FAA-RD-81-44

Project Report
ATC-108

Coordinated Radar and Aircraft
Observations of Turbulence

M. Labitt

26 May 1981

Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LEXINGTON, MASSACHUSETTS

Prepared for the Federal Aviation Administration,
Washington, D.C. 20591

This document is available to the public through
the National Technical Information Service,
Springfield, VA 22161



This document is disseminated under the sponsorship of the Department
of Transportation in the interest of information exchange. The United
States Government assumes no liability for its contents or use thereof.



Technical Report Documentation Page

1. Repart No.

FAA-RD-81-44

2. Goverament Accession No.

3. Recipient’'s Catolog No.

4. Title and Subtitle

Coordindted Radar and Aircraft Observations
of Turbulence

5; Report Date -
26 May 1981

6. Pecfatmiing Qrganization Code

7. Author(s)
Melvin Labitt

8. Performing Orgonization Repurt No.

- - ATC-108

9..-Performing Qrgonizotion Name and Address
Massachusetts Institute of Technology
Lincoln Laboratory
P.O. Box 73
Lexington, MA 02173.

10 Wark Uit No. (TRATS)

11. Contract or Gront No.

DTFA01-80~-Y-10346

13. Type-of Report and Period Covered..

12, Sponsoring Agency Name ond Address

" Department of Transportation
Federal Aviation Administration. -
Systems Research and Development Service -
Washington, DC 20591

Project Report

14. Sponsoring Agency Code
~ ARD=231

15, Supplamentary Motes

The work reported in this document was performe'd at Lincoln Laboratory, a center for research operated
by Massachusetts Institute of Technology, under Air Force Contract F19628-80-C-0002, .

16. Abstract

Interim results of a program to measure and correlate radar- and aircraft-sensed turbulence in rainstorms
are presenied. . The dissipation factor of a turbulence air méss can be measured by an aircraft and a weather
radar, Comparisons are made between precipitation reflectivity and spectral widih measurements as indicators
of turbulence. The instrumentation and data processing procedures are described, Examples of turbulence
observations made with a2 storm-penetrating aircraft and the weather radar are given. The relationship between
the radar chservations and the physical properties of the turbulence atnosphere are derived. The relationship
of radar spectral width (variance) to turbulence intensity is discussed,

17. Key Words

Air Traffic Control

Weather Radar Sensing

Aircraft sensing of turbulence

Turbulence

Weather radar velocity variance/
spectral width

Dissipation factor;.

Universal turbulence intensity scale

Weather radar intensity

g

18, Distribution Stotement

Document is available to the public through
the National Technical Information Service,
Springfield, Virginia 22161

19. Security Clossil. {of this report)

Unclassified

Unclassified

20, Security Classif, (of this page)

21. No, of Pages 22, Price

44

Foem DOT F 1700.7 2-72)

