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SECTION I

INTRODUCTION AND SUMMARY

This report represents a summary of

OF CONCLUSIONS

our analysis of certain key

features affecting the Performance of Air-to-Satell ite-to-Ground Systems for

Air Traffic Control (ATC) Surveil lance.

For our purposes, these systems are assumed to determine position by

multi laceration employing at least four satellites. Each aircraft is assumed

to periodically transmit a signature having a fixed duration. No coordination

between aircraft is assumed.

The work reported on in this report has been motivated by an analYsis
[1]

of two particular candidate systems concepts. Reference [1] highlighted cer-

tain deficiencies in these candidate systems. The analysis of certain of these

critical issues is the primary purpose of this current report.

Three particular problems are addressed:

(1) Performance vulnerability to intentional interference.

(2) The effect of waveform modulation on the performance

loss due to multiple access noise.

(3) Tracking techniques to achieve improved position estimates.

The results of these studies are summarized in this sect

analysis wil1 be found in the remainder of this report.

1.1 VULNERABILITY TO INTENTIONAL INTERFERENCE

on; deta 1ed

The two Candidate Air-to-Satel 1ite-to-Ground Survei llance Systems

analyzed in Reference [1] were shown to be extremely susceptible to intentional

interference, that is, they could be disabled by a jammer which would require

“less

boat,

prime power than a toaster, be easily transportable in a car or smal1

and be within the reach of many hostile political groups. ..“
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The work reported on in Section 2 is directed towards obtaining

a = assessment of the suscePtibi 1ity of Air-to-satel 1ite-to-Ground

Surveil lance Systems to intentional interference. To accomplish this

objective an upper bound on the required jammer power has been obtained

by assuming that the jammer transmits white 9aUssian noise rather

than a more nearly optimized waveform which would in general require less

power. The ground processor is assumed to use matched filters to detect

presence or absence of each signature through each satel1ite and is required

to determine position by processing the detected output corresponding to

the transmission of K successive signature.

In Table 1.1 we list the maximum jammer power required to insure

that at least 10% of the number of airborne aircraft are falsely located

with a processor designed to achieve a detection probabi 1ity of at least

0.88. For K less than 100 the required jammer is modest and could probably

be assembled at a cost of a few thousand dollars. As K approaches 1000,

the cost and complexity of this unsophisticated jammer is such as to pro-

hibit its use by an in-country hostile group. However, since we have

only evaluated upper bounds on the maximum required jammer power, we

can not determine whether more sophisticated jammers are impractical for

such groups.

2



Table 1.1. Maximum Required Jammer Power Per Satel 1ite for
a 10 mJoule Signal Pulse Energy and a 10 MHz
Bandwidth.

Transmission Antenna
rf Power Diameter Beawi dth

(K ~~n~~~ses) & ~ ~ (degrees)

1 33 15 2 15

10 43 20 4 12

100 53 23 a 5

1000 77 40 la 2

1.2 MULTIPLE ACCESS NOISE

It was noted in Reference [1] that only marginal improvements in

the performance of the two candidate systems COU1d be realized through

increasing the power transmitted from all aircraft. This effect is a con-

sequence of the fact that a major source of interference is the uncoordinated

transmission of al1 aircraft signatures within a constrained bandwidth. The

effect of this multiple access noise is similar to that experienced in.a radar

system due to clutter.

The major effort of Section 3 is directed towards quantitatively

assessing the degradation due to multiple eccess noise and designing waveforms

for amelioriating its effect. Toward this end we assumed matched filter

detection and restricted our attention to a 1imited class of transmitted signa-

tures. The major result of Section 3 is the demonstration that even for the

best waveforms within this class, the detection performance in the presence

of multiple access noise is inferior to the performance which would be

3



Dredicted assuming only an additive white gaussian noise interference with

inband power equal to the multiple access noise power.

This problem area is a complex one with several remaining identifiable

Wtentially high payoff objectives for future research and development. Notable

mong tiese are efforts directed toward evolving detectors better than the matched

filter, e.g. decision directed processors which attempt to estimate the

multiple access noise and subtract it out;

evolving coding and decoding techniques to

tion due to poor detector characteristics;

efforts directed towards

amelioriate the performance degrada -

and efforts to general ize the results

of Section 3 to

1.3 TRACKING

a less restricted set of

FOR IMPROVED PERFORWNCE

signatures.

One of the factors contributing to the projection of poor per-

formance for the two candidate systems analyzed in Reference [1] was the

desire to maintain surveil lance data during typical maneuvers, coupled with

the resulting variation in received signal level at a particular satellites

during such maneuvers. These considerations impacted on the system in two

dominant ways:

tions in signal

(2) the residue

(1) satellite constellations were selected to restrict varia-

level at some expense in increased geometric dillution; and

variation in received signal level degrades performance.

Since each aircraft is assumed to carry a reasonably stable oscillator,

it is possible to obtain improved position estimates through tracking. In

Section 4, a statistical model of the oscillator instability is used as a

4



basis for evolving and evaluating a tracking algorithm. Tracking is examined

as a technique for obtaining both (1) improved position estimates; and

(2) position estimates during short outages of all but three of the visible

satel1ites. This later effect may occur during maneuver, as a result of

adverse satel1ite look angles.

The examples treated in Section 4, although they i9nore flight dynamic

constraints, provide some insight into the value of tracking. Specifically, they

illustrate that significantly improved position estimates require an airborne

standard more stable than the resulting error in measuring time of arrival in the

absence of tracking. For example, if the rms error in the time of arrival

estimate is 50 nsec, then a significant improvement in the position estimate

through time tracking requires a short-term oscil later stability better than

5 parts in 108 (assuming a position update rate of one per second). During

outages of all but three of the satell ites, tracking without excessive

error over several 10’s of seconds requires an oscillator an order of magni-

tude more stable.

At this juncture it is impossible to reach any definitive conclusions

about the practical ity of using tracking to obtain improved position estimation.

In particular, although laboratory oscillators are available with a short-term

stability of a few parts in 109 at a cost of under a few hundred dollars, it does

not follow that tracking is practical for low-cost general aviation teminals. It

must be noted that the avionics equipment may be subjected to a variety of environ-

mental conditions which are known to have an adverse effect on the stabflity of

crystal oscillators. Considering the questionable maintenance practices for

general aviation avionics equipment, we conclude that considerably

5



more effort is required to properly assess the practicality of this technique.

This future activity must include a more comprehensive evaluation of the

required stability, an assessment of the impact on required ground processing

equipment, and an assessment of the practically achievable oscil later stability.

6
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SECTION 2

PERFORMANCE VULNERABILITY To ItiENTIONAL INTERFERENCE

2.1 INTRODUCTION AND SUM~RY OF CONCLUSIONS

In this section, the susceptibility of Air-to-Satellite-to Ground

surveillance systems is addressed. For our purposes each aircraft is

assumed to periodicall.j transmit a unique si9nature ‘o four satel1ites.

The satellites relay the signatures to a ground station where they are

initially processed using matched filter detectors.

The data obtained in this manner is used first to decide whether or

not a given aircraft is in the airspace at a specific time. If this decision

is affirmative, the data is then used to decide what the aircraft’s position

was at the relevant time. This two stage decision process is carried out for

each aircraft at the end of every signature repetition period. It is assumed

that the ground station employs some tracking algorithm in order to carry out

this decision process. Specifically, in making each decision for a given

aircraft, the ground station utilizes the data supplied to it during the pre-

ceding K signature repetition periods by the matched filter detectors.

We assume that this surveillance system is operating in the presence

of an intentional jammer transmitting in band white gaussian noise. In general,

an intel1igent jammer could by appropriately selecting the modulation be more

effective with less power.

In order to study the variation of system performance with both system

and jammer variabl es, a measure of system performance must be defined. The

parameters V , K
F AD

and P. were used to measure system performance. RF is the

7



expected number of false alarms generated by the ground station during a

single signature repetition period. TAD is the expected number of ambiguous

detections generated by the ground station during a single signature repetition

period. PD is the probability that a given aircraft is detected during a

signature repetition period.

A false alarm occurs on a signature repetition period if the ground

station declares that a given aircraft is in the airspace (at the time relevant

to the decision period), but in fact the aircraft is not in the airspace. A

given aircraft is declared detected on a signature repetition period if the

ground station declares that it is in the airspace and in fact it is. An

aircraft” is declared ambiguously detected on a signature repetition period

if it is detected, but has an incorrect position decided for it on the second

stage of the decision process.

Performance was actually analyzed by determining ~FL and ~ADL, lower

bounds to RF and FAD, for a fixed value of PDL. PDL is a lower bound to PD.

Parametric expressions for these lower bounds were derived and were then

evaluated for a representative set of parameter values, i.e., 10% of the total

aircraft population airborne, a one second signature repetition rate and a

10 MHz bandwidth at L band.

The results of our analysis indicated that performance parameters

exhibit a strong threshold behavior as a function of signal to interference

ratio; for illustrative purposes we have selected the threshold values as(O.9) NT

for RF and (0.01) NT for WAD where NT is the total aircraft population.

A brief summary of the results are presented in Table 1.1.
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2.2 OUTLINE OF THE ANALYSIS

As has-al ready been noted our goal in this report is to study

the susceptibility of Air-to-Satell ite-to-Ground surveil lance systems to jamming.

The program of this effort wil 1 be as follows. In Section 2.3 the class of

Air-to-Satel lite-to-Ground surveillance systems wil 1 be described in detail.

In Section 2.4 the parameters used to measure the performance of this representa-

tive system wil1 be defined. In Section 2.5 preliminary performance bounds

will be derived, In Section 2.6 we shal1 describe the intentional interference.

The remaining sections wil1 be concerned with developing the desired performance

bounds. The variation of these bounds with both system and jamer parameters

will be studied.

9



2.3 DESCRIPTIONOF THE SYSTEM

In this section we shall define the class of Air-to-Satellite

to-Ground systems on which we shal1 concentrate our efforts. For our purpose,

each aircraft is assumed to transmit a unique signature periodically with

period a. These signatures are assumed to be received by four satel1ites and

transmitted noiselessly to a ground station where matched filters are employed

to detect the signatures and to estimate arrival time differences between

satel 1ites and hence aircraft position. The output of each matched filter is

to be sampled at twice the Nyquist rate.

In actual practice the phase of the transmitted signatures wil 1 not

be known at the ground station and thus “matched filter-envelope detectors”

would be used instead of “matched filter detectors. ” However, in 1ight of

this, our assumption of matched filter detectors is not inconsistent with our

analysis for the following reason. The performance of a matched fi1ter detector

is always better than a’“matched filter-envelope detector” since phase is

assumed known. Our aim of course is the determination of upper bounds to

required jammer power. Any such bounds determined under a “matched filter

detector assumption” wil1 of course be valid under a “matched filter-envelope

detector assumption. ” We shall also neglect up-link noise and multiple access

noise since our stated goal is upperbounding the required jamming power.

The ground processor is assumed to partition the sequence of output

samples from each of the 4 NT matched filters into time segments of 1ength

a + ~ where NT is the total number of aircraft and ~ is the maximum delay

between the first and last reception of a particular signature at the con-

stellation of four satellites. If an aircraft is present in the airspace,

10



its transmitted signature wil 1 be received at al1 four filters matched to it,

at the ground, at least once in each such time segment and possibly twice, no

matter what origin is chosen for the initial segment. This is desirable, since

it implies that the ground station can begin processing whenever it wants to.

The possible presence of a signature more than once in a segment will cause

no harm, as will be evident.

Consider some time origin set up at the ground station and let Seg. (n)

be the nth time segment of length a + ~ seconds set up relative to the time

origin. A ground processor starts with Seg. (1) and observes the outputs of

the four filters (one for each satel1ite) which are matched to aircraft “i‘s”

signature. For each of the filters, it lists those time points in Seg. (1.)

at which the matched filter-dete~tor declared the outPut samPle to have been

generated by reception of aircraft “i‘s” signature. The ground Processor

takes this data and computes the aircraft positions implied by all possible

time differences generated by the 1isted time points. The ground processor

is assumed to eliminate any unrealistic positions, i.e., time differences.

The processor lists the implied positions on a list we shall call “List (i,l).”

One should note that this list may be blank.

The processor repeats the procedure just described for the next (K-1)

time segments; Seg. (2)...Seg. (K). At the end of these K segments the pro-

cessor enters a two stage decision procedure. On the first stage of the pro-

cedure it decides the following question. Is aircraft “i” in the airspace at

the end of the Kth time segment (or at some other relevant time interior to

the K time segments)?

11



We define now the following hypotheses:

Ho(i) = aircraft “i” is not in the airspace at
the end of the Kth time se ment (or at
the relevant interior time7

H,(i) = aircraft “i” is in the airspace at the
end of the Kth time segment (or at the
relevant interior time)

If Ho(i) is true, yet the processor decides that Hl (i) is true, we

say that an aircraft “i” false alarm has occurred on the Kth time segment (or

at the relevant interior time), If hypothesis HI(i) is true and the ground

processor decides HI(i) we say that aircraft “i” has been detected on the Kth

time segment (or at the relevant interior time). If hypothesis H1 (i) is true

and the ground processor decided Ho(i ), we say that aircraft “i” has been

missed on the Kth time segment.

If the first stage of the decision procedure resulted with a decision

that aircraft “i” was in the airspace then the second stage of the decision

procedure is entered. On this second stage the ground processor decides the

following question: What is the position of aircraft “i” during the Kth

segment (or at the relevant interior time)? In order to be able to make this

decision the ground processor is supplied with a set of possible position

candidates, called “the Position Set of aircraft ‘i ‘ on the Kth segment. ”

This position set is generated in some manner from {List (i,l)...List (i,K)}.

Hopefully, (if aircraft “i” is in the airspace) there will be only one position

in the position set, the correct position. If there is more than one position,

the ground processor chooses one at random and supplies it to a central sur-

veillance station.

12



Consider the following definitions

PosK(i) = true position of aircraft “i”
(given HI (i) is true) during
Seg. (K) (or the relevant time)

{pi(i),.,.Pjk(i )}= Position set of aircraft “i”
during Seg. (K)

P; (i) = aircraft “i” position decided
upon during the second stage
of the decision process at the
end of Seg. (K)

If H,(i) is true and decided and p;(i) equals Posk(i), we say that

aircraft “i” has been completely detected on Seg. (K). If HI(i) is true and

decided and pi (i) is not equal to Posk(i), we say that aircraft “i” is

ambiguously detected.

The actual mechanics of the first and second stage decision procedures

will be kept with minimum specification in order to keep the system as general

as possible. The first stage procedure wi 11 be discussed with somewhat more

exactness later in Appendix A. The second stage decision procedure wil 1 not

be specified any further. The two stage procedure essentially uses some

tracking algorithm on K segments worth of data in order to detect aircraft

and determine their position. Although we will keep these decision procedures

as general as possible, we insist that they always act rationally. To be

precise they obey the following axiom:

Rationality Axiom

If there exists a sequence of K positions; one on List (i,l), one on

List (i,2),...one on List (i,K) and if this sequence of positions looks as if

it might be that of an aircraft in flight (i.e. the successive positions obey

the constraints of flight dynamics), then on the first stage of the decision

13



procedure it must be decided that aircraft “i” is in the airspace, and a

position generated by this sequence of K positions must appear in the position

set of aircraft “i”

was noted that a received signature may occur twice in the

If this occurs on al1 four filter outputs, it wil1 merely

signature quadruplets to be mapped into the same position

this does not occur on all four filter outputs at worst it

Before, it

same time segment.

cause two received

on “List (i,”).” If

wi11 generate erroneous positions on “List (i, )”. In neither case will it

cause any processing ambiguity for the surveil lance system.

As has already been stated, an aircraft position is computed using

three time differences. Without

(i,l),...List (i,K)} as storing

The second stage decision would

ences. We wi 11 assume from now

system makes its decisions on the time difference triplets instead of on

positions.

After the ground processor completes the decision process at the end

of Seg. (K) it repeats this procedure using; Seg. (2),...Seg. (K t 1), then

Sag.,... Seg. (Kt2) etc. Because of time invariance we can judge the

system just by its operation on Seg. (1),... Seg. (K).

loss of generality we view the lists {List

triplets of time differences rather than positions.

of course then be on a triplet of time differ-

on that the representative surveil lance

14



2.4 PERFORWNCE PARAMETERS

We define the aircraft “i” detection probability, Po(i ), to be the

probability of deciding H, (i) given

to be dentical

P. * PO(.

i) is true. Since all links are assumed

for all i

We shall measure the performance by determining lower bounds to the average

number of false alarms, ~F and the average number of ambiguous detections mAD

with PD held fixed (or equivalently kept above) some value. The effect of

jamming wil 1 be analyzed by studying the variation of these lower bounds with

both system and jammer parameters.

The following two parameters; pf and pd, are measures of the perfor-

mance of the matched filter detector.

(
the matched fi1ter
detector declares the sample sample was only

pf = Prob to have been generated by generated by
a received aircraft signa- interference
ture and interference )

(
the matched fi1ter

I

sample was generated
detector declares the sample by a received aircraft

pd = Prob to have been generated by signature and inter-
a received aircraft signa- ference )
ture and interference

We describe the first stage decision process operating by deciding

aircraft “i” in the airspace if more than Kt of the Lists; List (i,l),...List

(i,K), have at least one entry. The dependence of PD on pd through a lower

bound to it has been derived in Appendix A to be of the form

15



PD L Pd4~hen K=l (2.4.1)

PD L 1 - exp,-K(v(l-t) -Ln((l-pd4)ev t pd4)) when K > 1 (2.4.2)

Where t is c [0,11 and v is the nonnegative number which maximizes

v (1 - t) -Ln ((1-pd4)e” t Pd4,

The parameters “t” and “pd” may be varied jointly to allow the right hand side

of (2.4.2) to attain some value. We shal1 refer to the right hand side of

(2.4.1)-(2.4.2) as PDL in which case we have

For a given desired value of P. our surveil lance system matched filter dete

and first stage decision process wi 11 be designed with a “t” and “pal”such

that PDL equals this desired value, thus guaranteeing that P. wil1 attain

Of course when K = 1, t does not enter the design.

tor

t.

16



2.5

~F and

PRELIMINARY LOWER BOUNOS TO ~F AND TAO

In this section we shal1 derive some preliminary lower bounds to

RAD . These bounds wi 11 be expanded in Section 2.6.

2.5.1 Preliminary Lower Bound to RF

We begin by defining the following indicator functions

OF(i) = 1, if aircraft ;i” is not in the airspace on the Kth
segment (or at the relevant time, interior to the K
time segments )

eF(i) = O, otherwise

yF(i) = 1, if e (i)=l and the first stage decision declares aircraft
&“i” to e in the airspace of the relevant time

yF(i) = O, otherwise

Clearly the number of false alarms is

‘T

nF = z OF (i) yF(i)

and* i=l
N

~F=E(nF)=E(
-2

eF (i) yF(i))

i=l

‘F = ‘T ~ (8F (i) yF(i))

RF = NT P (yF(i) = 1 I eF(i) = 1) P(eF(i)= 1) (2.5.1)

where NT is the total airCraft Population Y i.e., number of different signatures

Of course,

P(eF(i) =1) =1 -~ (2.5.2)

T
*

E is the expectation operator

17



where N ‘is the number of airborne aircraft.

Let us define

pF= p (yF(i) = 1 I eF(i) = 1) (2.5.3)

A lower bound to PF is derived in Appendix B. We now quote it

(
2Ba 4B 3

PF~ exp [(K t t 1) Ln ( 1 -(l-Pf) )(l-(l-Pf)
?)

] (2.5.4)

where 6 is the delay between the first and last reception of a particular

signature at the constel lation of four satell ites

Applying Eqs. 2.5.2, 3 and 4 to 2.5.1 we obtain

and B is the bandwidth.

[ (f _ FL ; (NT - N) exp (K t t l)Ln (l-(l-pf)~>~ 2Ba)(l-(1-pf)4B6 J)](2’545)

which is the desired prelimina~,y lower bound*.

2.5.2 Preliminary Lower Bound to FAD

As in the previous subsection we begin by defining several

indicator functions.

eD(i) = 1, if aircraft “i” is in the airspace on the
Kth segment (or the relevant time interior
to the K time segments)

eD(i) = O, otherwise

Ye(i) = 1, if given that co(i) = 1, aircraft “i”
is detected on the Kth time segment,
Seg. (K)

*

It is understood that when K = 1 t = O (the only logical value
for t*).

