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SECTION 1

This report represents a summary of our ana!ysis of certain key
features affecting the performance of Air-to-Satellite-to-Ground Systems for
Air Traffic Control (ATC) Surveillance.

For our purposes, these systems are assumed to determine position by
multilateration employing at least four satellites. Each aircraft is assumed
to periodically transmit a signature having a fixed duration. No coordination
between aircraft is assumed.

[1]

The work reported on in this report has been motivated by an analysis

‘

of two particular candidate systems concepts. Reference [1] hligh

igh

-

tain deficiencies in these candidate systems. The analysis of certain of these
critical issues is the primary purpose of this current report.
Three particular problems are addressed:
(1)  Performance vulnerability to intentional interference.
(2) The effect of waveform modulation on the performance
loss due to multiple access noise.
(3) Tracking techniques to achieve improved position estimates.
The results of these studies are summarized in this section; detailed
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be found in the
1.1 VULNERABILITY TO INTENTIONAL INTERFERENCE

The two Candidate Air-to-Satellite-to-Ground Surveillance Systems
analyzed in Reference [1] were shown to be extremely susceptible to intentional
interference, that is, they could be disabled by a jammer which would require

"less prime power than a toaster, be easily transportable in a car or small

boat, and be within the reach of many hostile political groups..."



The work reported on in Section 2 is directed towards obtaining
a general assessment of the susceptibility of Air-to-Satellite-to-Ground
Surveillance Systems to 1ntentioné1 interference. To accomplish this
objective an upper bound on the required jammer power has been obtained
by assuming that the jammer transmits white gaussian noise rather
than a more nearly optimized waveform which would in general require less

Py Thha Atrmern A mumA~ArfrAKM S0 AsCcIIMA
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presence or absence of each signature through each satellite and is required
to determine position by processing the detected output corresponding to
the transmission of K successive signature.

In Table 1.1 we list the maximum jammer power required to insure
that at least 10% of the number of airborne aircraft are falsely located
with a processor designed to achieve a detection probability of at least
0.88. For K less than 100 the required jammer is modest and could probably
be assembled at a cost of a few thousand dollars. As K approaches 1000,

t+ha rnct and ramnTavity AfF thic ncanhictiratad
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hibit its use by an in-country hostile group. However, since we have
only evaluated upper bounds on the maximum required jammer power, we
can not determine whether more sophisticated jammers are impractical for

such groups.



Table 1.1. Maximum Required Jammer Power Per Satellite for
a 10 mJoule Signal Pulse Energy and a 10 MHz

Bandwidth.
Transmission Antenna

Length ERP rf Power Diameter Beamwidth
(K in Pulses) (dbw) (dbw) (feet) (degrees)

1 33 15 2 15

10 43 20 4 12

100 53 23 8 5

1000 77 40 18 2

1.2 MULTIPLE ACCESS NOISE

It was noted in Reference [1] that only marginal improvements in

increasing the power transmitted from all aircraft. This effect is a con-
sequence of the fact that a major source of interference is the uncoordinated
transmission of all aircraft signatures within a constrained bandwidth. The
effect of this multiple access noise is similar to that experienced in a radar
system due to clutter.

The major effort of Section 3 is directed towards quantitatively
assessing the degradation due to multiple access noise and designing wavef;rms
for ameljoriating its effect. Toward this end we assumed matched filter
detection and restricted our attention to a limited ciass of transmitted signa-
tures. The major result of Section 3 is the demonstration that even for the

bast waveforms within this class, the detection performance in the presence

of muTltiple access noise is inferior to the performance which would be



predicted assuming only an additive white gaussian noise interference with
inband power equal to the multiple access noise power.

This problem area is a complex one with several remaining identifiable
potentially high payoff objectives for future research and development. Notable
anong these are efforts directed toward evolving detectors better than the matched
filter, e.g. decision directed processors which attempt to estimate the
multiple access noise and subtract it out; efforts directed towards
evolving coding and decoding techniques to amelioriate the performance degrada-
tion due to poor detector characteristics; and efforts to generalize the results

-~

of Section 3 to a Tess restricted set of signatures.

1.3 TRACKING FOR IMPROVED PERFORMANCE

One of the factors contributing to the projection of poor per-
formance for the two candidate systems analyzed in Reference [1] was the
desire to maintain surveillance data during typical maneuvers, coupled with
the resulting variation in received signal level at a particular satellites
'during such maneuvers. These considerations impacted on the system in two
dominant ways: (1) satellite constellations were selected to restrict varia-

. . PR

tions in nal 1 at some expense in increased geometric di
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(2) the residue variation in received signal level degrades performance.

Since each aircraft is assumed to carry a reasonably stable oscillator,
it is possible to obtain improved position estimates through tracking. In

Section 4, a statistical model of the oscillator instabili



basis for evolving and evaluating a tracking algorithm. Tracking is examined
as a technique for obtaining both (1) improved position estimates; and

(2) position estimates during short outages of all but three of the visible
satellites. This later effect may occur during maneuver, as a result of
adverse satellite look angles,

The examples treated in Section 4, although they ignore flight dynamic
constraints, provide some insight into the value of tracking. Specifically, they
illustrate that significantly improved position estimates require an airborne
standard more stable than the resulting error'in measuring time of arrival in the
absence of tracking. For example, if the rms error in the time of arrival
estimate is 50 nsec, then a significant improvement in the position estimate
through time tracking requires a short-term oscillator stability better than
5 parts in 108 (assuming a position update rate of one per second). During
outages of all but three of the satellites, tracking without excessive
error over several 10's of seconds requires an oscillator an order of magni-
tude more stable.

At this juncture it is impossible to reach any definitive conclusions
about the practicality of using tracking to obtain improved position estimation.
In particular, although laboratory oscillators are available with a short-term
stability of a few parts in 109 at a cost of under a few hundred dollars, it does
not follow that tracking is practical for low-cost general aviation terminals. It
must be noted that the avionics equipment may be subjected to a variety of environ-
mental conditions which are known to have an adverse effect on the stability of
crystal oscillators. Considering the questionable maintenance practices for

general aviation avionics equipment, we conclude that considerably



more effort is required to properly assess the practicality of this technique.
This future activity must include a more comprehensive evaluation of the
required stability, an assessment of the impact on required ground processing

equipment, and an assessment of the practically achievable oscillator stability.



SECTION 2
PERFORMANCE VULNERABILITY TO INTENTIONAL INTERFERENCE
2.1 INTRODUCTION AND SUMMARY OF CONCLUSIONS

In this section, the susceptibility of Air-to-Satellite-to Ground
surveillance systems is addressed. For our purposes each aircraft-is

assumed to periodically transmit a unique signature to four satellites.

The satellites relay the signatures to a ground station where they are

sing matched filter detectors.

initially using mat

in y processed
The data obtained in this manner is used first to decide whether or
not a given aircraft is in the airspace at a specific time. If this decision
is affirmative, the data is then used to decide what the aircraft's position
was at the relevant time. This two stage decision process is carried out for
each aircraft at the end of every signature repetition period. It is assumed
that the ground station employs some tracking algorithm in order to carry out

this decision process. Specifically, in making each decision for a given

aircraft, the ground station utilizes the data supplied to it during the pre-

nf\d':n nadine r
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Ceaing K signature etition

epeti eriods by the matched filter detectors.

ion peri the match
We assume that this surveillance system is operating in the presence
of an intentional jammer transmitting in band white gaussian noise. In general,
an intelligent jammer could by appropriately selecting the modulation be more
effective with less power.
In order to study the variation of system performance with both system

and jammer variables, a measure of system performance must be defined. The

parameters N%, NAD and PD were used to measure system performance. N} is the
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se alarms generated by the ground station d
single signature repetition period. NAD is the expected number of ambiguous
detections generated by the ground station during a single signature repetition

period. PD is the probability that a given aircraft is detected during a

signature repetition period.

A false alarm occurs on a signature repetition period if the ground
station declares that a given aircraft is in the airspace (at the time relevant
to the decision period), but in fact the aircraft is not in the airspace. A
given aircraft is declared detected on a signature repetition period if the

airspace and in fact it is. An

[12]

ground station deciares that it is in th
aircraft is declared ambiguously detected on a signature repetition period
if it is detected, but has an incorrect position decided for it on the second
stage of the decision process.

Performance was actually analyzed by determining N%L and NADL’ Tower
bounds to N% and NAD’ for a fixed value of PDL' PpL s a lower bound to PD.
Parametric expressions for these lower bounds were derived and were then

evaluated for a representative set of parameter values, i.e., 10% of the total

aircraft population airborne, a one second signature repetition rate and a

PR By L =
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] andwidth at L band.
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The results of our analysis indicated that performance parameters

exhibit a strong threshold behavior as a function of signal to interference

ratio; for illustrative purposes we have selected the threshold values as(0.9) Ny

for N} and (0.01) NT for NhD where NT is the total aircraft population.

A brief summary of the results are presented in Table 1.1.



2.2 OUTLINE OF THE ANALYSIS

As has already been noted our goal in this report is to study
the susceptibility of Air-to-Satellite-to-Ground surveillance systems to jamming.
The program of this effort will be as follows. In Section 2.3 the class of
Air-to-Sateilite-to-Ground surveillance systems will be described in detail.
In Section 2.4 the parameters used to measure the performance of this representa-
tive system will be defined. In Section 2.5 preliminary performance bounds
will be derived. In Section 2.6 we shall describe the intentional interference.
The remaining sections will be concerned with developing the desired performance

bounds. The variation of these bounds with both system and jammer parameters

will be studied.
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2.3 DESCRIPTION OF THE SYSTEM

In this section we shall define the class of Air-to-Satellite
to-Ground systems on which we shall concentrate our efforts. For our purpose,
each aircraft is assumed to transmit a unique signature periodically with
period o. These signatures are assumed to be received by four satellites and
transmitted noiselessly to a ground station where matched filters are employed
to detect the signatures and to estimate arrival time differences between
sateilites and hence aircraft position. The output of each matched filter is
to be sampled at twice the Nygquist rate.

In actual practice the phase of the transmitted signatures wiii not
be known at the ground station and thus "matched filter-envelope detectors'
would be used instead of "matched filter detectors." However, in light of
this, our assumption of matched filter detectors is not inconsistent with our
analysis for the following reason. The performance of a matched filter detector
is always better than a "matched filter-envelope detector" since phase is
assumed known. Our aim of course is the determination of upper bounds to
required jammer power. Any such bounds determined under a "matched filter

detector assumption" will of course be valid under a "matched filter-envelope

" We shall aiso neglect up-Tink noise and muitipie access
noise since our stated goal is upperbounding the required jamming power.

The ground processor is assumed to partition the sequence of output
samples from each of the 4 NT matched filters into time segments of length
o + B where Ny is the total number of aircraft and 8 is the maximum delay
between the first and last reception of a particular signature at the con-

stellation of four satellites. If an aircraft is present in the airspace,

10



its transmitted signature will be received at all four filters matched to it,
at the ground, at least once in each such time segment and possibly twice, no
matter what origin is chosen for the initial segment. This is desirable, since
it implies that the ground station can begin processing whenever it wants to.
The possible presence of a signature more than once in a segment will cause

no harm, as will be evident.

Consider some time origin set up at the ground station and Tet Seg. (n)
be the nth time segment of length o + 8 seconds set up relative to the time
origin. A ground processor starts with Seg. (1) and observes the outputs of
the four filters (one for each satellite) which are matched to aircraft "i's"

signature. For each of the filters, it lists those time points in Seg. (1)
at which the matched filter detettor declared the output sample to have been

generated by reception of aircraft "i's" signature. The ground processor

takes this data and computes the aircraft positions implied by all possible
time differences generated by the listed time points. The ground processor

is assumed to eliminate any unrealistic positions, i.e., time differences.

The processor lists the implied positions on a Tist we shall call "List (i,1)."
One should note that this 1ist may be blank.

The processor repeats the procedure just described for the next (K-1)
time segments; Seg. (2)...Seg. (K). At the end of these K segments the pro-
cessor enters a two stage decision procedure. On the first stage of the pro-
cedure it decides the following question. Is aircraft "i" in the airspace at
the end of the Kth time segment (or at some other relevant time interior to

the K time segments)?

11
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H (i) = aircraft "i" is not in the airspace at
0 the end of the Kth time segment (or at
the relevant interior time?

H (i) = aircraft "i" is in the airspace at the
1 end of the Kth time segment {or at the
relevant interior time)
If Ho(i) is true, yet the processor decides that H](i) is true, we

say that an aircraft "i" false alarm has occurred on the Kth time segment {or

at the relevant interior time). If hypothesis H1(i) is true and the ground

processor decides H](i) we say that aircraft "i" has been detected on the Kth

B Ak fain ad Ll caaT e e de A
e seyierne \or di Lhe reijevdii. ILeriour

and the ground processor decided Ho(i), we say that aircraft "i" has been

missed on the Kth time segment.

If the first stage of the decision procedure resulted with a decision
that aircraft "i" was in the airspace then the second stage of the decision
procedure is entered. On this second stage the ground processor decides the
following question: What is the position of aircraft "i" during the Kth
segment (or at the relevant interior time)? In order to be able to make this
decision the ground processor is supplied with a set of possible position

osition Set of ai
This position set is generated in some manner from {List (i,1)...List (i,K)}.
Hopefully, (if aircraft "i" is in the airspace) there will be only one position
in the position set, the correct position. If there is more than one position,
the ground processor chooses one at random and supplies it to a central sur-

veillance station.

12



Consider the following definitions
true position of aircraft "i"
(given H, (i) is true) dur1ng
Seg. (K} (or the re]evant time)

-
(=
wn
~
——
ity
L—
1

{p](i),...pjk(i)}= position set of a1rcraft i
during Seg. (K}
(1) = aircraft "i" position decided
upon during the second stage
of the decision process at the
end of Seg. (K)

=
=~ *

If H1(1) is true and decided and p:(i) equals Pos (i}, we say that

o
aircraft "i" has been completely detected on Seg. (K). If H1(1) is true and

decided and " is

(i) is not equal to Pos

ual Pos, (1)
kY'Y

n* . we sav that aircraft i
P s we say that airc t

ambiguously detected.

The actual mechanics of the first and second stage decision procedures
will be kept with minimum specification in order to keep the system as general
as possible. The first stage procedure will be discussed with somewhat more
exactness later in Appendix A. The second stage decision procedure will not
be specified any further. The two stage procedure essentially uses some
tracking algorithm on K segments worth of data in order to detect aircraft

and determine their position. Although we will keep these decision procedures

as general as possible, we insist that they always act rationally. To be

precise they obey the following axiom:

Rationality Axiom

If there exists a sequence of K positions; one on List (i,1), one on
List (is2),...0ne on List {i,K) and if this sequence of positions looks as if
it might be that of an aircraft in flight (i.e. the successive positions obey

the constraints of flight dynamics), then on the first stage of the decision

13
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position generated by this sequence of K positions must appear in the position

set of aircraft "i".

Before, it was noted that a received signature may occur.twice in the
same time segment. If this occurs on all four filter outputs, it will merely
cause two received signature guadruplets to be mapped into the same pesition
on "List (i,)." If this does not occur on all four filter outputs at worst it

will generate erroneous positions on "List (i, )". In neither case will it

.
rocessin

a amhiauity far +
Iﬂ AW 1% I ur 1¥]

Y P 1guiLy

As has already been stated, an aircréft position is computed using
three time differences. Without loss of generality we view the lists {List
(i,1),...List (1,K}} as storing triplets of time differences rather than positions.
The second stage decision would of course then be on a triplet of time differ-
ences. We will assume from now on that the representative surveillance
system makes its decisions on the time difference triplets instead of on
positions.,

After the ground processor completes the decision process at the end

f Seg. (K) it repeats th Y uY ing; ,...5eg. (K + 1), then

of Seg. {K) it repeats this procedure using; Seg. (2)

L

Seq.(3),...Seg. (K+2) etc. Because of time invariance we can judge the

system just by its operation on Seg. (1),... Seg.(K).

14



2.4 .PERFORMANCE PARAMETERS

We define the aircraft "i" detection probability, PD(i), to be the
probabiiity of deciding H1(i) given H1(i) is true. Since all links are assumed
to be identical

Pp « PD(i) for all i

We shall measure the performance by determining lower bounds to the average
number of false alarms, ﬁ} and the average number of ambiguous detections NAD
with PD held fixed (or equivalently kept above) some value. The effect of
jamming will be analyzed by studying the variation of these lower bounds with
both system and jammer parameters.

The following two parameters; ps and 4> are measures of the perfor-

mance of the matched filter detector.

the matched filter

detector declares the sample sample was only
Pe = Prob to have been generated by generated by

a received aircraft signa- interference

ture and interference

the matched filter sample was generated

detector declares the sample by a received aircraft
Py = Prob to have been generated by signature and inter-

a received aircraft signa- ference

ture and interference
We describe the first stage decision process operating by deciding
aircraft "i" in the airspace if more than Kt of the Lists; List (i,1),...List
(1,K), have at least one entry. The dependence of PD on pq through a lower

bound to it has been derived in Appendix A to be of the form

15



p pd4 when K = 1 (2.4.1)

D?_

P.> 1 - exp -K(v(1-t) —Ln((1-pd4)ev + pd4)) when K> 1 (2.4.2)

)egative number which maximizes

4)ev +p 4)

v (1 -t) -Ln ((]_pd
The parameters "t" and “pd“ may be varied jointly to allow the right hand side
of (2.4.2) to attain some value. We shall refer to the right hand side of

(2.4.1)-(2.4.2) as P n which case we have

P. > P

D DL

For a given desired value of PD our surveillance system matched filter detector
and first stage decision process will be designed with a "t" and "py" such

that Ppp equals this desired value, thus guarranteeing that Pp will attain it.

Of course when K = 1, t does not enter the design.
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2.5.1 Preliminary Lower Bound to ﬁ%

We begin by defining the following indicator functions

6p(i) = 1, if aircraft 5i" is not in the airspace on the Kth
segment {or at the relevant time, interior to the K
time segments)

eF(i) = 0, otherwise

2.5 PRELIMINARY LOWER BOUNDS TO NF AND NAD
In this section we shall derive some preliminary lower bounds to
N and NAD‘ These bounds will be expanded in Section 2.6.

YF(i) = 1, 1f 8 (1) 1 and the first stage decision declares aircraft
“1“ e in the airspace of the relevant time
YF(') = {§, otherwise

Clearly the number of false alarms is

and

N
nF = Z BF (1) 'YF(1)
j=1
Np = E (ng) = E ( ep (1) vp(i))
i=1
o= N E (op (1) vg(1)

N, = Ny p (yg(i) =1 | op(1) = 1) P(eF(i)= 1)

(2.5.1)

where Ny is the total aircraft population, i.e., number of different signatures

0f course,

Plop(i) = 1) =1 - 7L
.

*
E is the expectation operator

17
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where N is the number of airborne aircraft.

Let us define

Po=P (y (i) =16 (i) =1) (2.5.3)
F F S ‘

A Tower bound to PF is derived in Appendix B. We now quote it
3

2Bo. 4B
PF > exp [{(Kt+ 1) Ln(( 1 -(1-pf) )(T—(T-pf) H))] (2.5.4)
where 8 is the delay between the first and last reception of a particular
signature at the constellation of four satellites and B is the bandwidth.

Applying Eqs. 2.5.2, 3 and 4 to 2.5.1 we obtain

. r / 2Ba / 483 \’\7
Ne 2 Np = (N - W) exp [(K &+ DLn{(T-01-pe) - ){1-(1-py) ))J(z;&s)

which is the desired preliminary lower bound ™.
2.5.2 Preliminary Lower Bound to NAD

As in the previous subsection we begin by defining several

indicator functions.

eD(i) = 1, if aircraft "i" is in the airspace on the
Kth segment (or the relevant time interior
to the K time segments)

GD(i) = 0, otherwise
15 -if gTVEn that 8 ('i) = ]’ aircraft Il.iu

is detected on the Kth time segment,
Seg. (K)

]
[
—
—
e
fl

*) It is understood that when K = 1 t = 0 (the only logical value
for t ).

18



vy (1) 0, otherwise

1, if there is a first sequence of K arrival
time difference triplets with the first sequence
member on List (i,1),... the Kth sequence member
on List (i,K). The elements of this sequence
have all their component arrival times, T( ),
only generated by interference (not interference
plus aircraft "i's" signature). This sequence
of time difference triplets appears as if it
were generated by an aircraft in flight.

YD(i)

YD(i) = (0, otherwise

e
=

——

—

ol
|

1, if given that yp(i)=1, an incorrect position
will be picked from the Position Set of aircraft
"1" on the Kth segment

rp(i) = 0, otherwise

The following inequality on the number of ambiguous detections is

ident.
eviden Ny
Nap = E ry (i) vp(i) ¥p(i) ep(d) (2.5.6)

i=1
This is an inequality rather than an equality since an aircraft "i" ambiguous

detection is still possible even if yp(i) equals zero. From Eq. 2.5.6 the
following inequality is immediately obtained.

