . , Xn. In particular, a Bayesian network is a directed acyclic graph G
whose nodes correspond to variables and edges correspond to probabilistic dependencies between
them. Associated with each variable Xi is a conditional probability distribution P (xi | πi), where
πi denotes an instantiation of the parents of Xi in the graph. The probability of an instantiation
of the variables is specified directly by the conditional probability distributions in the Bayesian
network:

P (x) = P (x1, . . . , xn) =
n∏
i=1

P (xi | πi) . (C-1)

C.2 SAMPLING

It is rather straightforward to sample from a multivariate distribution represented by a
Bayesian network. The first step is to produce a topological sort of the nodes in the network.
A topological sort orders the nodes in a Bayesian network such that if a node Xi comes before
Xj there does not exist a directed path from Xj to Xi. Every Bayesian network has at least one
topological sort, but there may be many. Efficient algorithms exist for finding a valid topological
sort [22].

To produce a sample from the joint distribution represented by a Bayesian network, we simply
iterate through a topologically sorted sequence of the variables and sample from their conditional
probability distributions. The topological sort ensures that when sampling from each conditional
probability distribution the necessary parents have been instantiated.

C.3 PARAMETER LEARNING

The parameters θ of a Bayesian network determine the associated conditional probability
distributions. Given some fixed network structure G, we can learn these parameters from data. In
this appendix, we assume that the variables are discrete.

Before discussing how to learn the parameters of a Bayesian network, it is necessary to
introduce some notation. Let ri represent the number of instantiations of Xi and qi represent
the number of instantiations of the parents of Xi. If Xi has no parents, then qi = 1. The jth
instantiation of the parents of Xi is denoted πij .
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There are
∑n

i=1 riqi parameters in a Bayesian network. Each parameter is written θijk and
determines P (Xi = k | πij), i.e.,

P (Xi = k | πij) = θijk .

Although there are
∑n

i=1 riqi parameters, only
∑n

i=1(ri − 1)qi are independent.

Computing the posterior p(θ | D,G) involves specifying a prior p(θ | G) and applying Bayes’
rule

p(θ | D,G) =
P (D | θ, G)p(θ | G)

P (D | G)
=

P (D | θ, G)p(θ | G)∫
P (D | θ, G)p(θ | G) dθ

. (C-2)

If Nijk is the count of Xi = k given πij in the data D, then the probability of the data given
the parameters θ is

P (D | θ) =
n∏
i=1

qi∏
j=1

ri∏
k=1

θ
Nijk

ijk . (C-3)

Let θij = (θij1, . . . , θijri). Since θij is independent of θi′j′ when ij 6= i′j′, the prior probability
of the parameters assuming a fixed structure G is

p(θ | G) =
n∏
i=1

qi∏
j=1

p(θij | G) . (C-4)

The density p(θij | G) is a distribution over relative frequencies. Under some very weak assump-
tions, it is possible to prove that p(θij | G) is Dirichlet (see [21], Section 6.2.3). Hence,

p(θij | G) =

{
Γ(αij0)∏r

k=1 Γ(αijk)

∏ri
k=1 θ

αijk−1
ijk if 0 ≤ θijk ≤ 1 and

∑ri
k=1 θijk = 1

0 otherwise
,

where αij1, . . . , αijri are the parameters of the Dirichlet distribution and αij0 =
∑ri

k=1 αijk. For
the prior to be objective (or noninformative), the parameters αijk must be identical for all k.
Different objective priors have been used in the literature. Cooper and Herskovits [18] use αijk = 1.
Heckerman, Geiger, and Chickering [23] use and justify αijk = 1/(riqi).

It is possible to show that p(θij | D,G) is Dirichlet with parameters αijk+Nijk, . . . , αijk+Nijk.
Hence,

p(θij | D,G) =

{
Γ(αij0+Nij)∏r

k=1 Γ(αijk+Nijk)

∏ri
k=1 θ

αijk+Nijk−1
ijk if 0 ≤ θijk ≤ 1 and

∑ri
k=1 θijk = 1

0 otherwise
,

where Nij =
∑ri

k=1Nijk.