18



YD (i) = O, otherwise

yD(i) = 1, if there is a first sequence of K arrival
time difference triplets with the first sequence
member on List (i,1),... the Kth sequence member
on List (i,K). The elements of this sequence
have al1 their component arrival times, T( ),
only generated by interference (not interference
plus aircraft “i ‘s” signature). This sequence
of time difference triplets appears as if it
were generated by an aircraft in flight.

~o(i) = O, otherwise

FD(i) = 1, if given that YD(i)=l, an incorrect position
wil1 be picked from the Position Set of aircraft
“i” on the Kth segment

rD(i) = O, otherwise

The following inequality on the number of ambiguous detections is

evident.

This is an inequa’

NT

‘AD ~ z ‘D (i) yD(i) ‘D(i) ‘D(i) (2.5.6)

i=l

ity rather than an’equality since an aircraft “i” ambiguous

detection is still possible even ify D(i) equals zero. From Eq. 2.5.6 the

following inequality is immediately obtained.

‘T
mAD = E (nAD) ~

z
E (rD(i) YD(i) ‘D(i) ‘D(i))

i=, -

~AD ~ NT Prob ( rD(i) = 1, yD(i) = 1, YD(i) = 1, 6D(i) = 1) (2.5.7)

‘AD L ‘T ‘rob rD(i) = 1 lYD(i) = 1, YD(i) = 1, eD(i) = l)Prob (YD(i) = 1)

Prob ( YD(i)=l\ eD(i) = 1) Prob(eD(i )=’)

(2.5.8)

19



(2.5.9)

Of course,

Each of ‘the terms on the right hand side of Eq. 2.5.8 wil 1 now be lower

bounded:

Obviously,

Prob (eD(i) = 1) =}

T

Prob (yD(i) = 11 eD(i) = 1) = poz PDL

Hence, we obtain immediately from Eqs. 2.4.1 and 2.

Prob (yD(i) = 1 I eD(i) = l)2Pd 4when K=l

Prob (yD(i) = 11 eD(i) =

In Sec. 2.3, a Ra’

) L 1 - exP -K(v(l-t) - Ln ((1 - pd4) e“ + Pd4))

when K > 1

ionality Axiom was stated. We insisted that the

ground processor, whatever its design must obey this axiom. If the event

{ yD(i ) = 1} occurs then the Rationality Axiom implies that there wil 1 be at

least one incorrect position in the Position Set of aircraft “i”. In Sec. 2.3

we also stated that if there was more than one position in the Position Set

of aircraft “i”, then the ground processor would pick one position frm the

set at random and assume it was the correct position of aircraft “i”. The

event {YD(i) = 1} being true thus implies that with probabi 1ity greater than

0.5, an incorrect position will be picked and we have

Prob ( rD(i) = 1 lyD(i) = 1, YD(i) = 1, eD(i) = 1) ~0.5

20
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We

procedure

have yet to lower bound Prob (YD(i) = 1). This is quite a complicated

and is carried out in Appendix C. We quote the result.

( (( 2Ba

)(

BB va 3

(K -1) Ln 1- (l-pf)
Prob (yD(i) = 1) ~ exp

1- (l-pf)~ ~

)

))

((

2Ba

)(

4BB 3
+ Ln 1- (l-pf) 1- (l-pf)

))
(2.5.11)

where v is the maximum aircraft velocity and c is the velocity of 1ight.

Inequalities in Eqs. 2.5.9-11 can be app

~AD~0.5 N pd4 (1- (1-pf)2B;(’

ied to Eq. 2.5.8 to yield

4B8 3
- ( -Pf) ) when K = 1

NAO ~ 0.5N (l-exp-K(v (l-t)-Ln((l-pd4)ev + Pd4)))

x

(
2Ba

)

%V.3
(K-1) Ln((l-(l-pf) )(1-(1-pf)3 T ) )

exp

(

2Ba
+ Ln (l-(l-pf) )(l-(l-Pf)4BB)3) (2.5.12)

.

when K > 1

which is the desired prel iminary lower bound. We shal1 refer to the right hand

side of Eq. 2.5.12as ~AoL.

We desire to expand the expressions for ~FL, ~AoL and POL obtained

and study their variation with both system and jamer parameters. In order

to do this we must describe precisely the interference perturbing the surveil-

lance system performance.
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2.6 INTERFERENCE AND SIGNATURE ASSUMPTIONS,

There are a variety of sources of unintentional interference

which perturb the performance of an Air-to-Satell ite-to-Ground Surveil lance

System. Thermal noise and multiple access noise are two such sources of

unintentional interference. In addition to these sources of unintentional

interference we assume that a jamer is operating and trying to intentionally

cause system degradation. The jammer is transmitting white gaussian noise

over the transmission bandwidth, B, at each of the four satell ites. The

jammer generated noise transmitted at each satel1ite has an ERP (Effective

Radiated Power) of J watts.

Out ultimate goal is to study the variation of ~F and ~Ao with jammer

parameters. We desire, for a given jamming power, to determine lower
—

bounds ‘o ‘F and ‘AO
; ~FL and ~ADL. We shall ignore all types of interference

other than jammer generated noise, in computing RFL and ~AOL. These wil1 be

no less valid as lower bounds since the presence of other sources of interfer-

ence can only increase 1 –
FL and ‘AOL.

Similarly, we shall ignore any degrada-

tion that a transmitted signature might suffer due to: incoherence at the

receiver, doppler losses, banking of an aircraft during transmission. The

presence of any such

Let si(t) be

where Si(t) has time

The average power of

degradation can only increase ~FL and ~ADL.

aircraft “i‘s” signature. We shall represent it as

Si(t) = ~Tsi(t)

duration T and unit energy, E is the energy of Si(t).

Si (t) during transmission is P. = E/T . At the ground

22



station there are four matched filters matched to aircraft “i‘s” signature.

We assume that the impulse response of each of these filters is Si (-tiT).

Since both the jammer generated noise and aircraft transmitted

signatures wil 1 suffer the same range loss in transmission, we shall ignore

this loss in any ensuing analyses.
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2.7 ANALYSIS ‘F ‘FL ‘ND ‘A,DL‘HEN K ● 1

we have determined PDL, a lower bound to po, given by Eq. (2.4.1)-(2.4.2).

We have also determined NFL and ~AoL, lower bounds to ~F and TAD, 9iven by

Eqs. 2.5.5 and 12 In this section we shall analyze the variation of these

bounds with parameters of interest for the special case when K = 1, which

is equivalent to operating without tracking.

As has already been stated we assume that the general surveil lance

system is designed to operate with PD exceeding some specified value. This

minimum value is guaranteed by fixing pd and t so that pDL has this minimum

value. Assume

fixed value of

D.

that this has been done and that pd is fixed. Relative to this

Pd we have the following expression for pf derived in Appendix

1
/~= 4 )

POBT
P ~ erf(
f= z-2 JzJ -

where $ is the solution of

Pd = it ~ erf($)

(2.7.1)

(2.7.2)

J is the jammer power and B is the bandwidth.

Applying Eqs. (2.7.1)and 2 to Eqs. 2.5.5 and 12..yields

(2.7.3)
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as the lower bounds of

(which is pd4 when K =

bounds assuming 10% of

interest when K = 1. pd is picked so that PDL

1) has some desired value. We evaluate these lower

the aircraft population is airborne (N = O.lNT), a

10 MHz bandwidth (B), a one second pulse repetition period (~), and a differ-

ential satellite delay (6) of 24 msec. Figures 2.1 and 2.2 illustrate

these computed lower bounds plotted as functions of ~ for various values
POBT

‘f ‘DL.

In observing these figures we see that as ~ is decreased from -12 db
POBT

these lower bounds maintain their maximum values over quite a large range of

J/PoBT ‘S. U1timately, each curve decreases very rapidly as
&

is 1owered

past a certain value; hence there is a threshold effect. Cer;ainly, any Air-

to-Satel 1ite-to-Ground Surveillance System suffering an ~F of 0.9 (NT) and an

TAD of 0.01 (NT) has to be considered inoperative. Since these are close to

the threshold, we shal1 use these values as indicators of total system perfor-

mance degeneration.

Assuming a transmitted energy per pulse of

~ = 10 psec), we can determine, from Figs. 2.1 and

10 mJoules (e.g. P. = 30 dbw,

2.2, the maximum required

jammer ERP, J, that the jammer would have to transmit at each of the four

satellites in order to achieve the threshold levels. Since the difference

between required jamming power for a PDL of 0.9 and 0.999 is less than 2 db, we

shall thus take as a nominal jamming level 33 dbw ERP. This could be realized

with 30 watts of rf power and an antenna with a 20° beamwidth. Clearly a

system, without tracking, (K=l) is simple to disable.
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2.8 ANALYSIS OF ~FL AND ~ADL WHEN K s 1

In this section we shal1 analyze the variation of the lower

bounds ‘ ‘FL and ‘ADL’ for the case in which the tracking length K, is greater

than 1. The preliminary lower bounds for this case are given by Eq. 2.5.5

and 2.5.12. AS has

veillance system.

Eq. 2.4.2 as

D
‘D

already been noted PDL is fixed in the design of the sur-

For the case in which K is greater than 1, PDL is given by

= 1 - exp -K (v(l-t) -Ln((l - pd4) e“ + pd4))
L

A required P can be obtained by varying the (t, Pd) Pair.
DL

Assume that PDL is obtained by a SpeCifiC (t, pd) pair. In Appendix

D the following expression is obtained for the Pf $uffered by u$lfi9Pd.

11

}

POBT
~-7erf (Z_-

J

where $ is the solution of

pd= ~+ ~ ‘rf ($)

Applying Eqs. 2.8.1 and 2 to Eqs. 2.5.5 and 12 yields

mFL = (NT- N)exp ~Kt+l)Ln (~-(~+ ~ erf(~~-$))

(2.8.1)

(2.8.2)

2Ba

)(2.8.3)

3
4BP

0)) ))1
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~ADL = (0.5)(N)POL exp

/

\ (( } POBT 2‘a
tLn l-(~t~erf( –—-

2J )(
0)1

These lower bounds have been computed for

‘DL.
This was performed assuming the same system

/

P BT

)) /

4B% 3
( ~+- 0))

(2.8.4) ‘

various values of K and

parameter values quoted in

Section 2.7 and a maximum velocity, v, of 600 mph. Figures 2.3 through

2.16 illustrate the computed lower bounds plotted as

(with K and PDL fixed). We shal1 spend the remainder

these curves.

functions of ~
POBT

of this section discussing

In observing each set of curves in Figures 2.3 through 2.16

notice that each curve exhibits a strong thresholding property. A given value

‘f ‘DL may be realized by various (pal,t) combinations. “pal”is the matched

filter pulse detection probability. “t” is a parameter of the first stage

decision process (i.e., an aircraft is decided present if more than Kt 1ists

have at least one entry). In observing each pair of curve Sets, KFL vs.

— J
& and NADL vs. p ~T— , one notices that it is more difficult for the

jammer to cause syst~m degradation, both in false alarms and ambiguous

detections, if

in the case of

a low value of t is used. The reason for this is transparent

ambiguous detections, by the following argument. Suppose
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~
POBT is’fixed. As t decreases pd must decrease in order to maintain a fixed

P This implies that Pf is decreasing and thus ~ADL is decreasing. Turning
DL.

the variation around, if ~ADL is fixed then as t “decreases ~
P BT

must increase

in order to maintain the same ~ADL.
This of course is based”upon the obvious

fact that ~ must be monotonically increasing with ~ .
ADL

The,same argument
POBT

‘olds ‘rue ‘or ‘he ‘FL ‘s. ~ curves.
However, here there is one additional

factor. As “t” decreases th~ probability of an aircraft false alarm (on the

first stage decision process) will increase. This wil 1 offset to some extent

the decrease in “pf” due to a low “t” (at fixed ~ ) and thus
POBT

KFL vs. L curve less sensitive to decreasing “t”. This is
POBT —

‘hen ‘ne observes ‘he ‘FL ‘s. + curves and compares ‘hem ‘o
J curves.

PnBT

make the

in fact evident

—

‘he NADL ‘s.

Since it is more difficult for the jamer to cause system

at lower values of t than at higher values of t, we can determine

degradation

the maximum

&
needed in order to make the representative surveillance system unusable,

by just considering the curves corresponding to “t=O” for a fixed K and PDL.

From Figures 2.3 through 2.16 it is”clear that the bound on the average number

FL degrades more rapidly withof false alarms, N ~ than does the bound on the
POBT

average number of ambiguous detections. Since each false alarm should be

processed by the second stage decision processor, the number of false alarms

affects the required complexity of the second stage processor. If, for example,

this processor can ‘t handle the number of false alarms than the detection

probability might suffer. Since, however, our purpose is to overbound the

required jammer, we shal1 assume that the processor can handle the large
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number of false alarms and we shal1 direct our attention to the average

number of ambiguous detections.

The maximum required jamming power is summarized in Table 2.8.1. it

takes about 10 db more power to disable a K = 10 system than a K = 1 system

and about 10 db more power to disable a K = 100 system. In al1 cases the

required jamming power is modest. For K = 1000 the required jamming power

depends critical lY on the desired level of pDL. A desired detection probability

of 0.98 or less raises considerable question as to the feasibil ity of the

jammer; however a 2% miss detection probability appears unreasonably large.

At the 0.999 level the jammer is certainly feasible although expensive and

complex. This level of jaming would require considerable effort and money.

Clearly, however, a surveil lance system using a tracking length of 1000 is

very complex and might, in practice, result in excessive delays.

Table 2.1. Maximum Required Jammer Power Per Satel1ite for a 10 mJoule
Signal Pulse Energy and a 10 MHz Bandwidth.

P Jammer ERP
K DL (dbw)

10 0.88 46

10 0.999 43

100 0.88 56

100 0.999 51

1000 0,98 > 130

1000 0.999 77
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SECTION 3

THE EFFECT OF WAVEFORM MODULATION ON THE PERFORMANCE
LOSS DUE TO MULTIPLE ACCESS NOISE

3.1 INTRODUCTION AND SUMMARY OF RESULTS

3.1.1 Problem Definition

An Air-to-Satel 1ite-to-Ground surveil lance system operates by

having each aircraft transmit

constellation of satellites.

received waveform to a ground

aircraft is computed by first,

a signature in an uncoordinated fashion to

Each satel1ite in the constellation relays

station for processing. The position of a

a

the

given

detecting the signature arrival times, then

computing the arrival time differences and applying hyperbolic multilateration.

Multiple access noise arises in an Air-to-Satel 1ite-to-Ground surveil-

lance system in the following way. Because aircraft transmit in an uncoordinated

fashion, signatures arrive at any given satellite at random arrival times;

Hence, in detecting a given signature the ground processor also encounters

unwanted signatures. The net sum of the unwanted

as a random process. This random process is what

noise. ”

3.1.2 Assumptions

signatures received, appears

is termed “multiple access

In carrying out the study of the multiple access noise phenomenon,

the following assumptions were made concerning the environment and operation

of the Air-to- Satell ite-to-Ground surveil lance system.

A. Unique Signatures

It was assumed that each aircraft has assigned to it a

unique signature which it transmits periodically.
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B. Neglect of Other Interference and Losses

Because our main concern was with multiple access noise we

assumed absent the presence of any other interference phenomenon; i.e. thermal

noise, jammer generated noise. Also, we ignored any losses due to non-ideal

1ink characteristics such as; loss due to a signature being transmitted while

an aircraft is banking, loss due to doppler decorrelation. We considered the

down-1 ink between satellite and ground station to be perfect.

c. Matched Filter Detector

It was assumed that a matched filter detector was used to

detect the arrival time of a given aircraft signature at a ground station.

In actual practice, the phase of the received signatures would not be known

at the ground station and hence a “matched filter-envelope detector” would

be used instead of a “matched filter detector. ” Of course a receiver which

uses “matched filter-envelope detection” will not perform as wel 1 as one

which uses “matched filter detection. ” Hence, the performance characteristics

which we shal1 derive wil1 be more optimistic than those which could be

obtained with a matched filter enveloPe detector.

The matched filter detector has its output sampled at a certain rate.

If the signal to which the detector is matched is present in the output sample,

we assume that it is present at its peak height. Since this is the signal

which the matched filter detector is trying to detect our results under this

assumption can only be more optimistic than without it. This is due to the

fact that we are assuming that when the desired signal is present it is

present with its maximum amplitude.
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3.1.3 Results

The principal results of our analysis .of

noise interference phenomenon wil1 now be summarized.

A.. ROC Comparison

Both upper and lower”bounds to the ROC,

the multiple access

(Receiver Operating

Characteristic), of the matched filter detector were derived. These bounds

are asymptotical ly tight in the sense that they approach the actual ROC as the

number of aircraft being considered increases.

B. Gaussian Comparison

Over a large, but restricted, class of signatures and system

parameters, we have shown that the ROC of the matched filter detector operating

in the presence of multiple access noise is not as preferable as the ROC

obtained when the detector operates, only in the presence of additive gaussian

noise, with the same signal to interference ratio.

c. PSK Signatures

The output signal to interference ratio in the matched filter

detector was computed for the case in which the aircraft signatures were PSK

modulated sequences having good auto-correlation properties. The output

signal to interference ratio was found to be equal to that obtained when the

interference input to the matched filter is a white noise source having a

spectral height equal to the average interference power divided by 3 times

the reciprocal of the PSK chip duration.
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3.2 PROGRAM

It is convenient at this point to describe the program of the remainder of

Section 3. We shal1 study the multiple access noise phenomenon by studying

its effect upon the detection of the time of arrival of a given aircraft

signature relayed from a given satel lite.

In Section 3.3 we shall describe in detail some of the characteristics

of the aircraft

time of arrival

of interest.

signatures and of the signal

of the aircraft signature of

processing used to detect the

interest at the ground station

In Section 3.4 we snail describe the statistics of the multiple ‘access

noise perturbing the detection process by computing the characteristic function

of a multiple access noise sample.

In Section 3.5, upper and lower bounds to the ROC of the matched

filter detector are derived. These bounds are evaluated in Section 3.6

assuming typical signature and system parameters. Characteristics of the

signature set which optimizes the ROC, over a class of signature sets, are

given in Section 3.7.

In Section 3.8 the performance of the matched filter detector operating

with interference which is gaussian noise is compared with the performance

when the interference is multiple access noise. The validity of assuming the

multiple access noise to be gaussian is also studied.

In Section 3.9, the multiple access noise parameters are related to

measures of time and bandwidth. The average multiple access noise power is

computed when the signatures are pSK modulated sequences having good auto-

correlation properties.
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3.3 51GNAL PROCESSING

Let us call the set of aircraft

signature assigned to aircraft “j” the

energy, i.e.

signatures, S.

signatures have

T

1 Sj2 (t) dt = 1

0
for j=l ,2...N where N is the number of aircraft

Let S.i(.) be the

duration T and unit

(3.3.1)

Once every a seconds aircraft “j” supplies Sj(.) to a transmitter,

which thereupon transmits the bandpass signal Zj(.). Specifically, if ~j is

a time at which the transmitter

signal is transmitted

s SUPP1 ed signature Sj then the following

Zj(t - tj) = Sj(t - ;j) cos(2Tfo(t - ;j))

This signal is transmitted and received by all satel 1ites and retransmitted

to a ground station. The received waveform at the ground processing station

from any particular satel 1ite is of the form

A
Z(t) = ~ ‘j (t - ‘j)

z(t) =

j=l

‘i(t - ‘i)cos (2Tfo(t - ‘i))

N

(3.3.2)

t
E

Sj (t - tj) Cos (2nfo(t - tj))

j=l

j#i

in transmitted signal energy due to; range,This of course neglects losses

atmosphere, reflection and any change in carrier frequency.
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In order to describe the rest of the signal processing we shall refer

to Figure 3.1. This illustrates the processing used to detect the arrival

time of aircraft “i’s“ signature-signal, Z(.), i.e. ti. “Observe the component

parts of this figure. After being received at the ground station, Z(.), is

immediately mixed with 2 cos 2mfot. We assume phase synchronization with

Zi(t - ‘i). In other words we assume the mixing signal to actually be

2 COS 2rfo(t-ti ). “ .– ,.–.–L -.—...,,.

filter whose cutoff

frequency of any of

to a filter matched

we desire to detect.

h(t)

Ine resu Icanr slgna I IS then passed tnrougn a Iowpass

frequency is far below 2fo, but greater than the largest

the signatures in S. The resulting output is supplied

to aircraft “i‘s” signature, the signature whose arrival

This filter, Matched Filter “i” has impulse response

h(t) = Si(-t + T) (3.3.3)

With Z(.), given by (3.3.2) at the input to the ground station the

following signal, y(t), will

where

be generated at the output of Matched Filter “i”

yi(t) = Rii(t,ti) + ni(t) (3.3.4)

r“
Rij(t,ti) =

1
Si(x-ti) Si (x-t + T) dx (3.3.5)

-m

N

ni(t) = ~ nij (t) (3.3.6)

nij(t) = cos (2~fo(ti ,- tj))
/

Sj(X-tj) Si(X-t + T) dx (3.3.7)

--m
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The quantity Rii(t,ti) in (3.3.4) is the signal term. One should

note that because of (3.3.1) this has a peak value of 1. The quantity ni(t)

is the multiple access noise term. The arrival times, tj,are random and

uniformly distributed over each repetition period of length ~ seconds.

