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ABSTRACT 

Airport Surveillance Radar (ASR) manufacturers are proposing the use of non- 
linear FM pulse compression in their all solid state radars. However there is concern 
that the use of pulse compression will limit the radar’s performance. High range 
sidelobes can cause poor performance in both target and weather detection. 

The theory of nonlinear FM pulse compression is derived along with a method 
of minimizing the sidelobes using a minimum mean square error (MMSE) technique. 
The results of a computer program using the MMSE technique show that very low 
sidelobe levels of more than 100 dB down may be achieved. These very low sidelobes . ” 
are affected by filter misalignment, target Doppler, and by transmitter phase errors 
or stability. Curves are presented demonstrating these effects. We also show how 
filter misalignment can be corrected by receiver filtering. The methods presented 
here are general enough to be used to assess the performance of proposed non-linear 
FM waveform radars. 
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’ l.- Introduction 
:: ‘_ 

Many Airport Surveilknce Radar (ASR) manufacturers are proposing the use of pulse com- 
pression in their -kll &id s&e candidate radars as a means, to improve reliability. However there is 
concern about how well thege systems will compare with conventional uncompressed radars. Specif- il_ ~.~ 
icky, compressed waveforms have time sidelobe levels that vary with the matched filter design, 
the target Doppler velocity,, and other parameters. ,~These varying sidelobe levels must be charac- 
terized and understood for a proper assessment of the target and weather detection capability of a 
proposed radar design. 

,... * 
The theory of nonlinear frequency modulation of pulse compression is derived and the results 

of numerical calculations are presented here. Achievable time sidelobe levels, Doppler effects, filter 
misalignment, phase errors, and mismatch losses will be calculated and/or discussed. 
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2. Transmitted Waveform 

2.1 Principle of Stationary Phase 

We will show here how an almost ideal transmitted waveform is derived from an arbitrary 
spectrum. This is useful because the compressed pulse shape is the autocorrelation function of the 
transmitted waveform which in turn is the Fourier transform of the spectrum. This method is due 
to Fowle[l]. 

The complex transmitted waveform u(t) is related to its complex spectrum U(f) by the 
Fourier transform 

J 

00 
u(t) = -~ j7(f)e-w~f = 11 U,(f)e%-~2~ftdf 

(1) 

where Urn(f) and e(f) are the magnitude and phase of the spectrum. 

u(t) = J co U,(f)e’Pu)-2”ftl(jf -03 
The principle of stationary phase states that when 

-$3(f) - 2nft] = 0 

the largest contribution to the integral (1) occurs in this region. Thus 

e’(f) - 27rt = 0 

Let us expand [O(f) - 2?rft] using the first three terms of a Taylor series around fk: 

s(f) - 2rft = P(fd - 2rflct) + [d’(fk) - 2at)](f - fk) + fV - f/J2 

The second term is zero thus Eq(2) becomes 

fk+6 
u(t) = J- fk 

i[e(fk)-2~~kt+~(f-fL)21df, 

Moving the constant factors outside of the integral we find 

(2) 

(3) 

(4) 

(5) 

(6) 



u(t) = ,&)(fkb2~fkt]li,( fk) J^+” ,i[q(f-fk)‘]df. 
fk-6 

(7) 

To evaluate the integral we make the following substitutions 

p=f-fk 

and 

8” $ = Tg. 

Thus Eq(7) becomes 

(8) 

(9) 

u(t) = urn ( fk)e[e(fkk2rjkt] (10) 

If we take the magnitude and let S + 00 we find 

Separating into real and imaginary parts, we have 

Urn(t) = um(fk)d& 
k IJ O” COS($)dg + i Jm sin($)dy . -CO -03 

(11) 

(12) 

The integrals are the cosine and sine Fresnel integrals and each are equal to one. Taking the square 
and dropping the subscript li: we have 

If we differentiate Eq(4) with respect to f we find 



di 
e”(f) = 2~~ 

i.. 

Substituting into Eq(13) we finally obtain 

(14) 

&(t)dt = Ui(f)df. (15) 

If we integrate Eq(15) from -oo to j-co we will have Parseval’s law. We will instead form the 
general integral 

J 
t --t 4hP77 = J f -f cz(w~ (16) 

from which we can obtain f(t). 

2.2 Transmitter Waveform Generation 

Note that in Eq(16) we are dealing with a transmitted pulse power &(t) and a spectral power 
Uz( f). In order to have good efficiency in a solid state transmitter, a constant power (square pulse) 
should be used. 

U:(r) is chosen to have finite bandwidth and to taper to zero on each side. These types of functions 
are well known in antenna theory. 