Reproduction of completed page authorized




ENGLISH/METRIC CONVERSION FACTORS

LENGTH
To *
‘ From ca ] km in ft mi i
= 1 0.01 1x10-% o0.3937 | o0.03528 | 6.21x10°6 | 5.39x10°%
» 100 1 0.001 39.37 3.281 0.0006 0.0005
™ 100,600 | 1000 | 39370 3281 0.62)4 0.5395
in 2.540 0.0254 | 2.54x10"% | 1 o.0833 | 1.s8x10°% | 1.37x10-5
ft 30.48 0.3048 | 5.05x10"* | 12 1 1.89x107% | 1.64x10°%
mi 160,900 | 1609 1.609 63360 5280 1 0.8688
nai 185,200 | 1852 1.852 72930 6076 1.151 1
AREA
To
From cal n km? in2 £12 ni2 rmi?
en? 1 0.0001 1x10710 0.1550 0¢.0011 3.86x10-1! | s.11x10°1!
a? 10,000 1 1x10~¢ 1550 10.76 3.86x10°7 s.11x10°7
ka? 1x1p010 1x10f 1 1.55x10° | 1.08x107 | 0.386) 0.2914
in? 6.452 0.0006 6.45x10°10 & 0.0069 2.49x10-1% | 1.88x10-10
fe2 929.0 0.0928 9.20x10°¢ | 144 1 " s.sexi0® | 2.71x10°¢
ui? 2.59x101% | 2.s9x10% | 2.590 4.01x10% | 2.79x107 | 1 0.7548
nmi? 3.45xi080 | 3.asxa0® | 3.432 $.31x10? | 3.70x107 [ 1.325 1
VOLUME
To
trom en? liter n? in3 £l yd? £1. oz. | f1. pt. | £1, qt. | gal.
om? 1 0.001 | 1x10-% 0.0610 | 3.53x10-5 7| 1.31x10-¢ | o.0338 | 0.c021 | 0.0010 | 0.0002
liter 1000 1 0.001 61.02 0.0353 0.0013 33.81 2.113 1.057 0.2642
n? 1x108 1000 1 61,000 | 35.31 1.308 33,800 | 2113 1057 264.2
in? 16.39 0.0163 | 1.64x10°5 | 1 0.0006 2.14x10"5 | 0.5541 | 0.0346 | 2113 0.0043
£e) 28,300 28.32 | o.0283 1728 1 0.0370 957.5 59,84 0.0173 | 7.481
yd3 765,000 | 764.5 0.7646 46700 27 1 25900 1616 807.9 202.0
£f1. oz, | 29.57 0.2957 | 2.96x10°% | 1.805 0.0010 3.87x10°5 | 1 0.0625 | o0.0312 | 0.0078
£1. pt. | 473.2 0.4732 | 0.0005 28.88 0.0167 0.0006 16 1 0.5000 | 0,1250
£l. qt. | 948.4 0.9463 | 0.0009 57.75 0,0334 0.0012 32 2 1 0.2500
gl. 3785 3.788 0.0038 251.0 0.1337 0.0050 128 8 4 1
MASS
To
From '3 kg 13 ib ton
3 1 0.001 0.03s3 | o.0022 | 1.10x10%¢
kg 1000 1 35.27 2.205 0.0011
T oz 28.35 0.0283 | 1 0.0625 | 3.12x10-%
15 453,46 0.4536 | 16 1 0.0005
ton 907,000 { 907.2 32,000 | 2000 1
TEMPERATURE
'c = 5/9 ("F- 12)
*F e 9/5(°C) ¢ 32

iid




COORDINATED RADAR AND ATRCRAFT OBSERVATIONS OF TURBULENCE

1.0 INTRODUCTION
The ability to sense and display reglons of hazardous turbulence aloft is

an essential prerequisite to the selection of safe, minimum—-distance-traveled
flight paths. Linecoln Laboratory, under a program sponsored by the Federal
Aviation Administration, has undertaken to measure and correlate radar- and
aircraft-sensed turbulence in rainstorms.* This‘ﬁaper presents interim re-
sults of these measurements. Results of the measurements are'expected to pro-
vide guidance in the désign of equipment that will display areas of hazardous
turbulence with confidence. Plots of turbulence levels measured simultaneous—
ly by a ground radar and an aircraft-are shown to illustrate the correlation.
Comparisons of the turbulence levels with the rain reflectivity are alsc made.
2.0  BACKGROUND

Precipitation reflectivity and spectral width as meééured by a ground-
based weather radar have been used as turbu}ence indicators. The current re-
search focuses on an 1nvestigation of the hsé of spectral width as a reliable
indicator of turbulence in precipitation.

The dissipation factor, e, of the turbulent air mass can be measured by
both the aircraft and the radar and is independent of type and speed of the
aircraft and of the radar parameters. The dissipation factor, as used in tur-
bulence theory, represents the kinetic energy converted to heat per unit mass
e. This conversion to heat occurs at the end of the sequence
where the large eddies progressively decay into smaller and smaller eddies.

The conversion from kinetic to thermal energy occurs on the scale of milli-

as well as to a universal turbulence iIntensity scale.

*This work 1s an extension of the work reported in Reference 1 and is noted in
Reference 2.



The quantity e can be determined directly by the aircraft by simply
measuring the fluctuations in instantaneous airspeed. Kolmogm:o*ur[+ has shown

2/3

that the structure function of the instantaneous airspeed Dv = C(er) , Where

D, is defined as the average of the square of the difference of two successive
airspeeds v measured a distance r apart. It is assumed that homogeneous
isotropic turbulence exists.

2/3

b, = E{(v, v %} = Cler)

The universal constant C has been experimentally determined to be 1.77 + .08.