The output of Matched Filter “i”, yi(t), is sampled. Each sample is

supplied to the Binary Threshold Decision Device which is the second part of

the matched filter detector. If “t” is a sampling time, this decision device

operates in the following manner.

If

yi(t)~ 0 ; it decides that Zi(.) was received at the ground

station at time t-T

Yi (t) <O ; it decides that Zi(.) was not received at the

ground station at time t-T

where @ is a fixed number between O and 1.

Consider the matched filter output, yi (t) given by (3.3.4). Depending

upon t, the signal term, Rii(t,ti) may be either present in the output or not

(i.e., have a zero value). We shall make the following simplifying assumption.

If Rii(t,ti) is present in the output then it is present at its peak value of

1.

Again consider yi(t). Note that nij (t) is the contribution to the

multiple access noise in the output of Matched Filter “i”, due to the Pro-

cessing of aircraft “j’” signature. As is evident nij(t) can only be nonzero

if the reception time tj satisfies

t- 2T<tj<t
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If tj ii in this interval we define the probabi 1ity density on the random

variable nij (t) as Cij(. ), i.e. ,

J

a

Prob (nij(t) ~ a It-2r < tj < t)= Cij(X) dx (3.3.8)
-m

We shall refer to Cij(. ) as the “amplitude density of nij(t). ”

In closing this section we should like to stress that we have assumed

a matched filter detector, i.e. the combination of Matched Filter “i” and the

Binary Threshold Decision Device. In general this is not the optimum processor.

The oest 1inear processor might employ prewhitening filters while the best

non-1inear processor might attempt to estimate the multiple access noise and

then subtract it out.
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3.4 STATISTICAL DESCRIPTION OF MIILTIPLE ACCESS NOISE

In this section, we shal1 concern ourselves with describing the

multiple access noise statistically. Consider, ni(t) the multiple access

noise sample generated at the output of Matched Filter

We shall compute Mi (v), the characteristic function of

behavior.

We can proceed directly from the definition of

obtaining

Mi(v) = E (ejvni(t))

“i”, at time t.

ni (t), and analyze its

characteristic function

(3.4.1)

Applying (3.3.6) to (3.4.1) yields

N

Mi(v) = exp(~ Ln (E (ejvnij(t)))) (3.4.2)
J=l
j#i

where exp (x) = ex. In obtaining (3.4.2) we have used the fact that the

transmitted aircraft signatures arrive independently at the satellite ground

station. This implies that the nij (t)’s are independent.

E (ejvnij(t)) can be expanded as follows:

E((e
(

Jvnij(t), = E ejvnij(t)

t-2T<tj ‘t) ‘rob~t-2T< ‘j ‘t)

t

E

(

ejvnij (t)

2~~-2T) ‘rob(?~~-t-z’)

(3.4.3)
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..

t of course is the time
j

at the ground station.

If, t, < t-2T Or~–

at which aircraft “j ‘s” signal-signature, Z (.) arrives
j“

tj ~ t, then of course nid(,t)= O. We noted this

in Section 3.3. The aircraft signatures’ arrival times are uniformly distributed

in time over the a second repetition period. We use these facts in (3.4.3) to

obtain

jvnij (t)

(

jVnij (t)
E(e )=~Ee t-2T < tj < t

)

(3.4.4)

t(l-~)
a

Applying the definition of Cij(. ), (given by (3.3.8))to (3.4.4) yields

jvnij (t)
E (e ) = (1-~~ ‘$ ~cij(x) ‘Vxdx ‘345)

Substituting (3.4.5) into (3.4.2) yields the characteristic function Mi (v) as

which is the desired result.

Let n be the generic symbol for n,(t). Using the properties of

characteristic functions one has
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E(n) = ; ~ Mi (V)

V=o

32
E(n2) = -12 iM (V)

V=o

Applying these formulas to (3.4.6) we have

N m

E(n) = ~ ~ f X cij(X) dx
j=l a
j+i -m

(3.4.7)

(3.4.8)

(3.4.9)

(3.4.10)

(
Nm

)
2

+ (~)2
EJ

X Cij (X) dx

j=l
j#i ‘M

Nm 2

- (:)2
z (J

XC (X) dx
ij

j=l -- )

.

J

j#i

We may compute x Cij(x) dx from the definition of Cij (.) given by (3.3.8)
-m

and the definition of nij(t) given by (3.3.7). Computing this we have
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J
.

x cij(x) dx = E (nij(t))
-m

= E [COS (2wfo(ti-tj)) f m Sj(X-tj) Si(X-t + T) dx]
-m

m

JXc(x
-m ij

.

dx = E [COS (2mfoti ) COS (2~fotj ) J Sj (X-tj)si (X-t, t T)]

-*

m

t E [sin (2~foti) sin (2~fotj) J Sj(x-tj)si (x-t t T)]
-0

ti and tj are independent hence,

m

J
‘xcij(x) dx = E [COS (2rfoti )] E [COS (2~fotj) J Sj (X-tj)Si (X-t + T)]

-m-0

m

+ E [sin (2mfoti)] E [sin (2mfotj)JSj(X-tj )s (x-t +T)]
-m

(3.4.11)

ti is uniformly distributed over the a second transmission period, We shal1

assume that ~ is an integral number of periods of the carrier, (i.e. fo~ is

an integer) then
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E [COS (2mfoti)] = E [sin (2~foti)] = O

Applying this to (3.4.11) we have

.

J
x cij(X) dx = O

-m

Applying (3.4.12) to (3.4.9) and (3.4.10) brings

E(n) = O

E(n) of

average

‘(:)=S$/ “:cij(x) ‘x-0
j=l

j#i

course is the mean of

power of the multiple

the multiple access noise sample.

access noise sample.

We conclude this section with the following theorem which

(3.4.12)

(3.4.13)

2
E(n ) js the

is proven

in Appendix E. It deals with the asymptotic character of Mi (v).

Theorem 3.1

If the signature set, S, is such that there is a common amplitude

density, i.e.

Cij(x) = C(x) for all j # i

and if T/a is fixed, then Mi (v) is asymptotically (with N) the characteristic

function of a gaussian random variable having mean “O” and variance

N2T
[

‘X2 c(x) dx
T -w
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3.5 ‘BOUNDS TO THE RECEIVER OPERATING CHARACTERISTIC

The presence of multiple access noise at the output of Matched

Filter “i” affects the operation of the matched filter detector. The ROC

(receiver operating characteristic) is the usual way in which the performance

of the matched filter detector is measured. In this part we shal1 define

the ROC as

t is a sampl

the curve Pf as a function

It is given by

implies signal

output.

In this

Pf = Prob (y (t) ~ e I
i

‘d = Prob (y (t) ~ e I
i

of pd where

Rii(t,ti) = O)

Rii(t,ti) = 1)

(3.5.1)

(3.5.2)

ng time. y (t) is the output of Matched Fi ter “i” at time t.

(3.3.4). ~ii(t,ti) is the signal portion of yi(t). “Rii(t,ti)=O”

absent on output, “Rii (t,ti) = 1“ implies signal present on

section we shal1 compute upper and lower bounds to the ROC.

The upper bound is generated from an upper bound to pf and a lower bound to

pd and represents the worst case ROC. The lower bound is generated from a

lower bound to pf and an upper bound to pd and represents a best case ROC.

Before computing the bounds it wil1 be convenient to describe once again

the operation of the binary threshold decision device. It operates in the

following way:

Ify (t) ~e; it decides ~ (.) was received at the ground
i station at time t-T

(3.5.3)

Ify (t) < e; it decides Z.(.) was not received at the ground
i station at 1 time t-~
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3.5.1 Upper Bound to the ROC

A. Upper Bound to p

From the 3,5.1 and 3.3.6 it follows that

N. .

p = Prob (
z

nij(t) ~ 0)
f j=l

j#i

Using Chernoff Bounds we can upper bound (3.5.4) as

N

Pf : exP [-P6 t ~ Ln(Ee
Pnij(t)

)1
j=l

(3.5.4)

(3”,”5.5)

j#i

where p ~ O, but is otherwise arbitrary.

Now, we can evaluate E (ePnij(t)) very easily by just lettin9 v equal

to p/j in (3,4.5). This results in

Pnij(t)
E(e ) = (1-$) + ~~rnepxc (x)dx (3.5.6)

-m ij

Substituted into (3,5.5) yields

N

T J
m px

pf ~ exp [-pe + Ln((’-~) + ~ e Cij(x)dx)] (3.5.7)
aam

J=
j#i

for arbitrary positive P. We now insist that P be picked as that positive

P which minimizes the right hand side of (3.5.7). This results in the desired

bound.
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B. Lower BOund to P~

From 3.5.2 and 3.3.6 it follows that

N

P = l-Prob (
d E

-nij(t) ~ (1-0)) (3.5.8)

j=l

j#i
Using Chernoff Bounds, we have the following upper bound:

N N

x z (t)

Prob ( ‘nij(t) J (1-6)) ~ exp [-~(1-e) +
‘Ynij ~1

Ln(E e

j=l j=l

j#i j#i
(3.5.9)

where y? O, but is otherwise arbitrary

Now, we can evaluate E(e
‘Ynij (t)

)very easily by just letting v

equal to -y/j in (3.4.5). This results in

(t)
m

-ynij
E(e

1

-yx
) = (1-:) + & e Cij(x)dx

a
(3.5.10)

-m

Substituting into (3.5.9) yields
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N

Prob(~ -nij

j=l
j#i

N “ -F
t)~(l-6) )~xp[-Y(l-6) + ~Ln((l-~) + $( e Cij(x)dx)l

j=l -m

j#i
(3.5.11)

N

Pd ~ l-exp[-Y(l -@) + ~ Ln((l-$) + $~”e-VCij(x)dx)] (3.5.12)

.i=l -0
J#i

We now insist that y be picked as that positive number which maximizes tne

right hand side of (3.5.1~. This yields the desired bound. (3.5.7) and

(3.5.12) constitute an upper bound to’the ROC, we shall state them together

for convenience

Pf < exp[-pet ~ Ln((l-fi) t ‘~ e“xC.j(x)dx)]— a a 1
j=l

-m

j#i

(3.5.13)

N

Pd ~ l-exP[-y(l -e) t ~ Ln((l-~J) t ~
7 ‘-’x

Cij(x)dx)]
j=l -m
j#i

~ is picked to minimize the upper bound to pf. ‘ is picked to maXimi2e the

lower bound to pd. 03Y are restricted to

together constitute an upper bound to the

be positive. These two bounds

ROC .

Before deriving the lower bound to the ROC let us stop and

ROC upper bound given by (3.5.13). Notice that this bound depends
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access noise through four parameters; N, ~, ~ and {Cij(x) }. As N increases

and/or (T/a) increases the upper bound to Pf increases and the 10Wer bound to Pd

decreases. This indicates a degeneration of the performance of the matched

filter detector. This, of course, is logical since as N and/or (T/a)increase

the average number of a mismatched’ signatures contributing to the amPl itude of

an output sample of Matched Filter ‘i‘ increases. This increases the

probability of multiple access noise having a large magnitude on the sample,

thus causing the performance of the threshold device to deteriorate. The amplitude

densities {Cij(x)} are functions of the detailed structure of the signatures in

the signature set, S. In a sense, they represent the modulation scheme which

S itself represents. In system design, as we should see, one should choose an S

having a {Cij(x)} which causes the upper bound to pf to be small and the lower

bound to Pd to be large.

3.5.2 Lower Bound to the ROC

A 1ower bound to the ROC is developed by obtaining a lower bound to

pf and an upper bound to pd. In order to obtain the bound to pf and the bound

to pd,one memly applies a Chernoff lower bound to the right hand side of (3.5.4)

and another Chernoff lower bound to the term Prob( ~ -nij(t)>(l -e)) in

(3.5.8). Both of these tasks are just straight forward applications of the

bound given by Gallager[3]. We shall just state the result

N

Pf ~ ~ exp[-oe+(~ ((
1-%) +$7 ‘Pxcij(x)dx))-$l]

j=l -m
j#i
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N m

Pd s l-~ exp[-y(l-e) t(~ Ln((l-~) t ~ ] e-yxCij(x)dx) )-$21
j=l -m
j#i

(3.5.14)

p is the same positive p chosen to optimize (3.5.7). y is the same positive value

chosen to optimize (3.5.12).

Jx
N

$1 = -2P1 2+( Ln((l-~) t $; epxCij(x)dx)l )
ar j=l -m r=pl

j#i

where p, is the solution, rl,of

N

~(~ Ln((l-~) t ~~ erxCij(x)dx))
ar j=l -m

j#i

N m
-gx

$2 = -2Y1 (~ Ln((l-~) t%{ e Cij(x)dx )

j=l -m 9=Y1
j#i

where y, is the solution, g, of
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N m-gx

(1-e) =a~(~Ln((’-$) t $~e Cij(x)dx))

-d
N

2T~ e-gxCij(x)dx))
2~(~ Ln((l-$)t ;
09 jxl -m

j#i

The bounds given by ,(3.5.14) constitute the lower bound to the ROC.

Comparing the upper bound to the ROC given by (3.5.13)with the lower

bound given by (3.5.14), one may note that they are asymptotically (with N)

tight.
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3.6 RECEIVER OPERATING CHARACTERISTIC COMPARISON

In the previous section, we computed upper and lower bounds to the ROC.

These are given by (3.5J3 )and (35.14) respectively. As is evident from observing

these bounds they are functions of the signature set Parameters; N, T/a, and

{Cij(x)}. In this section we shall compute these bounds for a typical value

set of (N, T/a) and for several different candidate {Cij(x)} ’s. The amplitude

density set, {Cij(x)}, depends upon the detai led structure of the signature

set and hence, in a sense, represents the modulation design of the si9nature

set. By comparing bounds to the ROC for different {Cij(x)}’s we are equivalently

comparing ROC’s for different signature set designs.

We fix N and T/a at the following values:

(i) N=l05

(ii) T/a=2(l o-5)

and we consider four different amplitude dens”

{Cij(X)}3, and {Cij(x)}o. Each of these amPl”

density, i.e. ,

ty sets; {Cij(X)ll , [cij(x)}23

tude density sets has one common

Cij(X) = Cl(x) for all Cij(x) E {Cij(x)}l

Cij(x) = C2(X) for all Cij(x) c {Cij(x)}2

Cij(x) = C3(X) for all Cij(x) E {Cij(x)}3

Cij(X) = CO(X) for all Cij(x) C {Cij(X)}4

In addition, we constrain the second moments of each of the common densities

to be equal to b, i.e. ,
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[

2
X C (x)dx = b r=l, .,.4

-m r

The common densities; Cl (x),...C4(X), are totally representative of the

amplitude density sets; {Cij(x)}l, ...{Cij(x)}4. We can talk either about one

or the other. The common densities that we have chosen to compare are shown

in Figure 3.2.

Our constraint on the second moment of the common, densities is equivalent

to a constraint on the average multiple access noise power. Observe Equation

(3.4.13). Constraining the second moments of the amplitude densities to equal

b, constrains the average multiple access noise power to equal w b. Thus,

in comparing different common densities for an equal value of second moment,

we are comparing different signature designs under the constraint that each wil1

yield the same amount of average multiple access noise power.

The ROC’s computed for the fixed values of (N, T/a) and for the amPl itude

densities; Cl (x)... C4(X) , are shown in Figures 3.3 through 3.6. In each

figure the solid contour corresponds to the upper bound to the ROC. The

broken contour corresponds to a lower bound to the ROC. Each contour corresponds

to a constant value of the ratio l/fi, the value of which is labelled on the

contour. Each point on the contour corresponds to a different value of e.

68



c,(x) Lla-4-lj4j9I

C3(XI

1- C4(X)

A t3

“y\ ‘F”*LAX
Fig. 3.2. The amplitude densities;CT(X), C2(X), C3(X), C4(X),
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Pd

Fig. 3.3. Upper and lower bounds to the ROC when theamplitude densi~

isC,(x), forvariousvoluesof
d.

70



~

)0’ :.

,0-’;,.

P, ,6’

1

10’
0 0.9 0.99 0.999 0.9999 0.99999 ‘ 0,9%9

Pd

Fig. 3.4. Upper and lower bounds to the ROC when the amplitude densi~

isC (x),forvariousvaluesof
2 $.

71



,

!0.’

,o’~.

I

,0-3 t+-

~: /

P, !0’ :-

.

0 0.9 0,99 0,999 0.9999 0,99999 0,=!

‘d
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~

We

contours

can compare the ROC’S shown in Figures 3.3 through 3.6 by comparing

corresponding to the same value of ~ .
J 3b

For purposes of comparison just consider the upper bound contours. It

appears that the amplitude density C2(X) yields the most preferable ROC in that,

for a given value Of Pd

also the smallest lower

preferable than that of

We can order the common

—, it has the smallest upper bound to Pf (and
;:nd+

After C2(X), c1 (x) yields an ROC which is more

C3(X) or C4(x). C4(X) has the least preferable ROC.

amplitude densities in terms of their preferabil ity as;

C*(X), c,(x), C3(X), C4(X). Of course, these are only a few of the

of possible amplitude. densit.v Sets. One may, in fact, believe that this

order of preferability is strongly a function of the specific values of (N,T/a)

chosen. We shal1 deal with this question in the next section where we shal1

show that C2(X) is in fact the optimum amplitude density set under the constraints

oF, fixed average multiple access noise power, and a symmetry condition.

Before concluding this section, let us note that for each ROC set the

performance of the matched filter detector deteriorates (i.e., la,rgerpf’s for the

— decreases). Since the average multiple access noise power
same ‘d) as &

@ b, this irnpl i~s that performance is deteriorating as the average multipleis ~

access noise power increases. Of course, this is what one expect: intuitively.
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3.7 THE QUASI OPTIMAL AMPLITUDE DENSITY

In this section, we consider the problem of finding that {Cij(x)},

which for, a given value of average multiple access noise power, gives simul-

taneously the smallest upper bound to pf and the largest lower bound to Pd,

(i.e., the best ROC upper bound) as given by (3.5.13). Theorem 3.2 will be

the answer to this

ture set, S, to be

signature set.” A

Definition 3.1

problem. In proving the theorem we shal1 require our signa-

of a certain type. We shall require it to be a “uniform

definition of this is first given.

S is a uniform signature set if for every j # i and x

Cij(x) = Cij(-x)

We now state the relevant theorem dealing with the best ROC upper

bound.

Theorem 3.2: Let:

1. ~ be a set {Cij(x), j=l ,...N j#l} which could correspond to a

uniform signature set (i.e. satisfy the constraint of Definition 3.1.

2. ‘~(e) be the set of all such C’s which have

access noise power fixed at p,

Then:

to pd

E(n2) = p

3, N, T/m be fixed

The element of ~(d) ,~*, which simultaneously

and minimizes the upper bound to Pf over ~(e),

average multiple

maximizes the lower bound

(thereby giving the most

preferable upper bound to the ROC), is ~
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~* = {Cij*(x), j=l,...i,j+il

cij*(x) = ; uo(x-
/
~ )“”t1 U. (x + ~) (3.7.1)

/

.—

(N-1)2T 2 (N-1)2T

for every j#i

(uO(x) is the unit impulse)

Before embarking upon a proof of this theorem, it wi11 lend some clarity

if it is discussed to some extent. Basically, the theorem says that if the

average multiple access power is fixed at p then the best upper bound to the

ROC is obtained if the amplitude density is common for each “j” and is of the

form given by (3.7.1). First of all , the common amplitude density given by

(3.7.1) implies that the multiple access noise components, nij(t), will be

two valued, the amplitude can have a value either +
r/tiT ‘r - (*

A typical such nij(t) is illustrated in Figure 3,7. Secondly, the common

amplitude density

equally among al1

detector. Each

implies that the total multiple access noise is divided

mismatched signatures arriving in the matched filter ‘i‘

mismatched signature contributes a quantity of power equal

to ~ to the multiple access noise power when ft contributes. Finally,
(N-1)2T

one may note that a two valued nij(t) of amplitude
& ‘ealizes a

multiple access noise power contribution of (pa/(N-l)2T) with the smallest

possible peak height. Thus, the quasi-optimal {Cij(x)} given by (3.7.1)

has the characteristic that it spreads “the fixed average multiple access

noise power over equal contributions from al1 mismatched signatures. It

obtains each equal noise power contribution from an nij(t) having the smallest
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Fig. 3.7. Multipleaccess noisecomponent impliedby the optimal densi~,
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possible’ peak height. We

the multiple access noise

may conclude from this that it is peak height of

component which dominates degradation in the per-

formance of the matched fi1ter detector.