An evaluation off(t) when U;(t) = cos2( g) and u&(q) = + is now shown. Using normalized 
functions in Eq(16), we have 

or 

(18) 

We now have the inverse function t(f) an wi employ numerical methods to obtain f(t) from d 11 
which we generate the phase function 



and the transmitted waveform will be 

u(t) = +Jct, 
[ 

T T 
-p<2. 1 (21) 

Since we will be using digital processing, time will be quantized, t = nAT, and the unnormalized 
transmitter waveform will be approximated by the sequences 

b n = &+AT) n= 0,1,2...M - 1 

b, = 0 n # 0,1,2...M - 1 

where n is an integer and AT is transmitter interpulse spacing. 

(22) 

(23) 

The cos2(g) spectrum was chosen for the following reasons: (1) The bandwidth is finite; (2) 
The time sidelobes will be small so that additional processing will be a small correction approaching 
a low loss matched filter; (3) The Fourier transform is well known from antenna theory. The 
conjugate of b, would be the obvious filter waveform to process b,. The output of the filter would 
be the convolution 

u(n) = b* @ b(n) 

where @I is the convolution symbol. Thus we have 

u(n) = N2 b*,b(s - n) n=0,1...2N-2. (24 
s=o 

u(n) is plotted in Figure (1) when N = 2000. It looks similar to a cosine weighted antenna 
pattern. 
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Figure 1. Time sidelobes for a matched filter derived from a cosine squad spectrum. 
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3. Mean Square Error Reduction of Sidelobes 

Consider the possibility of reducing the time sidelobes obtained in Figure (1) by modifying 
the receiver filter which is now the conjugate of b(n). The modification will be small because f(t) 
already produces low sidelobes. Thus the resultant filter will be nearly matched and have low losses. 

A minimum mean square error filter also known as a Weiner shaping filter[2] to reduce the 
sidelobes will be described here. Assume that the filter1 f(n) has M points. Then the filter output 
is the convolution 

44 = b(n) @ f (4 

M-l 

c(n) = -C f WUn - 4 [n=0,1,2...M+N-21 (25) 
s=o 

Let d(n) represent the ideal or wanted filter response. Since the main lobe of an antenna pattern 
can be approximated by a Gaussian curve, we will use 

d(n) = ,-+-~)2 [n = 0,l.. . M + N - 21 (26) 

It is convenient to express Ic in terms of the pulse width r. It can easily be shown that k = (5) 2 In 4 

at the 3 dB pulse width of (26). r is the desired pulse length. The error energy I is given by 

M+N-2 M+N-2 

I = c le(n)12 = c Id(n) - c(n)12 
n=O n=O 

(27) 

M+N-2 
I = c d(n) - Mc1 f(s)b(n - s) 2 

n=O s=o 
(28) 

Expanding we have 

M+N-2 

I = c d(n) - Mc1 f(s)b(n - s) d*(n) - Mc1 f*(k)b*(n - k) (29) 
n=O s=o k=O 

lNote that f( t is a frequency function while f(n) is a filter coefficient. ) 

9 



where * is the complex conjugate. Taking the partial derivative with respect to f*(k) and setting 
it equal to 0 we have 

d(n) - Mgl f (s)b( n - s) (-b*(n - k)) = 0 
s=o 

where 

Rearranging we find 

k =0,1,2...M - 1. 

M-I-N-~ M+N-2 M-l 

c dW*(n - k) = c c f(s)b(n - s)b*(n - k). 
n=O n=O s=o 

Summing the right side over n first, we have 

M+N-2 M-1 M-I-N-~ 

c d(n)b*(n - k) = c f(s) c b(n - s)b*(n - k), 
n=O s=o n=O 

again remembering that we have M simultaneous equations when we range k. 

k =0,1,2...M - 1. 

To simplify things we let 

M+N-2 

g(k) = c d(n)b*(n - k) 
n=O 

and 

M+N-2 

T(k - s) = c b(n - s)b*(n - k). 
7x0 

Substituting (32) and (33) into (31) we obtain 

M-l 

g(k) = c f (+(k - s)s 
s=o 

[k = O,l, 2.. . M - l] 

We can visualize (34) by using matrix notation 

10 

(30) 

(31) 

(32) 

(33) 

(34) 



or symbolicahy 

, 

;~ +, 

T(O) T*(l) T* (2) --- r*(M-1) 

T(1) T(O) T*(l) -- - ~*(i’kf-2) 

T(2) T(1) T(O) --- r*(M-3) 

. . . 

. . *. . 

. . . 
. . . 

T(M- 1) T(M-2) T(M-3) ... T(O) 
L 

Rf =g. 
. 

We could solve for the filter coefficients using 
.c 

f = R-‘g 

f(O) 

f(l) 

f(2) 
. . . 

fw-4 

= 

g(O) 

g(l) 

g(2) 
. . . 

g@f-1) 

where R-l is the inverse of R. However it is not necessary to invert R. Because R is Toeplitz, 
that is, all the diagonal elements are equal, special algorithms[3] are available that will significantly 

reduce the computer time needed to solve (34). 