N
:
Tap = E (nyg) 23 E (g (3) vp(8) (i) op(9)

E
| =

[ —

Nyp = Np Prob ( pp(i) = 1, yp(i) = 1, ¥(i} = 1, ey(i) = 1) (2.5.7)

Nap 2 Ny Prob (v (i) = 1 [vyp(1) = 1, vp(i) = 1, ep(i) = 1)Prob (yp(i) = 1)

Prob ( ¥p(1)=1] &y(i) = 1) P_, (8(i)=1)
(2.5.8)
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Each of the terms on the right hand side of Eq. 2.5.8 will now be lower
bounded
Obviously, |
Prob (gp(1) = 1) = - (2.5.9)
T
0f course,

Prob (yp(i) = 1| eD(i) =1) = Pp E-PDL
Hence, we obtain immediately from Eqs. 2.4.1 and 2.
Prob (v (1) =1 | 6 (i) = 1) 3_pd4 when K = 1

Prob (¢ (1) = 1] op(1) = 1) 2.1 = exp K(w(1-t) - tn (1 - pgh e +p,h)

_ when K > 1}

In Sec. 2.3, a Rationality Axiom was stated. We insisted that the
ground processor, whatever its design must obey this axiom. If the event
{ YD(i) = 1} occurs then the Rationality Axiom implies that there will be at

least one incorrect position in the Position Set of aircraft "i". In Sec. 2.3

if th more than one position in the Position Set

also stated that if there was

(433

W
of aircraft "i", then the ground processor would pick one position frem the
set at random and assume it was the correct position of aircraft "i". The

event {yp(i) = 1} being true thus implies that with probability greater than

0.5, an incorrect position will be picked and we have

Prob ( ry(1) = 1 [vp(i) = 1, ¥p(i) = 1, ep(i) = 1) > 0.5 (2.5.10)

20



We have yet to lower bound Prob (YD(i) = 1). This is quite a complicated

procedure and is carried out in Appendix C. We quote the result.

8B vo \ 3

) T\
gl / }

Prob (yp(i) = 1) > exp | P \\‘-

2Ba 4Bg \ 3
+ Ln((]- (1-p¢) ) (1- (1-p,) ) )

{2.5.11)
where v is the maximum aircraft velocity and ¢ is the velocity of light.
Inequalities in Egs. 2.5.9-11 can be applied to Eg. 2.5.8 to yield
_ . 2Ba 4Bg 3
NAD > 0.5 N P, (1- (1-pf) (- (1-pf) ) when K = 1
N> 0.5N (T-exp-K(v(1-t)-Ln{(1-p, e’ + p. 5N}
AD = d d
X
2B, % v 3
(K-1) Ln((1-(1-p)  )(-(-pe) > € ))
ex
P 2B apg 3
+ Ln((1-(1-pf) Y(-(1-p;) ) 3 (2.5.12)
hY \ ' ' , r4
when K > 1

which is the desired preliminary lower bound. We shall refer to the right hand

side of Eq. 2.5.12as NADL‘

We desire to expand the expressions for ﬁ%L’ NADL and ﬁbL obtained
and study their variation with both system and jammer parameters. In order
to do this we must describe precisely the interference perturbing the surveil-

lance system performance.

21



2.6 INTERFERENCE AND SIGNATURE ASSUMPTIONS,
There are a variety of sources of unintentional interference
which perturb the performance of an Air-to-Satellite-to-Ground Surveillance
System. Thermal noise and mu]tipie access noise are two such sources of
unintentional interference. In addition to these sources of unintentional
interference we assume that a jammer is operating and trying to intenticnally
cause system degradation. The jammer is transmitting white gaussian noise
over the transmission bandwidth, B, at each of the four satellites. The
jammer generated noise transmitted at each satellite ha§ an ERP (Effective
Radiated Power) of J watts.

Out ultimate goal is to study the variation of NF

parameters. We desire, for a given jamming power, to determine lower

and NAD with jammer

bounds to N. and NAD; Np, and Ny, -

other than jammer generated noise, in computing NkL and Ny . These will be

We shall ignore all types of interference

no less valid as lower bounds since the presence of other sources of interfer-

ence can only increase NFL and NADL‘ Similarly, we shall ignore any degrada-
tion that a transmitted signature might suffer due to: incoherence at the
receiver, doppler losses, banking of an aircraft during transmission. The
presence of any such degradation can only increase N%L and NADL'

Let si(t) be aircraft "i's" signature. We shall represent it as
s;(t) = VE S (t)

where Si(t) has time duration v and unit energy. E is the energy of si(tJ.

The average power of si(t) during transmission is P, = E/t . At the ground

22



[

station there are four matched filters matched to aircraft "i's" signature.

We assume that the impulse response of each of these filters is Si(—t+T)'

Since both the jammer generated noise and aircraft transmitted

signatures will suffer the same range loss in transmission, we shall ignore

this loss in any ensuing analyses.
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2.7 ANALYSIS OF N, AND N WHEN K = 1
FL ADL |

We have determined Pp; , a Tower bound to Pp, given by Eq. (2.4.1)-(2.4.2).
We h 1s termined N.. N, N Naps Qi
We have also determined NFL and NAUL, lower bounds tq Nr and NHU_ given by
Eqs. 2.5.5 and 12 1In this section we shall analyze the variation of these
bounds with parameters of interest for the special case when K =.1, which
is equivalent to operating without tracking.

As has already been stated we assume that the general surveillance
system is designed to operate with PD exceeding some specified value. This
minimum value is guarranteed by fixing P4 and t so that‘PDL has this minimum
value. Assume that this has been done and that Py is fixed. Relative to this

fixed value of Py we have the following expression for Pe derived in Appendix

D,
P = 1 . X f - 2.7.1
fS 77 7 " (///2- > ¢ ) ( )
where ¢ is the solution of
- 1,1
Py = 32 t 3 erf(¢) (2.7.2)

J is the jammer power and B is the bandwidth.

Applying Eqs.(2.7.1) and 2 to Egs. 2.5.5 and 12_yields

r/ A P Br v ] /Py \
NFL=(NT—N)]-\1-%+% er‘f(/zl 3 -¢)) ) Q-b‘ﬁ%erf(‘/% 2 -¢))




as the lower bounds of interest when K = 1. pd is picked so that PDL

(which 1is pd4 when K = 1} has some desired value. We evaluate these lower
bounds assuming 10% of the aircraft population is airborne (N = 0=]NT); a

10 MHz bandwidth (8), a one second pulse repetition period (), and a differ-

ential satellite delay (8) of 24 msec. Figures 2.1 and 2.2 iilustrate

J

PyBt

for various values

these computed lower bounds plotted as functions of
P .
of DL

In observing these figures we see that as - ; is decreased from -12 db
T

these lower bounds maintain their maximum values over quite a large range of

J/POBT'S. Ultimately, each curve decreases very rapidly as _J_ is lowered
I ET
past a certain value; hence there is a threshold effect. Cer%ain]y, any Air-

to-Satellite-to-Ground Surveillance System suffering an N% of 0.9 (NT) and an

N 0 of 0.01 (NT) has to be considered inoperative. Since these are close to

N
the threshold, we shall use these values as indicators of total system perfor-
mance degeneration.

Assuming a transmitted energy per pulse of 10 mJoules (e.g. P0 = 30 dbw,
v = 10 usec), we can determine, from Figs. 2.1 and 2.2, the maximum required
jammer ERP, J, that the jammer would have to transmit at each of the four
satellites in order to achieve the threshold Tevels. Since the difference
between required jamming power for a PDL of 0.9 and 0.999 is less than 2 db, we
shall thus take as a nominal jamming level 33 dbw ERP. This could be realized
with 30 watts of rf power and an antenna with a 200 beamwidth. Clearly a

system, without tracking, (K=1) is simple to disable.
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2.8 ANALYSIS OF NFL AND NADL WHEN K » j
In this section we shall analyze the variation of the lower

bounds, N%L and N for the case in which the tracking length K, is greater

ADL’
than 1. The preliminary lower bounds for this case are given by Eq. 2.5.5

and 2.5.12. As has already been noted P_ is fixed in the design of the sur-

DL
veillance system. For the case in which K is greater than 1, PDL is given by

Eq. 2.4.2 as

L 4 4
Py = 17 exp K (v(1-t) -Ln((1 - py") g“ +pg))

A required PDL can be obtained by varying the (t, pd) pair.
Assume that PDL is obtained by a specific (t, pd) pair. In Appendix

D the following expression 1s obtained for the Pe sufféred by using pd.

. 1.1 PoBT
= - f - .8.
PeZ 272 Vi J *) (2.8.1)

where ¢ 1is the solution of

+ erf {(¢) (2.8.2)

S I
Pd= 77 7

Applying Egs. 2.8.1 and 2 to Egs. 2.5.5 and 12 yields

. S(1l4 ] APl o
Ne = (Np - N) exp [(Kt+ 1) Ln ((1 (5” 7 ‘erf (/é J o)) )(2.8.3)

3

Ly 1 1 Pobt _ 4BB))]
(1 (2 + ” erf (//% > $))
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/ r B

(K-1)Ln ((]_(;_J'Jz'e'”f(ﬁz— Pc:]B-c ) ¢))ZBO¢)(1_(_;_+ ;_erf

My, = (0.5 (WP expf (/_' e ¢)),&_§; VT)B)
‘ 2 J

‘ - 2Ba.
+ Ln(('l-(%"‘ %—erf (A POJB - ) )(1-(%+ -;— erf
{

/f PSBT ] ¢))4Bs)3)

(2.8.4)

These Tower bounds have been computed for various values of K and

P This was performed assuming the same system parameter values quoted in

DL”
Section 2.7 and a maximum velocity, v, of 600 mph. Figures 2.3 through

2.16 illustrate the computed lower bounds plotted as functions of _d

Bt
(with K and P, fixed). We shall spend the remainder of this section discussing

these curves.

In observing each set of curves in Figures 2.3 through 2.16
notice that each curve exhibits a strong thresholding property. A given value
of P, may be realized by various (pd,t) combinations. "py" is the matched
filter puise detection probabiiity. "t" is a parameter of the first stage
decision process (i.e., an aircraft is decided present if more than Kt lists
have at least one entry). In observing each pair of curve sets, N%L VS,

J - J . ey e pps
P;B?' and NADL Vs, ggg; , one notices that it is more difficult for the

jammer to cause system degradation, both in false alarms and ambiquous
detections, if a low value of t is used. The reason for this is transparent

in the case of ambiguous detections, by the following argument. Suppose

29
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P_Bx is fixed. As t decreases Pq Must decrease in order to maintain a fixed

PDL' This implies that Pe is decreasing and thus NADL is decreasing. Turning

the variation around, if NADL is fixed then as t ‘decr‘eases'P g must increase
T

in order to maintain the same ﬁhDL' This of course is basedoupon the obvious

fact that NADL must be monotonically increasing with J_ . The same argument
: P.Bt -
holds true for the'N%L vs., _J curves. However, herg there is one additional
P_Bt
factor. As "t" decreases the probability of an aircraft false alarm {on the

first stage decision process) will increase. This will offset to some extent

the decrease in "p." due to a Tow "t" (at fixed 5 ; ) and thus make the
T

N%L Vs, 5 ; curve less sensitive to decreasing Ougn, This is in fact evident
0'1'
— J —
when one observes the NFL Vs, BT curves and compares them to the NADL VS,

J 0
curves.
POBT

Since it is more difficult for the jammer to cause system degradation
at lower values of t than at higher values of t, we can determine the maximum

PQB? needed in order to make the representative surveillance system unusable,
0

by just considering the curves corresponding to "t=0" for a fixed K and PoL

From Figures 2.3 through 2.16 it is clear that the bound on the average number
J

Bt
o
average number of ambiguous detections. Since each false alarm should be

than does the bound on the

of false alarms, N%L degrades more rapidly with

processed by the second stage decision processor, the number of false alarms
affects the required complexity of the second'stage processor. If, for example,
this processor can't handle the number of false alarms than the detection
probability might suffer. Since, however, our purpose is to overbound the

required jammer, we shall assume that the processor can handle the large
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number o a

se alarms and we sha
number of ambiguous detections.
The maximum required jamming power is summarized in Table 2.8.1. it
takes about 10 db more power to disable a K = 10 system than a K = 1 system
and about 10 db more power to disable a K = 100 system. In all cases the
required jamming power is modest. For K = 1000 the required jamming power
depends critically on the desired level of PDL' A desired detection probability
of 0.98 or less raises considerable question as to the feasibility of the
jammer; however a 2% miss detection probability appears unreasonably large.

At the 0.999 level the jammer 1

certainly feasible a
complex. This level of jamming would require considerable effort and money.
Clearly, however, a surveillance system using a tracking length of 1000 is

very complex and might, in practice, result in excessive delays.

Table 2.1. Maximum Required Jammer Power Per Satellite for a 10 mJoule
Signal Pulse Energy and a 10 MHz Bandwidth,

P Jammer ERP
K DL (dbw)
10 0.88 46
10 0.999 43
100 0.88 56
100 0.999 51
1000 0.98 > 130
1000 0.999 77
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SECTION 3
THE EFFECT OF WAVEFORM MODULATION ON THE PERFORMANCE
LOSS DUE TO MULTIPLE ACCESS NOISE

3.1 INTRODUCTION AND SUMMARY OF RESULTS

3.1.1 Problem Definition

An Air-to-Satellite-to-Ground surveillance system operates by

having each aircraft transmit a signature in an uncoordinated fashion to a
constellation of satellites. Fach satellite in the consteliation relays the
received waveform to a ground station for processing. The position of a given
aircraft is computed by first, detecting the signature arrival times, then
computing the arrival time differences and applying hyperbolic multilateration.

Multiple access noise arises in an Air-to-Satellite-to-Ground surveil-
lance system in the following way. Because aircraft transmit in an uncoordinated
fashion, signatures arrive at any given satellite at random arrival times;
Hence, in detecting a given signature the ground processor also encounters
unwanted signatures. The net sum of the unwanted signatures received, appears
as a random process. This random process is what is termed "muitiplie access
noise."

3.1.2 Assumptions

In carrying out the study of the multiple access noise phenomenon,

the following assumptions were made concerning the environment and operation
of the Air-to-Satellite-to-Ground surveillance system.

A. Unique Signatures

It was assumed that each aircraft has assigned to it a

unique signature which it transmits periodically.
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Because our main concern was with multiple access noise we
assumed absent the presence of any other interference phenomenon; i.e. thermal

noise, jammer generated noise. Also, we ignored any losses due to non-ideal

1ink characteristics such as; loss due to a signature being transmitted while
an aircraft is banking, loss due to doppler decorrelation. We considered the
down-1ink between satellite and ground station to be perfect.

C. Matched Filter Detector

It was assumed that a matched filter detector was used to

detect the arrival time of a given aircraft signature at a g
In actual practice, the phase of the reéeiﬁed éignafures would not be known
at the ground station and hence a "matched filter-envelope detector" would
be used instead of a "matched filter detector." Of course a receiver which
uses "matched filter-envelope detection" will not perform as well as one
which uses "matched filter detection." Hence, the performance characteristics
which we shall derive will be more optimistic than those which could be
obtained with a matched filter envelope detector.

The matched filter detector has its output sampled at a certain rate.
If the signal to which the detector is matched is present in the output samp
we assume that it is present at its peak height. Since this is the signal
which the matched filter detector is trying to detect our results under this

assumption can only be more optimistic than without it. This is due to the

fact that we are assuming that when the desired signal is present it is

present with its maximum amplitude.
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3.1.3 Results

The principal results of our analysis of the multiple access

noise interference phenomenon will now be summarized.

A. ROC Comparison

Both upper and lower bounds to the ROC, (Receiver Operating

Characteristic), of the matched filter detector were derived. These bounds
are asymptotically tight in the sense that they approach the actuai ROC as the
number of aircraft being considered increases.

B. Gaussian Comparison

Over a large, but restricted, class of signatures and system

parameters, we have shown that the ROC of the matched filter detector operating

in the presence of multiple access noise is not as preferable as the ROC
obtained when the detector operates, only in the presence of additive gaussian
noise, with the same signal to interference ratio.

C. PSK Signatures

The output signal to interference ratio in the matched filter
detector was computed for the case in which the aircraft signatures were PSK
modulated sequences having good auto-correlation properties. The output
signal to interference ratio was found to be equal to that obtained when the
interference input to the matched filter is a white noise source having a
spectral height equal to the average interference power divided.by 3 times

the reciprocal of the PSK chip duration.
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3.2 PROGRAM

It is convenient at this point to describe the program of the remainder of
Section 3. We shall study the multiple access noise phenomenon by studying
its effect upon the detection of the time of arrivaf of a given aircraft
signature relayed from a given satellite.

In Section 3.3 we shall describe in detail some of the characteristics
of the aircraft signatures and of the signal processing used to detect the
time of arrival of the aircraft signature of interest at the ground station

of interest.
In Section 3.4 we shall describe the statistics of the multiple access

noise perturbing the detection process by computing the characteristic function
of a multiple access noise sample.

In Section 3.5, upper and Tower bounds to the ROC of the matched
filter detector are derived. These bounds are evaluated in Section 3.6
assuming typical signature and system parameters. Characteristics of the
signature set which optimizes the ROC, over a class of signature sets, are

given in Section 3.7.

In Section 3.8 the performance of the matched filter detector operating
with interference which is gaussian noise is compared with the performance
when the interference is multiple access noise. The validity of assuming the
multiple access noise to be gaussian is also studied.

In Section 3.9, the multiple access noise parameters are related to
measures of time and bandwidth. The average multiple access noise power is
computed when the signatures are:

correlation properties.
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3.3 SIGNAL PROCESSING
Let us call the set of aircraft signatures, S. Let S (:) be the

signature assigned to aircraft "j" the signatures have duration T and unit

energy, i.e.
T

f sJ.2 (t) dt = 1 ' (3.3.1)
0
for j=1,2...N where N is the number of aircraft

Once every o seconds aircraft "j" supplies Sj(') to a transmitter,
which thereupon transmits the bandpass signal Zj(-). Specifica]]y, if tj is
a time at which the transmitter is supplied signature Sj then the following

signal is transmitted
. - t.)=5. - t. T - t.
ZJ(t tJ) SJ(t tJ) cos(2 f (t 3))

This signal is transmitted and received by all satellites and retransmitted
to a ground station. The received waveform at the ground processing station

from any particular satellite is of the form

Z(t) = ﬁ: Zy (t - ty)

2(t) = $4(t - Jt1.1)cos (2nf (t - t,)) (3.3.2)
< |
+;2_;sj (t - t5) cos (2nf (t - t;))
it

This of course neglects losses in transmitted signal energy due to; range,

atmosphere, reflection and any change in carrier frequency.
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In order to describe the rest of the signal processing we shall refer
to Figure 3.1. This illustrates the processing used to detect the arrival
time of aircraft "“i's" signature-signal, Z(*), i.e. t. ‘Observe the component
parts of this figure. After being received at the ground station, Z(*), is
jmmediately mixed with 2 cos 2vf0t. We assume phase synchronization with
Zi(t - ti)‘ In other words we assume the mixing signal to actually be
2 cos 2nf (t-t;). The resultant signal is then passed through a lowpass
filter whose cutoff frequency is far below 2f0, but greater than the largest
frequency of any of the signatures in S. The resulting output is supplied
to a filter matched to aircraft "i's" signature, the signature whose arrival
we desire to detect. This filter, Matched Filter "i" has impulse response
h{t)

h(t) = S;(-t + 1) (3.3.3)

With Z(-), given by (3.3.2) at the input to the ground station the

Il.ill

following signal, y(t), will be generated at the output of Matched Filter

yi(t).= Rii(t’ti) + ni(t) (3.3.4)

where "

Wy

w

o
g

N
"i(t) = E nij (t) (3.3.6)
j#i f o
nij(t) = CO0S (Z“fo(ti - tj)) Sj(x-tj) Si(x-t + ) dx  (3.3.7)
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The quantity Rii(t’ti) in (3.3.4) is the signal term. One should
note that because of (3.3.1) this has a peak value of 1. The quantity n;(t)
js the multiple access noise term. The arrival times, tj,are random and
uniformly distributed over each repetition period of length o seconds.

The output of Matched Filter "i", yi(t), js sampled. Each sample is
supplied to the Binary Threshold Decision Device which is the second part of
the matched filter detector. If "t" is a sampling time, this decision device
operates in the following manner.

If

yi(t)z_o ; it decides that Zi(') was received at the ground

station at time t-t

yi(t) <o ; 1t decides that Zj(.) was not received at the
ground station at time t-t
where © is a fixed number between 0 and 1.

Consider the matched filter output, yi(t) given by (3.3.4). Depending
upon t, the signal term, Rii(t'ti) may be either present in the output or not
(i.e., have a zero value). We shall make the following simplifying assumption.
If Rii(t’tﬁ) is present in the output then it is present at its peak value of
1.