We shal1 now prove the theorem. We shal1 do this by first showing

that {Cij* (x)} given by (3.7.1) gives the smallest possible upper bound to

Pf. Later we shal1 argue that

completing the proof.

Proof:

t gives the greatest lower bound to Pd thus

Observe the upper bound to pf given in (3.5.13)

P,: exp[-~ot$ Ln((l-~) t $7 epxc j(x)dx)la i
j=l -m

j#i

(3.7.2)

Let {~ij (x)},be some element of ~(~) which minimizes this uPPer bound to pf

over~(() and let ~ ,

J
X ~ij(x)dx = b. (3.7.3)

-m
~ = the optimum P relative ~o ~ij(x)

We have then the lowest uPPer bound to Pf as

N

exp[-pe+~ Ln ((1-$) + $j@xgij(x)dx)l
j=l -m

j#i

(3.7.4)

Using a power series expansion we can write
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-m -m

~2m px

J
e ~ij(x)dx = 1 t p E(x) +~~(x2) + ... (3.7.5)

—-
-m

(the expectations are taken with respect to ~ij(x)). Since {~ij(x)} iS an element

of~(~) it must be symmetric. Therefore, all the odd moments of x in (3.7.5) are

zero and we have

~e~x~ij(x)dx = 1 + < bj t ~ {;T)E (x2n).-
-m n=2

By Jensen’s Inequality we have

(3.7.6)

E(x2n) ~ (E(x2)n = bjn (3.7.7)

Applying (3.7.7) to (3.7.6) we have

~}x~ij(x)dx > ~}x 1(~ uo(x-~) + ~ UO(X t ~))dx—
-m (3.7.8)

-m

NOW let us define
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.

and note that {C~j(x), j-l, ... N,j#i } is an element of ~(~). We have from

(3.7,8) that

hence,

j=l -m
j#i

N
‘Qx+

> exp[-~e t ~ Ln((l-$) + $~e Cij(x)dx)]— (3.7.9)
j=l
j#i

-m

However, {~ij(x)} by definition

(3.7.g) must hold with equality

exp[-~B t f Ln((l-$) +

j=l
j#i

minimizes the right hand side of (3,7.2), thus

and we have

$jeQx(&o(x-@)tyo(xt fi.))dx)]

-m

(3.7.10)

as the upper bound to pf minimized over Z(Q and it is achieved by:

C;j(x) = &o(x- ~) t $O(x + @)
(3.7.11)
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where

$: bj=p

j=]
j#i

(3.7.12)

Of course, we really don’t know what { ~,.. .fi} are yet. We now solve for

them knowing that they must, by definition, minimize the function

N ‘Qx,
exp[-pe t~ Ln((1->) + $~e (~o(x -~) + ~O(X +@))dx)l

i=l -m

over {fi, ... ~}, { @ is excluded)

under the constraint

Minimizing this function

F(~B~,... ~) =

(3.7.13)

(3.7.14)

under constraint (3.7.14) is equivalent to minimizing

j#i (3.7.15)

under the constraint
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(3.7.16)

The function given by (3.7.15) is strictly convex (as can be determined by

taking the second derivative), in {fi,. .. ~N}. Hence, it must have a

unique minimum under

minimum must be

{~,...

the constraint (3.7,17). Of course, we know this unique

CN} (3.7.17)

Now, suppose the components are not al1 equal . Then a permutation of (3.7.15)

will yield another { ml, ... ~} which minimizes (3.7.15) under (3.7.16)

This contradicts the fact that there is a unique minimum to (3.7.15) Hence,

all of the components of (3.7.17) must be equal and since they must satisfy

(3.7.16) we have

/
{~bl,.. . J&N} ={ *R,... J*%}

Applying this to (3.7.11 ) we have the upper bound to Pf minimized over

~(~) by~*

C*= {Cij*(x),j=l,... N,j#i}

cij*(x) = (3.7.18)



observe the lower bound to Pd given by (3.5.13). This can be maximized

over {Cij(x)} under the average multiple access noise constraint by minimizing

N .
-yx

exp[-y(l -e) + ~ Ln((l-~) + ~~” e Cij(x)dx)] (3.7.19)
j=l -m
j#i

under this constraint. Going through the same procedure that we used to

minimize the upper bound to pf we find that (3.7.19). is minimized and hence

the upper bound is maximized by (3.7.18). One should see this immediately

since (3.7.19) has the same form as an uPPer bound to Pf and Cij(x) is sYmmetric.

This completes the proof.

If the optimum amplitude density given by (3.7.1) is substituted into

the ROC bounds of (3.5.13)One obtains the following ROC upper bound:

Pf s exp[-pet (N-1) Ln( (’-$) t $ coshp
~~ N-! 2T)]

Js
(3.7.20)

pd ~ l-exP[-Y(l -e) t (N-1) Ln((1-$) + ~ coshy
N-y 2T)]

We can for this optimal case actually solve for the value of p which minimizes

the upper bound to Pf and also the value of y which maximizes the lower bound

to pd, If we do this the variation of the optimal ROC with the signal parameters

wil1 become explicit. We now devote ourselves to this task.
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Let us first define

Expf = [pe-(N-l)Ln( (l-$) t ~oshp
fi

N-la2T ‘]

Expd = [y(l-6)-(N-

It is evident that we c

)Ln((

n exu ?ss the optimal ROC bounds as

(3.7.21)

(3.7.22)

Pf ~ exp(-Expf)

Pd ~ 1-exP(-ExPd)

We need only work with the upper bound to pf. Our result can be applied to

pd by symmetry.

The ~ Which minimizes the upper bound to pf is the same p which maXimi2es

Expf . It is the solution of

A Expf = O
8P

a4



Which can be solved directly yielding,

(3.7.23)

Substituting (3.7.23) into (3.7.21) we have

(-(N-1 )Ln (1-$) + $ cosh sinh-l

[ (*) ‘Tanh-’fm 1)
a

(3.7.24)

Going through the same we can obtain for EXpd

(3.7.25)
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The optimum ROC is then given by

pf ~ exp(-Expf)

Pd z l-exp(-Expd)

where Expf and Expd are in turn given by (3.7.24) and (3.7.25).. These bounds

show the explicit dependence of this optimal ROC on the signal parameters T/a

and N.

Typically ~ is of the order of 10-5, 5.and N is of the order of 10 , in

which case (3.7,24) and (3.7.25) can be approximated by

((-N Ln (

[ (m,.)])

1-:) + ~ ~osh sinh-l ~

(3.7.26)

We can now use the following identities
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sinh-l (x) = Ln (x + ml)

cosh(sinh-lx) = ~

Applying these to (3.7.26) we obtain

4- (&Lne
Expf : e pa

2NTP/a
+ d–p)

-((
N Ln (1-~) +% ]& +)) (3.7.27)

‘ which are simpler expressions and they can be applied directly to yield

approximate bounds

pf ~ exp(-Expf)

pd ~ 1-exp(-Expd)
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3.8 GAUSSIAN COMPARISON

In this section we shall investigate the validity of assuming

the multiple access noise to be gaussian distributed. We shall do this under

the restriction that the

Definition 3.1) and that

all j# l).

signature set, S, be a uniform signature set (see

the amplitude density is common (i.e. Cij(x)=C(x) for

Our program in this section will be as follows. We shall first fix

N and ~/a and compute the ROC’s of several candidate signature sets, (or equi-

valently common amplitude densities) . We wil 1 compute the ROC that the matched

filter detector would have if its output noise were gaussian having the same

average power implied by the fixed values of N and T/~ and the different

common amplitude densities. The actual ROC’s wil1 then be compared to this

gaussian noise ROC. Finally,

spending to the Quasi-Optimal

ROC, with increasing aircraft

we shal1 look at the approach

amplitude density (of Section

population, N.

of the ROC corre-

3.7) to the gaussian

Consider the signature set, S, to be a uniform signature set

a common amplitude density function, C(x), i.e.,

Cij(x) = C(x) for all

In Theorem 3.1, we state that in this case, if T/@

the distribution on a multiple access noise sample

j#i

is fixed, then as

approaches a zero

gaussian distribution with variance ~
J

m x2c(x)dx What is left
a -0

having

N increases

mean

open

though is how rapidly the multiple access noise distribution approaches this

gaussian distribution.

88



If the true multiple access noise distribution is very close to this

1imit for a typical value of (N, T/~), the actual ROC of the matched filter

detector operating in the presence of multiple access noise should be closely

approximated by ROCg. ROCg is the ROC which the matched filter detector would

have if it were operating in an environment in which the output of the matched

filter is perturbed only be zero mean gaussian noise having average power

N2T
–J

‘nx2C(x)dx.a -m
Assuming that the signature set, S, is a uniform signature set we

shall f“

(when C

C(x) ’s.

aussian

Fferent

(3..8.1)

rst test the validity of assuming multiple access noise to be !

j(x) = C(x)) by comparing the actual ROC to ROCg for several d’

‘We shall fix (N, T/a) at a typiCal Val Ue.

First, we shal1 compute ROCg

Pf calculation for ROCg

.

‘Xp(,:,-yc(x)2
dy

.
_ -X2

-m

Pd calculation ‘or Rocg
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:m -m

l+~erf(1-’)T)~d=z

-m

Combining (3.8.1) and (3.8.2) we have the ROCg

q

pf=’-’erf(j~)
—x

pd=’+’erffl-’)/~
—x

(3.8.2)

(3.8.3)

We shall now compare the ROCg given by (3.8.3) to the bounds to the actual

ROC given by (3.5.13) and (3.5.14). In doing this we assume

(i) N=l05

(ii) ~/a=? (lo-5)
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and we consider

These are shown

four different common amplitude densities; Cl(x),.. .C4(X).

in Figure 3.2. Bounds to the actual ROC for these amplitude

densities are shown in Figures 3.3 through 3.6. The ROCg is shown

Figure 3.8.

Observe the actual ROC’s shown in Figures 3.3 through 3.6.

each of these figures the solid contours represent upper bounds to the

ROC, the broken contours represent lower bound to the actual ROC. For

actual ROC’S of Figures 3.3 through 3.6 and the ROCg of Figure 3.8,

in

In

actual

both the

each

contour corresponds to a given value of ~ , the value of which is labelled on
m

the contour. Each point on a contour corresponds to a different value of e. Com-

paring the corresponding contours on each of the actual ROC sets with that on the

ROCg set (i.e. contours having equal values of l/~, one wil 1 note that the

ROCg is a much more preferable receiver operating characteristic than the

actual ROC. One concludes this by fixing ~ and pd and observing the value

of pf indicated by the ROCg and the lower bound to pf indicated by the lower

bound to the actual ROC. The value of pf indicated by the ROCg is always

lower than the actual pf. Thus, we can conclude that for the values of N

and T/~ that we have assumed; (i.e., N = 105 , T/~ = 2(10-5)) and for the

common densities, Cl (x),...C4(X); the gaussian approximation to the multiple

access noise distribution is a very poor approximation. It indicates much

better performance than actual ly exists.

The common density C2(X) is the optimal amplitude density derived in

the previous section. From this we immediately conclude that if; N = 105,

T/~ = 2(10-5) , and the average multiple access noise power is fixed at p then
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Fig. 3.8, The ROCg forvariousvaluesof
k.
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no uniform

will yield

In

signature set suffering this average multiple access noise power

an ROC more preferable than

(r)
pf=~-~erf e 1

F

( ‘)
pd=}t~erf e~’~

Theorem 3.1 we stated that,

amplitude density, C(x), then when T/~

if a signature set

is held fixed as N

has a common

increases the distri-

bution on the multiple access noise approaches a zero mean 9aussian distribution

J

:*
of variance &

X2 C(x)dx. Of course, we have in the present section,
am

showed that for typical parameter values; N=105, T/~ = 2(10-5), that assumin9

the multiple

optimistic.

the gaussian

access noise distribution to be at the gaussian 1imit is ove-ly.

We arrived at this from the observation that ROCg, the ROC under

assumption, is much more preferable than the actual ROC for these

parameter values. When

must approach ROCg with

shall concern ourselves

which

3.7,

there is a common amplitude density, the actual ROC

increasing N. In the remainder of this section we

with studying this approach to ROCg for the case in

the common amplitude density is the Quasi-optimal one, given in Section

.e.

c(x) =+uof-j~). +;uo(tr*)

In this case, the distribution on the multiple access noise approaches the

able of variance p. ROC, ofdistribution of a zero mean gaussian random var

tours% is given by
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(3.8.4)

Because the Chernoff bounds to the actual ROC are asymptotically tight

with N,we lose nothing by studying their approach to ROCg. It will be more

convenient for us to work with Chernoff bounds to the ROCg rather than the exact

ROCg. Again, we lose nothing by doing this since these bounds are asymptotically

tight. We shal1 now derive the Chernoff upper bound to the R~Cg. For a 9iven

sampl ing time, t, we have, in general,

Applying a

where u is

Pf = Prob(ni(t)~e)

Chernoff bound to th’

Pf s exp(-ue+Ln(Eepn

s we have

)

greater than or equal to zero,

present. If the multiple access noise is

(3.8.5)

but is otherwise arbitrary for the

gaussian
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‘1
2

E(.eun)= ~—
2

-m &P
exp (-w exp (~n

E(ePn)= exp (~)
(3.8.6)

Applying (3.8.6) to (3.8.5) we have

2
Pfs exp-(ue-~)

2
We can now obtain the optimal p. It is the ~ which maximizes ~e-~,

solving for it we know that it must satisfy

and hence, we have

from which we obtain the Chernoff bound to pf

By going through the same procedure we can obtain
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(1-6)*,
Pd ~ l-exp-(~

Hence, the Chernoff upper bound

(l-e)*,pd ~ l-exp-(~

Let us define

to the ROCg is

(3.8.7)

(3.8.8)

We may write the upper bound to the ROCg much more simply as

Pf s exp(-~xpfg)

pd ~ I-exP(-ExPdg) (3.8.9)

In Section 3,7, we show that the upper bound to the actual ROC under

the optimal amplitude density C (x):
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c (x) =$O(X- V’*) 1+po (x+
j+ N-1 2T)

was given by

Pf ~ exp(-Expf)

Pd ~ 1-exp(-Expd)

Expf and Expd are given approximately by (3.7.27) .

(3.8.10)

We can study the approach of, the upper bound to the actual ROC, to the

uPPer bound to Rocg, by studying the approach of Expf to Expfg and ExPd to

Expdg . We shall now do this. It wi11 be convenient to express; Expf in terms

of Expfg, and Expd in terms of Expdg. This is quite easy to do and we obtain

[

-N Ln (

(3.8.11)
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Assume that T/a, Expfg and Expdg are fixed. If N is increased then

we expect to see Expf approach Expfg and Expd approach Expdg. Let us check to

see if this is true. Using the Taylor expansion for JR for N is sufficiently

large to enable ~ and = to be within the radius of convergence we
Ta N./a

obtain

(3.8.12)

and from this we note that

/1+*-it>(e)

J

J l +&-1++(*)

Applying these asymptotic relations to (3.8.11) we obtain
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Since

Ln(l + x) - x

for x near zero

We obtain from (3.8.13) and (3.8.14)

Expf . Expfg as N-

Expd . Expdg as N*

This, of course, is what we expected from Theorem 3.1.

Observe the

of the same form.

by Exp, Expfg and

(3.8.11),

(3.8.13)

as N-

(3.8.14)

(3.8.15)

expressions given by.(3.8.11 ) notice that they are

For this reason we shall represent Expf and Expd

Expdg by Expg and use the following expression to represent
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(3.8.16)

Figure 3.9 illustrates Exp as a function of N for Expg = 4 and various

values of T/~. Notice that in each case, Exp increases monotonically and very

smoothly with N up to the gaussian exponent Expg. Also, notice that when, N=105,

T/a = 10-5, typical system parameter values, Exp is less than Expg by a non-

negligible amount.

In Figure 3.10 we have

and various values of N. Notice

plotted Exp vs. Expg for T/~ = 105

that for any value of Expg, Exp approaches

Expg monotonically from below with increasing N. Notice also that the rate

of this approach is more rapid for lower values of Expg than for higher values

of Expg. Finally, observe that the functional dependence between Exp and

Expg is practically linear.

The smoothness and the monotonicity properties of the curves shown in

Figures 3.g and 3.1o seem to indicate that a simple relation, (simpler

than’ (3.8:16))’,exists between Exp and Expg and that Exp is always less than

or

of

equal to Expg.

We can use the curve shown in Figure 3.10 to judge the validity

the way in which the multiple access noise degradation was accounted
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N = 108

N = 107
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EXPG

-5Fig. 3.10. Exp vs Expg when T/a =10 , forvariousvaluesof N.
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for in Referenge [1] where it was assumed to have the same effect as an

equal power in band white gaussian noise source at the input to each matched

filter. Let B represent signal bandwidth. The average multiple access

noise power under such an assumption would be

This assumes, without loss of generality, unit energy signals. In the report,[l ]

systems were considered in which kl 05. However, signatures were assumed to

consist of either 5 equal length pulses with a=2.5 seconds or 4 equal length

pulses with a= 2 seconds. This would make N effectively equal to 2(105). B was

assumed to be 107Hz. All of this yields

D=50

Now,

2
Expg = ~

where a=l-e or 8 depending upon whether we are dealing with Pf or Pd. Suppose,

as an example, we let O= 0.5 then

Expg = 12.5
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In the system considered in Reference [1], T was always of the order

of 10 psec. If we assume that these signature sets had correlation properties

which made them uniform signature sets, the Exp would correspond to the best

pf or pd exponent which one could expect. Observing Figure 3.10 which

-5
corresponds tO a T/~ = 10 . If we let N=2 (10-5) and Expg=12.5, we see that

Exp~9. This implies that the gaussian assumption underlying the analysis in

[1] yielded a much more optimistic system

when one considers that in this situation

mately 1,4.

performance than actual ly existed

the ratio of Expg to Exp is approxi -
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3.9 RELATION OF MULT

This section wil

PLE ACCESS NOISE TO TIME-BANOWIDTH PRODUCT

deal with the relation of “Time-Bandwidth”

product to the average multiple access

In doing these things we shall be able

the matched filter detector, operating

noise power from filter “i”.

to find 1imits on the performance of

in the presence of multiple access

noise, in terms of a traditional measure of such performance. We shall close

this section by applying the results obtained to a signature set, S, composed

of PSK modulated sequences having good auto-correlation properties.

The following theorem relating the average multiple access noise

power is based upon a result of Yates[41.

Theorem 3.3: Let S be a signature set and let E(n2) be the average multiple

access noise power corresponding to it. The following upper bound holds

,2
E(n ) <—

2 4. ~j

.i=l

where W. is the Zakai
J

and Rjj(t) iS the

Wj

~#i

bandwidth of signal

[

M2
= [2 Rjj (t)

.

Sj(t) and is defined as

-1

dt]

auto-correlation of signal S<(” ), i.e.,
J

1
m

Rjj(t) = Sj(X) S (X - t) dx
j-m

(3.9.1)

The bound holds with equality iff Rjj(. ) = Rii(. ) for all j # i.
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The proof of this theorem is given in Appendix F.

Consider now a signature set, S+, which is composed of PSK modulated

sequences. This was the type of signature set which was considered in Refer-

ence [1]. Furthermore, suppose that the chip duration of these PSK sequences

is T and that these sequences al1 have the same auto-correlation function,
c

R(t), which is illustrated in Figure 3.11. The auto-correlation was defined

by (3.9.1). The common auto-correlation shown in Figure 3.9.1 is a “good

auto-correlation function” in the sense that it has a high peak to side lobe

ratio. This also was implicit in the analyses of Reference [11.