Once we find the filter values f(n) we can test our results using (25) to obtain the time 
sidelobe response to a point target. 
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4. Results 

The examples chosen here are meant to be applicable to an Airport Surveillance Radar(ASR). 
The transmitter is solid state, and to be efficient, is only phase modulated as in (22). The first 
case shown has 201 points in the transmitted waveform which are spaced .25 pseconds apart. The 
receiver filter will also have 201 points spaced .25 pseconds apart. The radar parameters are listed in 
Table 1. The results using the minimum mean square error (MMSE) technique is shown in Figure 2. 
The sidelobes are not much better than what was obtained without using MMSE. Compare with 
Figure 1. Apparently there are not enough degrees of freedom to allow the proper reduction of 
sidelobes. 

TABLE 1 

Radar Parameters. 

Compressed pulse width 

Transmitted pulse length 

Transmitted amplitude modulation 

Transmitted waveform 

Total bandwidth B 

Number of transmitted samples N 

Transmitter sampling period 

Number of filter points M 

1 psec 

50 psec 

none 

Eq (22) 

1.6 MHz 

201 

.25 psec 

201 

4.1 MMSE Solution when M > N, Filter Misalignment 

The filter length M is now increased to provide more degrees of freedom. A Minimum Mean 
Square Error solution where M = 1401 and N = 201 is shown in Figure 3. It appears that we have 
achieved very low sidelobes, more than 103 dB. In the region f50 psec we have better than 175 
dB. Compare with Figure 2. However there is a problem. What one sees in Figure 3 is the result 
of sliding the filter (or the target) one point (AZ’) at a time. The points in this example are .25 
psecs apart. A real radar target moves continuously and in general will generate a return that will 
arrive in between these selected points. Figure 4 shows what happens when intermediate points 

13 



0 

-80 

-60 -40 -20 0 20 40 60 
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Figure 2. Time sidelobes minimum mean square error filter. Case where the receiver 
filter length equals transmitted sequence length. M = N. 

are used.2 The blackened areas are oscillations. If one traces out the minimum of these oscillations 
one obtains Figure 3. The oscillations can be seen in detail by expanding the graph as in Figure 5. 
The worst case occurs when the filter points lie somewhere between the transmitter b(n) points. 

4.2 Receiver Narrow Banding. 

A problem occurs when calculating the interpolated points. Assume there are N points in 
the transmitted sequence. The interpolated sequence can only contain N - 1 points because the 
b(n) function is undefined outside the region n = 0,l.. . N - 1. Thus we have lost one of the points 
whenever we attempt to do the interpolation calculation. This accounts for the poor sidelobe 
performance of Figure 4. In the real world, the receiver has a finite band-width which will lengthen 
the sequence and can provide energy for the missing point. The solution is to narrow band the 
receiver by running the signal through a simple digital smoothing filter. This will ensure that when 
sampling is performed in the space lying between the original set of points the’signal will not change 

2The calculation is performed by generating a transmitter waveform having J intermediate points. 
Figure 4 is the result of convolving f(n) with bj( n w ) h ere the subscript j represents the offset of 
the interpolated points, n = 0,l.. . N - 1, and j = 0,l.. . J. J is a small number such as 1,2 or 4. 
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Figure 3. Time sidelobes minimum mean square error filter. Case where Jilter length is 
much larger than the transmitted sequence. M = 1401. N = 201. 

very much. First let us start with a fine structured sequence that has p times as many points to 
more accurately represent the transmitted waveform than (22)? 

bj(T) = ,+w, (38) 

where 
r = O,l,...,pN-1, 

and where p is an integer usually having a value of 2,4, or 8. bf is first convolved with a weighting 
filter u(s) to slow the rise and fall times and then decimated to produce 

S-l 

b’(n) = C a(s)bj(pn - s). (39) 
s=o 

n = O,l,...,S+N-1 

The smoothing weights are the binomial coefficients 

15 
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Figure 4. Time sidelobes minimum mean square error filter. Intermediate points cal- 
culation. The blackened areas are fine structured oscillations. The bottom edge of the 
blackened areas correspond to the curve in Figure 3. M = 1401. N = 201. 

4s) = (S “&!. 

A plot of the amplitude of b’(n) is shown in Figure 6. The MMSE filter is calculated from b’. The 
transmitted waveform is still the same as before. It has a constant amplitude with an abrupt turn 
on and turn off. The smoothing filter will slow down the rise and fall time of the signal when it 
enters the receiver. Unfortunately the smoothing process mismatches the receiver and causes a 
loss in sensitivity. Thus it becomes a trade-off between low side lobes and sensitivity. A smoothed 
waveform should be less affected from misalignment. 