Again consider y;(t). Note that nij(t) is the contribution to the
multiple access noise in the output of Matched Filter "i", due to the pro-
cessing of aircraft "j'" signature. As is evident nij(t) can only be nonzero
if the reception time tj satisfies

t -2t <t, <t
J
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If tj is in this interval we define the probability density on the random

variable nij(t) as Cij(')’ i.e.,
. ' a
Prob (nij(t) < ajt-2t < tj < t)= u{; Cij(x) dx {3.3.8)

We shall refer to Cij(') as the "amplitude density of nij(t)'" :

In closing this section we should like to stress that we have assumed
a matched filter detector, i.e. the combination of Matched Filter "i" and the
Binary Threshold Decision Device. In general this is not the optimum processor.
The vest linear processor might employ prewhitening filters while the best
non-linear processor might attempt to estimate the multiple access noise and

then subtract it out.
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3.4 STATISTICAL DESCRIPTION OF MULTIPLE ACCESS NOISE

In this section, we shall concern ourselves with describing the
multiple access noise statistically. Consider, n;(t) the multiple access

noise sample generated at the output of Matched Filter "i", at time t.
We shall compute Mi(v), the characteristic function of ni(t), and analyze its
behavior.

We can proceed directly from the definition of characteristic function

obtaining
M) = E (Vi (8), (3.4.1)

Applying (3.3.6) to (3.4.1) yields
:(t)

jvng .
J¥I 5

———
L ¥4 ]
o
.
[+ ]

—

N
M IV\ = ex fv‘ Ln !E Ie A Lh
;) (2, (E ¢ ))}
3=1
A
where exp (x) = eX. In obtaining (3.4.2) we have used the fact that the
transmitted aircraft signatures arrive independently at the satellite ground
station. This implies that the nij(t)'s are independent.
E (ernij(t)) can be expanded as follows:

t-21 < tj < t) Pr‘ob(t-Zr < tj < t)

E((ernu(t)) - (ejvnij(t)

+
- by < t-r t, < t-t-2
VN s J . T
E e'3 n1J(t) or Prob or
ty >t t, >t
J
(3.4.3)
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t of course is the time at which aircraft "j's" signal-signature, Z.(-) arrives

J J
at the ground station.

[

T -
] s

3 - +_N PR o + b -~
Ly L < L=£T ur v > Ly LNien v

J J .
in Section 3.3. The aircraft signatures' arrival times are uniformly distributed
(

(=3
[

P - f+Y = N s ot n
cuurse Iij\bj U, We rivLe

in time over the o second repetition period. We use these facts in (3.4.3) to
obtain
I, FFIY / I, fa |
JVI1J\E) £T Jvng sty
F(e ) = & EKe | t2r < t t) (3.4.4)
+(1 - 2
o

Applying the definition of Cij('), {given by (3.3.8))to (3.4.4) yields

jvn. . (t
E(e‘wnU( )) = (1-2_1) 2t _[c (x) e de (3.4.5)
o -

Substituting (3.4.5) into (3.4.2) yields the characteristic function M; (v} as

o0

N -

Mi(v) = exp Z Ln ((1- 2r)+ '%’f C-ij(X)erx dx) (3.4.6)

-0

which is the desired result.

Let n be the generic symbol for ni(t). Using the properties of

characteristic functions one has
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em) = g MW l (3.4.7)

En)= -2 M (v) (3.4.8)

Applying these formulas to (3.4.6) we have

N w
Z g.‘.'::. f X Cij(x) dx (3.4.9)
=1 °

3

N
E & f Cyy (1) d (3.4.10)

[Py S

oa

+ (%)’2 i [ = C,, (X) o
( qu{ (x) dx )2
/

S
[a™

1 Ve U
m J#i
We may compute ‘/~ X Ci,(x) dx from the definition of Cij(‘) given by (3.3.8)
—co h|

and the definition of “ij(t) given by (3.3.7). Computing this we have
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7 00

./ X Cij(x) dx = E (nij(t))

- 0

= E [cos (2nf0(ti-tj)) J/”m Sj(x—tj) Si(th + 1) dx]

(4]

_[.X Cij(x) dx = E [cos (2sfyt;) cos (ZWfOtJ-) sz(x-tj)si(x-t+ )]

-

+ € [sin (207 t,) sin (2 t;) j:m 5 (x-t,)5, (x-t + 1)]

J m'xcij(x) dx = E [cos (2nfyty)] E [cos (anfty) [ 850x-t)5; (et + 0)]

o

r
+ € [sin (2nf t,)] E [sin (20 t,) j_m 5, (-t (x-t +1)]

(3.4.11)
ti is uniformly distributed over the o« second transmission period. We shall

assume that o is an integral number of periods of the carrier, (i.e. foa is

an integer) then
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Applying this to (3.4.11) we have

o]

f X cij(X) dx = 0 (3.4.12)

= OO

Applying (3.4.12) to (3.4.9) and {3.4.10) brings

E{n) = 0
2 N 2. j““ 2
E(n ) = E ) X Cij(x) dx (3.4.13)
=1
J#
2
E(n) of course is the mean of the multiple access noise sample. E(n ) is the
average power of the multiple access noise sample.

We conclude this section with the following theorem which is proven

in Appendix E. It deals with the asymptotic character of Mi(v).

Theorem 3.1
If the signature set, S, is such that there is a common amplitude

density, i.e.

C]-j(x) = C(x) for all j # i

and if t/a is fixed, then M (v) is asymptotically (with N) the characteristic

-

LT um e dme o om e

function of a gaussian random variable having mean "0" and variance
[-+]
2
N2z x= C(x) dx.
[+
-p
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ECEIVER OPERATING CHARACTERISTIC -

-
i

3.5  BOUNDS TO THE
The presence of multiple access noise at the output of Matched

Filter "i" affects the operation of the matched filter detector. The ROC

(receiver operating characteristic) is the usual way in which the performance

of the matched filter detector is measured. In this part we shall define

the ROC as the curve pg as @ function of Pd where

0) | (3.5.1)

1]
(]

Prob (y.(t) >89 | Rii(t’ti)

Pe
;

1) (3.5.2)

n
[E]

Py

Prob {y (t) > o | R, (t,t,)
'i i 1

t is a sampling time. y (t) is the output of Matched Filter "i" at time t.
It is given by {(3.3.4). ;ii(t'ti) is the signal portion of yi(t). "Rii(t,ti)=0"
implies signal absent on output, "Rii(t’ti) = 1" implies signal present on
output.

In this section we shall compute upper and lower bounds tp the ROC.
The upper bound is generated from an upper bound to P¢ and a Tower bound to
Pq and represents the worst case ROC. The Tower bound is generated from a
lower bound to Pe and an upper bound to Py and represents a best case ROC.
Before computing the bounds it wiil be convenient to describe cnce again
the operation of the binary threshold decision device. It operates in the
following way:

If y.(t) > 8; it decides 4 (-) was received at the ground

i station at time t-t
(3.5.3)

If y (t) <e8; it decides Z (-) was not received at the ground
i station at ! time t-r
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3.5.1 Upper Bound to the ROC

A.  Upper Bound to p.

From the 3.5.1 and 3.3.6 it follows that

N
p = Prob (Z n, . (t) > 8) (3.5.4)
f et 1
J=1
J#i
Using Chernoff Bounds we can upper bound (3.5.4) as
N
pnij(t)
p < exp [-po +Z Ln{Ee M (3.5.5)
f =
j=1
J#i

where o > 0, but is otherwise arbitrary.
Now, we can evaluate E (epnii(t)) very easily by just letting v equal
to o/ in (3.4.5). This results in

| Lt o
E(epn”( )) = (1-21) 4 2_Tf e (x)dx (3.5.6)
o ¢ ij

Substituted into (3.5.5) yields
N

Pe < €XP [-p8 +Z: Ln((1-2_;_) + Z_Tfmepxc.ij(x)dx)] (3.5.7)
J= |

J#i
for arbitrary positive p. We now insist that p be picked as that positive

p which minimizes the right hand side of (3.5.7). This results in the desired

bound.
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B. Lower Bound to Py

From 3.5.2 and 3.3.6 it follows that
N | ‘ .
p = T1-Prob ( E -n;:(t) > (1-9)) (3.5.8)
d =
j=1

24
i

JT
Using Chernoff Bounds, we have the following upper bound:

i i ~yny5(t)
Prob ( E '”ij(t) > (1-8)) < exp [-y{1-8) + E Ln{E e Y]

J=1 : J=1

T3 i£9

g7 il (3.5.9)
where y> 0, but is otherwise arbitrary

“ni(t) . .
Now, we can evaluate Efe Yvery easily by just letting v
equal to -y/j in (3.4.5). This results in
-vn; . (t) ® -yX
Ele 9 ') = (1-2_;.) y 2z f e Cys(x)dx (3.5.10)
a -0

Substituting into (3.5.9) yields
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N N o
e T S B 2 ¥ AP
Prob( > =n5(t)>(1-8)) exp[-7(1-6) + D Ln((""59) + ) e Cy5(x)dx)]
j=] J=] -0
J#i J#
(3.5.17)
Hence,
N o vy
py > 1-exp[-¥(1-0) + > In(('"2Y) + £X[ & "¢, (x)dx)] (3.5.12)
j:'l - 00
it

We now insist that y be picked as that positive number which maximizes the
right hand side of {3.5.12. This yields the desired bound. (3.5.7) and

(3.5.12) constitute an upper bound to the ROC, we shall state them together

for convenience

N )
] 2y 4 2
b < exp[-po* Z Ln((""25) 4 ZL e ey (x)d0)] (3.5.13)
j=] “o0
J#i
N .
- 2 Y
Py > 1-expl-y(1-0) + > Ln(('"20) + 20 e Ve, )]
j=] =00
J#i

p is picked to minimize the upper bound to p.. is picked to maximize the
Y
lower bound to Pq+ P>y are restricted to be positive. These two bounds

together constitute an upper bound to the RQOC,

Before deriving the Tower bound to the ROC let us stop and discuss the

ROC upper bound given by (3,5,13), Notice that this bound depends upon the multiple
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access noise through four parameters; N, 1, q and {C%j(x)}. As N increases
and/or (t/o) increases the upper bound to Pe increases and the Tower bound to bd
decreases. This indicates a degeneration of the performance of the matched
filter detector. This, of‘coursé, is logical since as N and/or(T/a)increase

the average number of a mismatched Signatures contributing to the amplitude of
an output sample of Matched Filter 'i' increases. This inéreases the
probability of multiple access noise having a Targe magnitude on the sample,
thus causing the performance of the threshold device to deteriorate. The amplitude
densities {Cij(x)} are functions of the detailed structure of the signatures in
the signature set, S. In a sense, they represent the modulation scheme which

S itself represents. In system design, as we should see, one should choose an S
having a {Cij(x)} which causes the upper bound to p. to be small and the lower

bound to Py to be large.

3.5.2 Lower Bound to the ROC
A Tower bound to the ROC. is developed by obtaining a lower bound to
Pe and an upper bound to Py In order to obtain the bound to Pg and the bound
to Py One merely applies a Chernoff lower bound to the right hand side of (3.5.4)

and another Chernoff lower bound to the term Prob( ;S 'nij(t)>(]"9)) in

(3.5.8). Both of these tasks are just straight_forward applications of the

bound given by Ga11ager[3]. We shall just state the result

N ©
- pX
pf > ';— exp[—pe+(z ((] 5‘1') + EE“L[ € C_]J(X)d)())-gb]]
. i=1 — -
J#
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N w
pg < 15 expl-y(1-0) +(> Ln((""2) + 2 [ e Ve, (x)dx))-g,]

1
8

[

%]

[
)

(3.5.14)

o is the same positive p chosen to optimize (3.5.7). vy is the same positive value

chosen to optimize (3.5.12).

N o
= -7 /2 32 AN L”!I‘I-g_:l;\ . g’_r_‘_ { px -()&)d)&}l\
" Q]\f ;:7 \?L g 5 ) ij ')
i=1 B ey
J#i
where pl‘is the solution, ry, of
N = X
_ 2] 1—2_'[ 2t
0= (D> Ln((E0) + ZL (e ¢y (x)dx))
J=1 —o
J#1
N o
_ \/232 N\ L_Irf-l"z_'r\ T 2_T { erxp..(;()d;\)‘
V ;;f\f; W=+ =] i] J
=1 -
J#i

where 11 is the solution, g, of
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N

] -gx

(1-8) =5%(z Ln((1 gT) + é—T— e CU(X)dX))
3=1 S
J#i
2 & 1-20,. 27 [ 9 .
- ZQ““Z‘(E Ln({ a-—)"' a—f e Cij(x)dx))
89 j—_] -0
Jj#i

The bounds given by {3.5.14) constitute the lower bound to the ROC.

Comparing the upper bound to the ROC given by (3.5.13 }with the Tower
bound given by (3.5.14), one may note that they are asymptotically (with N)

4+ 4
1

el
LiYIre .
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3.6 RECEIVER OPERATING CHARACTERISTIC COMPARISON

In the previous section, we computed upper and lower bounds to the ROC.

. »

These are given by (3.513 )and (35.14) respectively. As is

LR e el LR 2

vident from observing
these bounds they are functions of the signature set parameters; N, t/a, and
{Cij(x)}' In this section we shall compute these bounds for a typical value

set of (N, t/a) and for several different candidate {Cij(x)}'s' The amplitude
density set, {Cij(x)}’ depends upon the detailed structure of the signature

set and hence, in a sense, represents the modulation design of the signature

set. By comparing bounds to the ROC for different {Cij(x)}'s we are equivalently
comparing ROC's for different signature set designs.

We fix N and 1/0

o

at the following values:
(1) N=10°
(11)  t/a=2(107°)

and we consider four different amplitude density sets; {Cij(x)}l’ {Cij(x)}Z’

{Cij(x)}3’ and {Cij(x)}4' Each of these amplitude density sets has one common

density, i.e.,

cij(x) = Cy(x) for all Cij(X) £ {Cij(X)}1
Cij(x) = C,(x) for all Cij(x) € {Cij(x)}Z
Cij(x) = C4(x) for all Cij(x) € {Cij(x)}3
Cij(x) = Cd(x) for all Cij(x) £ {Cij(x)}ﬂ

In addition, we constrain the second moments of each of the common densities

to be equal to b, i.e.,
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2
d/r Xx C (x)dx = b r=1,...4
r

— oo

The common densities; C](x),...C4(x), are totally representative of the
amplitude density sets; {Cij(x)}],..,{cij(x)}q. We can talk either about one
or the other. The common densities that we have chosen to compare are shown

in Figure 3.2.

Our constraint on the second moment of the common densities is equivalent
to a constraint on the average multiple access noise power. Observe Equation
(3.4.13). Constraining the second moments of the ampiitude densities to equai
b, constrains the average multiple access noise power to equal giﬂélll b. Thus,
in .comparing different common densities for an equal value of second moment,
we are comparing different signature designs under the constraint that each will

yield the same amount of average multiple access noise power.

The ROC's computed for the fixed values of (N, t/0) and for the amplitude
densities; C1(x)... Cq(x), are shown in Figures 3.3 through 3.6. In each
figure the solid contour corresponds to the upper bound to the ROC. The
broken contour corresponds to a Tower bound to the ROC. Each contour corresponds
to a constant value of the ratio 1/y/3b, the value of which is labelled on the

contour. Each point on the contour corresponds to a different value of o.
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We can compare the ROC's shown in Figures 3.3  through 3.6 by comparing

contours corresponding to the same value of

1 .
V3b
For purposes of comparison just consider the upper bound contours. It

appears that the amplitude density Cz(x) yields the most preferable ROC in that,

for a given value of Pd and , it has the smallest upper bound to Ps {and

3b
also the smailest lower bound). After Cz(x), C1(x) yields an ROC which is more

preferable than that of C3(x) or C4(x). C4(x) has the least preferable ROC.

We can order the common amplitude densities in terms of their preferability as;

C.{x),
2\1

of possible amplitude density sets. One may, in fact, believe that this

, 3(x), Cd(x), Of course, these are only a few of the

order of preferability is strongly a function of the specific values of (N,1/a)
chosen. We shall deal with this question in the next section where we shall

show that Cz(x) is in fact the optimum amplitude density set under the constraints

of; fixed average multiple access noise power, and a symmetry condition.

Before concluding this section, let us note that for each ROC set the

performance of the matched filter detector deteriorates (i.e., larger pf's for the

decreases). Since the average multiple access noise power
is —iﬂ—lll b, th1s implies that performance is deteriorating as the average multiple

access noise power increases. Of course, this is what one expects intuitively.
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THE QUAST OPTIMAL AMPLITUDE DENSITY

LR R M ek § W

2
=

In this section, we consider the problem of finding that {Cij(x)}’
which for, a given value of average multiple access noise power, gives simul-
taneously the smallest upper bound to Pg and the largest lower bound to pd,
(i.e., the best ROC upper bound) as given by (3.5.13). Theorem 3.2 will be
the answer to this problem. In proving the theorem we shall require our signa-
ture set, S, to be of a certain type. We shall require it to be a "uniform

signature set." A definition of this is first given.

Definition 3.1

S is a uniform signature set if for every j # 1 and x

Cij(x) = Cij(“x)

We now state the relevant theorem dealing with the best ROC upper
Theorem 3.2: Let:

1. € be a set {Cij(x)’ j=1,...N j#1} which could correspond to a
uniform signature set (i.e. satisfy the constraint of Definition 3.1.

2. :Y]CJ be the set of all such C's which have average multiple
access noise power fixed at p,

E(n?) = p

3. N, t/a be fixed
Then: The element of'}(ﬂ),Ci*, which simultaneously maximizes the lower bound
to pgq and minimizes the upper bound to Ps over Z(C), (thereby giving the most

preferable upper bound to the ROC), is &
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trens il

*

e - {c_ij*(x), 321, NLGAT

*

Ciy () =%—q0(X~ —P—m )’+‘E uy (x + __Pa_) (3.7.1)
~ljet (N-1)21
for every J#i
(uo(x) is the unit impulse)

Before embarking upon a proof of this theorem, it will lend some clarity
if it is discussed to some extent. Basically, the theorem says that if the
average multiple access power is fixed at p then the beét upper bound to the
ROC is obtained if the amplitude density is common for each "j" and is of the
form given by (3.7.1). First of all, the common amplitude density given by

(3.7.1) implies that the multiple access noise components, njj(t), will be

two valued, the amplitude can have a value either + /—BS— or- /[P%
(N-1)2< (N-1)2<

A typical such ”1j(t) is illustrated in Figure 3,7. Secondly, the common
amplitude density implies that the total multiple access noise is divided
equally among all mismatched signatures arriving in the matched filter 'i'

detector. Each mismatched signature contributes a quantity of power equal

to M_EQ_E_ to the multiple access noise power when it contributes. Finally,

/_Pa , realizes a
Y N2t

multiple access noise power contribution of (pa/(N-1)27) with the smallest

Ti+ud
L i

n
P 1w

1

possible peak height. Thus, the quasi-optimal {Cij(x)} given by {3.7.1)
has the characteristic that it spreads the fixed average multiple access
noise power over equal contributions from all mismatched signatures. It

obtains each equal noise power contribution from an "1j(t) having the smallest
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__Pa_
(N-1) 27

_ f Pa_
(N-1) 27

Fig. 3.7. Multiple access noise component implied by the optimal density.
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possib?e\peak height. We may conciude from this that it is peak height of
the multiple access noise component which dominates degradation in the per-
formance of the matched filter detector. _

We shall now prove the theorem. We shall do this by first showing
that {Cij* (x)} given by (3.7.1) gives the smallest possible upper bound to
Pe Later we shall argue that it gives the greatest lower bound to Pq thus

completing the proof.