Sampling from a Bayesian network with G known, θ unknown, and D observed involves
assigning k to Xi with probability

P (Xi = k | πij , D,G) =
∫
θijkp(θijk | D,G) dθijk =

αijk +Nijk∑ri
k′=1(αijk′ +Nijk′)

. (C-5)
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C.4 STRUCTURE LEARNING

Finding the most likely structure G that generated a set of data D. The objective is to find
the most likely graph given data. By Bayes’ rule,

P (G | D) ∝ P (G)P (D | G) = P (G)
∫
P (D | θ, G)p(θ | G) dθ . (C-6)

The previous section explains how to compute the likelihood P (D | θ, G) and the prior p(θ | G).
Cooper and Herskovits [18] show how to evaluate the integral above, resulting in

P (G | D) = P (G)
n∏
i=1

qi∏
j=1

Γ(αij0)
Γ(αij0 +Nij)

ri∏
k=1

Γ(αijk +Nijk)
Γ(αijk)

, (C-7)

where Nij =
∑r

k=1Nijk. Heckerman, Geiger, and Chickering [23] suggest priors over graphs, but
it is not uncommon in the literature to assume a uniform prior. For numerical convenience, most
Bayesian network learning packages calculate and report logP (G | D) +K, where K is a constant
independent of G. This quantity is often called the Bayesian score and may be used for structure
comparison and search.
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APPENDIX D

DENSITY PLOTS

The figures in this appendix show the density of aircraft squawking VFR in the radar data
used to construct our model. Density is measured in number of aircraft per NM3. Shown in the
plots are the base-10 logarithm of the density. The logarithm of the density was used because of
the extreme concentrations in some areas of the country, particularly Florida, in and around Dallas
and Houston, Texas, and southern California. Each pixel measures 1/6 of a degree on a side in
latitude and in longitude. Depending on latitude, the square mileage of a pixel may be between
64 NM2 at the northernmost latitude to 92 NM2 at the southernmost latitude. The highest density
pixel is in Miami-Dade County and has a density of approximately 10−2.6 aircraft per NM3 over all
altitude layers between 500 ft AGL and FL180, with the highest density layer between 500 ft AGL
and 1200 ft AGL.

It is important to emphasize that this density map is the observed density from our data set.
Factors such as terrain and curvature of the earth prevent the observation of aircraft, particularly
low flying aircraft such as those flying VFR. The locations of the sensors are indicated on the maps
by magenta circles. It is no coincidence that the measured density in the lowest altitude layer, for
example, tend to be concentrated around the locations of the sensors. In particular, coverage at low
altitudes tends to be sparser in the western portion of the country. Coverage above 5000 ft AGL,
however, is fairly good across the country.

Certain areas on the maps are worth attention. Due to the protected area around Washington
DC, there are virtually no 1200 squawking aircraft at any altitude layer in that region. By contrast,
there are is a large concentration in Florida and southern Arizona, especially near the two locations
of the Embry-Riddle flight school in Daytona Beach, Florida and Prescott, Arizona. In addition,
the effect of the “upside down wedding-cake” airspace class structure around major airports can
be seen if one compares the heavy concentration near the pixel representing Atlanta and Dallas
at lower altitude layers against the empty airspace in the same pixel at the highest altitude layer.
Finally, it can be seen that the density near Denver at higher altitudes AGL is quite low; this may
be attributed to the fact that an additional 5,000 ft above ground in that region puts the aircraft
above 10,000 ft MSL.
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APPENDIX E

SENSORS

The following table lists the RADES sensors that contributed to our model. Shown are the
number of hours of flight time by transponder-equipped aircraft squawking 1200 captured by each
sensor between December 1, 2007 and December 7, 2007.