+
Let us apply Theorem 3.3 to signature set S. Because of the common

auto-correlation the theorem applys with equality and we have for the average

multiple access noise power

E(n2) = u
4aw

where W is the common Zakai bandwidth

we obtain

(3.9.2)

Computing the comon Zakai Bandwidth

-1

W=[:TC(1+2Z +2(;)2]
T

‘cIf we consider — << 1 then
T

w_ ~

T
c

Applying (3.9.3) to (3.9.2) yields

(3.9.3)
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Fig. 3.11. God auto-correlationfunctionsfora PSK sequence.
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E(n2) = ~
3a l/Tc

This is the same average multiple access noise power which would be obtained

if the interference input to the matched filter detector was white gaussian

noise having a spectral height of ~ . This of course is very close
3a 1ITC,

to what Stiglitz et. al. assumed in [1]. The peak signal power of signature

set S+ is unity. Applying this to (3.9.2) yields

as the peak signal

3a l/Tc

N

to interference ratio.
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SECTION 4

IMPROVED AIRCRAFT POSITION TRACKING WITH SATELLITE
MULTILATERATION SURVEILLANCE SYSTEMS

4.1 INTRODUCTION

Several proposed air traffic control

multilaceration techniques to satisfy the

systems would make use of

surveil lance requirements.

satellite

In these

systems, each aircraft, while in flight, would transmit a sequence of coded

pulses at the more or less regularly spaced time instants To, T, , T2, ....

where Ti+,-Ti~l second. A constellation of K satellites in synchronous orbits

would receive each pulse; and, by comparing the times of arrival of this pulse.

at the K satellites, an estimate of the position of the aircraft at the time

the pulse was transmitted could then be computed. Thus, the surveil lance

system would estimate the sequence P(TO), P(T,), P(T2), .... where the 3-vector

p(t) denotes the aircraft position at time t.

An analysis of the

Appendix I of [1]. For

geometric dilution error has been presented in

that analysis, “noattempt was made ‘to statistically

yodel either the sequence {+1} or the aircraft trajectory P(t) or to

exploit such a model with a tracking algorithm. It was shown that if ‘

the time of arrival of a pulse at each of the K satellites were measured
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with resulting error variances equal to u*, then the covariance matrix for

Cp, the error in estimating the aircraft position p, would just be

‘Ep= U2[F’H’(H H’)-lH F]-l (4.1.1)

In the above, H is an arbitary K-1 by K matrix subject to the constraints that

its rows are indendendent and its CO1umns sum to zero; while F is a K

.thby 3 matrix for which the 1 row is ~ u;, where Ui is the unit vector

pointing from satellite i to the aircraft, and c is the speed of light.

From (4.1.1) it follows that the variance of the norm of the error Cp is

just

Var[l/Epll] = u2tr{[F’H’ (HH’)-lHF]-’} (4.1.2)

= ~2k2

where tr [.} denotes the trace operation. The constant k, which is the ratio

of rms position estimation errors to rms errors in measuring the pulse times

of arrival at the satellites, is called the “geometric dilution” of the

surveillance system. It should be noted that k is finite if and only if rank

(HF)=3; a necessary condition for this to be true is that ~4. However, it

was shown in Appendix D of [1] that typical Satellite Constellations Of

from five to eight satel1ites could be expected to have geometric dilutions

of from one to two orders of magnitude.
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It is reasonable

sequence {Til and the

tion technique of [1],

to expect that if suitable stochastic models for the

aircraft trajectory p(t) can be found, then the estima-

Appendix 1 could be improved. This, in fact, is the

case as we shal1 now demonstrate.

It wil1 be shown in the remainder of this section that by incorporating

a suitable model for the sequence {Ti}, the variance of the error Cp can be

reduced. Moreover, it will now also be possible to track an aircraft, over

sufficiently short intervals of time, using only three satellites.

4.2 THE MULTI LACERATION EQUATIONS

It is assumed that the aircraft is to be tracked using a conste”

K satellites. Further, we shall use the following notation:

{Tn} = sequence of aircraft pulse transmission times

p(t) = aircraft position vector at time t

Pn = P(Tn)

Tni = time of arrival of pulse n at satel

Tn = (Tnl,...TnK) ‘

Si(t) = position of satellite i at time t.

Iation of

ite i

Also, it wil1 be convenient to denote the K-vector, al1 of whose components

are 1 ‘s, simply as 1.
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With the above definitions, the fundamental

(’
I/Pn - S1(Tnl)

Tn=Tnl++

IIpn - sK(TnK)

where nn is a K-vector which accounts for excess

and tn pospheric effects. We shal1 decompose nn

multi laceration equation is

(4.2.1)

delays due to ionospheric

into two components, a

deterministic, (i.e., known) part and a random part:

‘n = ndn + nrn

Of course, the

be measured. Thus,

the resulting error, so that

times of arrival of the nth pulse at the satellites must

let ;n denote the measured value of the vector Tn, and CT ,
n

ET =;n-Tn
n

With this definition, (4.2.1) becomes

(’)
Ilpn- ‘l(Tnl)ll

?n=Tn l+:
+ ‘dn + ‘rn + ETn

llPn-SK(Tnl)ll

(4.2.2)
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Equation (4,2.2) is nonlinear in Pn. Moreover, since neither the times

Tni nor the satel1ite trajectories Si(t) are known precisely, we must approxi-

mate each Si(Tni) by ~i(?ni), where ~i (t) denotes the estimated satellite

trajectory. Therefore, letting pi denote a good guess of the actual value of

pn(e.g., p: could be the estimated value of P(Tn-l )), we can write

where Uni is the unit vector

With this approximation

pointing from ;i(tni) to p;:

(P; - ‘i(tni))

(4.2.2” becomes

U~l (~1(~nl) - S1(Tnl))

‘)

t ‘dn t ‘rn + ‘Tn

U~K(~K(~nK) - SK(TnK))

si(Tni))
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where Fn is the following K by 3 matrix:

This may be simplified as

.
Tn = kn + Tn 1 + Fn (pn-p~) + En

where kn is the following deterministic vector:

(’)

/]P;-i, (?n,)//

kn=:
+ ‘dn

jlP~- ‘K(~nK)ll

and En is the following random vector:

The sequence of random vectors {en} represents the combined effects of

random refractions, satell ite tracking errors, and errors in measuring the
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pulse times of arrival. However, it can be argued that the statistics of

{cn} may be adequately modeled as

E[cn] = O

E[cnc~] = U* 16n,m

where

~z = [variance in measuring Tni]

+ [Variance of i
th component

1* . [Variance of error in+—

of nrnl

the radial
c .th

direction in tracking the 1 satel1ite]

We have, therefore, reduced the multilateration equations to the 1inear

equation

A

Tn = kn + Tn 1 t Fn(Pn-P~) + Cn

where kn is a known vector, and {En} is modeled as

E[&n] = O

E[cns~] = 0216n,m

(4.2.3)

(4.2.4)
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Al1 that remains is

these sequences, we

4.3 THE MODEL FOR

It is shown in

quite realistically

to model the sequences {Tn} and {pn}; 9iVen models for

can determine how to estimate them.

{Tn}

Appendix G that the random sequence {Tn} maY be modeled

as

EITn-To] = n

having the following second order statistics:

T

2.
E[(Tn-To)(Tm-To)] = u, mln(m,n)

+1 2 2P+n2P-lm-n12P)~ 02 (m

t<mn

where

However, in order to simpl’

that

Fy some of the subsequent analysis, we sha’ assume
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and that

~=1

With these assumptions, {Tn} is model led as

To = completely unknown

EITn-To] = n;

E[(Tm-To)(Tm-To)] = uo2[min(m, n) t m n] + Y2 m n

Var [Tn-To] = uo2(n+n2)

Note that, as n increases,

mately nao. Thus, the rms

4.4 THE MODEL FOR {pn}

the standard deviation of (Tn-To) becomes

fractional error in {Tn} is just Oo/~.

(4.3.la)

(4.3.

(4.3.

b)

c)

approxi -

Since a realistic stochastic model for the aircraft trajectory would be

quite complex, the sequence {pn} wi11 be model led simply as a sequence of
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completely unknown, i.e., nonrandom, vectors. This assumption considerably

simplifies the problem of estimating the vectors pn. Of course, due to

physical limitations on the velocity and acceleration of an aircraft, knowing

the value of Pn tel1s us something about the value of pn+l . Such considerations

can be useful in calculating the vectors p;, and in determining the confidence
A

that we may place on a particular estimate pn.

It may be noted that this model is the same as that used in [11. Thus,

any improvement in tracking the sequence {pn} wi11 be due to the incorporation

of a stochastic model for the sequence {Tn}.

4.5 ESTIMATING THE SEQUENCES {Tn} AND {Pn)

At approximately every ~=1 second, a set of measurements of pulse times

of arrival denoted by (4.2.3) is made. From these measurements we WOU1d 1ike

to track the sequences {Tn} and {pn}. There are now three basic situations

under which we shall use different estimation procedures:

(i) n=O, K>4—

(ii) n>l, K>4— —

(iii) n~N + 1, K = 3, where up to time N there are 4

or more satel1ites available, but after time N there

are only 3.
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4.5.1 Initial Estimates of To and PO with Four or More Satellites

We have the measurements

.
To = k. + Tol + Fo(Po-p:) + co

and, since both To and PO are completely unknown, a reasonable estimate to
A

use is a least-squares estimate.
.

That is, we pick To and PO so as to minimize

(;o-ko-~ol-Fo(~o-p;)) ‘ Pc ‘1 (;o-ko-~ol-Fo(~o-P;))
o

where P is the covariance matrix for co. But, from (4.2.4)
‘o

P = u* I
‘o

. .
so the estimates To and PO are given by

A

()=()To o

+ [(l:Fo)’(l:Fo)]-l(l:Fo )’(~o-ko)
;0 P;

Then, since

1 ‘1 = K = number of satel1ites,

the above is just
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It is easily verified that

(:0:)J=CO(FOFO)-,FO:~;~!~o:;o
(4.5.1)

where

1

Yo -
K-1 ‘FO(FO’FO)-lFO’l

(4.5.2)

.
Therefore, the estimate To is just

.

To
= YO1’(l-FO(FO’FO) ‘lFO’) (~o-ko) (4.5.3)

and PO is

to = p:+(Fo’ Fo)-lFo’[l-yel l’(l-Fo(Fo’ Fo)-lFe’)] (?o-ko)

= p; t (Fo’Fo)-lFo’[$o-ko-~ol] (4.5.4)
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It is easi

.

()

‘o

A
P.

y seen that

()‘o = [(l:FO)’(l:FO)]-’ (l:FO)’ co

P.

(4.5.5)

Therefore, the error covariance matrix for this combined estimate is just

U2[(1:FO)’ (l:FO)]-l

A by u;Denoting the variance in the estimate To , and the covariance matrix

for the estimate to by P it now follows frofi(4.5.l ) that
cP.

2=
2

u 2
=~Yo‘E

‘o K-1 ‘FO(FO’FO)-lFO’l

and that

‘Lp
= U2(F0’FO)-1 + o; (FO’FO)-lFO’ll’FO(FO’FO)-l (4.5.6)

o To

From the latter it follows that

Var[llEpII = U2tr{(Fo’Fo)-l} + a; 1 ‘FO(FO’FO)-2F0’1 (4.5.7)
o

To

As one might expect, (4.5.6) and (4.1.1) are equivalent expressions for

‘Cp ‘
and (4.5.7) and (4.1.2) are equivalent expressions for Var[llcp [l]. In

o
fat!, it is easy to show that u: is finite if and only if the geometric

dilution, as defined in Section ~.q,is finite.
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4.5.2 Tracking {Tn} and {pn} for n~l with Four or More Satel 1ites

In this case, we have measurements of the form

A

Tn = kn t Tnl + Fn(pn-p~) t en (4.5.8)

. . A

and, in addition, we have the previously computed estimates To, T1 , ... Tn-l .

Knowledge of these estimates will allow us to estimate Tn with a smaller error

variance than that given by (

us to estimate pn with a smal

(4.5.6).

.5.5). This estimate in will , in turn, allow

er error covariance matrix than that given by

The problem of tracking {Tn} could be approached from the Kalman filter

point of view. In fact, it is easy to show that the sequence {Tn}, generated

as

‘n+l = 2Tn t an + Wn+l

1

n~O

anti = ‘Tn - ‘n+l

will have the second order statistics of (4.3.1) if

E[wn] = O;E[WnWm] =002 6“,m

EITO] = O;E[T02] = O

E[ao] = 0;E[ao2] =002

(4.5.9)
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It would then be a simple exercise to find the Kalman filter to track the

sequence {Tn}.

This approach will not be taken, for the following important reason.

Equations (4.3,1) represent the second order statistics of {Tn} only for the

limiting case when p=l (see subsection 4.3 and Appendix G ). In this case, the

sequence {Tn} is, from (4.5.g), just

‘n=~witao
j=l

A Kalman filter based on (4.5.9) will tend to estimate both .Tn and ~o, with

the estimates for Tn depending on those for ao. Because U. is a random

variabl e, the estimates for a. wil 1 converge after a short time, and from

that time on the estimates for Tn will depend on this limiting value.

In the actual case when p is strictly less than one, the dynamics of

(4.5.9) are not a good model for {’n}. Therefore, the random variable ~. has—

no relevance to the process {Tn}; and therefore, basing estimates for ~n on an

estimate of a. is clearly absurd. In short, if one were to use a Kalman filter

to track {Tn}, the following phenomenon would be observed: initially, while

“ao‘tis being estimated, good estimates of Tn would result; however, after the

estimate for “a0“ has converged, poor estimates of ‘n would result.

To circumvent tnis problem, wnile at the same time using the simple second

order statistics of (4.3.1), we shall take the following approach. We shall
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.
constrain the estimate Tn to be a function only of the current measurement,

.
~n, and the most recent past estimate, Tn-l . Further, we shal1 constrain this

function to be 1inear.

We begin by estimating T, . Define the increment Al as

A1=TT -TO-;

so that,

~1
‘Tot; +A

1

A

‘T +;+ A-<
o 1

To

where c is the error in estimating To. Because c is a function of Co it
To To

follows that

Var[AT
2 t U2- ETOI= OA, ~

To

=20:tu2
E
To

where the last line follows from (4.3.lc). Therefore, given the eStiMate To,

the mean and variance of T1 are jUSt:

A

E[T, ] ‘To+;

a:,=var[T1] = 2002+U;
‘o
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The above may now

results in Appendix H,

be regarded as a priori statistics. Then, using the

the observation (4.5.8) leads to the estimate

where

A A A A

~1
= ~ll’(l-F1( F, ’F,)-lF,’) [T1-kl-(~o+~)l] ‘To+;

Y. =
1

~ )(K-l’F1(FI’F1)-l F1’l)azt (2002+02

To

(4.5.10)

(4.5.11)

Denoting the error in this estimate as

~ =;
- T1

‘1 ‘

we have, from Appendix H, that

~2(2G02 + O* )
ETO

o: = = 02Y1 (4.5.12)
~1

0 ~ )(K-l’F1tl’F1)-l F,Il)~2+(2u2+a*

To

Having estimated T, , we can now estimate p, . From Appendix H we 9et

the following:

A

P1 = P~ t (F1’F1)‘lF1’(~l-kl-~ll) (4.5.13)

and the error covariance matrix and rms error are

125



= a2(F1’Fl)
-1 + ~2

‘E
~ (F,’F

P1 T1

Var[llCplIll = O*tr{(FI’F1 )-’} t o:

T1

Formulas (4.5.10) through (4.5.15) exhibit

through (4.5.7). Note in particular, that

used in exactly the same manner in finding

respectively.

We are now in a position to determine

)-lF,’ll’F1(FI’F1 )-l

‘F1(F1’F1)-2F1’l

a marked similarity

the estimates for To

(4.5.14)

(4.5.15)

to (4.5.2)

and T, are

the estimates for P. and P1 ,

how ~. is to be computed from ;n
A . !,

and T It is clear that, given Tn-l , the mean of Tn is
n-1 .

A .
EITnl Tn_l] = Tn-l t ~

.
Also, let us define the VarianCe Of Tn, giVen Tn-, , as u: :

n

U* ~ var[Tn] Tn-,]
A

Tn

Then, from Appendix H we have

A
. -1 ,
‘n

= Ynl ‘[l-Fn(Fn’ Fn) Fn 1 [Tn-kn-(~n-ltF)l] t ~n-l t ~

bn = P; + (Fn’Fn)-lFnI (fn-kn-~nl )

0:
n

‘n =
~2t02 (K-l’Fn(Fn’Fn)-’Fn’l)

‘n

(4.5.16)

(4.5.17)

where
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The resulting error statistics are just

2
‘ET = 02 Yn (4.5.18)

n

‘Ep= 02(Fn’Fn)-1 t 02~ (Fn’Fn)-l Fn’ll ‘Fn(Fn’Fn)-l (4.5.19)

n n

A A

Thus, the estimates Tn and pn,are

if we can determine the constants Yn.

bn = K-l’Fn(Fn’Fn)-l Fn’l

so that

To find o; we write
n

t=+A‘n = ‘n-1 n

.
+T+A-~

= ‘n-l n ‘n-1

well-defined by (4.5.16) and (4.5.17)

For notational simplicity we define

(4.5.20)

Therefore,
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a2 = V“ar[An-ET ]
‘n n-1

= Var[An] + Var[ET ] - 2E[AnLTn-,1
n-1

= 2U: + u2yn-, - 2E[AnLT 1
n-1

where the last line follows from (4.3.1) and (4.5.18).

(4.5.21)

To determl ne EIAnCTn_l] we need an expression for CTn_,. From (4.5.16),

C = ~n-l - Tn-l
‘n-1

A .

= Yn_ll ‘[l-Fn_l(F’n-lFn-l)“F’n-,][fn-,-kn_,-(Tn-2+~)l]+Tn_2t~-Tn_,

But ,

.
‘;- Tn-, =c‘n-2

- An-l
‘n-2

and, using (4.5.8),

c= Yn-ll ‘[I-Fn-T (F’n-lFn_l )-l F’n-ll[Fn-l (Pn_,-P~-, )-(CTn_2-An-l )l+Cn.ll
‘n-l

tc - An-l
‘n-2

c = (Yn-16n-1-l )(An_l-CTn-2) tterm in En-l
‘n-1
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Therefore, using (4.5.20)

‘Tn-, ]=- ’22 ‘E[AnAn-’] -E[AnETn-2]) ‘4522)
E[A c

u2+6n-loTn-,

From (4.3.1) we can compute E[AnAn-i] recursively as follows:

E[An2] = 2U02

EIAnAn-ll=E[(An-l+An)An-l-An!ll

= (uo2t2ao*) - 202 =00*o

EIAnAn-*l= Er(An-2+An-l+An)An-*-A:-*-An-]An-*1

= (uo*t300*) - 2UO*-U 2 = ~o*o

and, in general,

[

2 i=0

E[AnAn_i]= 2oo~

l<i<n-1
~o ‘ —–

(4.5.23)

We can now use (4.5.20) through (4.5.23) to construct the sequences {yn}

and {oz }. We have, from (4.5.2)
‘n

Then,

Yo=&
o
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2 = 2UO* + 0*%5
T1

0:,
YT=—

2
02tB,UT

1

252

~:2 = 2UO* +u*y+—1 E[A2A11
2

U*+B,UT
1

~202 20202

‘1 +
o

=2uo*t — —
2

U*+B,OT,
2

o*tBTuT ,

2
a
T*

Y2=—
2

U*%2UT
2

~:3=2002t02y2t *U:
02

—(E[A3A21 t y[A3A,l )

u*tB2uT u*t6,5T
2 1

22
Ou.

T*= 2502 +—
2

u*t62uT
2

Continuing in this manner, it is

2020 2
0 02

t ~(lt —
2)

U*+@*UT u*tBTuT
2 1

apparent that
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and

~2a2

~2 =“
‘n-l

‘n 2
a2+6n-laT

n-1

[

21+

[ [

02 ,+ ~ ,+ ...+ 2U0
2

02+6n_1uT
2

02+6n-2uTn_2
n-1

..[t&]..]
1

(4.5.24)

(4.5.25)

The constants Bn depend on the unit vectors from the satellites to the

aircraft:

Bn = K-l’Fn(Fn’Fn)-l Fn’l

where
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I

An arbitary rotation of all of these unit vectors wil1 carry Fn to the matrix

Tn :

~n = FnR’

where R is an orthogonal

RI = ~-1

matrix:

Under this transformation, Bn changes to ~n:

En = K-1‘~~~’n~n)-l~’n 1

= K-l’FnR’(RF’ nFnR’)-l RF’n 1

K-l’FnR’R(F~ Fn)-lR’RF’n 1

= @n

Since over a short period of time there will be only slight changes in the

angles between the unit vectors,

en = 6 = constant

With this assumption,

to a limit a:. In fact, at

t is

this

we may assume that

easy to argue that the numbers U* converge
‘n

limit, we have from (4.5.24)

132



Then, since from (4.5.25) we have

where ~ ,is the 1imit of the Yn, we now have the followin9 equation in Y :

02~ =y.z+2..2~[l-y~]i
i=o

2002
=yu2+~

Therefore, y satisfies the following cubic equation:

2002 2002

Y3+T ~-==o

U6 06

Using the wel1-known method for finding roots of cubic equations [7, pg. 7],

it is easy to show that the above cubic equation has only one real root. The

value of this root is

y= ~&)l’3 l[ltJ-]1’3+[1-Jm~’31

(;.5.26)
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where

R

We may

= K-l’F(F’F)-l F’l

now note that, rather than use the numbers Yn as given by (4.5.24)

and (4.5.25), we could probably use y, as given in (4.5.26), in determining

the estimates ~n and ~n by (4.5.16) and (4.5.17). The only difference would

be that the estimates for small values of n would not be quite as good.