Proof:

Observe the upper bound to p_ given in (3.5.13)

N @
X .
Pe < exp[-pe+:2 Ln((1'§IJ + gll[ ep Cij(x)dx)] (3.7.2)

j=1 -
J#

Let {Ci;j(x)} be some element of ZICJ which minimizes this upper bound to pg

over #(€) and Tet _
X Qﬁj(x)dx = bj (3.7.3)

-0a

p = the optimum o relative to ij(x)

We have then the lowest upper bound to p, as
N o0
1-2ty , 2T [0X.
] 21y 4 2T fooXe 3.7.4)
expl-po+ > Ln ({1725 + =€ e, (x)dx)] o
j=1 -oo
It

Using a power series expansion we cah write

/8



® 2
e gﬁj(x)dx u[ (1 + px + £g;%*—- + ...) de(x)dx

H

-Co

2
e

1+p E(x)+ ETE(xz)

i

.. (3.7.5)

—_ | -

_f e Qij(x)dx

(the expectations are taken with respect to ggj(x)). Since {gij(x)} is an element
ofjr«f) it must be symmetric. Therefore, all the odd moments of x in (3.7.5) are

zero and we have

% ox B2 @ EZn 2n
- 00 n=2
By Jensen's Inequality we have
(") > (B = b," (3.7.7)

Applying (3.7.7) to (3.7.6) we have

Zn

o 2 oo

X 1% £
fe __C_.‘.I(X)dx 31 + ’é'—b‘]- + 2 m‘)‘!_ (\I bJ)
- "~ n=2

2n

b X
‘fegxg,.(x)dx > feg (%-uo(x-,/bj) + %-uo(x + / bj))dx )
‘ (3.7.8

79



and note that {C:.rj(x), J-Tse.. NGJ#1Y s ah element OFZ(C). We have from

(3.7.8) that

o0 QX _ -. OOQ_X .
J‘e de(x)dx 2_‘fe Cijfx)
hence,
N © x
expl-g8 + . Ln(ﬂ‘f—f—) * z—ffe C;5(x)dx)]
= o
jf '
S iz, 2 2
> expl-pe + 2 Ln(('75h) + & fem C3i(x)dx)] (3.7.9)
, = J
J#i

However, {Qﬁj(x)} by definition minimizes the right hand side of (3,7;2), thus
(3.7.9) must hold with equality and'we have

N o
1-27y , 21 &1 1
exp[-p6 + z Ln{(7==) + = Je (Gup(x-y bs) + Zuq(x +Jt7j))dX)]
‘]=-[ -c0 ’ ) .
I# (3.7.10)
as the upper bound to Pe minimized over'iﬁCQ and it is achieved by:
Yooy . - |
C1J(X) = -Z-UO(X_ bJ) + ?uo(x + bJ) (3.7.11)
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where

-
-k

—
(¥ ]
.
|
]
ot

Q |N
,_"
A g
o
1l
B

0f course, we really don't know what { /b ""‘/bN} are yet. We now solve for

them knowing that they must, by definition, minimize the function

N P
1-2 2 2"1
expl-00 + > Ln((7ETy) + E2 [ (Quo(x - /B7) + guglx +/B;))dx)]

J=1 -0

j#i
over {V/E{,... Vﬁ?}}, {x/ég is excluded} (3.7.13)
under the constraint

(3.7.14)

%Lﬁ:bvq;z
M|
lg

Minimizing this function under constraint (3.7.14) is equivalent to minimizing

N oo
B _ X
{SCHRINED) (1728 + 20 [ Q- /B)) + g et /85 x
i e
J# (3.7.15)

under the constraint
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N .
S
i 2t | (3.7.16)

The function given by (3.7.15) is strictly convex (as can be determined by
taking the second derivative), in {/B;,... VfEN}. Hence, it must have a
unique minimum under the constraint (3.7.17). Of course, we know this unique

minimom mnet ha
LI EEEEILIFIIIEEN IRV P W) e

(Vbyser By (3.7.17)

Now, suppose the components are not all equal. Then a permutation of (3.7.15)
will yield another { /&,,... By} which minimizes (3.7.15) under (3.7.16)
This contradicts the fact that there is a unigue minimum to (3.7.15) Hence,
all of the components of (3.7.17) must be equal and since they must satisfy

(3.7.16) we have

) o
T R e S 2

Applying this to (3.7.11) we have the upper bound to Pe minimized over
Z(C) by c*

* *

iJ

Cyy () = Juglxey i) * Boox + | [y (3.7.18)

(x),3=1,...N,j#i}
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Observe the lower bound to Py given by (3.5.13). This can be maximized

over {Cij(x)} under the average multiple access noise constraint by minimizing

N oo

-y X
expl-v(1-6) + > ("9 + 22 [ ¢ Ve (0)ax)] (3.7.19)
< _m
g#i

under this constraint. Going through the same procedure that we used to
minimize the upper bound to pe we find that (3.7.19). is minimized and hence
the upper bound is maximized by (3.7.18). One should see this immediately

since (3.7.19) has the same form as an upper bound to Ps and Cij(x) is symmetric.
This completes the proof.

If the optimum amplitude density given by (3.7.1) is substituted into

the ROC bounds of (3.5.13 Jone obtains the following ROC upper bound:

pr < exp[-ps + (N-1) Ln((]_§IJ + EI'COShp \/Q;i?g;;)]

—oxpl —v{1- - 1-2ty | 21 Q
Py > 1-exp[-y{(1-8} + (N-1) Ln(( = ) + - coshy = 2T)]
We can for this optimal case actually solve for the value of p which minimizes
the upper bound to Pe and also the value of y which maximizes the Tower bound
to py- 1f we do this the variation of the optimal ROC with the signal parameters

will become explicit. We now devote ourselves to this task.
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Let us first define

Expf = Loo-(-1)Ln((""2D) + Zieoshy | /B8 )] (3.7.21)
Expd = [Y(T—e)-(N-T)Ln((]’EZLJ;) + z—Tcoshy \/%)] (3.7.22)

It is evident that we can express the optimal ROC bounds as

Pe < exp(-Expf)

We need only work with the upper bound to Pg- Qur result can be applied to

P4 by symmetry.

The p which minimizes the upper bound to Ps is the same p which maximizes

Expf. It is the solution of

8
< Expf = 0
ap g

e Vet sithe Vetyrr
1-21y | 21 \/ P
{ a ) + " coshp TN:%7§¥

0

8



Which can be solved directly yielding,

1-2
(N-1)27 -1[ 6 rTT) ] (N-1)27 - =1 [/ 27 \

p = S——=~ sinh _ + -
Vo [ \ﬁ(w-nﬁl I BT
o

2
o
(3.7.23)
Substituting (3.7.23) into {3.7.21) we have
(N-1)2 1 o' 2L )
Expf = 6y /LAL2E gy g vy )2 Tanh-1(e 2
Vo \/Z(N-1 yI 82452 Po TP
G
o

e(T—ZT

o)

- 1-27 27 =1 -1 2

N-T)L ( + o

(N-T)Ln{( Oﬂ) a co‘sh{smh ( > 2) + Tanh G N-1Va J)
T

2(N-1) TR - 84
o3

(3.7.24)

Going through the same we can obtain for E;Pd

1-2T
]_ ol
Expd = (1-9) (—'\'p};& sinh'1[( A J (1-0) y & N ‘ N-1)217, 71 q1- 9 e )

\/Z(N ])_E (- 3) 4T

1-21
1-g) (1=2T
- (N-1)Ln ((1-%‘) £re osh[s1nh ( o) (&) 2) 4((1-9). N?'f ) )
\/z(N—UH-’—(l'—e}—‘flzgf o
o [+
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The optimum ROC is then given by
Py < exp(-Expf)

Py > 1-exp(-Expd)

where Expf and Expd are in turn given by (3.7.24) and (3.7.25).. These bounds

show the explicit dependence of this optimal ROC on the signal parameters t/q

and N.

Typica]]y-% is of the order of 10'5, and N is of the order of 105, in

which case (3.7,24) and (3.7.25) can be approximated by

Expf ~ 8 /ﬂgg- sinh ™| ——
P Jf 2N/ a

- N Ln((1'g~1) s cr:)s;hlrsinh'](-—_-—--———‘e )h
U 2Nt/ 0/

L

-
-«

1

Expd

_ /N2t _, . -11 (1-8)
{(1-8) o5 sinh ___Eﬁ;;7;

-Nén(ﬂ'%£)+ glcosh&inh"1(———U:§%:)]>
v\ * | v 2Ntp/a /|,

A

We can now use the following identities
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sinh'](x) = Ln {x +V x2+1)

Applying these to (3.7.26) we obtain

Mo 2
~ N2T 8 + e + 1
Expf 8-\/pa Ln( I TNp/o )

.
1-21y 2 :
- N(L”(( 2t \/ZNTp/cx ¥ 1)) (3.7.27)

2
o = (1) [l 0L, [0
P v 2Ntp/a ZNtp/o

. 2
- Né.n<(]'§-?-) + 625" /L——ngl;g/a + 1] ))

" which are simpler expressions and they can be appliied directly to yield

approximate bounds

P < exp(~Expf)

Py > 1-exp{-Expd)
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3.8 GAUSSIAN COMPARISON

In this section we shall investigate the validity of assuming
the multiple access noise to be gaussian distributed. We shall do this under
the restriction that the signature set, S, be a uniform signature set (see
Definition 3.1) and that the amplitude density is common (i.e. Cij(x)=C(x) for
all j # 1).

Our program in this section will be as follows. We shall first fix
N and ./, and compute the ROC's of several candidate signature sets, {or equi-
valently common amplitude densities). We will compute the ROC that the matched
filter detector would have if its output noise were gaussian having the same
average power implied by the fixed values of N and ¢/o and the different
common amplitude densities. The actual ROC's will then be compared to this
gaussian noise ROC. Finally, we shall look at the approach of the ROC corre-
sponding to the Quasi-Optimal amplitude density (of Section 3.7) to the gaussian
ROC, with increasing aircraft population, N.

Consider the signature set, S, to be a uniform signature set having

a common amplitude density function, C(x), i.e.,
C..(x) = C(x) for all j#i

In Theorem 3.1, we state that in this case, if v/« is fixed, then as N increases

the distribution on a multiple access noise sample approaches a zero mean

gaussian distribution with variance N2t “/p xzc(x)dx. What is left open

o -
though is how rapidly the multiple access noise distribution approaches this

gaussian distribution.
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If the true multiple access noise distribution is very close to this
limit for a typical value of (N, t/a), the actual ROC of the matched filter
detector operating in the presence of multiple access noise should be closely
approximated by ROCg. ROCg fs the ROC whiEh the matﬁhed filter detector would
have if it were operating in an environment in which the output of the matched
filter is perturbed only be zerc mean gaussian noise having average power
E%l»jmxzc(x)dx

-~ Assuming that the signature set, S, is a uniform signature set we
shall first test the validity of assuming multiple access noise to be gaussian
{when Cij(x) = C(x)) by comparing the actual ROC to ROCg for several different

C{x)'s. "We shall fix (N, t/a) at a typical value.

First, we shall compute ROCg

Pe calculation for ROCg

= exp dy

erf | 6 (3.8.1)
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e AT AR

6 [, Nt .2 ANt .2
J/ZW_&_' x“C(x)dx 5 ,[X C(x)dx
Dd‘Jg+1§erf (1-6) ] )
AN .2 (3.8.2)
S fo C(x)dx
Combining (3.8.1) and (3.8.2) we have the ROCg
ROCg
pf=12---}-2—er'f 6 1
_F
Vo= [xEC{x)dx
g =gt gert{(-e (3.8.3)

We shall now compare the ROCg given by (3.8.3) to the bounds to the actual
ROC given by (3.5.13) and (3.5.14). In doing this we assume

(1) N=10°

(i1)  1/0=2(107%)
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and we consider four different common amplitude densities; Ci{x)s...C(x).

These are shown in Figure 3.2. Bounds to the actual ROC for these amplitude
densities are shown in Figures 3.3  through 3.6. The ROCg is shown in
Figure 3.8. |

Observe the actual ROC's shown in Figures 3.3  through 3.6. In
each of these figures the solid contours represent upper'bounds to the actual
ROC, the broken contours represent lower bqund to the actual ROC. For both the

actual ROC's of Figures 3.3  through 3.6 and the ROCg of Figure 3.8, each

contour corresponds to a given value of 1 , the value of which is labelled on
v 3b

the contour. Each point on a contour corresponds to a different value of 8. Com-
paring the corresponding contours on each of the actual ROC sets with that on the

ROCg set (i.e. contours having equal values of 1// 3b, one will note that the

ROCg is a much more preferable receiver operating characteristic than the

actual ROC. One concludes this by fixing 1. and Pq and observing the value

vY3b
0Cg and the lower bound to py indicated by the lower

.of Pf indicated by the R
bound to the actual ROC. The value of Ps indicated by the ROCg is always
lower than the actual Ps- Thus, we éan conclude that for the values of N
and t/o that we have assumed; (i.e., N = 105, /o = 2(10'5)) and for the
common densities, C1(x),...Cq(x); the gaussian approximation to the multiple
access noise distribution is a very poor approximation. It indicates much
better performance than actually exists.

The common density Cz(x) is the optimal amplitude density derived in
the previous section. From this we immediately conclude that if; N = 105,

A 2 P31 1 oAbl
1WIise power 1> T1i1Xed al P LHen

- La e s e i 1

Y - T
J, and the average multiple access
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Fig. 3.8. The ROCg for various values of JT?%
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no uniform signature set suffering this average multiple access noise power

will yield an ROC more preferable than
e=t-tert (o /T

1.1 N
Pd-~2—+—2-erf<e\/é-ﬁ—>

In Theorem 3.1 we stated that, if a signature set has a common
amplitude density, C(x), then when /o is held fixed as N increases the distri-
bution on the mu]tiple access noise approaches a zero mean gaussian distributﬁon
of variance ﬂgi-ulrn x2 C(x)dx. Of course, we have in the present section,
showed that for ty;ica1 parameter values; N=105, /o = 2(10'5), that assuming
the multiple access noise distribution to be at the gaussian limit is overly.
optimistic. We arrived at this from the observation that ROCg, the ROC under
the gaussian assumption, is much more.preferable than the actual ROC for these
parameter values. wheﬁ there is a common amplitude density, the actual ROC
must approach ROCg with increasing N. In the remainder of this section we

shall concern ourselves with studying this approach to ROCg for the case in

which the common amp]ftude density is the Quasi-optimal one, given in Section

3.7, i.e.
1 po. 1 [ P
?'o/" ,\/(N-I)T> Tz Q‘J’\/u\znjc-c)

In this case, the distribution on the multiple access noise approaches the
distribution of a zero mean gaussian random variable of variance p. ROC, of

course, is given by
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i

rf—

no| —

erf (% w/g;%)

1 ,
e ((]_9) 2_5) (3.8.4)

no| =
o —

Pg

Because the Chernoff bounds to the actual ROC are asymptotically tight
with N, we lose nothing by studying their approach to ROCg. It will be more
convenient for us to work with Chernoff bounds to the ROCg rather than the exact
ROCg. Again, we Tose nothing by doing this since these bounds are asymptotically
tight. We shall now derive the Chernoff upper bound to the ROCg. For a given

sampling time, t, we have, in general,

ps = Prob(n.(t)>8)
Applying a Chernoff bound to this we have
pe < exp(-pg+Ln(Ee"™)) (3.8.5)

where p is greater than or equal to zero, but is otherwise arbitrary for the

present. If the multiple access noise is gaussian

oo

un 2
Ele )= .[ 1 exp (-2Yexp(yn)dn
~o0y/ 2P F
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E(eu--)= exp (B) (3.8.6)

Applying (3.8.6) to (3.8.5) we have

2
We can now obtain the optimal p. It is the y which maximizes ue—E%—,

solving for it we know that it must satisfy

2
12T
au(u 2 )

and hence, we have

i
oD

T

from which we obtain the Chernoff bound to Pe

2
< exp- gh?

By going through the same procedure we can obtain
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2
(1-0) )

Py > T-exp-( 7P

Hence, the Chernoff upper bound to the ROCg is

e2
Pe < exp-(57)
2
_({1-9)
Py 2 1-exp-(F5555 ) (3.8.7)
Let us define
2
=9
Expfyg 2D
2
< {1-8) ‘
Expdg = 25 (3.8.8)

We may write the upper bound to the ROCg much more simply as

P¢ < exp(-Expfg)

> T-exp{-Expdg) (3.8.9)

Pyq

In Section 3,7, we show that the upper bound to the actual ROC under

the optimal amplitude density C (x):
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- ) / 1
Cx) = 2oy mETyEd) ty (Xt /W%)Z—T)

was given by
P < exp{-Expf)

Py > 1-exp(-Expd) (3.8.10)

Expf and Expd are given approximately by (3.7.27).

We can study the approach of, the upper bound to the actual ROC, to the
upper bound to ROCg, by studying the approach of Expf to Expfg and Expd to
Expdg. We shall now do this. It will be convenient to express; Expf in terms

of Expfg, and Expd in terms of Expdg. This is quite easy to do and we obtain

Expf = ———E42T xpfg Ln J—uEfo + 1 + Expfg

N Nz
o o
N Ln{(] 2T)+31J1+M5Xf ]
a Ne
L o J
Expd = ﬂﬂlgxpdg tnf /Expdg L/ , Expd
o Nt Nt
& o4
[ o o \/ N¢ J (3.8.11}
o



el

Assume that t/a, Expfg and Expdg are fixed. If N is increased then
we expect to see Expf approach Expfg and Expd approach Expdg. Let us check to
IF +hde e Fwvinr Iedn

eAn Y
oCC Vil 2 UG v

large to enable ﬁ%ﬁgﬂ and EXPdd  to be within the radius of convergence we

obtain

2 3
Expfg _ 1 (Expfgy _ Expf 1 Expf
\/1 * Nt/o + (NT/OL ) (qdr_gm ) o+ 16 (NTE(}" )

rof

(3.8.12)

3

[, , Expdg _ | . 1 (Expdg Expd Ex d
1t Nt/o (NT/a ) - ( Tsa ) * ( )

and from this we note that

/Expfg |- Expfg .
Nt/o * 1+ NTEG

—

Expf
+
—_{Eag' s Noo

=

xgdg Expdg . / Expd o
/NT/DL ¥ "'NT/a RN CH as N
Expfg - 1 (Expfg oo
dh * Ni/a + g (r) as N
Expdg - 1 (Expdg
d/1 * Nt/o 2 (NT/u ) a5 Nooo

Applying these asymptotic relations to (3.8.11) we obtain



Nt/a
4N Expd
Expd - Nj/-u—TExpdg n (1+ | 2599
- NLnf 1+ I.(Eﬁggﬁ)
a ‘Nt/a
Since

En(1 + x) . x
for x near zero
We obtain from (3.8.13) and (3.8.14)

Expf . Expfg as Now

Expd . Expdg as Nsoo

35 Nooo

(3.8.13)

b}
w
=

(3.8.14)

(3.8.15)

This, of course, is what we expected from Theorem 3.1.

Observe the expressions given by-(3.8.11) notice that they are

of the same form.

For this reason we shall represent Expf and Expd

by Exp, Expfg and Expdg by Expg and use the following expression to represent

(3.8.11).
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e N

o o
- T-g_r_ 2T Ex
N Lnf( E5) 425, 14 _N_%QJ (3.8.16)
[

Figure 3.9 illustrates Exp as a function of N for Expg = 4 and various

values of t/a. Notice that in each case, Exp increases monotonically and very
smoothly with N up to the gaussian exponent Expg. Also, notice that when, N=
/o = 10'5, typical system parameter values, Exp is less than Expg by a non-

negligible amount.

In Figure 3.10 we have plotted Exp vs. Expg for t/o = 105
and various values of N. Notice that for any value of Expg, Exp approaches
Expg monotonically from below with increasing N. Notice also that the rate
of this approach is more rapid for lower values of Expg than for higher values
of Expg. Finally, observe that the functional dependence between Exp and
Expg is practically Tinear.

The smoothness and the monotonicity properties of the curves shown in
Figures 3.9 and 3.10 seem to indicate that a simple relation, (simpler
than (3.8.16)), exists between Exp and Expg and that Exp is always less than
or equal to Expg.

We can use the curve shown in Figure 3,10 to judge the validity

of the way in which the multiple access noise degradation was accounted
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Fig. 3.9. Exp vs N when Expg=4, for various values of 7/4,
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Fig. 3.10. Exp vs Expg when 1/ =]0~5, for various values of N,
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for in Reference [1] where it was assumed to have the same effect as an
equal power in band white gaussian noise source at the input to each matched
filter. Let B represent signal bandwidth. The average multiple access

noise power under such an assumption would be

repart, [

L’\ [a¥al
epaf

T~ T it F o T
1 [ n the

K1 ar~ n + £ T34 a -1
nis assumes, WiTnOut 108S OT7 generaiiiy unit energy signal

oss of generality, un
systems were considered in which N=105. However, signatures were assumed to
consist of either 5 equal length pulses with o=2.5 seconds or 4 equal length
pulses with o= 2 seconds. This would make N effectively equal to 2(105). B was

7

assumed to be 10°Hz. A1l of this yields

Now,

2
Expg = g——

where a=1-8 or o depending upon whether we are dealing with Ps OF Dy- Suppose,

as an example, we let 8= 0.5 then

Expg = 12.5
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In the system considered in Reference [1], t was always of the order
of 10 usec. If we assume that these signature sets had correlation properties
which made them uniform signature sets, the Exp would correspond to the best
Pg Or pq exponent which one could expect. Observing Figure_3.10 which
corresponds to a t/fa = 10-5. If we let N=2 (10‘5) and Expg=12.5, we see that

m~ mmn
ne arna

1\!!‘":!‘ ‘;ﬂ
1ysts il
[1] yielded a much more optimistic system performance than actually existed
when one considers that in this situation the ratio of Expg to Exp is approxi-

mately 1.4.
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This section will deal with the relation of "Time-Bandwidth"

product to the average multiple access noise power from filter "i".

In doing these things we shall be able to find 1imit§ on the performance of
the matched filter detector, operating in the presence of multiple access
noise, in terms of a traditional measure of such performance. We shall close
this section by applying the results cobtained to a signature set, S, composed
of PSK modulated sequences having good auto-correlation properties.