TABLE E-1. Beacon Hours

60 NM range sensors

628.19 ACT Waco, TX, USA (ASR-11)
82.64 ADW Camp Springs (Andrews AFB), MD, USA (ASR-9)

26.23 BGR Bangor, ME, USA (ASR-8)
426.58 BOS Logan Intl (Boston), MA, USA (ASR-9)

96.52 BUF Buffalo Intl, NY, USA (ASR-9)
291.51 BWI Baltimore (BWI), MD, USA (ASR-9)
295.06 COS Colorado Springs, CO, USA (ASR-11)
165.55 COU Columbia MO, MO, USA (ASR-11)

56.54 CRW Charleston, WV, USA (ASR-8)
72.57 DCA Washington National, DC, USA (ASR-9)

322.48 DOV Dover AFB, DE, USA (GPN-20)
795.56 EWR Newark, NJ, USA (ASR-9)

461.82 GRK Ft Hood, TX, USA (ASR-9)
977.69 HPN White Plains (Westchester Co), NY, USA (ASR-9)

218.21 HUF Terre Haute, IN, USA (ASR-8)
236.84 IAD Washington Dulles (Chantilly), DC, USA (ASR-9)

913.5 JFK New York (JFK), NY, USA (ASR-9)
1994.23 LAXB Los Angeles Intl - North, CA, USA (ASR-9)

247.43 LFT Lafayette, LA, USA (ASR-11)
454.24 MDT Harrisburg, PA, USA (ASR-9)

684.51 MHT Manchester, NH, USA (ASR-9)
183.77 MLU Monroe LA, LA, USA (ASR-8)
201.24 MRB Martinsburg, WV, USA (ASR-9)

67.78 MUO Mountain Home AFB, ID, USA (GPN-20)
67.23 NQXA Key West NAS, FL, USA (GPN-27)

206.52 PWM Portland (Cumberland), ME, USA (ASR-9)
14.02 RCA Ellsworth AFB (Rapid City), SD, USA (GPN-20)

224.52 SAV Savannah, GA, USA (ASR-8)
23.99 SAW Marquette (KI Sawyer), MI, USA (ASR-7F)

201.91 SDF Louisville, KY, USA (ASR-9)
Continued on next page. . .
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TABLE E-1. Continued

229.89 SJU San Juan, PR, USA (ASR-8)
250.74 STT St.Thomas, PR, USA (ASR-8)

414.31 SWF Newburgh (Stewart), NY, USA (ASR-9)
200 NM range sensors

289.27 AEX Alexandria, LA, USA (AN/FPS-20A)
2274.9 ATL Atlanta (Marietta), GA, USA (ARSR-1E)

92.82 BAM Battle Mountain, NV, USA (ARSR-2)
267.37 CPV Coopersville, MI, USA (AN/FPS-66A)
133.24 DSV Buffalo (Dansville), NY, USA (ARSR-1E)
113.89 FLX Fallon, NV, USA (AN/FPS-66A)

703.96 FPK Salt Lake City (Francis Peak), UT, USA (ARSR-1E)
2584.5 FTW Ft Worth (Keller), TX, USA (ARSR-1E)

403.56 GUP Gallup (Farmington), NM, USA (ARSR-2)
1335.22 HOU Houston (Ellington), TX, USA (ARSR-1E)

479.19 IND Indianapolis, IN, USA (ARSR-1E)
121.43 IRK Kirksville, MO, USA (ARSR-3)

744.49 JOL Elwood (Joliet), IL, USA (ARSR-3)
108.98 LSK Lusk, WY, USA (ARSR-2)

744.27 MGM Montgomery, AL, USA (ARSR-1E)
418.95 PIT Pittsburgh (Oakdale), PA, USA (AN/FPS-67B)

1605.12 QAS Las Vegas (Angel Peak), NV, USA (AN/FPS-20E)
1282.42 QBE Roanoke (Bedford), VA, USA (ARSR-3)

831.23 QBN Binns Hall, VA, USA (ARSR-3)
503.78 QBZ Oskaloosa, KS, USA (ARSR-2)
273.38 QCF Du Bois (Clearfield), PA, USA (ARSR-3)
199.97 QCK Boise (Cascade), ID, USA (ARSR-2)