4.5.3

Suppose

and that the

Tracking {pn}for nLN+l with Three Satel1ites

that we have tracked {Tn} and {pn} with four or more satel 1ites,

estimators have reached steady state by time N, i.e., that

where y is given by (4.5.26). Also, suppose that between times N and N+l the

number of available satel1ites drops to three. For example, a satel1ite might

fail or become disadvantaged due to aircraft banking. We would 1ike to

determine how long the aircraft may be tracked with acceptable error using

only three satellites.

Since we have only three satel1ites, it follows from Appendix H that the
.

best estimate for Tn is just the mean of Tn given T N. But
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‘n =
TN t (n-N)~ t ~ Ai

i=N+l

= ‘N ‘~)~+ $N+l ‘i - ‘.N

Therefore,

AA

= TN + (n-N);
‘n

and

n

[1 ]

n

= Var Ai tu2 -
L [12E~AiCTNi=N+l‘N i=N+l

From (4.3.1) we have

n

Var
[z 1Ai = ao2[(n-N) + (n-N)*]
1= +1

and from (4.5.18)

U:T=U2Y*.
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From the previous section, for i > N,

m

- E[Ai ETN] = ~ Uoz(l-yB)j

j=l

Thus ,

2
OET = 5*Y + :02 [(n-N) (~+ 1) + (n-N)21

n

2 [~ (n-N) t (n-N)2]
Q:, = a2Y + U.

n

Then, from Appendix H , the estimate for ~n is

A

Pn = pi t Fn-l(?n-kn-~nl )

(4.5.27)

(4.5.28)

and the error statistics are

‘Ep= 02( Fn’Fn)-’ + o: Fn-lll’Fn’-l (4.5.29)

n
T
n

Var [!i~pnl~]= 02 tr{(Fn’Fn)-l} + O: l’(Fn’Fn)-’ 1 (4.5.30)
T
n
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where, in these formulas we have used the fact that since Fn is now 3 by 3,

Fn-l exists if (Fn’Fn)-l does.

Applying (4.5.27), we see that Var[llCp Illincreases as (n-N)2 for large
n

values of (n-N):

Var [IlcpIll = 02 tr{(Fn’Fn)-ll
n

+ {OzY + uo2[~(n-N) +(n-N)2]}l ‘(Fn’Fn)-l 1

In the above, of course, y and B are the limiting value of yn and the COnStant

value of 6n, respectively, for O<n<N.—

4.5.4 Summary of Tracking and Estimating Procedures

Probably the most striking observation to be made from the results of the

previous three sections is the form of the estimate of Pn. In all three cases,

we have

A

Pn = p; + (Fn’Fn)-lFn’[;n-kn-~nl]

A

where Tn is the appropriate estimate of Tn. In the special case where K=3,

we can replace the matrix (Fn’Fn)-lFn’ by the matrix Fn-l, since Fn is square

in this case. Of course, we have assumed throughout that (Fn’Fn)-’ exists;
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this is equivalent to assuming that three of the unit vectors Uni , i=l ,2,...K,

are 1inearly independent.

The method of estimating Tn does vary, however. We use a least squares

estimate of Tn whenever K>4 and we have no statistical information, or at—

best very poor statistical information, about Tn. This will be true when n=O,

or just after having tracked {Tn} for some time with K=3. This ,least squares

estimate, for the case n=O, takes the form

A

To
= yol’(l-Fo(Fo’Fo) ‘lFo’)(;o-ko)

where

1Yo=~=
K-1 ‘FO(FO’FO)-lFO’l

It is important to notice that if K=3, then B. is

B. = K-l’FO(FO’FO)-l FO’l

=K-1’l =0

Thus, it is impossible to estimate To with less than four satellites.

For n~l , and

information about

. . .
with K~4, the estimates To, T,, ...Tn-, provide statistical

Tn. Thus, we use a constrained 1inear minimum=mean-square-
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error estimate of Tn; this estimate is of the form

~n = ynl ‘[l-Fn(Fn’Fn)-lFn’][;n-kn- (~n-lt~)l] t~n_lt ~

where

~:n
~2+02 (K-llFn(Fn’Fn)-lFn’l)

‘n

and the sequence {o~n] is given by (4.5.24) with

U* = 2U02 t 0*%
~1

It was argued that Bn can be expected to be

long periods of time. The criteria for Bn to be

relative angles between the unit

constant. Under this assumption

to a limit y given by (4.5.26).

(4.5.31)

almost constant over fairly

constant are just that the

vectors Uni remain constant, and that K remains

it was shown that the sequence {yn} converges

Defining the parameter a as

(4.5.32)

where B is the constant value of En, (4.5.26) can be written as
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(4.5.33)

where

v(a) = ; a“3{[l+ml”3 t [1-fial”3} (4.5.34)

Finally, if K suddenly drops to three, due to aircraft banking or a

satellite failure, we must estimate Tn by extrapolating from the eStiMateS
.A A
To, T1, ...TN, where N is the laSt tiMe that fOUr or more Satellites are

available. The estimate is simply

We are also interested

estimate error, ~p . From (
n

(4.5.27) and (4.5.30) we have

n the variance of the norm of the position

.5.5) and (4.5.7), (4.5.18) and (4.5.19), and

Var [I(CPIll = 02[tr{(Fn’Fn)-1} + Ynl ‘Fn(Fn’Fn)-2Fn’1] (4.5.35)
n

for al1 three cases. Recall that 02 is the variance in measuring the time of

arrival Tni, plus > times the variance of the tracking error, in the radial

direction, of sate~l ite i, plus the variance of random relays in the signal

propagation due to atmosphere refraction.
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The

fOr Tn.

parameters yn in (4.5.35) depend on the type of estimate

When we use the least squares estimate, e.g. , when n=O,

that is used

When we are tracking the sequence {Tn} with a

(4.5.36)

inear estimator, yn s given by

(4.5.30), and we have seen that Yn converges to y:

Yn + y = ~(u) (4.5.37)

For the case where K=3 and we are estimating Tn by extrapolation frOm TN, we

A

have from (4.5.27), (4.5.32), and (4.5.33)

+
2- a (n-N) + (n-N)2}]Yn = +[v(a) + # ~{ $ ~

In the above expressions

and that Dn=@for OSnsN.

we are assuming that K remains constant for O~n~N,

We have shown in Section 4.5.3 that if K is

angles between the unit

is constant for O<n~N.

the quantities

vectors Uni are constant

A similar argument shows

constant for O~n~N and if the

over this interval , then Bn

that under these assumptions

tr{(Fn’Fn)-l}

and

l’Fn(Fn’Fn)-2Fn’l
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also remain constant for O<n<N. Therefore,——

just the factor by which the second term in

the quantity $(a) in (4.5.37) is

(4.5.35) is reduced, from its

value at n=O to its 1imiting value in the interval O<n~N, by tracking the

sequence {Tn}. We shal1 see from examples in the next section that the second

term in (4.5.35) always significantly dominates the first term; thus, by tracking

the sequence {~n}, Var[llEp II]can be reduced to approximately $(a) .Var[llCp Ill.
n o

The quantity $(U) does not have a simple interpretation in terms of the

relative sizes of Var[ll$ 11]and var[l~~ Illfor n>N. The reason is that when

the number of satel1ites ~rops to three,nthe quantities tr {(Fn’Fn)-l} and

1‘Fn(Fn’Fn)-2Fn’l both increase, but by amounts that depend on the particular

satel1ite constel lation.

The value of $(a) does, however, play a role in how quickly the sequence

{yn}, for O<nSN, converges to its 1imiting value y. In fact, from the derivation

of (4.5.26) it is apparent that the rapidity with which Yn converges to Y is

more or less governed by how quickly the geometric series

converges to the limit [V(a)]-’ . For example, we can say that the number of

steps necessary for Yn to converge to within (0.1)y of y is approximately

1
n ‘log(l-$(u))

-1

- 2.3
‘m-’
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for small values of

Var[~Cp II]is small
n

$(a). Thus, we would like ~(a) to be small, so that

for O<n~N, but not so smal1 that the convergence of {yn}

to y is very slow.

A plot of the function $(a) is shown in Figure 4.1. Two USefUl approxi-

mations may be derived from (4.5.34); they are

$(a) = 1-+ a-’, for a>l—

4(U+ = ;(2) l/3[al/3-(~)2/31

= 1.89[al/3_ (~)2/31,

These approximations also appear on

J

for a<O.3—

Figure 4.1.

4.6 EXAMPLES

We shal1 now consider the two satel1ite constellations from Appendix D

of reference 1. For these two constellations we can determine which values

of To lead to significant improvements in tracking the aircraft as a result of

also tracking the sequence {Tnl. Also, we can determine how long the aircraft

may be tracked using only three satel1ites. These illustrated examples

provide considerable insight on the role of tracking.
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a

Fig. 4.1. The function+(a)and tio approximations.
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In the following two examples we shal1 assume that

a2 = (50 nsec)z

where U2 is the variance is the estimate of time of arrival at any particular

satellite. In each of these examples we shall consider only three values for

Go2: (5 nsec)2, 50 nsec)z, and 500 nsec)2. It will be seen that the point at

which one begins to obtain only marginal gains by tracking {Tn} is the point at

which
22

~o %0

In each of the two examples there are initially seven or eight satellites,

all within a 45° half-angle cone with a vertical axis and the vertex at the

aircraft. This restriction, i.e., all satellites lying within such a cone,

was used in reference 1 to insure that,the signal from an aircraft, banking 30°

in any direction, could always be received by each of the satellites at a level

sufficient for detection.

In determing how ,long the aircraft can be tracked using only three

satel1ites, the following method was used. The three most optimally positioned

satel1ites of the initial seven or eight were selected; these satel1ites were

the most widely spaced triplet of satel1ites within the constraint cone. It

was then assumed that at time n=N, all satellites but these three were dis-

advantaged. The results on tracking the aircraft with three satel1ites are

optimistic, in the sense that the three best satel1ites are used.
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The latitudes and longitudes of the subsatel 1ite points for the two

examples are listed in Table 4.1. The satellite numbering is such that

satellites 1, 2, and 3 are used in tracking with three satellites, In both

examples, the aircraft is at

aircraft latitude = 45°

aircraft longitude = 120”

The parameters B, tr{(F’F)-l}, and 1’F(F’F)-2F’1 are listed in Table 4.2.

It should be noted that in both examples, B is quite small . Thus, in the

expression for the variance of the 1east-squares estimate for po:

Var[lcp ill = u2[tr{(F’F) ‘1} +~’F(F’F)-2F’1]
o

the second term obviously dominates. This is particularly true in Example II.

It should also be noted that when the number of satel1ites is reduced to

three, the quantities tr{(F’F)-l} and 1 ‘F(F’F)-2F’1 both increase; this increase

is substantial in Example 11.

For each of the examples, and for the three values of Oo: 5 nsec, 50 nsec,

and 500 nsec, the following quantities were determined:
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Table 4.1. Latitudes and Longitudes of Sub-Satel 1ite Points.

Example

I

II

Satel 1ite

1

2

3

4

5

6

J

1

2

3

4

5

6

J

8

Latitude

14.9

63.4

36.6

51.0

51.0

60.1

60.1

27.0

44.5

62.6

62.6

56.2

27.0

44.5

56.2

Longitude

152.7

115.0

101.8

123.2

106.8

80.5

79.5

109.8

129.5

80.4

114.6

111.6

85.3

65.5

83.4

Table 4.2. Satel 1ite Constellation Parameters.

tr{(F’F)-l} 1 ‘F(F’F)-2F’1

Al1 Satellites Al1 Satel1ites

Example B Satel1ites 1 ,2,3 Satel1ites 1,2,3

I .0543 7.84 9.39 1.30 5.76

11 .00355 3.99 14.9 1.16 14.3
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(ii) $(a)

(v) -J-p=

(Eq. (4.5.32))

(Fig. 4.1)

standard deviation for least squares estimate

limiting standard deviation while tracking {~”}
with all satellites

standard deviation of first estimate made with
three satel1ites.

These quantities are exhibited in Table 4.3. Finally, Figures 4.2 and 4.3

illustratehow ti”a~iF~ varieswith n

Let us denote, as in subsection 4.1, the geometric dilution, using the least

squares estimate, as

‘=im
r{(F’F)-l} t ~1’F(F’F)-2F’l

then, examination of Table 4.3 and Figures 4.2 and 4.3

rules of thumb:

(1) When B is very smal

{Tn} with all satel”

‘o < a.

(2) When k is not parti

, and thus k very large,

reveals the following

(Example II) tracking

ites can significantly reduce ~ar[ll~p Ill if
n

ularly large (Example 1), tracking {T”} with all

‘atellites‘i:l ‘educem’ “but this reduction is significant

only when U. < .lu.

14a
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\

.

:
z
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Table 4.3. Estimation Parameters.

Example

I

11

u

50 nsec

50 nsec

50 nsec

50 nsec

50 nsec

50 nsec

*

50 nsec I 1.61x10-2
500 nsec I 1.61

5 nsec 1.05X10-5

50 nsec 1.O5X1O-3

500 nsec 1.05X10-’

o(a)

.1.0

.40

.925

.04

.18

.635

282 ft

282 ft

282 ft

910 ft

910 ft

910 ft

160 ft

209 ft

274 ft

205 ft

396 ft

727 ft

jvar[ll~PN+,lll

230 ft

450 ft

1840 ft

677 ft

1500 ft

4200 ft



(3) There is a significant jump between
iv- and ti-.

This is due largely to the increases in tr{(F’F)-l} and 1’F(F’F) F’1

when the number of satellites drops to three (Table 4.2).

(4) If U. ~ .1 0, then the aircraft may be tracked using three satellites.

The interval of time over which the tracking error wil 1 be acceptable

varies from about 30 to 60 seconds.

4.7 CONCLUSIONS

The examples of the preceding section indicate that the gains to be

derived by tracking the sequence {Tn} are significant only when the accuracy of

the aircraft clock is greater than or equal to the accuracy with which the pulse

times of arrival are measured, i.e., when ~o~u. We have seen that if ao~u, then

the aircraft position estimates may be improved by tracking {Tn}, when four or

more satel1ites are used; this improvement may be quite significant when the

geometric dilution with no tracking is large. However, it is only when Gos9.1a

that one can estimate aircraft positions, with acceptable error, over several tens

of seconds, while using only three satellites.

The above conclusions result, at least in part, from two assumptions that

we have made, one concerning the model for {Tn} and the other concerning the form

of the estimator fOr T . The first of these assumptions was that (see Appendix H

;2
and subsection 4.3) al =a2 , that the component of Var[Tn] due to the indepen-

dent increment process and the component of Var[~n] due to “l/f” noise are com-

parable, when n=l. This assumption seems to be in agreement with the specifications
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of typical oscillators. However, it could be that the value of n, where these

two components are comparable, is much larger, say, n=lOO. If this were the

case, then the improvements to be gained by tracking {Tn} would be more si9nifi -

cant, particularly when tracking the aircraft with only three satel1ites.

The second assumption was that a reasonably good estimate of Tn could be
A

obtained even if it were constrained to be a function of onlY Tn-l Y the most
.

recent estimate, and Tn, the current measurements of times of arrival . The

estimator that was derived is the optimal linear estimator subject to this

constraint. However, it may be easily shown that {Tn} is not a Markov Process

of finite order when ~P<l (see Appendix G for the significance of p); thus,

in particular, the estimate Tn_l does not contain all of the relevant information

i<n-1}, as it would if {Tn} were a first order Markovin the sequence {ii, _

process. Only additional analysis will reveal if a significantly more nearly

optimal estimator would result if Tn were allowed to be a function of, say,
A

‘n-M’ i ,...~n for some smal1 integer M>l .n-M+l
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APPENDIX A

THE DEPENDENCE OF PD ON pd

In this appendix we derive a lower bound to the parameter PD, which

illustrates its dependence upon the threshold decision rule parameter, pd.

In order to derive this lower bound we must specify the procedure by which

the first stage decision is carried out. We now do this.

The first stage decision decides whether or not a given aircraft is

in the airspace. Consider a particular aircraft, aircraft “i”. The first

stage decision rule that we shall assume wi11 depend upon the number of 1ists

in the set {List (i,j), j=l, ...K} which have at least one entry. Of course

the representative surveil lance system is not forced to operate with this

decision procedure. However, this is a procedure which is available to it

and it does use most of the data available to the ground processor in an

optimum way.

Let us define the following indicator function:

P (i,j) = 1, if List (i,j) has at
least one entry (Al)

= O, otherwise

Let us also assume that the tracking length, K, is short enough to assume

that aircraft “i” is either completely present or completely absent over the

entire K time segments. This assumption is not unrealistic.

The first stage decision is carried out by the ground processor using

the space of vectors I

{[p(i,l), o(i,2),.. .o(i,K)]} (A.2)
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as an observation space. A Neyman-Pearson Test, designed for a specific PD,

is set up using this observation space.

Let [r(i,l), r(i ,2),,..r(i,K)] be a specific realization of [p(i,l),

p(i,2),. ..p(i,K)]. The Neyman-Pearson test utilizes the 1ikelihood ratio A,:

A =
1

Using this ratio the

and the following P
D

Let K. equal

Prob (p(i,l) = r(i,l) ,...p(i,K) = r(i,K)l Ho(i))
(A.3)

Prob (p(i,l) = r(i,l) ,...p(i,K) = r(i,K)l H,(i))

decision test is

decide H,(i) if Al ~ AIK

decide H (i) if A, > k,K
o

is realized with the test

PD(ll) = Prob (A, ~ a! I Hi(i)) (A.5)

the number of lists, in the set {List (i,j)}, which have

(A.4)

no entries. The random variables r(i,j) are independent and identically

distributed. The likelihood ratio, (A.3), may thus be equivalently written

as

(
K.

)(

K-K.
Prob (p(i,l) = 01 Ho(i)) Prob (p(i,l)= 11 H (i))

‘1 = Prob (P(i,l) = 01 Hi(i)
‘)

Prob (p(i,l) = 11 Hl (i))

(A.6)
Using (A.6), the test (A.4) may be written as decide H,(i) if
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)

(( Prob (P(i,l) = 01 H (i))

‘)(

(Prob (P(i,l) = 11 Hi(i))
K Ln + Ln
o Prob (P(i,l) = 01 H,(i)) Prob (p(i,l) = 11 Ho(i)) ))

Ln Al (A.7)

-(( Prob (p(i,l) ~ 11 Ho(i))
<K -Ln

Prob (P(i,l) = 11 Hi(i)) )

(A.8)
Decide Ho(i) otherwise

The coefficient of the left hand side of (A.7) is positive. We may thus

transpose this coefficient and observe that the decision test simplifies to

a simple majority decision. Since the parameter Al is at the disposal of the

designer of the test, we may appropriately specify it so that our test can

be simply written as

Decide H, (i) if K. s t K

(A.9)

Decide Ho(i) if K. > t K

where

which

the test parameter t

this test yields is

is an element of [0,1]

PD=Prob(Ko~t KIH1(

The detection probability

i)) (A.1O)

We have suppressed the dependence on t. We shall now lower bound PD.