The following theorem relating the average multiple access noise

Theorem 3.3: Let S be a signature set and let E(n2) be the average multiple

access noise power corresponding to it. The following upper bound holds

2 N
E(n ) < z: —1_
o fHiW:
5= 1
j#i

where Nj is the Zakai bandwidth of signal Sj(t) and is defined as

1

uy = [2 _Lo Ri; (t) dt]

and Rjj(t) is the auto-correlation of signal Sj('), j.e.,

R...(t) = fw S (x) S (x - t) dx (3.9.1)
JJ J b

-—C0

The bound holds with equality iff Rjj(') = Rii(‘) for all j # i.
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The proof of this theorem is given in Appendix F.
Consider now a signature set, S+, which is composed of PSK modulated
sequences. This was the type of signature set which was considered in Refer-

ence [1]. Furthermore, suppose that the chip duration of these PSK sequences

s mind dlnmd 4o .
1% TC dild Lid L LIEsE seyuenies o

R(t), which is illustrated in Figure 3.11. The auto-correlation was defined
by (3.9.1). The common auto-correlation shown in Figure 3.9.1 is a "good
auto-correlation function" in the sense that it has a high peak to side lobe
ratio. This also was implicit in the analyses of Reference [1].
+

Let us apply Theorem 3.3 to signature set S. Because of the common
auto-correlation, the theorem applys with equality and we have for the average
multiple access noise power

E(n?) = %ll (3.9.2)

where W is the common Zakai bandwidth. Computing the common Zakai Bandwidth

we obtain

-1

- - r 2
4 L v L4
W = - 1+ 2 = + 2 {—

T
If we consider - << 1 then
T

WL 4
T
c

~—
)
.
WO
Lo
S

Applying {3.9.3) to (3.9.2) yields
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Good auto-carrelation functions for @ PSK sequence.
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L2 N
E Y ——
(n%) = 3377

C

This is the same average multiple access noise power which would be obtained

if the interference input to the matched filter detector was white gaussian
_N
3a /TC
to what Stiglitz et. al. assumed in [1]. “The peak signal power of signature

noise having a spectral height of This of course is very close

set St is unity. Applying this to (3.9.2) yields

3o ]/Tc
N

as the peak signal to interference ratio.
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SECTION 4
IMPROVED AIRCRAFT POSITION TRACKING WITH SATELLITE

4,1 INTRODUCTION

Several proposed air traffic control systems would make use of satellite
multilateration techniques to satisfy the surveillance requirements. In these
systems, each aircraft, while in flight, would transmit a sequence of coded
pulses at the more or less reqularly spaced time instants Tg» T1s Tps =ce»
where T1+]-Ti%15econd. A constellation of K satellites in synchronous orbits
would receive each pulse; and, by comparing the times of arrival of this pulse-
at the K satellites, an estimate of the position of the aircraft at the time
the pulse was transmitted could then be computed. Thus, the surveillance

system would estimate the sequence p(TU), p(T]), p(TZ)’ ..., where the 3-vector

p(t) denotes the aircraft position at time t.

An analysis of the geometric dilution error has been presented in
Appendix I of {1]J. For that analysis, no attempt was made to statistically
model either the sequence {Tl} or the aircraft trajectory p(t) or to
exploit such a model with a tracking algorithm. It was shown that if -~

the time of arrival of a pulse at each of the K satellites were measured
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with resulting error variances equal to o, then the covariance matrix for

Ep, the error in estimating the aircraft position p, would just be

Py - Z[F'H' (H H)) TH FT™! | (4.1.1)
P

In the above,H is an arbitary K-1 by K matrix subject to the constraints that

its rows are indendendent and its columns sum to zero; while F is a K

th 1 '

by 3 matrix for which the i row is < ui, where u; is the unit vector

pointing from satellite i to the aircraft, and ¢ is the speed of light.

From (4.1.1) it follows that the variance of the norm of the error gp is

just

o
il
Q
(]
o+
-
Y
[ |
by
=
-
-
=
ot

1 (4.1.2)

Y

=gk
where tr {-} denotes the trace operation. The constant k, which is the ratio
of rms position estimation errors to rms errors in measuring the pulse times
of arrival at the satellites, is called the "geometric dilution" of the
surveillance system. It should be noted that k is finite if and only if rank
(HF)=3; a necessary condition for this to be true is that K»4. However, it
was shown in Appendix D of [1] that typical satellite constellations of
from five to eight satellites could be expected to have geometric dilutions

of from one to two orders of magnitude.
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It is reasonable to expect that if suitable stochastic models for the
sequence {Ti}_and the aircraft trajectory p(t) can be found, then the estima-
tion technique of [1], Appendix I could be improved. This, in fact, is the

case as we shall now demonstrate.

It will be shown in the remainder of this section that by incorporating
a suitable model for the sequence {Ti}, the variance of the error Ep can be
f

reduced. Moreover, it will now also be possible to track an aircraft, over

sufficiently short intervals of time, using only three satellites.
4,2 THE MULTILATERATION EQUATIONS

It is assumed that the aircraft is to be tracked using a constellation of

K statellites. Further; we shall use the following notation:

{rn} = sequence of aircraft pulse transmission times
p{t) = aircraft position vector at time t

Pn = P(Tn)

Tni = time of arrival of pulse n at satellite i

Tn = (Tn1""TnK)

Si(t) = position of satellite i at time t.

Also, it will be convenient to denote the K-vector, all of whose components

are 1's, simply as 1.

m



With the above definitions, the fundamental multilateration equation is

{11y = $4(Te) ]}
- 1 : '
Tn = Tn] * . + N (4.2.1)
[ 1Py = Sg(Toid 11

where , is a K-vector which accounts for excess delays due to ionospheric
and tropospheric effects. We shall decompose N into two components, a

deterministic, (i.e., known) part and a random part:

th

Of course, the times of arrival of the n~ pulse at the satellites must

be measured. Thus, let ?n denote the measured value of the vector Tn’ and Er o
n

the resulting error, so that

With this definition, (4.2.1) becomes

[TPn = STy

—_
1]
—
+
0=

‘ Fgn T g t ETn (4.2.2)
[1Pn = Sk{Tap) 1

112



Equation (4.2.2) is nonlinear in Py Moreover, since neither the times

ni

T . nor the satellite trajectories Si(t) are known precisely, we must approxi-

mate each Si(Tni) by gi(?ni)’ where gi(t) denotes the estimated satellite

trajectory. Therefore, letting p* dencte a good guess of the actual value of
n

pn(e.g., Py could be the estimated value of p(Tn-l))’ we can write

Fa

IPo-S;i (Toill = 19S5 (T #ppitSs (o) = 53T )|

= o-Si T+ uns (prp) + ung(54(T5) = 85T )

where u_ is the unit vector pointing from gi(?ni) to p¥:

'I ~ ~

Ui = T (0% - ST

ni

With this approximation {4.2.2) becomes

Faduwirj oiiineD

Iz - 5T

Tn - Tn] e * Fn(pn—p:)
e = seToel
unp (S$1{Thy) = $(T )
1
+ =
¢ * Nan F Ny

”ﬁK(gk(?nK) - Sp(Tag))
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This may be simplified as

Tn = kn T 1+ Fn (pn-p:) * e,

where kn is the following deterministic vector:

R

~
il
Ol—

* Ndn
\J#5 - STl /
and €4 is the following random vector:

// uny (ST = 871000\

+n

m
If
o=

+ £
PN rn in
Unk Sk(Tod = Se(Tied)

The sequence of random vectors {e_} represents the combined effects of

random refractions, satellite tracking errors, and errors in measuring the
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pulse times of arrival., However, it can be argued that the statistics of

{en} may be adequately modeled as

E[en] =0

g = [Variance in measuring Tni]

+ [Variance of 1th component of nrn]

l-—.l

=y [Variance of error in the radial

e

. s . , .th Coem m
direction in tracking the 1 satelliite]

We have, therefore, reduced the mu]t11ateration equations to the linear

equation
Tn B kn T 1+ Fn(pn"pﬁ) t ey, (4.2.3)

where kn is a known vector, and {en} is modeled as

m
—
M
=

M
s -
—
[}
Q
—
(=)

n,m (4.2.4)}
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A1l that remains is to model the sequences {Tﬁ} and {pﬁ}; given models for

these sequences, we can determine how to estimate them.

4.3  THE MODEL FOR {r}

It is shown in Appendix G that the random sequence {Tn} may be modeled

quite realistically as having the following second order statistics:

Elt,-1,] = nT
EL(t,-1,) (1,-1,)] = 0y° min(m,n)
1 2,2p,.2 2
t 50, (m P4n“P-|m-n| “P)

+?2mn

where

%—< p<1l ,p =l

However, in order to simplify some of the subsequent analysis, we shall assume

that
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and that

With these assumptions, {Tn} is modelled as

1T, = completely unknown

o

E[Tn-ro] = nt (4.3.1a)
E[(Tm-TO)(Tm-TO)] = coz[min(m,n) +mn] + Zmn (4.3.1b)
Var [Tn'TO] = 002(n+n2) {4.3.1¢c)

Note that, as n increases, the standard deviation of (Tn-To) becomes approxi-

mately no,-. Thus, the rms fractional error in {rn} is just 00/?l

4.4 THE MODEL FOR {pn}

Since a realistic stochastic model for the aircraft trajectory would be

quite compiex, the sequence {pn} will be modelled simply as a sequence of
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compietely unknown, i.e., nonrandom, vectors. This assumption considerab
simplifies the problem of estimating the vectors Py 0f course, due to
physical Timitations on the velocity and acceleration of an aircraft, knowing

the value of Py tel1s us something about the value of p Such considerations

ntl”
can be useful in calculating the vectors p;, and in determining the confidence

that we may place on a particular estimate Py

It may be noted that this model is the same as that used in [1]. Thus,
any improvement in tracking the sequence {p,} will be due to the incorporation

of a stochasti

mode

] o [ T R e r h]
I TOY iLhe sequernce tTnJ’-

4.5 ESTIMATING THE SEQUENCES {rn} AND {pn}

At approximately every t=] second, a set of measurements of pulse times
of arrival denoted by (4.2.3) is made. From these measurements we would Tike
to track the sequences {Tn} and {pn}. There are now three basic situations
under which we shall use different estimation procedures:

(i) n=10,K>4%

(ii) n

v

1, K> 4
(iii) n> N+ 1, K= 3, where up to time N there are 4
or more satellites available, but after time N there

are only 3,
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4.5.1 Initial Estimates of v_ and p_ with Four or More Satellites

We have the measurements

A: + + =n*) +
Ty = kg * 1ol * Fol(pyopg) + ¢,
and, since both Ty and P, are completely unknown, a reasonable estimate to
use is a least-squares estimate. That is, we pick To and 60 $0 as to minimize
~ ~ FaY _'I/\ el ~
wl - I ARL -k - - P
(T _-k TOT Fo(p0 po)) PEn (T0 Ky T01 Fo(p0 Po))

0 o

L

where Pé is the covariance matrix for g,+ But, from (4.2.4)
0 .

so the estimates ;0 and Bo are given by

Tg 0 . N
)=l e TR (R )T (R ) (T k)
Pa P53

Then, since

1'T = K = number of satellites,

the above is just
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where

Therefore, the

] -]
+ Yb(Fo FO) F

1

1 ' ‘.I !
K-1'F (F 'F )T F '

astimate T, is just

1 ' "] | -
Y01 (I-FO(F0 Fo) F0 ) (To-ko)

1 '1 1 [ 1 '] 1 =
pg+(F0 Fo) F0 [I-YO]} (I—FO(Fo FO) F0 )] (To—ko)

-k -1 1]

1 '] 1 i
p; * (FO FO) I:‘O [TO 0 0
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T1'F (F_'F )‘L)
0 o0 0

(4.5.1)

(4.5.2)
(4.5.3)

(4.5.4)



It is easily seen that

~

o To
(IA )-—(f ) = [(]:Fo)'(l:Fo)]'](1:F0)' €

\ P/ NP,/

Therefore, the error covariance matrix for this combined estimate is just

L:F) (1 )]

Denoting the variance in the estimate ;o by og , and the covariance matrix
~ T
for the estimate p by PE it now follows from°(4.5.1) that
Po
2
gg = g = g2 Yo (4.5.5)
T 21! 1 "] 1
0 K-1 FO(F0 Fo) FO 1
and that
- 2 1 '1 2 ] ‘1 T [ 1 '1
Pg =g (FQ FQ) t o, (Fg Fo) FD 11 FO(F0 FO) (4.5.6)}
Po ’To

From the latter it follows that

2

1 ! ‘2' | A
. 1 FO(F0 FO) F0 1 (4.5.7)

T

varlfe, |1 = 0% tr{(Fy'F) ' + o
° 0

As one might expect, (4.5.6) and (4.1.1) are equivalent expressions for

PE , and (4.5.7) and (4.1.2) are equivalent expressions for Var[“gp ”]. In
p 0

facP, it is easy to show that og

T
dilution, as defined in Section 4fﬁ,is finite.

is finite if and only if the geometric
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4.5.2 Tracking {Tn} and {pn} for n>1 with Four or More Satellites

In this case, we have measurements of the form

Ty = kn + Tn] + Fn(pn—p:) * e, (4.5.8)

~ ~

and, in addition, we have the previously computed estimates ;0, Tys eee Tpop
Knowledge of these estimates will allow us to estimate T with a smaller error
variance than that given by (4.5.5). This estimate ;n will, in turn, ailow

us to estimate Py with a smaller error covariance matrix than that given by

(4.5.6).
point of view. In fact, it is easy to show that the sequence {Tn}, generated
as

= 2Tn oy, t wn+]]
J n>0 (4.5.9)

Th+1

One1 T Ty T W

will have the second order statistics of (4.3.1) if

~ . __ 2
E[wn] = O,E[wnwm] =0, an,m

Elry] = 03E[r,°] = 0

E[ao] = O;E[aoz] =002
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It would then be a simple exercise to find the Kalman filter to track the

sequence {Tn}.

This approach will not be taken, for the following important reason.
Equations (4.3.1) represent the second order statistics of {Tn} only for the
1imiting case when =1 (see subsection 4.3 and Appendix §). In this case, the

sequence {r } is, from (4.5.9), just

n
T~ 22 Wi F oo
i=1
A Kalman filter based on (4.5.9) will tend to estimate both.Tn and G s with
the estimates for T depending on those for Og - Because o, is a random

variable, the estimates for oy will converge after a short time, and from

that time on the estimates for T, will depend on this limiting value.

In the actual case when o is strictly less than one, the dynamics of
(4.5.9) are not a good model for {t,}. Therefore, the random variable Gty has
no relevance to the process {Tn}; and therefore, basing estimates for T, ON an
estimate of Uy is clearly absurd. In short, if one were to use a Kalman filter

to track {Tn}, the following phenomenon would be observed: initially, while

"a," 7s being estimated, good estimates of t_ would result; however, after the

estimate for ”ao” has converged, poor estimates of T, Would result.

To circumvent this problem, while at the same time using the simple second

order statistics of (4.3.1), we shall take the following approach. We shall
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constrain the estimate T to be a function only of the current measurement,

Ths and the most fecent past estimate, Tl Further, we shall constrain this

function to be 1inear.

We begin by estimating Ty Define the increment Aq s

A‘]=T'I_T-T

so that,

T +1“+A1

=T ot T+ A -E
1 T
0

where gT is the error in estimating Ty Because gT is a function of €0 it

0
follows that

2 2

Var[ao, - E 1 =0 +¢
1 TO A'I ET
0
SR

where the last line follows from {4.3.1c).

the mean and variance of T, are Jjust:

-
—
:
-
Y
=
™~
-
—
—_
I
Y
Q
+
qQ
Y
]

o

Therefore, given the estimate To»



The above may now be regarded as a priori statistics. Then, using the

results in Appendix H, the observation (4.5.8) leads to the estimate

T] = Y]]I(I'F](F]'F])-]F]f) [T1'k]'('["o+?)]] +TO+¥ (4.5.]0)
where
2 . 2
ZUO + OE
To
"o 2 1
02+(200 +g§ ) (K-1"Fo (F, 'F) TR ) (4.5.11)
T
(e}

Denoting the error in this estimate as

we have, from Appendix H, that

2,, 2, 2
2 +
2 ° ( GO 05’[0) z
O(E - = g 'Y.I (4.5.]2)
T 220246l Y(K-1TF 6 )R M)
o TG GgT 171710
0

Having estimated T1s We can now estimate Py- From Appendix H we get

the following:

Fal

Py = pf + (F1'F1)'1F1'(T1-k1-T]1) (4.5.13)

and the error covariance matrix and rms error are
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= 2 [} '] 2 1 ‘“1 ] ) 1 "]
P 1 =g (FI FI) + ch (F1 F1) F1 11 F](F] F]) (4.5.14)
]

i

o wrl(Fy P 4 op TR (R )R (4.5.15)

vt )

Formulas (4.5.10) through (4.5.15) exhibit a marked similarity to (4.5.2)
through {4.5.7). Note in particular, that the estimates for T, and T, are
used in exactly the same manner in finding the estimates for Po and Py

respectively.

We are now in a position to determine how T, is to be computed from Tn

~ - n
and 7,y It is clear that, given 7 ¢, the mean of is

E[Tn|Tn_]] = Ty + 7T

Then, from Appendix H we have

~

- ‘ -1 S - -
T, = YnT'[I-Fn(Fn‘Fn) Fn'] [Tn-kn-(Tn_1+T)]] T + 1
(4.5.16)
oL ey e (T o o .
Py = Px o+ (F P )R (T -k - 1) (4.5.17)
where 5
o
Tn
Yy =

c2+cfn(K-1'Fn(Fn'Fn)“IFn'1)
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The resulting error statistics are just

G
H

2 =dty (4.5.18)

1 ‘1 1 t 1 "“1 ’
(F 'F) T F " T1VF (FUF ) (4.5.19)

=
H

2 -1 2
o (F'F )  +g¢
Epn nn ET

n

Thus, the estimates ;n and p, are well-defined by (4.5.16) and (4.5.17)

if we can determine the constants Yo For notational simplicity we define

- t 1 "1 1
Bn = K-1 Fn(Fn Fn) Fn 1
so that -
2
U"L’
n
Y = (4.5.20)
o +B o
n n
To find 02 we write
Tn
Tn = Tn_] + T+ An
=T ,tT+A -E
n-1 n Th-1
Therefore,
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o° = Var[A -£ ]
n N T

var[a 1 + Varlz = ] - 2E[A £ 1
n T n-t
n-1 n-1

I

2 2
20g *+ 0¥y = 2EL8eE; ] (4.5.21)

where the last Tine follows from (4.3.1) and (4.5.18).