605.39 QDB Cleveland (Brecksville), OH, USA (ARSR-1E)
595.5 QDT Detroit (Canton), MI, USA (ARSR-1E)

893.41 QHA Cummington, MA, USA (AN/FPS-67B)
201.11 QHB St. Albans, VT, USA (AN/FPS-67B)

511.27 QHZ Horicon, WI, USA (ARSR-2)
82.66 QJB Gettysburg, SD, USA (AN/FPS-67B)

501.35 QJE Minneapolis (Apple Valley), MN, USA (ARSR-1E)
154.15 QJO Arlington, IA, USA (ARSR-3)

461.99 QJQ San Juan (Pico del Este), PR, USA (AN/FPS-20E)
880.29 QNK Lincolnton, GA, USA (ARSR-3)

468.43 QNM Newport, MS, USA (ARSR-3)
751.66 QOJ Nashville (Joelton), TN, USA (ARSR-1E)
769.26 QPC Haleyville, AL, USA (AN/FPS-67B)

Continued on next page. . .
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TABLE E-1. Continued

1119.91 QPK Denver (Parker), CO, USA (ARSR-1E)
903.24 QPL The Plains, VA, USA (ARSR-3)

1547.86 QRB Citronelle, AL, USA (ARSR-2)
346.34 QRC Benton, PA, USA (AN/FPS-67B)
681.5 QRI Lynch, KY, USA (ARSR-2)

823.63 QRL Raleigh (Benson), NC, USA (ARSR-1E)
548.93 QRM Charlotte (Maiden), NC, USA (ARSR-1E)
388.89 QSA Albuquerque (West Mesa), NM, USA (AN/FPS-66A)

97.39 QSI Lovell, WY, USA (ARSR-2)
510.95 QTZ La Grange, IN, USA (ARSR-1E)
221.78 QUZ Hanna City, IL, USA (AN/FPS-67B)
146.17 QWC Mesa Rica, NM, USA (ARSR-1E)

613.66 QWO London, OH, USA (ARSR-1E)
430.32 QXR Russellville, AR, USA (AN/FPS-64A)
334.63 QXS Odessa (Andrews), TX, USA (ARSR-1E)
373.29 QYB Byhalia (Memphis), MS, USA (ARSR-1E)

1401.67 QYS Rogers, TX, USA (ARSR-1E)
767.89 SEA Seattle (Ft Lawton), WA, USA (ARSR-1E)
735.82 STL St. Louis, MO, USA (ARSR-1E)

265.31 SVC Silver City, NM, USA (ARSR-2)
250 NM range sensors

1320.68 AJO Ajo, AZ, USA (ARSR-4)
5.27 BAR Barrington, NS, Canada (AN/FPS-117)

1220.64 CTY Cross City, FL, USA (ARSR-4)
350.53 DMN Deming (Magdelina Peak), NM, USA (ARSR-4)
317.16 LCH Lake Charles, LA, USA (ARSR-4)

3833.04 MLB Melbourne, FL, USA (ARSR-4)
1560.6 NEN Jacksonville (White House Fl), FL, USA (ARSR-4)

566.36 NEW New Orleans (Slidell), LA, USA (ARSR-4)
432.44 NQX Key West, FL, USA (ARSR-4)

2632.79 NSD San Clemente Island, CA, USA (ARSR-4)
662.4 PAM Panama City (Tyndall), FL, USA (ARSR-4)

942.28 PRB Paso Robles, CA, USA (ARSR-4)
689.27 QEA North Truro, MA, USA (ARSR-4)

4235.19 QFN Ft Green, FL, USA (ARSR-4)
1321.28 QIE Gibbsboro, NJ, USA (ARSR-4)

112.12 QJA Empire, MI, USA (ARSR-4)
125.28 QJD Nashwauk, MN, USA (ARSR-4)
159.75 QKW Makah, WA, USA (ARSR-4)

Continued on next page. . .
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TABLE E-1. Continued