1

It can also be shown (see Appendix A) that the acceleration* an aircraft

-

experiences 1s proportional to 51/3, i.e.,

4/3
= kcl/? /3y

a m

Here p is the air density, v is the air-craft speed, m is the aircraft mass
and K is a constant of proportionality unique for a particular aircraft. It
is obvious from the above relations that. the quantity el/3 rather than e
itself is the more useful quantity.

The ground-based radar can also determine 51/3 from measurements of the
width of the rainstorm radar spectrum., If it is assumed as before that the
turbulence 1is isotropic and homogeneous, then the following relation between

51/3 and the spectral width o, holds:?

2/35(.L
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The parameters above are defined as follows:
Ti%) = gamma function (1.35411--)

= universal constant (1.35 + .06)

a

a = radar half beamwidth {cm)

b = radar half pulse length (cm)

F = Gausslan hypergeometric
function

£ = dissipation factor (cmzsec_3)

It is shown in Appendix B that equation [l] can be closely approximated by

0,7 =« ryaten)?/? = 1.828(ca)?/> [2]

Notice that Eqs. [1] and [2] do not contain an unknown constant of pro-
portfﬁnality. It is for this reason that the initial emphasis has been to
measure turbulence in terms of the spectral width rather than some other pa-
rameter such as velocity gradient where an equivalent theoretical relatiomship
is not availlable.

3.0 EQUIPMENT DESCRIPTION

a turbulent rainstorm while, at the same time, the ground-based instrumenta-

tion radar attempts to estimate the amount of turbulence (51/3) present via an

appropriate algorithm. One of the objects’ of this program is to determine the
best radar operating parameters and algorithms to use. A brief description of
the aircraft and radar instrumentation follows.

3.1 Aircraft Equipment

An instrumented, twin engine, turboprop Grumman Gulfstream, operated by

the FAA Technical Center was used to penetrate storm cells under surveillance
by the ground-based radar. Within the storm cells the alrcraft sensed ellaby
measuring the pitot differential pressure referenced to static pressure (IAS);
outside total temperature, and absolute pressure (barometric altitude) were
also:meaéured. In addition,‘the alrcraft carried a vertical accelerometer
mounted at the center of gravity of the aircraft to provide a measure of

relative turbulence level, an inertial navigation system to provide the



alrcraft position, and a time—of-day clock. All of the sensor outputs are
digitally recorded on tape with a 1 second update rate with the exception of
the pitot pressure and the accelerometer outputs which are sampled 100 and 20
times per second respectively.

3.2 Ground Equipment

The ground-based facilities included, in addition to the instrumentation

radar, a radar beacon interrogator and a station—keeping radar which were
used respectively for the control of the alrcraft and for the location of
storms. The instrumentation radar consisted of an S-band ASR-8 coherent
transmitter with its front end coupled to a 15-foot parabolic antenna mounted
on a digitally controlled pedestal. A custom-bullt receiver consisting of a
linear IF strip drives a palr of quadrature detectors which in turn drive
10~-bit A/D converters. The output of the A/D converters fills a fast 256K by
20-bit buffer during a sector scan of the antenna. The data is then read out
on tape via a NOVA computer. The antenna has a 1.6-degree one~way beamwldth
and 1s capable of being pointed in azimuth or elevation either manually or by
computer control,

An ATCBI-4 beacon radar is used to locate the aircraft. Its antenna has-
a 2.4-degree azimuthal beamwidth, is mounted on the station keeping radar
antenna, and is 1oca£ed 30 meters from the ;pstrumentation radar.

The station—-keeping radar is an FAA S;band ASR~7 terminal radar connect-
ed to a ASR-5 fan-beam antenna. Its output is presented on a PPI to locate
storms. The instrumentation radar cannot be easily used for this purpose.

A Data Entry 2nd Display System (DEDS) presents both analog video and
alphanumeric characters on a PPI-like display. Normal video from the station
keeping radar and the beacon returns are presented as analog video. NOVA-
processed data such as dBz level, mean radial vélocity, turbulence levels
(e ) as well as the most recent minute's worth of beacon returns are super-—
imposed as alphanumerics. This allows the operator to determine in real-time
her a particular area is hazardous and should be avoided, or whether it

should be penetrated by the instrumented aircraft to gather data.