To determine E[z_\.ngT 1] we need an expression for S From (4.5.,16),
n- n-1

n-1

1 t '1 | T ~ - ~ -
Yn-T] [I'F (F ) F n_'|][Tn_]'kn_}‘(Tn_2+T)I]+Tn_2+T‘Tn_1

n- 1 n-1

But,

and, using (4.5.8),

ng_] ) Yn-1]'[I'Fn-1(F'n 1" n- 1) F 1][F 1(pn 17Ph T) (g n_Z'An-T)HEnJJ
+ £ - A
Tz
g = (Y 1)(& ) + term in ¢
Tn-1 -1 Fn-1 Tn-2 n-1
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Therefore, using (4.5.20)

2
E[AnETn_]] = - g (E[ap8,_7] -E[Anng_z]) (4.5.22)

2 2
o 1B, -0
n-1 L

From (4.3.1) we can compute E[AnA ] recursively as follows:

n-i

2
200

E[Anz]

[ndl N 2P PR T A b
FLASo 120/ P0-1"5n-1

| M-
il

= (002+2002) - 2002 = 002

- 2
E[AnAn-Z] B E[("'\‘n—2+"'\‘n—1JrAn)An—Z_‘Sn—Z An-1An-2]
= { ZTJ 2y . co.z-c 2 - a 2
V0o P09 o Y 0
and, in general,
202’ ~ (4.5.23
E[AnAn_1]= s b )
0, s l<izn-

We can now use (4.5.20) through (4.5.23) to construct the sequences {y}

and {of }. We have, from (4.5.2)
n

Yo °

T | —
Sl

Then,
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Continuing in

= 2002 + UZYO
2
Or
- 1
2 2
c +B1UT]
202
= 20A2 + 02Y1 + E[A,4,]
%) ] 2 2 [ 1
o) +B]0T]
22 2 2
¢ o 20 T9
= 20 2 + 1 +
° 2 2. 2
o +B]OT o +B1UT 'I
2
g
T2
2 2
o .o
2 T2
262 2
= 20n2 + UZYQ + _T—_(E[AQA‘)] + ——_"'—'E[AQA-;])
i) o 2 o e wt b
a +820T 02+B]c$
2 1
22 2 2 2
GO 20 g o}
= 25,7 + 2 1+ —)
2 2 2 2 2 2
o} +82d12 o] +620T2 o] +B10T]

this manner, it is apparent that
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2 2
(ICIT :
n_
2 - 2
n 2
o tR. 40
n-1 Tn-1
2
+20 2+ —29 1+ s 1+
° 02+B o] 02+B 02
n-1 - n-2 Tp-2
) .
A1 ... (4.5.24)
2 2
+
o] 81011
and
2
OT
v = n (4.5.25)
o2 2
g R o
n“t,
The constants Bn depend on the unit vectors from the satellites to the
aircraft:
g, = K-1'F (F 'F )7TF "1
n n" n n n
where
In'l
Fo=af
n ¢
nk
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T

An arbitary rotation of all of these unit vectors will carry Fn to the matrix

where R is an orthogonal matrix:

R = R

Under this transformation, Bn changes to Eﬁ:

w
il

e o] "]““1
K1F(F )R

1 1 | I-.i 1
K-1 FnR (RF nFnR ) 'RF n 1

1

1 1 | -TI '
K-1 FnR R(Fri Fn) R'RF n 1

Since over a short period of time there will be only slight changes in the

angles between the unit vectors, we may assume that

Bn = g = constant

With this assumption, it is easy to argue that the numbers 03 converge

9 n
to a limit o,

. In fact, at this limit, we have from (4.5.24)
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0_2 0_2 «° 0_2 .i
2 _ T 2
Or 7 tlo, 22 [ 2., 2 }

"2
o *hor j=o LO *Bos

Then, since from (4.5.25) we have

77 T Y8

+30
g 18 T

where v is the Timit of the Yp» We now have the following equation in - :

2 00 .
2 2 i
¥g -’ + 20, 2Dl
i=0
2 ; 2002
A Y8

Therefore, y satisfies the following cubic egquation:

2 2 20 2
-|-_0 _..-.9...:0
Y 2 YT 272
g B o B
USing the well-known method for finding roots of cubic equations [7, pg. 71,
it is easy to show that the above cubic equation has only one real root. The

value of this root is

: 1/3 2
0oz 1/3 . GO2B / o Zs |13
y= | 9% 1+\1 + 5 (1 -0\ 4
2.2 27 2 27 "2

c B g o]
(4.5.26)

IO:)

i
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e '=.

where
3= K-1'F(F'F)7TF'T

We may now note that, rather than use the numbers Y, as given by (4.5.24)
and (4.5.25), we could probably use vy, as given in (4.5.26), in determining
the estimates %n and an by (4.5.16) and (4.5.17). The only difference would

be that the estimates for small values of n would not be quite as good.

4.5.3 Tracking {pn}for n>N+1 with Three Satellites

Suppose that we have tracked {Tn} and {pn} with four or more satellites,

and that the estimators have reached steady state by time N, i.e., that

YNzY
where y is given by (4.5.26). Also, suppose that between times N and N+1 the
number of available satellites drops to three. For example, a satellite might
fail or become disadvantaged due to aircraft banking. We would like to
determine how long the aircraft may be tracked with acceptable error using

only three satellites.

Since we have only three satellites, it follows from Appendix H that the

best estimate for Ty is just the mean of T given ;N' But
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Therefore,

and
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From (2.3.1) we have

i
Var[EN /_\.1] = 6, [(n=N) + (n-N)°]
1=N+]

and from (4.5.18)
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From the previous section, for i > N,

0
Mg
Q
o
ro
——
!
<
o)
g
[

- E[ag ]
. 1 'L'N

Thus,

of = oy + o Z LinN) (BRE+ 1) + (n-M)7]

cg = o’y + 002 (28 (n-N) + (n-N)?] (4.5.27)

[

P, = Pk * Fn'l(?n-k“~rn1) (4.5.28)

and the error statistics are

— 2 1 '] 2 '] 1 |"1
Pe = ot (F'F) "+ FTE (4.5.29)
p"‘. Tn
! l -_ 2 1 -] 2 [] ] --I
Var [“gpnh] = o tr{(F 'F )7} + ogT V(F F)T (4.5.30)
n
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where, in these formulas we have used the fact that since Fn is now 3 by 3,

"] - : 1 "1
exists if (Fn Fn) does.

F
n
Applying (4.5.27), we see that Var[”gp "] increases as (n—N)2 for large
n

values of {n-N):
var [z, 1 0% ri(F, F)
n
+ {oly + 002[§$%§(n_N) +(”'N)2]}1I(Fann)—] 1

In the above, of course, y and g are the limiting value of v, and the constant

value of Bpy» respectively, for O<n<N.

4.5.4 Summary of Tracking and Estimating Procedures

Probably the most striking observation to be made from the results of the
previous three sections is the form of the estimate of Pp In all three cases,

we have

Pp © p; * (Fn Fn) F [Tn_kn_1n1]

In the special case where K=3,
1

where T, is the appropriate estimate of T
we can replace the matrix (Fn'Fn)']Fn' by the matrix Fn' » since F_ is square

in this case. Of course, we have assumed throughout that (Fn'Fn)'] exists;
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this is equivalent to assuming that three of the unit vectors Ui i=1,2,...K,

are linearly independent.

The method of estimating T, does vary, however. We use a least squares
estimate of T,, Whenever K>4 and we have no statistical information, or at
best very poor statistical information, about Ty This will be true when n=0,
or just after having tracked {Tn} for some time with K=3. This Teast squares

estimate, for the case n=0, takes the form

I . | - ] 1 =z
Ty y01 (I—FO(F0 FO) F0 )(To-ko)

where

1 1
Y, =5 = -
B K-1'F, (F,'F,) 1Fo'l

It is important to notice that if K=3, then By is

1

e
H

K-1"Fo(F 'F )T F

K-1'1 =0

H

Thus, it is impossible to estimate To with less than four satellites.

”~ ~ ~

For n>1, and with K>4, the estimates 1. 7q,...7, 1 Provide statistical

information about Tpe Thus, we use a constrained Tinear minimum-mean-square-
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error estimate of Ty this estimate is of the form

- 1 1 "1 [} z - - " — " -
T, = vl 'LI-F (F Fo) Fot LTk, (r,_1*T)1] *1, 9% ©
where
2
o]
Tn
Yo~ 2.5 (4.5.31)
o to B
Th n
2
o
2 2 1 ] -.I 1
o +0Tn(K—1 Fn(Fn Fn) Fn 1)

and the seguence (021 is given by (4.5.24) with

T
L

n

2 2 2
GTT B 200 to Y0

[t was argued that B, can be expected to be almost constant over fairly
long periods of time. The criteria for B, to be constant are just that the
relative angles between the unit vectors U remain constant, and that K remains

constant. Under this assumption it was shown that the sequence {yn} converges

to a limit v given by (4.5.26). Defining the parameter ¢ as

Q
™
wn

8 o

o = >3 (4.5.32)

™

where g is the constant value of g_, (4.5.26) can be written as

13%



v = 3 ¥la) (4.5.33)

w|—

LA ARE ]

w0) = 3 MR 2+ VIRl (4.5.34)

Finally, if K suddenly drops to three, due to aircraft banking or a

satellite failure, we must estimate T by extrapolating from the estimates

~ ~

Tg> T1s « Ty where N is the last time that four or more satellites are

available. The estimate is simply

We are also interested in the variance of the norm of the position

estimate error, £p. - From (4.5.5) and (4.5.7), (4.5.18) and (4.5.19}, and
n
(4.5.27) and (4.5.30) we have

var e, |[1 = oPLtr((F 'F )Ty 4y 1F (FUF )T T (4.5.35)
n

for all three cases. Recall that 02 is the variance in measuring the time of
arrival Tni’ plus l?. times the variance of the tracking error, in the radial

c
direction, of satellite i, plus the variance of random relays in the signal

propagation due to atmosphere refraction.
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The parameters Yn in (4.5.35) depend on the type of estimate that is used

for Tn* When we use the least squares estimate, e.g., when n=0,

{4.5.36)

v =L
o B

When we are tracking the sequence {Tn} with a 1inear estimator, yn'is given by

(4.5.30), and we have seen that y_ converges to y:
Y, YT %w(a) (4.5.37)

For the case where K=3 and we are estimating Ty by extrapolation from ;N’ we

have from (4.5.27), (4.5.32), and (4.5.33)

vy = i) + & BB (n-) + (n-0)%)]

In the above expressions we are assuming that K remains constant for O<ngN,

and that Bn=§for 0<n<N.

We have shown in Section 4.5.3 that if K is constant for O<n<N and if the

angles between the unit vectors u . are constant over this interval, then g

ni
is constant for O<neN. A similar argument shows that under these assumptions

and

-2

1 (F )T
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also remain constant for O<n<N. Therefore, the quantity y(q) in (4.5.37) is

just the factor by.which the second term in (4.5.35) is reduced, from its

value at n=0 to its limiting value in the interval O<n<N, by tracking the
sequence {Tn}. We shall see from examples in the next section that the second
term in (4.5.35) always significantly dominates the first term; thus, by tracking

the sequence {z }, Var[”g ”] can be reduced to approximately ¢(q)-VarL“g .
" ‘p H

lpn o
The quantity y(a) does not have a simple interpretation in terms of the
relative sizes of Var[”gp ”] and Var[“gp “] for n>N. The reason is that when
0 n -
the number of satellites drops to three, the quantities tr {(Fn'Fn) ]} and
1'Fn(Fn'Fn)"Fn'1 both increase, but by amounts that depend on the particular

satellite constellation.

The value of y{(a) does, however, play a role in how quickly the sequence
{Yn}’ for O<n<N, converges to its limiting value v. In fact, from the derivation
of (4.5.26) it is apparent that the rapidity with which Yy, converges to v is

more or less governed by how quickly the geometric series

n+1

n
- i _ 1-[1-y(
>n " 25 (T-yg)" = U aa

converges to the limit [w(a)]'1. For example, we can say that the number of

steps necessary for Yn to converge to within (0.1)y of v is approximately

1
Tog{T-y{a}) ~ !

2.3

IR

n

2

g

-1
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for small values of y(a). Thus, we would Tike y(a) to be small, so that
Var[ﬂgp N] is small for O<n<N, but not so small that the convergence of {yn}
“ Pn

to vy is very slow,

‘A plot of the function y(a) is shown in Figure 4.1. Two useful approxi-

mations may be derived from (4.5.34); they are
N -1
vla) 21550, for o]

W = 32)1 P35

I

1.89[a/3-($%/3], for o20.3

These approximations also appear on Figure 4.1.

4.6 EXAMPLES

We shall now consider the two satellite constellations from Appendix D
n determine which values
of T Tead to significant improvements in tracking the aircraft as a result of
also tracking the sequence {Tn}. Also, we can determine how long the aircraft
may be tracked using only three satellites. These illustrated examples

provide considerable insight on the role of tracking.
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Fig. 4.1. The function y{e) and two approximations.
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In the following two examples we shall assume that

2

o = (50 nsec)2

where 02 is the variance is the estimate of time of arrival at any particular

satellite. 1In each of these examples we shall consider only three values for

002: (5 nsec)®, 50 nsec)z, and 500 nsec)®

which one begins to obtain only marginal gains by tracking {Tn} is the point at

It will be seen that the point at

which

In each of the two examples there are initially seven or eight satellites,
all within a 45° half-angle cone with a vertical axis and the vertex at the
aircraft. This restriction, i.e., all satellites lying within such a cone,

was used in reference 1 to insure that the signal from an aircraft, banking 30°

. . A2 = - <21

in any direction, could al; e received

ways be received by each o

sufficient for detection,

In determing how long the aircraft can be tracked using only three
satellites, the following method was used. The three most optimally positioned
satellites of the initial seven or eight were selected; these satellites were
the most widely spaced triplet of satellites within the constraint cone. It

was then assumed that at time n=N, all satellites but these three were dis-

advantaged. The results on tracking the aircraft with three satellites are

+imictir in +ho
LiRlToLIL 11 LI
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The latitudes and Tongitudes of the subsatellite points for the two
examples are listed in Table 4.1. The satellite numbering is such that
satellites 1, 2, and 3 are used in tracking with three satellites. In both

examples, the aircraft is at

45°

aircraft latitude

]

aircraft longitude 120°
The parameters g, tr{(F'F)'1}, and 1'F(F'F)-2F'1 are 1isted in Table 4.2.
It should be noted that in both examples, g is quite small. Thus, in the

expression for the variance of the least-squares estimate for Py’

11 = “Ltrl(F'F)™' + L F(FHF)"8F 1]

Var[tgp i 5

0
the second term obviously dominates. This is particularly true in Example II.

It should also be noted that when the number of satellites is reduced to

three, the quantities tr{(F'F)—1} and 1'F(F'F)'2

F'T both increase; this increase

is substantial in Example II.

For each of the examples, and for the three values of Uyt 5 nsec, 50 nsec,

and 500 nsec, the following quantities were determined:
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Table 4.1. Latitudes and Longitudes of Sub-Satellite Points.
Example Satellite Latitude Longitude
[ 1 14.9 152.7
2 63.4 115.0
3 36.6 101.8
4 51.0 123.2
5 51.0 106.8
6 60.1 -80.5
7 . 60.1 79.5
I1 1 27.0 109.8
2 44,5 129.5
3 62.6 80.4
4 62.6 114.6
5 56.2 111.6
6 27.0 85.3
7 44 .5 65.5
8 56.2 83.4
Table 4.2. Satellite Constellation Parameters.
I '1 1 1 '2 1
tr{(F'F)""} 1T'F(F'F)"°F"
All Satellites A1l Satellites
Exampie B Satellites 1,2,3 Satellites 1,2,3
I .0543 7.84 9.39 1.30 5.76
11 00355 3.99 14.9 1.16 14.3
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(1) ) (Eq. (4.5.32))
(1) yla) (Fig. 4.1)

(ii11) A /Var[”gp‘u] standard deviation for least squares estimate

| (iv) Var[“gpNg]

Timiting standard deviation while tracking {z}
with all satellites

{v) - Var[“g ip= standard deviation of first estimate made with
V PN+1"  three satellites.

These gquantities are exhibited in Table 4.3. Finally, Figures 4.2 and 4.3

illustrate how '\/;ar[ngp I] varies with n.
n

Let us denote, as in subsection 4.1, the geometric dilution, using the least

squares estimate, as

s \/V&r[;jgpo“]

'\/';r{(F'F)']} + %1'F(F'F)'2F'1

=~
1

then, examination of Table 4.3 and Figures 4.2 and 4.3 reveals the following

ruies of .thumb:

(1} When g is very small, and thus k very large, (Example II) tracking

{r,} with all satellites can significantly reduce T\ /Var[”gp ”] if
n

OO<O'.

(2) When k is not particularly large {Exampie I), tracking {1y} with all
satellites will reduce '\/Var[”gh m, but this reduction is significant
v 1 Fn"

only when Ty < Jdo.
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1§l

Table 4.3.

Estimation Parameters.

Veertlep,, |-

Example o o, o v(a) \/Var[”ng|] \/Var[ﬂipmﬁl
I | 50 nsec | 5 nsec| 1.61x107% | .10 282 ft 160 ft 230 ft
50 nsec | 50 nsec | 1.61x1072 | .40 282 ft 209 ft 450 ft
50 nsec | 500 nsec .61 .925 282 ft 274 ft 1840 ft
II | 50 nsec| 5 nsec | 1.05x107 | .04 910 ft 205 ft 677 ft
| 50 nsec | 50 nsec | 1.08x1073 | .18 910 ft 396 ft 1500 ft
50 nsec | 500 nsec | 1.05x107" | .635 910 ft 727 t 4200 ft




(3} There is a significant jump betw A\ fvarllis - "1 and '\lVar e ||i
v v Liie M s pNﬁ] i
This is due largely to the increases in tr{{(F'F)" } and 1'F(F'F) °F'1

when the number of satellites drops to three (Table 4.2).
(4) If Ty < .1 o, then the aircraft may be tracked using three satellites.
The interval of time over which the tracking error will be acceptable

varies from about 30 to 60 seconds.

4.7. CONCLUSIONS

The examples of the preceeding section indicate that the gains to be
derived by tracking the sequence {Tn} are significant only when the accuracy of
the aircraft clock is greater than or equal to the accuracy with which the pulse
times of arrival are measured, i.e., when 0,%0. We have seen that if U0 then
the aircraft position estimates may be improved by tracking {t,}s when four or
more satellites are used; this improvement may be quite significant when the
geometric dilution with no tracking is large. However, it is only when 06;0‘]0

that one can estimate aircraft positions, with acceptable error, over several tens

of seconds, while using only three satellites.

The above conclusions result, at least in part, from two assumptions that
we have made, one concerning the model for {Tn} and the other concerning the form
of the estimator for Ty The first of these assumptions was that (see Appendix H

and subsection 4.3) o}2=022, that the component of Var[rn1 due to the indepen-

-

dent increment process and the component of Var[rn] due to "1/f" noise are com-

parable, when n=1. This assumption seems to be in agreement with the specifications
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of typical oscillators. However, it could be that the value of n, where these
two components are comparable, is much larger, say, n=100. If this were the
case, then the improvements to be gained by tracking {Tn} would be more signifi-

cant, particularly when tracking the aircraft with only three satellites.

The second assumption was that a reasonably good estimate of T, could be

obtained even if it were constrained to be a function of only T-1? the most

~

and T

e, a . the current measurements of times of arrival. The

recent estimate , th urrent m

estimator that was derived is the optimal linear estimator subject to this
constraint. However, it may be easily shown that {Tn} is not a Markov process
of finite order when %<p<1 (see Appendix G for the significance of p); thus,

in particular, the estimate t does not contain all of the relevant information

n-1
in the sequence {fi, i<n-1}, as it would if {r } were a first order Markov

process. Only additional analysis will reveal if a significantly more nearly

optimal estimator would result if T, were allowed to be a function of, say,

~ ~

T "?n for some small integer M>1.

Th-m* 'h-M+1°"
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APPENDIX A

THE DEPENDENCE OF PD ON Py

In this appendix we derive a lower bound to the parameter PD, which
illustrates its dependence upon the threshold decision rule parameter, Py
In order to derive this Tower bound we must specify the procedure by which
the first stage decision is carried out. We now do this,

The first stage decision decides whether or not a given aircraft is
in the airspace. Consider a particular aircraft, aircraft “i". The first
stage decision rule that we shall assume will depend upon the number of lists
in the set {List (i,j), j=1,...K} which have at least one entry. Of course
the representative surveillance system is not forced to operate with this
decision procedure. However, this is a procedure which is available to it
and it does use most of the data available to the ground processor in an
optimum way.

Let us define the following indicator function:

o {i,j) =1, if List (i,j) has at
least one entry (A1)

0, otherwise
Let us also assume that the tracking length, K, is short enough to assume
that aircraft "i" is either completely present or completely absent over the
entire K time segments. This assumption is not unrealistic.

The first stage decision is carried out by the ground processor using
the space of vectors f

{[0(191)3 p(isz)s---p(isK)]} (A°2)
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as an observation space. A Neyman-Pearson Test, designed for a specific PD,
is set up using this observation space.
Let [r{i,1), r{i,2},...r(i,K)] be a specific realization of [p(i,1),

p(1,2),...p(i,K)]. The Neyman-Pearson test utilizes the Tikelihood ratio Ay

Prob (p(1,1) = r{i,1),...0(i,K} = r(i,K}| Hy(1))
1 Prob {p(i,1) = r{i,1),...0(1,K) = r{i,K}| H](i))

Using this ratio the decision test is

. sy s K
decide H,(i) if Ay < A]
(A.4)
decide H (i) if A, > a.K
0 1 1
and the following PD is realized with the test
Pp(aq) = Prob (a, < Af | (1)) (A.5)

Let K0 equal the number of lists, in the set {List {i,j)}, which have
no entries. The random variables r(i,j) are independent and identically
distributed. The likelihood ratio, (A.3), may thus be equivalently written

as

| K - K-K
0] Hy(1)) ©  fProb (p(i,1)= 1| Hn“))\ 0

Qo
-3
[=)
o
—
©
—
-
L
—_
o
n

g
1

=O0[ H (i) /  \Prob (p(i,1) = 1| K, )y
(A.5)
Using (A.6), the test (A.4) may be written as decide H1(i) if
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Decide Ho(i) otherwise

The coefficient of the Teft hand side of (A.7) is positive. We may thus
transpose this coefficient and observe that the decision test simplifies to

a simple majority decision. Since the parameter A is at the disposal of the
designer of the test, we may appropriately specify it so that our test can

be simply written as

Decide H] (i) if KO <tK

(A.9)

Decide Ho(i) if K,>tK
where the test parameter t is an element of [0,1]. The detection probability
which this test yields is

Py = Prob (K <t K | H (1)) (A.10)

We have suppressed the dependence on t. We shall now lower bound PD.
First, consider the case when K equals 1. The only meaningful value

for t in this case is zero, The decision test then becomes
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n
o

Decide H](1) if K0

Decide Ho(i) if X 1

0
and the detection probability can be lower bounded as

P> p,’ , (A.10a)

Now, consider the case when the tracking length K is strictly greater

than 1. Observing (A.10), P, may be rewritten as

D
Py * Prob‘(K - K>t K| H(1)
= Prob (-K,> K(t-1)}| H (i)
= Prob (K < K(1-t)| H, (1))
Py = 1= Prob (K >k (1-t)] Hy(i) (A.11)

Using Chernoff bound we have

-vk(1-t) K
Prob (K > K (1-t)] Hy(1)) = e Ee © (A.12)

-~

The expectation is taken under the condition that H1(i) is true. We note that
K
Ko = E : (1-p(i,3))
J=1 :

v(1-p(i,1)
Prob (KO > K(1-t)] Hl(i)) < exp {-vK(1-t) + KLn Ee ) (A.13)
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The parameter ) in (A.13) is non-negative but otherwise arbitrary at this point.