3158.42 QM8 Tamiami, FL, USA (ARSR-4)
2649.29 QMV Mill Valley, CA, USA (ARSR-4)

692.15 QNA Morales, TX, USA (ARSR-4)
221.85 QNW Eagle Peak, TX, USA (ARSR-4)

457.99 QOM King Mountain, TX, USA (ARSR-4)
328.46 QRJ Charleston (Jedburg), SC, USA (ARSR-4)

1129.22 QRW Mt. Laguna, CA, USA (ARSR-4)
1173.37 QVH Riverhead, NY, USA (ARSR-4)

541.18 QVR Oceana, VA, USA (ARSR-4)
41.6 QWA Watford City, ND, USA (ARSR-4)

54.44 QXU Utica (Remsen), NY, USA (ARSR-4)
34.93 QYA Bucks Harbor, ME, USA (ARSR-4)
20.77 QYD Caribou, ME, USA (ARSR-4)

225.25 QZA Oilton, TX, USA (ARSR-4)
66.18 QZZ Rainbow Ridge, CA, USA (ARSR-4)

198.62 RSG Rocksprings, TX, USA (ARSR-4)
337.83 SLE Salem (Laurel Mountain), OR, USA (ARSR-4)
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APPENDIX F

TRACKING AND FUSION

Converting raw radar reports into tracks that are usable for our model development is a
two-stage process. The first stage involves forming local tracks from the reports associated with
each sensor. The second stage involves fusing the local tracks from multiple sensors to form global
tracks. This appendix provides a brief overview of tracking and fusion.

We use the tracking algorithms from the Mode S and ASR-9 systems [13], the two most
modern sensors in the Air Traffic Control System. The beacon correlation algorithms come from
Mode S and the primary radar correlation algorithms come from ASR-9 Processor Augmentation
Card (9-PAC). Both systems are integrated to provide a consistent track, although for the purpose
of this report we ignore primary only reports.

After the reports of each sensor have been correlated into local tracks, we can fuse the local
tracks to provide a global picture of the airspace. Fusion performs the following functions:

1. Merge tracks from multiple sensors that correspond to the same aircraft into a single global
track.

2. Compute the speed and heading of each global track to permit trajectory predictions.

3. Correct sensor tracking errors that would have led to split global tracks and thus false en-
counters.

We use a track-to-track fusion method, meaning that we track each sensor’s individual reports
and then we merge all of the tracks [24]. The main advantages of track-to-track fusion over report-
to-track fusion, in which all reports are correlated directly to global tracks, are:

1. Bias independence for velocity determination and maneuver detection.

2. Removal of short update interval velocity anomalies.

3. Reduced likelihood of forming clutter tracks.

4. Reduced likelihood of introducing incorrect data points into the track due to correlation
errors.

Track merging employs position, velocity, Mode A code, and altitude as matching attributes over
the entire track. Track merging for tracks with discrete codes, which are unique within an area,
employs large correlation boxes for each of the matching attributes. Other tracks (1200 code
or radar-only) must pass more stringent position tests and velocity tests in order to be merged
together.

Our fusion method works forward in time. Thus, there is often doubt in whether or not
tracks from multiple radars are indeed the same track with just a few data points. In cases of
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doubt, tentative matches are remembered that can be upgraded to a merge after more scans of
information are obtained. Merges are checked each scan and can be undone if later found to be
unsatisfactory. Aircraft code changes are also accommodated, although they must be verified by
other sensors in the merge set of the global track before being accepted. If only one sensor reports
a code change, it is assumed that the sensor had a track swap, and the merge situation is altered
accordingly.

The remainder of this section explains how we add local sensor tracks to global tracks, how
to estimate track velocity as part of the fusion process, and how to filter for encounters.

F.1 ADDING LOCAL SENSOR TRACKS TO GLOBAL TRACKS

In order to facilitate fusing of tracks from multiple sensors into global tracks, we break the
continental United States into 20 NM by 20 NM bins. Every track is associated to a geographic
bin. Whenever the fusion process receives a new local sensor track, or a later report for an as yet
unfused local track, an attempt is made to fuse this track to an existing global track. This process
is performed by comparing the new track to all neighboring global tracks. The neighboring global
tracks for a local track include all global tracks in the same geographical bin as the local track
plus global tracks in the surrounding bins (totalling 9 bins). Several tests must be passed for the
successful fusion of the single track to a global track:

1. The global track must not already be fused to another local track from the new track’s sensor.

2. The tracks must agree on Mode A code (primary-only tracks automatically pass).

3. If the code agreement was on a discrete code, a very coarse horizontal positional test must
be passed.

4. If the code agreement was on 1200 code, or no codes, a tighter positional test must be passed,
as well as altitude and velocity tests. However, if only the velocity test fails, a potential fusion
is declared; 3 successive potential fusions with the same global track results in a successful
fusion.