First, consider the case when K equals 1. The only meaningful Value

for t in this case is zero. The decision test then becomes
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Decide H](i) if K. = O

Oecide Ho(i) if K. = 1

and the detection probability can be lower bounded as

(A.10a)

Now, consider the case when the tracking length K is strictly greater

than 1. Observing (A.1O), PD may be rewritten as

Prob (K - Ko> t K I Hi(i)

Prob (-Ko> K(t-1)1 Hi(i))

Prob (Ko< K(l-t)l Hi(i))

1 - Prob (K. ~ K (1-t)l HI

Using Chernoff bound we have

-vK(l-t) VKO
Prob (K. ~K (l-t)] Hi(i)) s e Ee

i)) (All)

(A.12)

The expectation is taken under the condition that H1 (i) is true. We nOte that

K

K. = ~ (1-p(i,j))

j=l

in which case (A.12) becomes

v(l-p(i,l)
prob (K. z K(l-t)l Hi(i)) s exp (-vK(l-t) t KLn E e ) (A.13)

157



(The notation exp (x) denotes ex)

The parameter J in (A.13) is non-negative but otherwise arbitrary at this point.

Now ,
v(l-p(i,l))

Ee = P(p(i,l) = O] H, (i)) e“ t P(p(i,l) = 11 Hi(i)) (A.14)

Applying (A.14) to (A.13) and the result to (All) yields

Po~l exp -K (“(l-t) -Ln (P (p(i,l) = 01 Hi(i)) e“ + P (p(i,l) = 1 I H,(i)))

(A.15)

Now

P(p(i,l) = 0) Hi(i))= 1 - Pd4

(A.16)

P(p(i,l) = 11 Hi(i))= pd4

where the approximation holds closely assuming reasonably large enough values for

pd. Specifically, if P(p(i,l) = 1 I Hi(i)) is expanded into probabilities of the

events component to {p (i,1) = 1I H, (i)} then the term pd4 wil1 dominate since

all other terms wil 1 have a faCtOr of (l-pal). When the approximation doesn ‘t

hold exactly, the lower bound of (A.15) will still be true if the approximation

is used. Applying (A.16) to (A.15) yields

4V
P. >1 -exp -K (v(l-t) -Ln ((l-pd )e + Pd4)) (A.17)

.)is now picked to maximize

“(l-t) - Ln ((1-pd4) e“ + pd4) (A.18)
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One may note in observing (A.17) that if t ‘< Pd4 then PD wi11 approach

1 as K gets larger and larger. Similarly if PD is fixed at some value and K

is fixed at some value, then (A.17) can be made to hold by taking t sufficiently

smal1 and pd sufficiently large. In any event (A.17) is the desired lower

bound for K > 1 and

4
‘D > ‘d
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APPENDIX B

A LOWER BOUND TO PF

We derive a lower bound to the parameter PF in this appendix where

we define (by Eq. 2.5.3)

pF = p (yF(i) = lIQ ~(i)=l)

In the terminology of the first stage decision process described in Appendix

A this can be rewritten as

PF = Prob (K - K. >tK I Ho(

which becomes

PF = Prob (K. <(l-t) KI Ho(

to

))

)) (B.1)

First, lets consider the case when K=l. t is now zero. PF simplifies

PF = Prob (p (

Consider the following event inclusion under

,1) = 11 Ho(i)) (B.2)

the condition that Ho(i) is true

{P(i,l) = 1} o @l (B.3)

where @l is defined as
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‘1 :

consider Seg. (1)

it. In the right

and the output of Filter (i,1) during

hand subsegment of length a seconds, a

left most false declaration of the

“i‘s” Signature at a sample point

binary threshold decision process.

arrival of aircraft

is declared by the

Simultaneously, at

the outputs of Filter (i,2), Filter (i,3) and Filter (i,4

[

left most false signature arrival times are declared in

subsegments centered at the point where the noted false

declaration in the subsegment of Filter (i,1)‘s output

occurred, and having radii 6.
(B.4)

where Filter (i,j) is the fi1ter processing the output of the jth satel1ite

matched to the ith signal . We assume in (B.4) that time in the matched filter

outputs is proceeding from left to right. If event @l occurs, it will surely

imply an entry on List (i,1) since it corresponds to a valid signature arrival

time triplet. The conditio~ in the event definition that the signatures

arrive within B seconds of each other, (B is the maximum time delay between

a signature reception from two different satellites), insures this. Thus,

from (B,3) we have

Prob (p (i,l) = ll’Ho(i)) 2 Prob (Ql Ho(i)) (B.5)

In a subsegment of length a seconds there are 2Ba matched filter samples

considered by the binary threshold decision process. In a subsegment of 1ength

26 seconds there are 4BB matched filter samples considered we have then
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Prob

and

Prob

(B.7) can be applied to

when K=l.

3

(

2Ba

)(

4BB
( 011 Ho(i)) = 1- (I-pf) 1- (l-pf)

)
(B.6)

(( p(i,l) = 1 I Ho(i))L 1- (l-Pf)
2Bu)(-(1-pf)4B)3 ‘B7)

(B.2) to obtain

‘F L(- ‘1-pf)2B]~- ‘1-pf)4Bt3
(B.8)

We now consider the case when K is greater than one. The following

event inclusion, under the restriction that Ho(i ) is true, should be obvious

Kt+l
{ A false alarm on Seg. (K)} 2 n {p (i,j) = 1} (B.9)

j=l

From (B.8) and the statistical independence of P(i ,j), we obtain immediately

Kttl
PF~ (Prob ( p(i,j) = 1 I Ho(i))) (8.10)

Applying (B.5) and (8.6) to (B.1O) results in

2Ba 4B% 3
PF ~exp [(Kt + 1) Ln ((1- (l-Pf) )(1- (l-Pf) ) )1 (8.11)

Which is the desired lower bound and which gives the lower bound for the

case when K=l under the convention that t*O in this case.
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APPENDIX C

A LOWER BOUND TO PROB [yo(i )=11

In this Appendix, we derive a lower bound to prob [yD(i) = 11. AS in

previous Appendices, we first consider the case when K=l.

When K=l the event [yD(i) = 11 includes the event *1 ~ defined by (B.4).

Hence,

[yD(i) = 11~P1

We obtain then directly from (B.6)

Prob [yD(i) = 1] ~ [1 - pf)2B~] [1 - (1-pf)4BB]3

This is the desired lower bound when K=l .

We can now concentrate our efforts on

Our derivation is begun by considering the

subsection 2.5.2. We will be more explicit

that a sequence of time difference triplets

an aircraft in flight.

(Cl)

the case when K is greater than 1.

definition of y~(i) as defined in

now about what we mean by saying

appears as if it were generated by
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Consider aircraft “i” in flight and two successive transmissions of

aircraft “i‘s” signature. Let us cal1 the time difference triplets;

2 d2 d;).(d:, d), d~) and(dl, *, For our purposes it wil1 be enough just to deal

with d: and d;. Now ,

d! =Tl(l) -T1(2)

d; = T2(1) - T2(2)

where

T, (1)

T1 (2)

T2 (1)

[

Signature reception time of aircraft “i ‘s“ true

signature from Satel 1ite 1 during the earlier of the

sucessive transmissions. 1

[

Signature reception time of aircraft “i ‘s“ true

signature from Satel1ite 2 during the earlier of the

sucessive transmissions. 1
ISignature reception time of aircraft “i ‘s“ true

signature from Satellite 1 during the later of the
I

(successive transmissions. J

Signature reception time of aircraft “i ‘s” true

[

T2 (2) = signature from Satellite 2 during the later of the

sucessive transmissions. }

Let us look at what maximum value Id] - d? I can have
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Id] - dfl = IT,(l) - T1(2) - T2(1) + T2(2)I

Id! - d~l = I(T1(l) - T2(1)) - (T1(2) -T2(2))1

Id! - d~l : IT,(1) - T2(1)I t IT1(2) - T2(2)I

Let

where v and c

maximum aircraft

speed of light

are expressed in

(C.2)

velocity (C.3)

(C.4)

the same units of miles per second. The

maximum radial distance that any aircraft can move from a satel 1 ite between

two successive transmissions is va miles. Therefore,

IT,(1) - T2(1)I S? seconds

\T1(2) - T2(2)I :$ seconds

Combining these inequalities with (C.2)

Id! - dfl ~~

we conclude that

(C.2) can now be used to define what we mean by

satisfying the constraints of

the great majority of general

aircraft flight.

aviation aircraft
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two time difference triplets

Because aircraft,

rarely fly at the

particularly

maximum

.



velocity, v, we shall be more strigent than (C.4) in defining the

Definition C.1 : Let (dj, d:, d:) be a time difference triplet on

constraints:

List (i,m)

and let (d;, d;, d:) be a time difference triplet on List (i,m+l), m=l ,...K-l.

These two time difference triplets satisfy the constraints of aircraft flight if

(C.6)

With this definition we can reconsider the definition of the indicator

function, yD(i) as defined in subsection 2.5.2. With respect to subsection

2.5.2, we mean by the statement: “This sequence of time difference triplets

appears as if it were generated by an aircraft in flight. ” That any two

successive time difference triplets in the sequence satisfy the constraints of

aircraft flight as defined by Definition C.1. For convenience, we shall now

introduce the indicator fUflCtiOn yD(i ,m), which is similar to y~(i), the event

&(m+l ), and the term A.

yD(i,m) = 1, if there is a first sequence of m arrival time difference

triplets, (T(l)-T(2), T(l )-T(3), T(l )-T(4)), with the first

sequence member on List (i,1),... the mth sequence member on

List (i,m). The elements of this sequence have al1 their

component arrival times, T( ), only generated by interference

(not interference plus aircraft “i ‘s” signature) received

at [Filter (i,j)]. This sequence of time difference triplets

appears as

= o, otherwise

m=l,.. .K-

f it were generated by an aircra” t in flight.

(C.7)
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1“

A time difference triplet is completely generated by inter-

ference on List (i, m+l ) and this time difference triplet

satisfies the constraints of aircraft flight with the time

,1

difference triplet on List (i,m) which belongs to the first

sequence causing yD(i ,m) = 1.

~=

Obviously,

m=l,2, ... l-l (C.8)

The time difference triplet on List (i,m),corresponding

to the first sequence causing yD(i ,m) = 1. Cal1 the

components of A, (dl, d2> d3)

(C.9)

(C.lo)[yD(i) = 11 = [yo(i, K -11 n6(K)

in which case

Prob [yD(i) = 1] = Prob [6(k) lyD(i,K)= 1] Prob [Yo(i, K - 1) = 1]

(C.11)

, [:(:::1:3/

Prob [yD(i) = 1] = ~ Prob 6(K) Prob[A=(d1d2d3) lYD(i,K-1)=11

A

Prob[yo(i, K-l) = 1] (C.12)
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The following event inclusion should be obvious under the condition that

[yD(i,K-1)=11n [A=(d, ,d2,d3)l has occurred.

/Consider Seg. (K) and the output of Filter (i,1) during it.

In the right hand subsegment of length u seconds, a left

most false declaration of the arrival of aircraft “i‘s”

signature at a sample point is declared by the binary

threshold decision process. Simultaneously, at the outputs

of Filters (i,j), j=2, 3, 4, left most false signature

arrival times are declared in subsegment centered at a

distance dj-l from the point where the noted false declara-

tion in the subsegment of Filter (i,1)‘s output occurred, and

\

having radius $$ .

(C.13)

In (C.13) we mean by a “false declaration” a declaration generated only by

interference, (C.13) immediately gives

/ 1[yD(i,K-l)=ll?

[

8B vu 3——
Prob 6(K) ~ [l-(l-PfJ*Bu] l-(1-pf)3 c

1
(C.14)

A=(d, ,d2,d3)

Applying (c.14) to (C.12) we obtain

[

8BQ3

Prob[yD(i)=ll 2 [l-(l-Pf)2Bu] l-(l-pf)~ c 1Prob[yD(i ,K-1)=1]

(C.15)
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The”event [yD(i,K-1)=1] can be decomposed into [yD(i ,K-2)=1] ~ 6(K-1) just.

as [yD(i)=l] was similarly decomposed into [yD(i,K-l)=l]o d(K) in (C.8).

prob[yD(i ,K-1)=1] can be lower bounded as Prob[yD(i)=l] was in (C.15). The result

can be applied to (C.15). The same procedure can be applied successively to

the events; [yD(i, K-2)=1],. ..[YD(l,2)=1], yielding

Prob[yD(i)=l] ~
[

&U3 K-1

[1-(1-Pf)2B~l l-(1-pf)3 c 1 Prob[yD(i,1 )=1]

(C.16)

Prob [yD(i,1 )=1] is the same as the Prob [yD(i)=l] when K=l . This is obtained

from (Cl). When this is applied to (C.14), we have as a result

[ 2B1[,(,_pf,~~flK-l[,(lpf)2BProb[yD(i)=l] z [l-(l-Pf)

[1-(1 -pf)4B~]3(C.17)

I [
&~3

Prof[yD(i)=l] ~ exp (K-l)Ln[l-(l-pf)
1

2B~] l-(1-pf)3 c

+ Ln[l-(1-pf)2Ba] [1-(1-pf)4B6]3
I

which, when we compare to (Cl ), we see is the desired lower bound when either

K=] or K>l.
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APPENDIX D

THE DEPENDENCE OF pf ON SYSTEM AND JAMMER PARAMETERS

In this Appendix we shal

the system and jammer paramet,

derive an expression for pf in terms of both

rs.

Consider one of the matched filters at the ground station matched to

aircraft “i ‘s” signature. Let “y” be one of the matched filter output samples,

We define the following hypotheses:

h: =Iy is generated by noise along I (D.1)

h* = Y is generated by a combination
1 {of noise and aircraft “i ‘s” signature (D.2)

We assume that the binary threshold decision process sets up a Neyman-Pearson

test on the sample to guarantee a “sample detection probability” of at least

P~. The threshold, k, used for the test is the solution of

Prob [A(Y) s klh~] = Pd (D.3)

where

‘yIh: (ylh~)
A(y) =

* (ylh~)‘ylhl

(D.4)
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‘Pylh; and P ~* are
YI 1

the conditional probabi’

The Neyman-Pearson test is:

decide h~ if A (y) s 1

decide h; if A (y) > A

and it operates with

pf = Prob [A(Y) s Alh~]

ity densities of y)

(D.5)

(D.6)

We assume that if the signature, Si(t), contributes to the matched

filter output sample, it contributes the maximum amplitude that it can,

The white gaussian noise transmitted at a satellite by the jammer is

relayed to the ground station. It appears as white gaussian noise with power

density height J/B at the input to the matched filter. This appears as gaussian

at the output of the matched filter with a noise power of J/B watts. From this

and the preceding paragraph we immediately obtain the probability density of

output y when h~ is true:

(D,7)
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and the probability density when h; is true

2

‘(y ’h;) = *
exp (*)

Applying (D.7) and (D.8) to (D.4) and the result to (D.6) yields

which can be rewritten as

and which can be further simplified to

(D,8)

(D.9)

In terms of (D.4), pd can be expressed as

Pd = Prob[A(y) s AIh;] (D.1O)

applying (D.7) and (D.8) to D.4) and the result to (D.1O) yields

172



pd=*;ex:,:yl‘y
—-
2

fi

(D.11) can be rewritten as

which may be further simplified to

Consider the fixed value of pd and let $ be the solution of

We must have the following equality satisfied

@=i&t* ‘n’

Applying (0.15) to (D.9) results in

pf=}-~erff~ - ~

(D.11)

(D.12)

(D.13)

(D.14)

(D.15)

(D.16)
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Note that E= POT, where P. is peak signature power. We then obtain

where o is the solution of

Pd=+++erf(o)

(D.17)

(D.17) gives the desired dependence of Pf upon the parameters of interest.
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APPENDIX E

PROOF OF THEOREM 3.1

We begin by applying the restriction on a common amplitude densitY

to (3.4.6). This yields

m

Mi(v) = exp ((N-1) Ln((l-~) t ~ J C(x) eJvx dx)) (El)
-m

Now we just need to analyze the asymptotic behavior of this expression for

Mi(v). Because we are considering asymptotic behavior with N, we can replace

the coefficient (N-1) with N, without any error in our work. In order to

investigate the asymptotic behavior of Mi (v) herq we shall use the same pro-

cedures utilized by Rice in his investigation of shot noise [2].

It wil1 be convenient to define the following density function

Q(x) = (’-~) UO(X) + : C(X)

Applying (E.2) to (El) yields

m

J

j vx
Mi(v) = exp (N Ln ( Q(x) e dx))

Now ,

m. m

Ln(
/

Q(x)eJvxdx) = ~ ~ (jv)r
r=l r!

-m

(E.2)

(E.3)

(E.4)
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th
where Ar is the r semi-invariant of density Q(x), i.e. ,

m jvx

lr=#~Ln(~ Q(x) e dx)I (E.5)

avr - w V=o

J

. jvx

(E.4) is merely the Taylor expansion of Ln( Q(x) e dx) around v=O.
-0

When (E,4) is applied to (E.3) the result is

m

Mi(v) = exp (N
z

~ (jv)r) (E.6)

r=l .

Let G(n) be the probability density on ni(t). Usin9 Fourier inversion (E.6)

yields
.

J
G(n) =~ ‘exp [~nv + N

E
~ (jv)r]dv

2T -m
(E.7)

r=l .

Applying (3.4.9) to (E.5) one obtains

A=o
1

a
J

_2T ‘2_— X C(X) dx
2 a -m

Substituting (E.8) and (E.9) into (E.7) brings

(E.8)

(E.9)

.
.

G(n) = ~
J

exp[-jnv - ($ ~“ x2C(x) dx)v~]exp[N~ > (jv)r]dv
-a -m ~=3 .

(E.1O)
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.

E

ar
We can now expand exp [N ~ (jv)rl in a power series in its

exponent obtaining
~=3

. m

exp [N
x.

> (jv)r] = ~ ,+ [N “~ ~ (jv)r]m (E.11)

r=3 “=0 r=3

Colletting 1ike powers of v (El 1) becomes

. 1 NA 3 Na 4 Na

exp [N ~ ~ (jv)r] = 1 + ~ (jv) + ~ (jv) + ~ (jv)5

~=3

2 A32 6
+[~+~N ~] (jv) +...

(3!)

(E.12)

Applying (E.12) to (E.1O) and integrating tem by term brings

J

. -2
G(n) = ~ exp [-jnv - (~~ x C(x)dx) ~ ] dv

-m -m

Na3 ~ “
.

/

2

+~zn -m (jv)3 exp [-jnv -(+ J x2C(x)dx) +]dv
-m

‘A5 ~
J m (jv)5 exp [-jnv -($ Jrn x2C(x)dx) ~ ]dv

‘T 2.-. -m
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N2A32[+g+l — r l(jv)6exp [-jnv -(*
J

-2 2

2 (3!)2 -m
X C(x)dx) >] dv

-m

+ ... (E.13)

Let us abbreviate the Normal distribution on a random variable, “n”, in the

usual way as

(E.14)

Recognizing the moment generating function of a normal distribution in

(E.13) we may rewrite (E.13) as

G(n) = .X(O, W ‘x2C(x)dx)
a J -0

NA3 ~3
-——

3! dn3 d “’(o, +
J

X C(x)dx)
-0

(E.15)

-1/2 -3/2
The first term in (E.15) is O(N ). The second term is O(N ). Higher

-3/2
order terms are also O(N ). Thus, for a fixed ./a as N gets large G(n)

is asymptotic to the first term and we have

17a



which proves the theorem since G(n) is the probability density on ni(t),

Mi (v) is the characteristic function corresponding to it.
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APPENDIX F

PROOF OF THEOREM 3.3

We begin from (3.4.10)

j#i

By the definition of Cij(. ) given in Section 3.3 we have

~

‘2
x Cij(x)dx = E (nij2(t))

(3.4,10)

(F.1)

Applying the definition of nij(t), (see (3.3.7)) to (F.1) yields

J
-2

J

m
X Cij(x)dx = ; E [ Sj(x-tj) Si(x-t t T)dx]2

-m -m

The expectation is taken under the condition t - 2T ~ tj ~ t

[

02

lJ

. .
X Cij(x)dx = ~ E [ Sj(x-tj)Si (x-t tr)Sj(u-tj)Si (u-t ti) dx du] (F.2)

m . -m

tj wi11 be uniformly distributed over [t - ~T ,t] hence (F.2) becomes

J:2cij(x)dx ‘; [; ,+~m”[:Sj(x-a)Sj (u-a)Si(x-t + T)Si (u-t ti)dx du da
-m
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We lose nothing by increasing the limits on “a” to [-w,M]. Doing this

and reordering the

/

-2
X Cij(x)dx

-m

Referring to the

can be rewritten

/

m2
X Cij(x)dx

-m

integrals we have

/f
lmm

J

m

G -. -.
Sj(X-ttT) Si(U-ttT) dxdu Sj(x-a)Sj(u-a)da (F.3)

-m

definition of Rjj (t) given in the theorem statement, (F.3)

as

Jf
=&m” Si (X-t+T) Si (U-t+T) Rjj(x-u) dx du (F.4)

-m m

Let us make the change of variables q = x-u. Applying this to (F.4) yields

J
‘2 m
X Cij(x)dx = +

J
Rjj(q) dq

I
‘nSi (q+U-t+T) Si(u-t+T) du

-m -m m

Again referring to the definition of Rjj(t) this becomes

J
‘X2Cij(x)dx = &

f
‘Rjj(q) Rii(q) dq

-m .