Figure 7 shows the effect of smoothing using a S = 33 point binomial weighting. The time 
sidelobes are now at -110 dB peak. 

1 4.3 Filter Mismatch Loss 

When the receiver filter is not optimumly matched to the transmitter waveform a loss occurs. 
The main lobe of the of filter output time series is generally not as large as when the filter is 

16 
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Figure 5. Expansion around the main lobe of Figure 4. Oscillation details are seen. 
Intermediate points calculation. M = 1401. N = 201. 

matched. Consider the nonmatched case where the vector w* is the filter operating upon a signal 
vector s, 

C=CWTSj = w*s. (41) 
j 

Schwartz’s inequality states that 

lw*sl’ 5 w+w l 8s. 

The equality occurs when s = w and represents the matched filter case. Thus the function 

T = Iw*s12 < 1 
w*w l s*s - 

(43) 

is the mismatch of the filter and the mismatch loss L in dB is 

17 
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0 400 800 

Point Count (n) 

Figure 6. Amplitude lb’(n)1 of th e received transmitter pulse, The rounded shoulders are 

from the narrow banding of the fast changing ends of the chirp pulse by the receiver. 

(44) 
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Figure 7. Low sidelobes obtained using 33 point binomial weighted smoothing. Interme- 
diate points calculation. M = 1401. N = 201. 

4.5 Phase Error Sidelobe Deterioration 

Figure 10 similarly shows what happens when a random phase error in the transmitter wave- 
form is introduced. Uncorrelated Gaussian phase noise is added point by point to the transmitted 
waveform. Also shown is the equivalent transmitter stability. The transmitter stability is related 
to phase noise in the following manner. Let the transmitter normalized output be represented by 
1+ i0 where B is a Gaussian variate. The stability is defined as the AC power or variance divided 
by the total power. The total power is unity. The stability I’ in dB is 

I? = 101Ogl, [vaQ;ifl)]. 

The variance is defined as the expected value of the square of the variate minus its mean. 

var( 1 + 8) = E(( 1+ i0 - 1)‘) = E{02) (41) 

We therefore obtain the simple result 

19 
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Figure 7. Low sidelobes obtained using 33 point binomial weighted smoothing. Interme- 
diate points calculation. M = 1401. N = 201. 

4.5 Phase Error Sidelobe Deterioration 

Figure 10 similarly shows what happens when a random phase error in the transmitter wave- 
form is introduced. Uncorrelated Gaussian phase noise is added point by point to the transmitted 
waveform. Also shown is the equivalent transmitter stability. The transmitter stability is related 
to phase noise in the following manner. Let the transmitter normalized output be represented by 
1 + iB where 8 is a Gaussian variate. The stability is defined as the AC power or variance divided 
by the total power. The total power is unity. The stability I’ in dB is 

r = 1010g,, [var$+iB)]. 

The variance is defined as the expected value of the square of the variate minus its mean. 

var( 1 + ie) h E{ (1-t i0 - 1)2} = E{e2} 

(46) 

(47) 

We therefore obtain the simple result 
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Target Speed (Knots) 

Figure 8. Mismatch loss L as a function of target velocity. 33 point binomial weighted 
smoothing. Intermediate points calculation. M = 1401. N = 201. 

r = 2Olog,, ($e,“,) 

where 

(48) 

is the rms phase noise in degrees. Again we have a linear plot over this limited region. One would 
expect, as in the Doppler case, that leveling out will occur for similar reasons. 
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Figure 9. Maximum and integrated sidelobe levels as a function of target velocity. 33 
point binomial weighted smoothing. Intermediate points calculation. M = 1401. N = 201. 
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Figure 10. Maximum and integrated sidelobe levels as a function of transmitter phase 
error or stability. 33 p’oint binomial weighted smoothing. Intermediate points calculation. 
M = 1401. N = 201. 
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I 1 5. Conclusion and Comments 

We have shown how one can obtain low side lobes and how they are affected by various 
parameters. In particular, the deleterious effects of filter misalignment and its resolution by the use 
of receiver narrow banding has been analyzed and discussed. In the ASR radar context, there is no 
problem in handling mismatch losses or transmitter stability. However the sidelobes rapidly rise 
with target Doppler velocity. The configuration presented here limits the sidelobe level to about 50 
dB for fast moving commercial jets. Furthermore, it has been shown recently[4] that the integrated 
and peak sidelobe levels are adequate most of the time for weather detection and other weather 
functions. 

The computer program contains many input parameters. It is not clear that the best choice 
of parameters were made. It takes time and patience to converge to an acceptable solution. It is 
believed that the use of the binomial weighting function and the cos2 function for the transmitted 
spectrum are not critical. Other similar functions should work. However, the methods presented 
above are general enough to be used to assess the performance of proposed non-linear FM waveform 
radars. 
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