If more than one possible global track satisfies the fusion tests, the one with the highest matching
score is chosen. Existing fusion matches are checked each time a new report is received. If the
tests fail for three scans in a row, the fusion is ended, and a new global track is sought for the local
sensor track.

F.1.1 Code Matching Test

Normally, the code of the new track is the same as the code of the global track. However, code
mismatching can complicate the fusion process. Code declaration errors due to data corruption,
missing codes, and code changes due to controller action are all common. For this reason, associated
with each global track is an established code and an alternate code, which is the code of the most
recent report. Usually these two codes are the same. When an alternate code is different from
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the established code for three successive reports, however, the established code is updated to the
alternative code. Reports with no beacon code are ignored in this process. However, if a track has
never had been associated with a beacon code report, we consider this track to be a primary-only
and give the track an established code of 0.

If both the local track the global track have a beacon code, then a successful code match is
declared if any of the following statements are true:

1. The established codes match.

2. The alternate codes match.

3. One of the established codes and the other alternate code match.

However, failure is declared if the match is on code 0, and both tracks have a beacon code in the
other code slot that do not match. Lastly, if one track is radar only, and the other track has a
beacon code, failure is declared.

To handle local track code changes due to a track swap in the single sensor tracker, confir-
mation of the code change by the global track is required. If at the time of the local track code
change, the global track has had an update by a different sensor’s track with the old beacon code,
a track swap is declared, and the local track is removed from fusion with the global track. The
local track then undergoes a new fusion process.

F.1.2 Horizontal Position Matching Test

Horizontal positional matching requires agreement between the global track’s most recent
horizontal position xg, yg and the new local track’s horizontal position xl, yl projected back to the
time of the global track. This test is simple if both track’s reports contained altitude. If a radar
report contains altitude h, range ρ, azimuth θ, then the track’s horizontal position x, y can be
empirically determined.

If, however, the altitude of a track is unknown, then the tracks’ altitude has to be assumed
(or guessed) in order to derive the track’s horizontal position. Simply guessing an altitude may
produce a erroneous x, y position. In order to use a reasonable altitude value, we employ the
following algorithm:

1. If only one track has known altitude, then we convert the other track’s stored ρ, θ position
to x, y using the first track’s altitude.

2. If neither track has known altitude (which is always true for a primary-only match), we
consider all altitudes from 0 NM to 7 NM at 1 NM steps. We then use the altitude that
produces the closest positional match between the two tracks. While a smaller step size may
produce more accurate estimates, we found that 1 NM is sufficient for fusing two tracks.

Horizontal positional agreement is declared if the horizontal distance between the two tracks
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is less than an acceptable value:√
(xg − xl)2 + (yg − yl)2 ≤ ∆rmax + 3σazρg + 3σazρl , (F-1)

where we use ∆rmax = 20 NM for a discrete code match and ∆rmax = 1 NM for a 1200 code or
radar match. The standard deviation for horizontal position error terms σaz account for positional
errors due to azimuth noise in radar measurements (which is the dominant source of horizontal
position error). We model the standard deviation of the azimuth noise as 3 milliradians for the
data format of our radar feed.

F.1.3 Altitude Matching Test

Altitude matching requires agreement between the local and global track altitudes when
both are known. Two comparisons are tested; the success of either test results in a match. The
comparison test is:

∆tl = tg − tl
∆hl = |hg − hl|
∆hl ≤ ∆hmax

∆hl

∆tl
≤ ∆ḣmax

where we use ∆hmax = 600 ft and ∆ḣmax = 100 ft/s. Since the altitude of a track can significantly
change between sequential reports, we test both the most recent and previous local track altitudes
with the most recent global track altitude update. Only one of the local track altitudes is required
to pass the test.