Applying (F.5) to (3.4.10) brings

2/ .
E(n2) = ~ Rjj(q) Rii(q) dq

-0
j=l

j#i

(F.5)

(F.6)

By the Schwartz Inequality
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J
m

J‘R2
1/2

Rjj(q) Rii(q) dq i ( jj (q) dq)1’2 (\”R;i (q) dq) (F,7)
-m -w .0

with equality iff Rii(. ) = Rjj(. ).

Substituting (F.7) into (F.6) brings

-1

)
-1/2

[}.8)

When the definition of”~akai bandwidth, given in the theorem, is applied to

(F.8) we have

2 N

E(n ) ~
z

1
4a m.

j=l lJ

with equa
j#i

ity if Rii(. = Rjj(. ) for all j # i. This proves the theorem.
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APPENDIX G

A STOCHASTIC MODEL FOR THE SEQUENCE OF TMNSMISSION TIMES {T ~

The sequence {T ~ represents the sequence of times at which the aircraft

transmits pulses. It is generated by ‘the aircraft clock. Random distrubances

in this clock cause {Tn} to be a random sequence. As described in Section 4,

in some instances we would like to track, i.e., casual ly estimate, the sequence

{Tn}; and in other instances, predict the values of {Tn, n2K+l} after having

tracked the subsequence {Tn, n~K}. In order to determine the structures of

these tracking and predicting systems, and determine the resulting errors, we

need a reasonably accurate stochastic model for {Tn}.

The heart of the clock which generates {T n} is an oscillater with some

nominal frequency fo. In addition to the oscillator, the clock consists of a

counting mechanism, in the form of a digital circuit, which counts completed

cycles in the oscillater output. When

the aircraft transmits a pulse and the

the sequence {Tn} is defined as

‘n = tK(nN) + yn

the counter has registered N cycles,

counter is set to zero. Therefore,

where tK is the time of completion of the kth cycle, K(nN) is

variable equal to the number of cycles that must be completed

are detected by

completion time

the counter, and Yn is the error in detecting

of the K(nN)th cycle.
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In an effort to simplify the model for {Tn} , while at the same time

emphasizing the unusual and important aspects of the model , we shal1 assume

that

K(nll)= nN

Yn =0

To justify these simplications, we shall shortly see that tk has a component

2p
for which the variance increases as k , where p is some number S1ightly less

than one. Since, for k<<nN,

(nN + K)2P - (nN)2p ~ 2p(nN)2p - ‘k

we can approximately model the randomness of K(nN) by including in tk a

2P-1
component for which the variance increases as k , or simply as k, since

p:l. This wil1 correspond to an independent increment component in tk.

Finally, as the variance in tk will be increasing rapidly, we can assume that

a non-zero yn contributes only S1ightly to the randomness of Tn.

Having simplified the model for {Tn} to

‘n
= tnN

we need a model for the sequence {tk}. If f(t) denotes the instantaneous

frequency of the oscil later, then tk is just the time when the accumulated

phase equals 2mk, i.e.
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The instantaneous frequency f(t) is a random process that may be decomposed as

f(t) = f. + fc(t)

where f. is the nominal frequency, i.e. a constant, and fc(t) is the random

component. We shal1 assume that there

least several minutes, and a number k,

[fc(t)l<Afo, for all O~t~T

exists a time T, on the order of

on the order of 10-9, such that

(G.

at

1)

we now need an expression for tk where

f[fo + fc(t)]dt = k

o

Defining the function G(t) as

t

G(t) = /’[f. + fe(s)]ds - k

o

we see that we are looking for the zero of G(t). This root may be found by a

gradient search, which yields the sequence:



G(tk
(i-l))

~ (i) = ~k (i-l) -
k G(tk(i-l))

t (i-’) [f. + fc(s)]ds - k

t
(i-1) ‘o= -—

‘k f. + fc(tk(i-l),

Using (G.1), we get the following sequence:

~
fc(t)

tk(’) = +[1 - ;/fo ~ dt]
o

0
0

Again using (G.1) it is easily shown that this sequence converges to tk,

and that the error in tk(l ) is only on the order of ~ A*. Thus, to a very
o

good approximation,

k
F

tk = :- :j ‘f (t)dt
o

‘oE

If the correlation function for f (t) were concentrated near the time
E

origin, then, for values of k/f. larger than the correlation time-of fc(t),

the variance of~k’fo f (t)dt w&
ould increase linearly with k, and we could

o
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effectively model fe(t) as being white. However, measurements on osci11ators

have shown that, for values of k/f. greater than about one second, the
,,,=

variance Of/K””o f (t)dt increases as kzp, for some p just S1ightly smaller
o&

than one. This

“l/f” noise[5].

behavior of the variance has been attributed to “flicker” or

We need to

x(t) =-~ ~ ds

0°

develop a model for the random process

: fe(s)

One model which matches most of the phenomena observed in oscillators results

from decomposing x(t) as

x(t)= x,(t) t Xz(t) + x3(t)

where xl(t), x2(t), and x3(t) are zero mean, uncorrelated random processes.

Further,

t

Xl(t) = / bds = bt

o

x2(t) = a} w(s)ds

o
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o

x3(t) = +[J [(t - S)”
r(p + ~) -

t

+J(t

o

1 -;
2

- (-s)O ]v(s)ds

P-+

s) v(s)ds
I
J

where b is a random variable, w(s) and v(s) are uncorrelated white noise

processes with unit spectral height, a and 6 are normalization constants,

p is a number satisfying

and

The process xl (t) models very slowly varying offsets in the frequency;

x2(t) models an independent increment component of x(t); and x3(t), when P

is very close to one, models the “l/f” noise. The model for x3(t) is due to

Mandel brot, and we shal1 use several results, without proof, from [6].

We may interpret x3(t) as the (p + ~) - fold integral of white noise (Note

that when p = ~, x3(t) is just the integral of v(t). As a result, the power

density spectrum Sx3(f), if it existed, would behave as Ifl ‘2P-’, which is

what the spectrum of the integral of “l/f” noise would be, if it existed.

In determining the second order statistics for x(t), we have by

assumption
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E[x(t)]= O

and

Var[x(t)] = Var[xl (t)] t Var[x2(t)l t Var[x3(t)l

Also,

Var[xl (t)] = obztz

Var[x2(t)] = a2t

and, from Ref. [6],

2%Var[x3(t)] = B Vot

where

~+~[,p-+-(s+])p-~2ds

V. = o

[r(p t \)]*

For the correlation functions, we have

R (t, U) = ob2tU
x,

R (t, uj = a2min(t, uj
X2

TO find R (t, U), we use the fact that x3(t) has stationary increments i.e,
‘3

that

Var[x3(t) - X3(U)] = Var[x3(t - u)], t>u
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Then, since

Var[x3(t) - X3(U)] = Var[x3(t)] + Var[x3(u)] - 2Rx3(t~ u)

we have

Rx+(t, u) = ~ {Var[x3(t)] t Var[x3(u)] - Var[x3(t) - X3(U)] I
J

2V
-B20 (t2Q+u2p-It - U12P)

Combining the above, we now have

E[x(t)] = O

Rx(t, u) = ab2tu + a2min(t, u)

2V
t~(t2p t U2P - [t - U]2P)

It is apparent that, when P = 1, the effects of the “l/f” noise are

similar to those of the unknown frequency offset, b. Unless ob2 is

large, any efforts at estimating b wil1 be thwarted by the presence

quite

quite

of the

“l/f” noise. Therefore, to further simplify the model , we now assume

2
‘b

=0

We have reduced the model for x(t) so that
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E[x(t)] = O

Rx(t, u) =a2min(t,

Then, since

= # + x(y)
‘n ~

o

the second order statistics

E(Tn) = (})n
o

for (Tn) are just

2
‘2VOI(N )*P(M*P + n2p - Im

E(TnTm) = (~)min(m, n) t (~ ~ - n12p) + (>)2 mn
o 0 0

Var(Tn) = (~)n + (B2VO) (#)2pn2p
o 0

Finally, since N/f. will be on the order of one second, and since

experimental results indicate that the “l/f” component of the variance

dominates only after one second, we can assume that

Thus the statistics may be written as:
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E(Tn) = n;

2 2p
Var(~n) = a,2n t 02 n

2
02 (m2Ptn2p - ]m - n12p) tZ2mnE(TnTm) = u12min(m, n) + ~

where

22
‘1 ~ ‘2

and

;<p<l
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APPENDIX H

SIMULTANEOUS ESTIMATION OF RANDOM AND NONRANDOM VECTORS

In this Appendix we consider the following problem. Let x be a random

vector of dimension p with mean vector and covariance matrix given by

Px =

Px =

Also, let y be

E(x)

E[(X-VX)(X-PX)’]

a non-random vector

information, either statistical or

of dimension q; that is, we have no a priori

set

vector z, of dimension r, of the form

z = F x t Gy+n

theoretic, about y. Given an observation

(H.1)

we wish to estimate the values of x and y. In the above, F and G are matrices

of the appropriate dimensions, and n is a noise random vector with mean and

covariance

‘n
= E(n)

Pn = E[(n-pn)(n-pn)’]

Initially, the random vectors x and n will be allowed to have arbitrary

cross-covariance
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We shall

P = E[(n - Un
nx

eventually specii

(x - ~x)’] = P;n

Iize to the case where Pnx = O.

In order to insure a nonsingular estimation problem we shal1 assume that

Pnt FpxF’t Pnx F’+FPxn>O (H.2)

i.e., that the above matrix is positive definite. This wil1 be true, when we

specialize to the case where Pnx = O, if Pn > 0. Also, in order to insure a

unique optimal estimate of y, we shall assume that

CO1 rank (G) = q (H.3)

where CO1 rank (G) is the number of 1inearly independent columns of G, and q

is the dimension of y.

We begin with the derivation for the estimate of y. Defining the random

vector e as

s=nt Fx

it fol lows that the mean and covariance of E are
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Uc = Un t Fux

pc = pn + FPxF’ + PnxF’ t FPxn

Then, (H.1) can be rewritten as

z= Gytc

Since y is a non-random vector, a reasonable estimate for y is the least-squares

estimate, i.e., the estimate ~ which minimizes

(z - G; - PC)’ PC-l(Z - G; - PC) (H.4)

If x and n were jointly Gaussian random vectors, then this estimate would also

be the maximum likelihood estimate of y, i.e., the estimate consistent with the

observation z and the most probably value of the random vector C.

The unique vector ~ that minimizes (H.4) is just .

where

K - (G’PE ‘lG)-l G’ PE-l

(H.5)

(H.6)
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The matrix K is well defined because of assumptions (H.2) and (H.3). If

(H.3) were relaxed, the set of ~ which Iminimizes (H.4) would be a linear mani-

fold of dimension ~ 1, and we could define ~ to be the unique vector of

minimum norm in this manifold.

Denoting the error in the estimate y as

CY=;-Y

it follows that

CY=K(Z-UC)-Y

=K(Gyt E-yE)-y

=K(c-pE)t(KG-I)y

However, from (H.6) we have

KG-1=0

so that

(H.7)
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Therefo~e, it is clear that the estimate ~ is unbiased and has an error

covariance matrix

‘Cy=KPc K’

Using (H.6), the above reduces to

‘Cy=(G’PE-’G)-l (H.8)

We now begin the derivation for the estimate of x by rewriting (H.1) as

or,

z = G(y

A

~-Gy:

Then, using (H.5)

z-GK

or

~+~)t Fx+n

GCy+Fxtn

(H.7), and the definition of c,

z-pc)=Fx+n-GK(Fxtn -yc

(I. - GK)z = (I -GK) (Fx+n) (H.9)
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It ‘isworth noting at this Point that an equation equivalent ‘o (H.g)

could have been derived directly from (H.1) as follows. Since we are interested

in estimating x, and since y is completely unknown, a reasonable approach is to

remove the effects of y on (H.1) by premultiplying both sides of (H.1) by a

matrix M for which

Ker (M) = Ire(G) (H.1O)

where Ker (.) denotes the kernel, or null space, and Im (.) denotes the image

space, or range. For such an M, (H.1) then yields

Mz = MFx t Mn

and we have a completely statistical estimation problem. It is easy to see

that the matrix (1-GK) satisfies Ker (1-GK) = Im (G).

We may also note that if rank (G) = r, the dimension of z, then the only

matrix M satisfying (H.1O) is the zero matrix. In this case, the unknown

vector y completely masks x, and the only possible estimate for x is the best

a priori estimate, px.

Resuming the derivation for the estimate of x, define

w=(I-GK)z =( I- GK)(Fxt n)

= (I - GK)s (H.11)
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Then, by standard procedures, the 1inear minimum-mean-square-error estimate

of x would be just

; = PXWPW-’ (w - ~) + Vx

if Pw were nonsingular. However, from (H.11)

Pw = (I - GK) Pc (1-GK)’

and since Ker (I - GK) = Im (G), it is clear that (1-GK), and thus Pw also”, is

singular.

The singularity of this estimation problem is explained by the fact that,

since (1 - GK) is singular, the vector w contains redundant information. This

redundancy may be removed as fol1ows. Let M. be any matrix of ful1 row rank

satisfying (H.lo); M. will be (r -q) by r. Since Ker (I - GK) = Ker (Mo)>

there exists a matrix T(r by (r - q)) such that

I- GK=TMO

A
Now define a vector w as

A

(H.12)

W=MOZ
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The vectors w and ~ are related by

In light of (H.1O), we have

A

w = Moz = MO(FX + n) = Moe

so that the estimate for x is just

;=p ~; P;-’ (; - u;) + Ux

From (H.13), the above becomes

;=p xc M’O(MOPCM:)-l MO(Z -

Since M. has full row rank, and Pe is

(H.13)

~e) + px

assumed positive definite, the above

matrix inverse does indeed exist. However, ~ is written in terms of Mo, a

matrix that we would just as soon not have to actually find. To remove this

dependence, we need the following proposition.
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Proposition: M; (Mop~M~)-lM = P-l(I - GK)OE

Proof: Since MOG = O,

M: = P-l (I - GK) P M’
E Eo

= P:l TMOP,M;

Using (H.12) therefore,

M:(MoPcM~)-l M
o

= P~lTMo = Pjl (I - GK)

Using the Proposition, we now get as an estimate for x
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and, using the definition of c, this becomes

A

X= H(Z-PC)+UX

where

H= (PxF’ t Pxn) PC-’(I - GK)

The error in this estimate is

and the covariance matrix of Zx is, by standard techniques,

‘Ex= Px - PX;P;-’P;X

= Px - PxcM~ (MoP~M~)-lMop~x

Then, using the Proposition and (H.6),

(H.14)

(H.15)

‘Cx= Px - (PxF’ t Pxn) [P~-l - Pc-’G(G’ PE-lG)-lG’P~-l](Fpx t pnx)

(H.16)
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The expressions for ~ and ~ given by (H.14) and (H.5) and the error

covariance matrices given by (H.16) and (H.8) may be simplified somewhat when

we specialize to the case where x and n are uncorrelated. Then,

Pc = Pn + FPxF’

We shall make use of the following lemma several times.

Lemma: Let A, B, and C be arbitrary matrices such that A-l exists.

Then (A+BC)-l exists

(A+BC)-l =

Theorem: Under

Px>o

Pn>o

Pnx=o

if and only if (I+CA-’B)-’ exists and, moreover,

A-’-B(I +CA+B)-’B)-l CA-l

the conditions

CO1 rank (G) = q
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the problem of estimating x and y is nonsingular, and the optimal extimates

are given as

X = HZ + (l-HF)px - Hpn

y = Kz - KFvX - KUn

where H and K are

K = [G’(Pn+FPxF’ )-lG]-lG’(PntFPxF’ )-l

H = PXF’ (PntFPxF’ )-1(1-GK)

Moreover, the error covariance matrices for these estimates are

‘Ex=[Px-l+F’Pn-lF-F’Pn-’G(G’ Pn-lG)-lG’P ‘lF]-l
n

(H.17)

(H.18)

(H.19)

(H.20)

(H.21)

‘Ey=(G’Pn-’G)-l t (G’Pn-’G)-lG’pn-l FpE F’pn-lG(G’Pn-lG)-l
x

(H.22)

Proof: First, since Pn>O,

P~ = Pn + FPxF’ > 0

-1and we can apply the Lemma to compute P& :
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Pc-’ = Pn-’-Pn-‘F(PX-l + F’P~-lF)-lF’Pn-l (H.23)

A second equation that will be useful is also obtained from the Lemma:

(PX-l + F’Pn‘lF)-l = p - PxF’(Pn + FPXF’)-’FPX
x

= Px - PXF ‘PE-lFPX

A third equation is derived as follows:

Pn = Pc- FPXF ‘

so that

Pe-’ = (l-PC-lFPXF’ )Pn-l

Therefore,

PXF’PC-lG = PXF’(l - P ‘lFPxF’)Pn-’G
c

= (Px - PxF’Pe-l FPx)F’Pn-lG

= (Px-’ + F’Pn-’F)-l F’Pn-lG

(H.24)

(H.25)

where the last line follows from (H.24).
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Now apply the Lemma to the right-hand side of (H.21 ) to get

[Px-’+F’ pn-’F-p nplG(G(p npG)’IG-Pn’F]-’ F]-l =

(Px-l+F 'Pn-lF)-l+(Pn-l tF'Pn-' F)-' F'Pn-1G[G'Pn-'G-G'P ‘lF(Px-’+F’ pn-l F)-l F’p -lG]-l
n n

. Glpn-l F(px-l+Flpn-l F)

= (PX-PXF’PC-’ Fpx) t (PXF’PC-lG)(GIP “G)-’(G’P “FPX)
c E

where each of the bracketed terms in the last 1ine follows from one of (H.23),

(H.24), or (H.25). However, this last line is precisely the expression for

‘Cx
given by (H.16) for the case where Pnx = O. This proves (H.21).

To prove (H.22), we have from (H.8) and (H.23),

‘<y=(G’PC-lG)-l

= [G’Pn-lG - G’pn-l F(px-l t F’Pn-l F)-l F’P ‘lG]-l
n

Applying the Lemma to this inverse,

‘Ey= (G’pn-’G)-’ +

(G’Pn‘lG)-lG’Pn-’FIPx-ltF’P n-lF-F’Pn-lG(G’Pn-l G)-lG’Pn-l F]-l

.F’Pn-lG(G’Pn-l,G)-’
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Substitution of (H.21) into the above proves (H.22)..

Equations (H.17) through (H.20) follow immediately from (H.5), (H.6),

(H.14), and (H.15).

Corollary: Under the conditions of the Theorem, and with

Pn = 021

the error covariance matrices are just

‘Cx 2 2 “ t FIF - FIG(GIG)-lGIF]-l=UIOPX

‘Ey
= 02(G’G)-1 + (G’G)-l G’FPC F’G(G’G)-’

x

A second corollary to the Theorem can be obtained for

a scalar and Pn=u21. For this case, F is a column vector.

the case where x is

Corollary: Under the conditions of the Theorem, and with

Pn = U21

and

p=l (i.e., x is a scalar)

207



the estimates ~ and ~ are given by

~,= ~F’(1 - G(G’G)-l G’) (Z - FMX - pn) + Mx

~ = (G’ G)-l G’(z-Fx-un)

(H.26)

(H.27)

where

Y=
~CtO~[F’ F-F’ G(G’G)-’G’F]

Proof: The above expressions follow from (H.17) and (H.18). The steps are

straightforward but detailed, and are thus left out.

We close the Appendix with the following observations. If F and G are

constrained so that (F’F) and (G’G) are held fixed, but F’G is allowed to vary,

then. for the case whei-e

Pn = U21

P
nx =0

we should choose

FIG = o

to obtain the best estimator performances.
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