B



4.0 CALIBRATION AND ERROR ASSESSMENT

Sources of error in the experiments requiring special attention were:

a. Beacon Antenna Pointing (AZ)

b. Instrumentation Antenna Pointing (AZ + EL)

C. Instrumentation Radar and Antenna Gain

d. Beacon Range Error

e. Synchreonization of Aircraft and Radar Clocks

Beacon antenna pointing was calibrated by observing a transponder on the

ground whose position is known relative to the radar. The Instrumentation
Antenna pointing was calibrated by directing the antenna to an accurately
calculated position of the sun. By noting how far the antenna has to be mov-
ed tp be precisely on boresight with the sun it was found that the error was
small, less than 0.1 degree over a peridd of approximately six hours. The
Instrumentation Radar antenna gain was determined by measuring the solar flux
level when observing the sun and comparing it with the published values for
that time and day. The radar receiver gain was determined by injecting a
calibrated noise source into the radar waveguide directional coupler. A fix-—
ed beacon range error of 0.26 nmi was found when comparing simultaneocus ob-
servation of the aircraft by the instrumented radar and the beacon. The er-

ror is attributed to the differences in delay between the ground and aircraft

beacon transponders and has been removed. It is obvious that the ground in~

strumentation computer clock must be carefully synchronized by the aircraft

instrumentation clock. This 1s done before takeoff and rechecked several

than one second accuracy and should not cause any appreciable error in the

overall results.
5.0 DATA REDUCTION PROCEDURES

5.1 Beacon Algorithm
.The purpose of the beacon data reduction algorithm is to accurately lo-

cate the instrumented aircraft relative to the storm. However, when the bea-
con data was taken, it was found that some of the data was contaminated by

spurious returns from other aircraft having the same code, from the ground



test transponder, and from undetected errors in the NOVA program. The errors
have been corrected, however, since the data is valuable. A successful ef-
fort has been made to retrieve the contaminated data.

Fig. la shows a plot of the raw beacon returns from the July 3 flight.
Returns from the ground have already been removed. The wide scatter is pri-
marily due to the old error in the NOVA program that considers returns in ad-
jacent range gates as separate targets. As a result o
program was written to cluster the returns on the basis that any returns

within a certain area and time box are the same. The results are shown in

square fit. Missing points have been caused by propagation effects such as
the orientation of the aircraft or flying in the cone of silence of the bea-
. Other causes of missing returns have been an error in the NOVA
program (which has been since corrected) and possible mixups in the settings
of the data collection equipment. Filling in the missing points is needed to
allow proper smoothing in those areas adjacent to the missing points.
Fig. lc shows the missing points replaced while Fig. 1d has been smoothed and
interpolated. The smoothing and interpolation is accomplished using a Fast
Fourier Transform (FFT) technique. The, x and y components of the beacon
track are Fourier—transformed, zeros are added to the high frequency end so
that the total number of FFT points are increased by four, the transform is
then multiplied by a Gaussian welghting function, the inverse transform is
then taken, resulting in a smoothed beacon track with four times as many
points. Rather than having a beacon file with an update of 4.8 seconds, it
1s now every 1.2 seconds and will allow a smoother merging with ‘the instru-
mentation radar data.

5.2 Instrumentation Radar Algorithms

The instrumentation radar records on tape the unprocessed radar data as
an in-phase and quadrature component for each of the range-azimuth cells in a
selected sector. The tapes are then sent to Lincoln Laboratory for proces—

sing in the following manner. The raw data, which represent the returns from
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the rain droplets, were recorded range sequentiall&. However, the processing
requires that the data be first reordered im azimuth. A wmaximuwm entropy
estimation is then made of the autocorrélation lags. The lags are used in the
computation of moments. The moments, in turn, provide, by using specific
pulse pair algorithms, the intensity (dBz), the mean radial velocity, and the

spectral width (in 51/3 units). The maximum entropy estimation of the lags is
used because it provides a better estimate than a straightforward calcula-
tion., This 1is because the entropy calculation requires that the estimated
correlation lags be consistent with one another (this insures that the spectra
the lags represent are positive for all frequencies). A set of autocorrela-
tion lags are computed for each radar cell. Typleally each cell is made up of
204 returns (I and Q components). The expressions for converting the correla-
tion lags to moments are as follows:

Intensity or O—-th moment:

dBz = 10 log(k|R_|) [3a)

Mean radial velocity or lst moment:

A L(R)
vV = — tan IQJE__l_) [3b]
47T Re(RI)

Velocity variance oxr 2nd moment:

_ i 1
2 R
03 = A 1n Fal [3¢])
w22 [Ryl

where R, 1is the n‘th autocorrelation lag, A the radar wavelength, T is the

interpulse perliod, and k a constant determined from the radar parameters. The

11
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above algorithms are subject to a minimum signal-to-noise value. In particu-
lar, the 2nd moment estimator requires at least a 3 dB S/N. The S/N estimator

used is

R R1/3
b o 2
—_= 1/ - 1).
N 473
Ry

The 2nd moment and S/N estimators were derived assuming the spectra is
Gaussian-shaped. Monte Carlo tests of these estimators show that the algo-
rithms are valid for a time series that has a Gaussian-shaped spectrum.
Homogeneous isotroplc turbulence theoretically is expected to produce a
Gaussian-shaped radar spectrum. 7

The computations produce arrays of numbers that represent the moments at
relatively coarse discrete uniform positions over the recorded sector area.
In the azimuth dimension they are a beamwidth apart while in range they are
spaced 112.5, 225 or 450 meters. Consequently, quantizatidn occurs when one
attempts to assign a value to the moments along the aircraft track. Smoothing
and interpolating these discrete points is~qccomplished using a two-dimension-
al FFT procedure. Fig. 2 and Fig. 3 are contour plots that were processed in
this manner. Superimposed are the aircraft tracks. In general the tracks ex-
tend in time halfway to the previous scan time to halfway to the next scan

1/3

time. Comparing dBz and ¢ contours for the same scan, it is clear that the
61/3 contours are much more structured. The intensity plots are smooth and
featureless compared to the widths (51/3 ). The 51/3 contours on the right
side have low spectral widths, which imply low turbulence levels while the
left side indicates that there are areas of strong turbulence. In contrast,
the intensity contours give mno indication of heavy turbulence on the left
side. Comparisons with the aircraft data will be discussed later.

5.3 Alrcraft Data Reduction

The effect of turbulence on the pitot—equipped aircraft is sensed by

measuring the rms acceleration and the dissipation factor. The acceleration

12
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is measured directly. The dissipation factor ¢ is found from the pitot dif-
ferential pressure Ap, the total (stagnation) temperature Tt and the absolute

pressure Pf (free stream pressure or barometric altitude), and is as follows:

e /3 2/3
RT _
s 5 &
e - i ! [4]
¥z L2
¢4y Y pa + BBy Yo g
Pe P

where the Ap structure function is defined as -

f

DAPfQjE{(Ap(t:+ T) r_{y(r))zi;

R = 2,87 x 106(EEW)2K§1' gas constant,
: sec.
Y. = 1.4 ratio of specific
heats,
T = 0,2=1,0" time between
(sec) - successive Ap.
measurements,
and C = 1,77 Kolmogorov's
constant.

Eq. [4} takes into account the aircraft altitude, airspeed and Mach number.
Both the structure function and the aircraft rms vertical acceleration are
continuously averaged over a 7.5 second period using a cosine squared weight-
1/3

ing. Examples of time plots of = and rms acceleration are shown in the up-

per and middle curves of Figs. 4 through 7.

17



6.0 COMPARISON OF AIRCRAFT AND RADAR DATA
1/3
The lower curves of Fig. 4 and 5 are the values of ¢ / measured by the

radar using Eqs. [2] and [3]. This is of the July 17, 1980 flight and will be

examined at length here because it Includes cases where the aircraft passed
through low— and high-turbulence areas. The aircraft made many passes at a
5,000 ft. altitude through a moderately violent thunderstorm in the Atlantic
City area. Many other flights have been examined but not in as much detail.
Figs. 6 and 7 are of the corresponding reflectivity in dBz. The numbered dots
above the radar data (lower curve) représent the midpoint time when a particu-
lar radar scan (or snapshot) was taken. If the afrcraft is in a radar cell,
it will appear at this time. The smallest value of reflectivity that can be
measured with the radar is 8 dBz. However, it 1s felt that in order to

1/

3
trust the width algorithms (radar ¢ )} the reflectivity should be greater

than 14 dBz.