F.1.4 Velocity Matching Test

Velocity matching requires agreement between the two track headings ψ and speeds s accord-
ing to the following tests:

|ψg − ψl| ≤ ∆ψmax

|sg − sl| ≤ ∆smax

1
2
≤ sg

sl
≤ 2

where we use ∆ψmax = 45◦ and ∆smax = 100 kt. The last test is needed for slow aircraft and
clutter tracks, to prevent, for example, speeds of 20 and 110 kt from agreeing.

F.2 DETERMINING TRACK AIRSPEED AND HEADING

Determining a global track’s airspeed and heading is a two step process. First, the individual
sensor tracks are smoothed. Second, the individual track are averaged using relative weights that
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account for sensor update times and the quality of each sensor’s measurement. We apply both
alpha smoothing and curve fitting to determine airspeed and heading, depending upon the track
situation. We have implemented various maneuver detection algorithms, and tracking is dependent
upon the current turn rate and acceleration states of the track.

F.2.1 Local Track Smoothing

First, we require that the track has moved a minimum distance for it to be considered. If
the track never moves more than 1 NM, then the track is thrown out. After the movement test is
satisfied, the track’s airspeed and heading are calculated from the new and previous positions. We
then update the local track’s airspeed and heading estimates using alpha smoothing.

First, the current heading estimate ψ(j), and its difference from the previous estimate ψ(j−1),
are given by

ψ(j) = atan2
(

(x(j) − x(j−1)), (y(j) − y(j−1))
)

∆ψ(j) = ψ(j) − ψ(j−1)

Next, we determine the current turn rate state Sψ of the track:

S
(n)
ψ =



2 if ∆ψ(j) > σheading

1 if ∆ψ(j) > ∆ψmin

−2 if ∆ψ(j) < −σheading

−1 if ∆ψ(j) < −∆ψmin

0 otherwise

(F-2)

where we use ∆ψmin = 3◦ and σheading is the standard deviation of the heading noise, which is
calculated from the standard deviations for range and azimuth noise of the sensors. Note that a
positive ∆ψ value corresponds to a right turn, while a negative value corresponds to a left turn.
We then use S(j)

ψ to determine the smoothing value alpha α in Table F-1 of the individual tracks
that will be used to calculate the heading of the global track at the current time.

The new track heading is finally given by:

ψ(j) = ψ(j−1) + α×∆ψ(j)

and we iterate through this process for the entire track.

The process to estimate airspeed s is similar, with one important difference. If successive
positions are simply connected, then the airspeed estimates will always be too high, since the
aircraft will appear to “zig-zag” along the track. Thus, only the projection of the velocity vector
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TABLE F-1. Smoothing values depending on the current and previous turn states.

Current Turn State

Previous State

Large
Left
Turn (-2)

Small
Left
Turn (-1)

No Turn
(0)

Small
Right
Turn (+1)

Large
Right
Turn (+2)

Large Left (-2) 0.7 0.7 0.4 0.5 0.5
Small Left (-1) 0.7 0.4 0.4 0.5 0.5
No Turn (0) 0.4 0.4 0.3 0.4 0.4
Small Right (+1) 0.5 0.5 0.4 0.4 0.7
Large Right (+2) 0.5 0.5 0.4 0.7 0.7

onto the track’s heading vector is used to determine the track’s airspeed:

s(j) = cos

(
∆ψ(j)

2

)
×

√
(x(j) − x(j−1))2 + (y(j) − y(j−1))2

t(j) − t(j−1)

∆s(j) = s(j) − s(j−1)

We then determine the current airspeed acceleration state Ss of the track using a similar
technique as we did for turn rate.

S(j)
s =



2 if ∆s(j) > σspeed

1 if ∆s(j) > ∆smin

−2 if ∆s(j) < −σheading

−1 if ∆s(j) < −∆smin

0 otherwise

where we use ∆smin = 18 kt and σspeed is the standard deviation of airspeed error due to noise
in range and azimuth measurements from the radar sensors. The speed smoothing and the speed
alpha table rules are the same as for the heading case.

F.2.2 Global Track Smoothing

In order to determine a global track’s airspeed and heading at each measurement, we use a
weighted least squares estimation approach. In this section we describe in detail the approach for
determining the tracks heading.