Now,

v(1-0(i,1)) v
Ee = P(p(i,1) = 0] H1 (1)) e+ P(p(i,1) = 1] K (1)) (A.14)

-~

----------

Appiying (A.14) to (A.13) and the result to (A.11) yields

Pp 21 exp K (v(1-t) -Ln (P (o(i,1) = 0] H (§)) e +P (p(is) =1 Hy (1))
(A.15)}
Now
6/ fi 11 Al e FarAYL T 4
Flpl1.1) = U] H](1))ﬁ =Py
(A.16)

where the approximation holds closely assuming reasonably large enough values for

9
i

ities of the

-

Canm 3 2 __1 2o ndfe TN L
Pg+ OPECITICally, 1T Pip(1,1) =

i|H Hy{1)) is expanded into probabi
events component to {p(i,1) = 1| Hy (i)} then the term pd4 will dominate since
all other terms will have a factor of (1-p;). When the approximation doesn't
hold exactly, the lower bound of (A.15) will still be true if the approximation

is used.. Applying (A.16)} to (A.15) yields

4 v
Pp > 1 -exp =K (v(1-t) -Ln ((1-pd e + pd4)) (A.17)

J is now picked to maximize

.
el

——
I=
[s]

S
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One may note in observing (A.17) that if t < pd4then Po will approach
1 as K gets larger and larger. Similarly if PD is fixed at some value and K
is fixed at some value, then (A.17) can be made to hold by.tqking t sufficiently
small and p, sufficiently large. In any event {A.17) is the desired lower

d
bound for K > 1 and
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APPENDIX B

A LOWER BOUND TO P

F

We derive a lTower bound to the parameter PF in this appendix where

we define (by Eq. 2.5.3)

e

= P {yp (1) = Tjo ((i)=1)

In the terminology of the first stage decision process described in Appendix

A this can be rewritten as

which becomes

P

First, lets consider the

(g
Q

P

Consider the following event inclusion under the

{p(i,1) = 1}

where ®1 is defined as

= Prob (K - kg >tk | H (1))

o

(B.1)

1]

Prob (K0 <(1-t) K| Ho(f))

case when K=1, t is now zero. P_ simplifies

F

H

= Prob (p (i,1) = 1] Ho(i)) (8.2)

condition that Ho(i) is true

.

, (8.3)

)
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consider Seg. (1) and the output of Filter (i,1) during \.
it. In the right hand subsegment of length o seconds, a

left most false declaration of the

LIIE i L] L LW TR ¥ i

arrival of aircraft

"j's" signature at a sample point is declared by the

binary threshold decision process. Simultaneously, at 5
¢, = | the outputs of Filter (i,2), Filter (i,3) and Filter (i,4)
left most false signature arrival times are declared in

subsegments centered at the point where the noted false

declaration in the subsegment of Filter {i,1)'s output

occurred, and having-radii g.
(B.4)

where Filter (i,j) is the filter processing the output of the jth satellite
matched to the ith signal. We assume in (B.4) that time in the matched filter
outputs is proceeding from left to right. If event ?1'occurs, it will surely
imply an entry on List (i,1) since it corresponds to a valid signéture arrival
time triplet. The condition, in the event definition that the signatures

(g is the maximum time delay between

o

L
L

<,

a signature reception from two different satellites), insures this. Thus,

from (B.3) we have
Prob (o (1,1) = 1]'H (1)) > Prob (2, H (1))  (B.5)

In a subsegment of length o seconds there are 2By matched filter samples
considered by the binary threshold decision process. In a subsegment of length

28 seconds there are 4Bg matched filter samples considered we have then
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winsed]

3
2Bq! 4Bg
Prob ( 8] Hy(1)) = (1- (1-p.) Y{1- (1-p,) (8.6)
] f f

and "
3

2Ba 4B
prob (o(i,1) =1 | (1)) (1- (1-p,) )(1-0-5, f) (6.7)

(B.7} can be applied to (B.2) to obtain

Pe 2 ('I- (1—pf)280)(1- (1-pf)483‘)3 | (B.8)

We now consider the case when K is greater than one. The following

when K=1,

event inclusion, under the restriction that Ho(i) is true, should be obvious

Kt+1
{ A false alarm on Seg.(K)}} 2 N {p {i,j) = 1} (B.9)
j=1
From (B.8) and the statistical independence of p{i,j), we obtain immediately
Kt+1
P > (Prob ( p(1,3) = 1 | H (1)) (8.10)
Applying (B.5) and (B.6) to {B.10) results in
2Bo, 4Bg 3
Pe > exp [{kt + 1) Ln ((1- (1-p.) )(1- (1-pg) ) )] (B.11)
Which is the desired lower bound and which gives the lower bound for the

case when K=1 under the convention that t=0 in this case.
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APPENDIX C

A LOWER BOUND TO PROB [yD(1)=1]

In this Appendix, we derive a lower bound to Prob [yDti) =1]. As in

previous Appendices, we first consider the case when K=1.

When K=1 the event [YD(i) = 17 includes the event ) defined by (B.4).

Hence,

Lyp(i) = 1] 244
We obtain then directly from (B.6)

prob Ly (i) = 11 > [1 - pp)?891 [1 - (1-p) *P87° (c.1)
This is the desired lower bound when K=1.

We can now concentrate our efforts on the case when K is greater than 1.

Our derivation is begun by considering the definition of YD(i) as defined in

subsection 2.5.2. We will it now ut what we m

- .
t now about what by sayin

be more explic we mean by saying
that a sequence of time difference triplets appears as if it were generated by

an aircraft in flight.
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i

Consider aircraft "i" in flight and two successive transmissions of

aircraft "i's" signature. Let us call the time difference triplets;

(d}, d;, d;) and(d?, dg, dg). For our purposes it will be enough just to deal
with d3 and df. Now,
dl = 1.01) - T (2)
1 1 1
2

d] = T,(1) - T,(2)

where

Hiylall

(Signature reception time of aircraft "i's" true
T (1) = {signature from Satellite 1 during the earlier of the
L sucessive transmissions. ‘

Signature reception time of aircraft "i's" true
signature from Satellite 2 during the earlier of the
sucessive transmissions.

—
el
o~
[p*
S
1

Signature reception time of aircraft "i's" true
T, (1) = {signature from Satellite 1 during the Tater of the

successive transmissions.

'Signature reception time of aircraft "i's" true
T2 (2) = {signature from Satellite 2 during the later of the

sucessive transmissions. J

Let us look at what maximum value Id} - d%l can have
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jd] = dT] = [T,(1) - Ty(2) = T,(1) + T,(2)]
1 2
jdy = d] = [(T300) = T,(1)) - (T7(2) - T,(2))] (C.2)
dy - d]f 5_|T](1) - Tz(i)i + [T1(2) - TZ(E)]
Let
v = maximum aircraft velocity (C.3)
¢ = speed of light ' (C.4)

where v and ¢ are expressed in the same units of miles per second. The
maximum radial distance that any aircraft can move from a satellite between

Lo |
1

two successive transmissions is vg mi

. b o TR - SR
es5. ITHNErerure,

1T,(1) - T,(1)| gﬁgg-seconds
IT,(2) - T,(2}] 5_%9-seconds

Combining these inequalities with (C.2) we conclude that

. d2| i‘gﬂl ' A (C.5)

d ] C

1

(C.2) can now be used to define what we mean by two time difference triplets
satisfying the constraints of aircraft flight. Because aircraft, particularly

the great majority of general aviation aircraft rarely fly at the maximum
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Definition C.1: Let (d}, d;, d;) be a time difference triplet on List (i,m}

and let (d?, dg, dg) be a time difference triplet on List (i,m+1), m=1,...K-1.

These two time difference triplets satisfy the constraints of aircraft flight if

1 i ] 2 1 2 2 v
|d] - d][, |d2 - dz[, |d3 - d3| <3 Eg. (C.6)
With this definition we can reconsider the definition of the indicator

function, yD(i} as defined in subsection 2.5,2. With respect to subsection

2.5.2, we mean by the statement: "This sequence of time difference triplets
appears as if it were generated by an aircraft in flight." That any two
successive time difference triplets in the sequence satisfy the constraints of
aircraft flight as defined by Definition C.1. For convenience, we shall now
introduce the indicator function YD(i,m), which is similar to YD(i), the event

§{m+1), and the term A.

YD(i,m) =1, if there is a first sequence of m arrival time difference
triplets, (T(1)-T(2), T(1)-T(3), T(1}-T{4}), with the first
sequence member on List (i,1),... the mth sequence member on
List (i,m). The elements of this sequence have all their
component arrival times, T( ), only generated by interference
(not interference plus aircraft "i's" signature) received
at [Filter (i,j)]. This sequence of time difference triplets
appears as if it were generated by an aircraft in flight.

(C.7)

= 0, otherwise
m=T1,...K=1
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A time difference triplet is completely generated by inter-

ference on List (i, m*1) and this time difference triplet
s(m¥1) = (satisfies the constraints of aircraft f1ight with the time

difference triplet on List (i,m) whicH belongs to the first

‘\sequence causing YD(i,m) = 1.

m=1,2, ... K-1 (C.8)
The time difference triplet on List (i,m) corresponding
A = {to the first seguence causing YD(i,m) =1, Call the

components of A, (d1, dz; d3)
(C.9)

Obviously,
Cyp(i) = 11 = [yp(is K - 17 (4 &(K) (c.10)

in which case

Prob [YD(i) 1] = Prob [G(k)|YD(i,K)= 1] Prob [YD(i, K=-1) =1]

(C.11)
[yp(1.K-1)=111}

D Probs(k) ProbLa=(d;d,ydy) [yp(1,K-1)=1]
A A= (d1s d2’ d3)

Prob [y,(i) = 1]

Problyy(i,Kk-1) = 1] (c.12)
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The following event inclusion should be obvious under the condition that

[yD(i,K-1)=1]rw[A=(d],d2,d3)] has occurred.

Consider Seg. (K)'and the output of Fitter (i,1) during it.
In the right hand subsegment of length o seconds, a left
most false declaration of the arrival of aircraft "i's"
signature at a sample point is declared by the binary
threshold decision process. Simultaneously, at the outputs
§(K) o (of Filters (i,3), j=2, 3, 4, left most false signature
arrival times are declared in subsegment centered at a
distance dj-] from the point where the noted false declara-
tion in the subsegment of Filter (i,1)'s output occurred, and
\having radius %—%ﬁ

(C.13)

In (C.13) we mean by a "false declaration" a declaration generated only by

interference, (C.13) immediately gives

O

[YD(i:K'1)=1]q - 13
c J (C.14)

Prob s (K) > [1-(1-p§28q [l-(l-pf)
A=(d],d2,d3)

WL 0O
g
<

Applying (C.14) to (C.12) we obtain

88 vy
Prob[YD(i)=1] 3_[1~(1-pf)28”] {1-(]-pf)3 ¢ J Prob[yD(i,K—1)=1]

(C.15)
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The event EYD(T,K'1)=1] can be decomposed into'[YD(T,K-2)=I]r)6(K-1) just
as [YD(i)=1] was similarly decomposed into [YD(i,K-1)=l]r)6(K) in (C.8).
Prob[yD(i,K-I)=l] can be lawer bounded as Prob[yD(i)=1] was in (C.15). The result
can be applied to (C.15). The same procedure can be.app11ed successively to
the events; [YD(i, K—2)=1],...[YD(1,2)=1], yielding

8B va]s | K-1
Probly,(i)=1] z_’[I-(1-pf)ZB“] [1—(1-pf)3 ¢ } Problyp(i,1)=1]

(C.16)

Prob [YD(1,1)=1] is the same as the Proﬁ [yD(i)=1] when K=1. This is obtained

from (C.1). When this is applied to (C.14), we have as a result

88 vo

31 K-1
Problyg(1)=11 > {[1-(1-p4) %] [1-(T-pf)3 c ] C[1-(1-p) Y]

[1-(1-p) 1 (c17)

f I 8B v

Proflyp(i)=11 > exp{(K-1)Ln[1-(1-p) ]

which, when we compare to {(C.1), we see is the desired lower bound when either

K=1 or K>1,
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it rond

APPENDIX D

THE DEPENDENCE OF Pe ON SYSTEM AND JAMMER PARAMETERS

In this Appendix we shall derive an expression for Pe in terms of both

the system and jammer parameters.

Consider one of the matched filters at the ground station matched to
aircraft "i's" signature. Let "y" be one of the matched filter output samples.

We define the following hypotheses:

*
h0 ={y is generated by noise alongl (D.1)
“* =ly is generated by a combination

1 [of noise and aircraft filg" signature, (D.2)

We assume that the binary threshold decision process sets up a Neyman-Pearson

test on the sample to guarantee a "sample detection probability" of at ieast

Py The threshold, », used for the test is the solution of
*
Prob [A(y) < xlhy] = py (D.3)
where
Pyins (yihg)
My) = (D.4)

170



(Pylh* aﬁd Pylh* are the conditional probability densities of y)
210 71

The Neyman-Pearson test is:

~decide h¥ if A (y) <
decide h* if A (y) > 2 ' (D.5)

and it operates with

ps = Prob [aly) < Alh%] (D.6)
We assume that {f the signature, si(t), contributes to the matched
filter output sample, it contributes the maximum amplitude that it can,

i.e. vE.

The white gaussian noise transmitted at a satellite by the jammer is
relayed to the ground station. It appears as white gaussian noise with power

density height J/B at the input to the matched filter. This appears as gaussian

e
ct+
-~

and the preceeding paragraph we immediately obtain the probability density of

ocutput y when hT is true:

flying) = == exp %X——Eﬁ] (0.7)

V 2rd/B

171



*
and the probability density when ho is true
1 2
flylh,)) = —= exp (—Y——ZJ/B)
V 2md/B

Applying (D.7) and (D.8) to (D.4) and the result to (D.6) yields

'| -
Pe = —— / exp ( ) dy
f <\ 2ni/B 2J/B

VE /8 Lm
2 YE
which can be rewritten as
1 2
P = ‘:\/: exp (-y~)dy
"l E /U Lnx
2 V2J/B 2t

and which can be further simplified to

1 1 1 E J/B
b= 3 - Lert Aoy VIR )

In terms of {D.4), pg can be expressed as

nof

*
pgq = ProbLa(y) < &|h;]

applying (D.7) and (D.8) to D.4) and the result to (D.10) yields
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] o0

VE _ J/8 Lm

2

(D.11) can be.rewritten as

exp {

VE

—yz) dy

I -

2 Y2d/8

v 2t

which may be further simplified to

1 1 E
+oerf (f\/za/s +

Consider the fixed value of p, and Tet ¢ be the solution of

Pg

Pg

1
2

1

= %-+ 5 erf (¢)

LnA

J/B

2k

2
exp [%@— 1 dy

Ln %)

We must have the following equality satisfied
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(D.14}
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Note that E= POT, where P0 is peak signature power. We then obtain

P
1 1 1 0
Pf §——2—erf( 'Z_TBT')

where ¢ is the solution of

1
2

1

+ 5 erf (¢)

Pq

(D.17)

(D.17) gives the desired dependence of P¢ upon the parameters of interest.
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APPENDIX E
PROOF OF THEOREM 3.1

We begin by applying the restriction on a common amplitude density

to (3.4.6). This yields

o0

M) = exp (1) (2D + 28 (o) e ax)) (E.1)
Now we just need to analyze the asymptotic behavior of .this expression for
Mi(v). Because we are considering asymptotic behavior with N, we can replace
the coefficient (N-1) with N, without any error in our work. In o
investigate the asymptotic behavior of Mi(v) here, we shall use the same pro-

cedures utilized by Rice in his investigation of shot noise [2].

It will be convenient to define the following density function
o) = (72 uo(x)+?g-c<x) (E.2)

Applying (E.2) to (E.1) yields

wg £ N far 1 I rw £\ jvx
Mi{v) = exp (N Ln ( Q(x) e dx)) (E.3)
Now,
“ jvx © A o .r
Ln(f Axle dx) = & _r (3v) (E.4)
r=] r!
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th
where lr is the r semi-invariant of density Q{(x), i.e.,

(E.5)

' 1 5 ® jvx
}‘r""j'? — Ln (f Q(x) e dx)
av - 00 Y
¥ I V=u
® Jvx
(E.4) is merely the Taylor expansion of Ln(d/n Q(x) e dx) around v=0.

When (E.4) is applied to (E.3) the result is

[==] A . r\
Mi(v) = exp (NZ T v)) (E.6)
r=1
Let G(n) be the probability density on nj(t}. Using Fourier inversion (E.6)
yields
1 r~ ® -:-‘ }‘Y‘ r
G = Gnv + jv) Jdv E.7
(n) = — L exp [nv + N ) 2 (3v) ] (E.7)
r=1
Applying (3.4.9) to {E.5) one obtains
A =} (E.S)
1
_ 2T = 2
A o= £ x C(x) dx (E.9)
2 ¢ Jew

Substituting (E.8) and (E.9) into (E.7) brings

-Go

o © 2 2 = r
6(n) = g [ exol-gnv - (B [ et 0% JexpIn Y 1E () Tav
- r=3

(E.10)
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® r
We can now expand exp [N E ;—F (jv} 1 in a power series in its

exponent obtaining r=3

=, A r & & A rm
e INY . LW 1= arIN) S & M1 (E)

r=3 m=0 r=3

Collecting like powers of v (E.11) becomes

LI | I'IA3 3 4 n?\5
exp [N ) (W) 1=1+ =2 (5 =
=3
2
Nxg 1 2 %5 6
R
(E.12)

Applying (E.12) to (E.10) and integrating term by term brings

oo L. 2 2
G(n) = '21“*_[ exp [-jnv - (-2%3-_[ x C{x)dx) VT] dv

-ea

oo

N ® 3 2
+ 3 1—_[ (jv) exp [-jnv -(gg-r— f x C(x)dx) % ]dV

3t 27 v f

Nx w 2 2
21"!_4 Zl [ (Jv) exp [-jnv -(2NT f x C{x)dx) !2—]dv

-0

w 2 2
+ ?5’- ]—f (JV) exp [-jnv - Filid f x C{x)dx)} !2— 1dv
. 1']' -co -

o
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[+ -2+ 1 / 1(3v) exp [-3nv -(55~ x C(x)dx) L7 dv
T3 31)° 7w * -/.m 2
+ oL _ (E.13)

Let us abbreviate the Normal distribution on a random variable, "n", in the

usual way as

/V(a,b) = ] exp (- (n-2)°) (E.14)
/21b zb

Recognizing the moment generating function of a normal distribution in

(E.13) we may rewrite (E.13) as

G(n) = ,M(O, 2ﬁfﬂoxzc(x)dx)

00

NA 3 w P
2N
N g /\/(o,—;—f x C(x)dx) (E.15)
dn -
N 4 oN © 2
+ E?E- %_h ‘/VI(O, _EI—./im x C(x)dx) +...
dn
-1/2 -3/2
The first term in (E.15) is O(N ). The second term is O(N ). Higher
-3/2

order terms are also O(N ). Thus, for a fixed t/a as N gets large G(n)

is asymptotic to the first term and we have

o0

Va 0o -2 2
6(n) ~ /Y (0, 225 [ x¢(x)dx)
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. (o)

which proves the theorem since G{n) is the probabi

Mi(v) js the characteristic function corresponding to it.
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APPENDIX F
PROCF OF THEOREM 3.3

We begin from (3.4,10)

e K, |
E(n®) = AZ.J = L x Cy5(x)dx (3.4.10)
J=1
J#
By the definition of Cij(-) given in Section 3.3 we have

A f . 2. .. P
Jox0pxdx = E (n55(t)) (F.1)

-0

Applying the definition of nij(t)’ (see (3.3.7)) to (F.1) yields

w 2
/~ x C, (x)dx =

e

- 2
£ [ [ s.(x-t.)S,(x-t + 7)dx]
J J '

-0

[
hy|—

The expectation is taken under the condition t - 2« g_tj <t

002 o o
= 1 - -+ +r - -
~[: X Cij(x)dx 5 E[ “[;.}Em Sj(x tj)Si(x t+ )Sj(u tj)Si(u t +r) dx du) (F.2)

tj will be uniformly distributed over [t - 2t,t] hence (F.2) becomes

= l 1 - - - =
f x €4y (x)dx = 5 fm P fm fw 5 (x a)SJ,(u a)s, (x-t + 7)S; (u-t +r)dx du da

180



We lose nothing by increasing the limits on "a" to [-x,»]. Doing this

and reordering the integrals we have

w 2
L X C (x)dx = ?Tl J; fm S (x-t+1) S (u-t+t) dxdu f S, {x- a)S (u-a)da (F.3)

Referring to the definition of Rjj(t) given in the theorem statement (F.3)

can be rewritten as

w P o
f_w €y, (0 = ns fm[w S, (x-t41) $, (u-t+) Ry (x u) dx du (F.4)

Let us make the change of variables q = x-u., Applying this to (F.4) yields

Qo -] o

2 1
= .. . - . =+
K0y (0dx = oL fm Ry;(a) dq[m S, (qbu-to) S, (u-t+r) du

-0

Again referring to the definition of R (t) this becomes

o]

%70 1 r L L R
j XLC.j(X)dX = -l RJJ(q) Rﬁ(Q) dq (F.5)

-00 1 41.'