First, each sensor’s heading estimate is assigned a weight wi at the current time t(c) as follows:

w
(c)
i = σ−1

heading ×
tmax −

t
(j)
i +t

(j−1)
i

2 − t(c)

tmax
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where σheading is the standard deviation of the heading noise and tmax = 18 s is a discounting
factor that takes into account the time difference between the measurement from the sensor being
considered and the time for when we are determining heading. The time t(j)i corresponds to the
time of the next closest measurement for sensor i with respect to the current time that we are
trying to determine the track’s heading.

Next, we determine the total turn state score for the track∣∣∣∣∣
N∑
i=1

Si

∣∣∣∣∣ ,
where N is the number of sensors supporting the track and Si is the current turn state value for
the ith sensor defined in Equation F-2. If the turn rate score is less than N , then we consider the
track to be non-turning and the current global heading is simply the weighted average of the N
sensor heading estimates:

ψ
(c)
global =

∑N
i=1 ψ

(j)
i × w

(j)
i∑N

i=1w
(c)
i

Otherwise, if the turn rate score is greater than or equal to N , then we consider the track
to be in a turn. In this case, we utilize weighted least squares estimated to determine a first-order
relationship between time and heading.

The global track speed calculation is identical in form to the global track heading calculation.

67



 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 



APPENDIX G

NETWORK CANDIDATES

This section displays a selection of various network structures along with their log-Bayesian
score, number of edges, and number of parameters. Bayesian model selection balances the com-
plexity of the model according to the amount of data available.

G.1 INITIAL NETWORK CANDIDATES

A

L

v

v̇

ḣ

ψ̇

Score = -500006790 (best), Edges = 15, Parameters = 31359
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A

L

v

v̇

ḣ

ψ̇

Score = -502636693, Edges = 14, Parameters = 9855

A

L

v

v̇

ḣ

ψ̇

Score = -502638225, Edges = 14, Parameters = 9855
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A

L

v

v̇

ḣ

ψ̇

Score = -503170515, Edges = 13, Parameters = 7167

A

L

v

v̇

ḣ

ψ̇

Score = -503711030, Edges = 12, Parameters = 7083
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A

L

v

v̇

ḣ

ψ̇

Score = -507340429, Edges = 10, Parameters = 1775

A

L

v

v̇ ḣ

ψ̇

Score = -507958719, Edges = 10, Parameters = 1791
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A L v v̇ ḣ ψ̇

Score = -531540309, Edges = 0, Parameters = 29

G.2 TRANSITION NETWORK CANDIDATES

A

L

v̇(t)

ḣ(t)

ψ̇(t)

v̇(t+1)

ḣ(t+1)

ψ̇(t+1)

Score = -13243212 (best), Edges = 11, Parameters = 9296

A

L

v̇(t)

ḣ(t)

ψ̇(t)

v̇(t+1)

ḣ(t+1)

ψ̇(t+1)

Score = -13266356, Edges = 10, Parameters = 5936
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A

L

v

v̇(t)

ḣ(t)

ψ̇(t)

v̇(t+1)

ḣ(t+1)

ψ̇(t+1)

Score = -13276011, Edges = 12, Parameters = 18592

A

v

v̇(t)

ḣ(t)

ψ̇(t)

v̇(t+1)

ḣ(t+1)

ψ̇(t+1)

Score = -13277700, Edges = 10, Parameters = 11312
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A

L

v

v̇(t)

ḣ(t)

ψ̇(t)

v̇(t+1)

ḣ(t+1)

ψ̇(t+1)

Score = -13340477, Edges = 12, Parameters = 42784

A

L

v

v̇(t)

ḣ(t)

ψ̇(t)

v̇(t+1)

ḣ(t+1)

ψ̇(t+1)

Score = -13380276, Edges = 14, Parameters = 74368
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A

L

v

v̇(t)

ḣ(t)

ψ̇(t)

v̇(t+1)

ḣ(t+1)

ψ̇(t+1)

Score = -13942906, Edges = 21, Parameters = 7651840

v̇(t+1)

ḣ(t+1)

ψ̇(t+1)

Score = -180576482, Edges = 0, Parameters = 16
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