Applying (F.5) to (3.4.10) brings

N o« .
((n?) = L Z [ Rty @) do (F6)

o =0

#
By the Schwartz Inequality
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e ]

1 1/2

/2 I’”;o A o
(,I Ry; () dq) (F.7)

["R..(a) R (a) dg < (f RZ. (q) da)
j JJq -iiq q=< .I_mjjq q

-0

with equality iff Rii(') = Rjj(-)f

Substituting (F.7) into (F.6) brings

N 14 =172
2 i o _-I -ijc . _-| vk
<L 2 fx
() < 4y [ [ %@ ) ((L 2, (a)a) )
i " (F.8)
J#

When the definition of Zakai bandwidth, given in the theorem, is applied to

(F.8) we have
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APPENDIX G

A STOCHASTIC MODEL FOR THE SEQUENCE OF TRANSMISSION TIMES {Tr#

The sequence {1y represents the sequence of times at which the aircraft
transmits pulses. It is generated by the aircraft clock. Random distrubances
in this clock cause {rn} to be a random sequence. As described in Section 4,
in some instances we would Tike to track, i.e., casually estimafe, the segquence
{7,}5 and in other instances, predict the values of {r,, n>K+1} after having
tracked the subsequence {7, , n<K}. In order to determine the structures of
these tracking and predicting systems, énd determine the resulting érrors, we

need a reascnably accurate stochastic model for {Tn}.

The heart of the clock which generates {Tn} is an oscillator with some
nominal freguency fﬁ. In addition to the oscillator, the clock consists of a
counting mechanism, in the form of a digital circuit, which counts completed
cycles in the oscillator output. When the counter has registered N cycles,
the aircraft transmits a pulse and the counter is set to zero. Therefore,

the sequence {rn} is defined as

T 7 Yy F i

where ty is the time of completion of the kth cycle, K(nN) is a random
variable equal to the number of cycles that must be completed before nN cycles

are detected by the counter, and Y, is the error in detecting the exact

completion time of the K(nN)th cycle.
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e esesntad

In an effort to simplify the model for {Iﬁ}, while at the same time
emphasizing the unusual and important aspects of the model, we shall assume
that

K{n¥) = nN

Yp =0

To justify these simplications, we shall shortly see that tk has a component
for which the variance increases as kzp, where o is some number slightly Tess

than one. Since, for k<<nN,
(NN + K)20 - (nN)2P 5 20(nN)2P - Tk

we can approximately model the randomness of K{nN) by including in tk a

j ], or simply as k, since

component for which the variance increases as kZp
p =~ 1. This will correspond to an independent increment component in tk.
Finally, as the variance in tk will be increasing rapidly, we can assume that
a nonnzéro Yy contributes only slightly to the randomness of Th®

Having simplified the model for {Tn} to

we need a model for the sequence {t 3. If f(t) denotes the instantaneous
frequency of the oscillator, then tk is just the time when the accumulated

phase equals 2rk, i.e.
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Ly
. [ 2rf(t)dt = 2rk
0

The instantaneous frequency f(t) is a random process that may be decomposed as
= +
f(t) fo fs(t)
where fo is the nominal frequency, i.e. a constant, and fe(t) is the random
component. We shall assume that there exists a time T, on the order of at
least several minutes, and a number X, on the order of 10'9, such that

[f_(t)]<af,, for all O<t<T (G.1)

We now need an expression for t, where

ot

K

.  rinTae
| [f, + £ (t)]dt = k
0

Defining the function G{(t) as

t
6(t) = [[f, + f_(s)]ds -
0

we see that we are looking for the zero of G(t). This root may be found by a

gradient search, which yields the sequence:
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(0) _ k
t =
%
: . a(t, (1))
1) -y 00 S
6(t, )
ft (i-1) [F, + f_(s)1ds - &
Lo 61 .
k £+ £ (8, 1))

Using (G.1), we get the following sequence:

(0) _ k
‘t =
k fo
L f_(t)
(1) _k fo (fo e
ty “?‘U'rf 7 dt]
0 0
0
Again using (G.1) it is easily shown that this sequence converges to tk;
and that the error in tk(]) is only on the order of %— AZ. Thus, to a very
0
good approximation,
k_
f‘
k 1 ]
t, = — -~ — f (t)dt
k fo fo e

0
If the correlation function for f (t) were concentrated near the time

origin, then, for values of k/f 1arger than the correlation time of f (t),

k/f
the variance ofdf 0 f. (t)dt would increase linearly with k, and we could
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effectively model fe(t) as being white. However, measurements on oscillators

have shown that, for values of k/f0 greater than about one second, the

kK/f
variance ofj}) 0 fe(t)dt increases as kzp, for some p just slightly smaller
than one. This behavior of the variance has been attributed to "flicker" or
"1/¢" noisel®],

1
|

a model for the random process

m

Lln pd L A
We rneea Lo ey

O
=]

f (s)

fo

x(t) = - ds

o

One model which matches most of the phenomena observed in oscillators results

from decomposing x(t) as

x(t) = x;(t) + x,(t) + x4(t)

where x1{t), xz(t}, and AB{t) are zero mean, uncorrelated random processes
Further,
t
X, (t) =_[ bds = bt
0
t
xz(t) = of w(s)ds
0
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1
0 0 -3 o - %

xy(t) = —@—ﬂ—f[(t-s) S (s) Tuls)ds

r{p

t _1
P=7
+‘]"(t -5) v(s)ds

()

|

where b is a random variable, w(s) and v(s) are uncorrelated white noise
processes with unit spectral height, a and g are normalization constants, and
p s a number satisfying

%-(p<]

The process x](t) models very slowly varying offsets in the frequency;
xz(t) models an independent increment component of x(t); and x3(t), when p
is very close to one, models the "1/f" noise. The model for x3(t) is due to
Mandelbrot, and we shall use several results, without proof, from [6].

We may 1nterpret x3( ) as the (p + %J - fold integral of white noise (Note

that when p = 2, x3(t) is just the integral of v(t). As a result, the power
-2p-1

density spectrum bxs( f), if it existed, would behave as |f|
what the spectrum of the integral of "1/f" noise would be, if it existed.

is

=

Y [
» Whic

In determining the second order statistics for x(t), we have by

assumption
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Elx(t)]l= 0
and
Var[x(t)] = Var[x](t)] + Var[xz(t)] + Var[x3(t)]

Also,

Var[x](t)] = ob?tz

2

Var[xz(t)] =4t

and, from Ref. [6],
= .2y 320
Var[xs(t)] =g Vot

where
12

N | ]
7 +f[sp 2 -(s+ 1P " 2] ds
P 0

V =
, Iya2
0 rrrp + _2_)]

For the correlation functions, we have

Rx (t, u) = gbztu

1

azmin(t, ud

R. (t, uj
x2 ’

To find R, (t, u), we use the fact that x3(t) has stationary increments, i.e.
3 .
that

Var[x3(t) - x3(u)] = Var[x3(t - u)], tsu
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s L

Then, since

Var[xs(t) -x3(u)] = Var[xs(t)] + Var[x3(u)] - ZRxﬁ(t, u)
we have )

Ry (8 W) = 3 [Varlxg(t)] + Varlxy(u)] - Varlxg(t) - x3(u)]]

2y
- 82 0 (t2p + u2p St - UIZQ)

Combining the above, we now have
E[x(t)] = 0O

_ .2 2 .
Rx(t, u) = o tu +a min{t, u)

2y
v B0 (t2° +

% |t - u|?P)

[

N RN
e i

I_IL_'II

It is apparent that, when p = 1, the effects of t noise are quite
similar to those of the unknown frequency offset, b. Unless obz is quite
large, any efforts at estimating b will be thwarted by the presence of the

"1/f" noise. Therefore, to further simplify the model, we now assume

We have reduced the model for x(t) so that
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E[x(t)] = 0
82y
Rx(t, u) =u2min(t_, u) + ‘FO" (tZD s P -_It - u|?°)
Then, since ‘
o, (N

1, = 7+ x(F)
n fo fo

the second order statistics for (Tn) are just

E(r,) = (%;)n

?
[

2 B~V
Ny 2 2
£t Ty) = (- min(n, n) + (-—2—2)(';'—0)29(m2° # 0P =« %) + () m

2

var(z,) = (& + (8% ) ()20
0 0

Finally, since N/f0 will be on the order of one second, and since
experimental results indicate that the "1/f" component of the variance

dominates only after one second, we can assume that

2p 2
2, (N o N

Thus the statistics may be written as:
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_ 2 2 2p
Var(rn) =0+ o,n
02

E(anm) = U]Zmin(m, n) + —%— (m2P 4 p2f _ Im - n]2p) + 7% mn
where

2 2

°1 29
and

;—<p<']
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APPENDIX H

SIMULTANEOUS ESTIMATION OF RANDOM AND NONRANDOM VECTORS

In this Appendix we consider the following problem. Let x be a random

vector of dimension p with mean vector and covariance matrix given by

u, = E(x)

e
u

EL(x-, ) (x-1, ) ']

Also, let y be a non-random vector of dimension q; that is, we have no a priori
information, either statistical or set theoretic, about y. Given an observation

vector z, of dimension r, of the form
z=Fx+ Gy +n : (H.1)

we wish to estimate the values of x and y. In the above, F and G are matrices
of the appropriate dimensions, and n is a noise random vector with mean and

covariance

E(n)

=
It

-
1}

EL(n-pp) (0= ) ']

Initially, the random vectors x and n will be allowed to have arbitrary

cross-covariance
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Pax = EL(n = p ) (x = )'] =Py,

We shall eventually spécia]ize to the case where an = 0.
In order to insure a nonsingular estimation problem we shall assume that
1 1
Pn +F PxF + an F' + F PXn >0 (H.2)
i.e., that the above matrix is positive definite. This will be true, when we

specialize to the case where an =0, if Pn > 0. Also, in order to insure &

unique optimal estimate of .y, we shall assume that

——
s
[#%

o

where col rank (G) is the number of linearly independent columns of G, and g

is the dimension of y.

We begin with the derivation for the estimate of y. Defining the random

vector g as

n+Fx

£

it follows that the mean and covariance of ¢ are
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0]

-
]

1 1
Pn + FPXF + anF + FPXn
Then, {H.1} can be rewritten as

z=0Gy +¢

Since y is a non-random vector, a reasonable estimate for y is the least-squares

estimate, i.e., the estimate ; which minimizes
(z-6y-u) P N (z-6y-y) - (H.4)
€ £ e
If x and n were jointly Gaussian random vectors, then this estimate would also
be the maximum likelihood estimate of y, i.e., the estimate consistent with the

observation z and the most probably value of the random vector ¢.

The unique vector ; that minimizes (H.4) is just

y =K {(z - uE) {H.5)
where
K- (a'p 1g) g p ! (H.6)
€ e
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The matrix K is well defined because of assumptions (H.2) and (H.3). If
(H.3) were relaxed, the set of ; which minimizes (H.4) would be a linear mani-
fold of dimension > 1, and we could define ; to be the unique vector of

minimum norm in this manifold,

Denoting the error in the estimate y as

it follows that

Ty
1]

Kz -u) -y

H

K(Gy+e—u€)—y

K (e -u)+ (K- 1)y
However, from (H.6) we have

K6 -1=20
so that

=K (e -u) (H.7)
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Therefore, it is clear that the estimate y is unbiased and has an error

covariance matrix

P, =KP_K'
Sy

Using {H.6), the above reduces to

1

P = (6'P_° 6)”] (H.8)

by

We now begin the derivation for the estimate of x by rewriting (H.1) as
z=Gly-y+y) +Fx+n
or,
z - G; = - Ggy + Fx +n
Then, using (H.5), (H.7), and the definition of ¢,
z - GK (z - pe) =Fx +n - GK(Fx + n - Us)
or

(L - GK)z = {I - GK) (Fx + n) (H.9)
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It is worth noting at this point that an equation equivalent to (H.9)
could have been derived directly from (H.1) as follows. Since we are interested

in estimating x, and since y is completely unknown, a reasonable approach is to

remove the effects of y on (H.1) by premultiplying both sides of (H.1) by a
matrix M for which
Ker (M) = Im(G) . (H.10)

where Ker (-) denotes the kernel, or null space, and Im (.) denotes the image

space, or range. For such an M, (H.1) then yields
Mz = MFx + Mn

and we have a completely statistical estimation problem. It is easy to see

that the matrix (I-GK) satisfies Ker (I-GK)} = Im (G).

We may also note that if rank {(G) = r, the dimension of z, then the only
matrix M satisfying (H.10) is the zero matrix. In this case, the unknown
vector y completely masks x, and the only possible estimate for x is the best

a priori estimate, My -

=
H
——
ot
1
o
~
N
N
1l 1]
—— ——
— —
1 1
[ep} [ep]
~ -~
o e
m
——
T
>
+
3
—r

(H.11)
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Then, by standard procedures, the 1inear minimum-mean-square-error estimate

of x would be just

9 n--ll S Y

X = P W) oy
if Pw were nonsingular. However, from (H.11)
Pw = (I - GK) PE (I-GK)

and since Ker {I - GK) = Im (G), it is clear that (I-GK), and thus P also, is
singular.

inrass T mand s [

Tl e - -~ Lo Y
It igularity of this es

e Si lained by the fact that

S c Avn
iid S eXpirainea vy ing N

since (I - GK) is singular, the vector w contains redundant information. This
redundancy may be removed as follows. Let M0 be any matrix of full row rank
satisfying (H.10); M, will be (r - g} by r. Since Ker (I - GK) = Ker (Mo),

there exists a matrix T{r by {r - q)) such that
I - GK = TM0 ‘ (H.12)

Now define a vector w as
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The vectors w and Q are related by

~

w=Tw

>

T W

=
il

In Tight of (H.10), we have

=
H

Moz = MO(Fx +n) = Mg (H.13)

so that the estimate for x is just

;:pI\PA-.l f.;;i_ A\+
xw'w M/ T My

From (H.13), the above becomes

9 -1
- ¥ | -
X PXE M O(Mongo) Mo(z ue) * oy
Since Mo has full row rank, and PE is assumed positive definite, the above
matrix inverse does indeed exist. However, ; is written in terms of Mo’ a
matrix that we would just as soon not have to actually find. To remove this

A +hna FATTnun
ML 1w Tl

«)
)

faY a¥al Fal s Talal [ R VeVl
THENVGIIWG s WL Tico
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s a0 R ¥ ] ""'.I = -“[ _.
Proposition: M0 (MopeMo) M PE (I - GK)

Proof: Since M G =

n n
b = U,

0

! -1 - i
MO P€ (I - GK) PaMo

Pl M P M
Using (H.12) therefore,

maMp MM =T = Pl (1 - k)
Using fhe Proposition, we now get as an estimate for x

A.- __'t -
x =P . P€ (I - GK) (z - uE) + My

201



and, using the definition of ¢, this becomes

>

>
It

H(z - gs) + (H.14)

where

T
[}

(P,F* +P ) PE'](I - GK) (H.15)

The error in this estimate is

1

X XW W WX
Sx

P“_“P/\A_

B~
X
"

H

[ | ""]
Py - PxeMo (MoPsMo) Mopex
Then, using the Proposition and (H.6),

—_ t -.I '1 1 "-I "".I 1 ".I
P ) = Px - (PXF + Pxn) [Pe - P€ G{G Pe G) G Pe ](FPx + an)

(H.16)
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The expressions for x and § given by (H.14) and (H.5) and the error
covariance matrices given by (H.16} and (H.8) may be simplified somewhat when

we specialize to the case where x and n are uncorrelated. Then,

We shall make use of the following lemma several times.

Lemma: Let A, B, and C be arbitrary matrices such that A"1 exists.

Then (A+BC)'] exists if and only if (I+CA'1B)'] exists and, moreover,

(a+8C)~1 = A Ta"TB(1+ca TR) Tca™!
Theorem: Under the conditions

Px>0

Pn>0

an=0

co} rank {(G) = 4
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the problem of estimating x and y is nonsingular, and the optimal extimates

are given as

x = Hz + (I-HF)px - By, (H.17)

y = Kz - KFy, - Ky (H.18)

where H and K are

K = [6'(P +FP F') 161 6" (P +FP F')" (H.19)
H = P F' (P +FP F')"1(1-6K) (H.20)
Moreover, the error covariance matrices for these estimates are
Py - [Px']+F'Pn_qF*F'Pn“]G(G'Pn'1G)'1G'Pn'1f]-] (H.21)
PEy = (6'p, M) (G'Pn'1G)'1G'Pn']FP€xF'Pn"]G(G'Pn'1G)"]
(H.22)

Proof: First, since Pn>0,
PE = Pn + FPXF >0

. o , =]
and we can apply the Lemma to compute PE Tl
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Ao -1, eip ~ley=leip -
- R e pe IR T (H.23)
A second equation that will be useful is also obtained from the Lemma:

"! 1 -] '1 _ - ] ] "'.l
(P71 + F'P TIF)T = P - PFN(P + FPF)TFP

| -}
Px - PxF PE FPX (H.24)

P, = P_- FPF'
so that
A rp -Tep £iyp -1
p "1 = (1-p_"TRR PP,
Therefore,
PEP Ya=PF(I-P 'FPFIP g
X [ X £ X n
= (p, - PE'P IFP)F'P g
X X £ X n
_ "‘1 ) ‘.l '.I ] "]
GRS T N N - (H.25)

where the Tast line follows from (H.24).
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Now apply the Lemma to the right-hand side of (H.21) to get

-1 cip lareip ~lay=tarp =1e1-1
o F-F'P T G(G'P TIG)TIGTR TIF]T =

-1 -1

, Aeip “Toreip “lerip “Tegp ~Topip ~Tey-Teip -1
+(P T4F'P TIF)TIF'P TIGIGP, T 6-G'P T IF(P T 4F P TIF) TR P,

- p rip "1 _— g “lav=Tynipg =1
(PX PXF PE FPx) + (PXF P€ G)(G PE G) (G PE FPx
where each of the bracketed terms in the Tast line follows from one of (H.23),
(H.24), or (H.25). However, this last line is precisely the expression for
PE given by (H.16) for the case where an = 0. This proves (H.21).
X

To prove (H.22), we have from (H.8) and (H.23),

1oy-1

P, = (G'Pe_ G)

<

[G'Pn'TG - gp !

Applying the Lemma to this inverse,

- ] '} "-{
ng = (G Pn G) '+

o Tev-Teip =Terp <loeip ~Tr c1p “Taraip ~Tey=Tasp =1gq-1
(6'P,7'6)7'6'P T'F[P. TI+F'P T'F-F'P T'G(G'P, TG} G'P T F]

cerp =1 ip ~lpy=1
F Pn G(G Pn G)
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Substitution of (H.21) into the above proves (H.22).

Equations {H.17) through (H.20) follow immediately from (H.5), (H.6),
(H.14), and (H.15). |

Corollary: Under the conditions of the Theorem, and with

the error covariance matrices are just

v
I

= ofLoP 71+ F'F - Fra(e'e) e )]

= 62(6'6)"" + (G'G)']G'FPg Fr6(6'G)”!
X

T
|

A second corollary to the Theorem can be obtained for the case where x is

a scalar and Pn=UZI. For this case, F is a column vector.

Corollary: Under the conditions of the Theorem, and with

and

(i.e., x is a scalar)

p=
i '
—d
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the estimates x and § are given by

x = yF'(I - 6(6'6)776") (z - Fug, = u) + 1y (H.26)
y = (G'G)']G'(Z—Fx-un) (H.27)
where
o2
X

y = -
02+o§[F‘F—F'G(G'G) TarF

Proof: The above expressions follow from (H.17) and (H.18). The steps are

straightforward but detailed, and are thus left out.

We close the Appendix with the following observations. If F and G are
constrained so that (F'F) and (G'G) are held fixed, but F'G is allowed to vary,

then, for the case whevre

we should choogse

F'é =0
to obtain the best estimator performances.
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