The time interval 17:08 to 17:15 Fig. 4 exhibits a reasonable correla-
tion between radar and alrcraft 31/3 while the corresponding reflectivity
Fig. 6 does not. The radar peak at 17:09 is contaminated by the aircraft.
A spectral analysis of the radar return at this time, range and azimuth show

the aircraft to be ptesent. The peak at scan 12 (17:10:30) is real (no air-
e . . _ 1/3
craft) and correlates with the rms acceleration and the aircraftt e / .

scatter plot has been generated over this time interval and is shown in

1/3 1/3

Fig. 8a. Here the aircraft e is compared to the radar ¢ .« A reasonable
correlation is evident. The corresponding correlation coefficient is 0.81.
The correlation with reflectivity (Fig. 8b) is 0.57. If the entire flight of

17 July 1980 is used, then the correlation is 0.50 using spectral width (61/3)

Ta v

=]
b
b
=

nd 0.29 using reflectivity. The respective scatter plots are s
8c and 8d. In this calculation the data was edited to remove those parts that
were known to be contaminated by the ailrcraft. For example, at time 17:47,
scan 39,
Fig. 9a and 9b show the interval 17:18 to 17:31. The width correlation is
0.48 while the reflectivity is 0.10. This data includes the large anomalous

peak at 17:30:10.
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The large 61/3 peak at 17:05:14 has a double maximum spectrum (Fig.

10a). The pulse pair algorithm Eq.[3c] will fail under- these conditions and
will produce too large a value. The spectra, in general, have wvarious
shapes. The pulse pair algorithm 1s designed specifically for Gaussian
shapes, however, sawtooth, flat-top, multimaxima as well as Gaussian shapes
are ohserved. Consequently it is not surprising that perfect correlations are
not observed. It is reasonable that an algorithm that takes into a?gount
El ca

the various shapes should be used. Many of the excessive values of n

be ascribed to either multi~modes or to flat-top spectra. The anomalous peak
at 17:30:13 has a wide flat—top spectrum {Fig. 10b).
7.0 CONCLUSIONS, AND FUTURE PLANS
The spectral width (51/3 ) is superior to the reflectivity in determining
the presence of turbulence. The refle;tivity is featureleif compared to
1/3

spectral width. The correlation between alrcraft and radar ¢ is not per-

fect and in general the radar 51/3 is higher and on occasion may be extreme.

The extreme radar 51/3 values appear to be caused by flat-top or dual-maxima

spectra.

Work is underway to design new algorithms that will take iInto account the
spectral shape. Since the raw radar data has been recorded on tape, various
algorithms are being tested to determine the one which results in the best
correlation with the alrcraft data. Comparisons between flights have to be

made and an overall correlatlion coefficient has to be generated.
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APPENDIX A
AIRCRAFT ACCELERATION STRUCTURE FUNCTION

The lift of an aircraft is given by

where

L

C. = coefficient of lift,
P air density,
v = aircraft true airspeed,

§ = wing area.

The coefficient of lift, C , is a lihear function of the angle of
attack, over the range of interest. Therefore
1 u 2
L =_(-C )Jpv S
2 v L

o
where CL is the lift curve slope and u 1s the vertical component of
a
airspeed. Thus

1
L =_C pSuv
2 L

e
o]

Taking uifferences we find

(o3 I ]

AL = _ CL pS[udv + vAu]

a

Since u<<v and (Au)z'sz(Av)2 we find

1
AL = —. C pS[vaAu]
2 1 °

o

o
wn



and since the force AL = mAa where m 1Is the alrcraft mass, we obtain for the

1 p5
ba = — C —— vAu
2 L m
a

The structure function is defined as the average of the square of the

differences
2 1 c oS 2D
Da = E{(Aa) } = (z I v) u

o

*
Kolmogorov's hypothesis states that for lateral velocities

D = 4/3c(ex)?/3
where C = universal constant (1.77)
€ = dissipation factor .

il

r ‘separation distance when measuring the two velocities
However, r = vt where t is the time difference between successive acceleration
measurements. Therefore, we find for the square root of the acceleration

structure function
1/2 1/3 v4/3

1
fﬁ; = cL SC ope¢ —
Y3 b, m

4/3
1/2 1/3 v
KC

0
o
m

For the Gulfstream

¢, 5 (radians-l)

o
§ =610s¢s

]

m = 933 slugs

*S, Panchev, "Random Functions and Turbulence,” Pergamon Press (1971) p. 151.
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APPENDIX B
SO0ME BASIC RELATIONS CONCERNING THE RADAR MEASUREMENT OF AIR TURBULENCE

INTRODUCTION

The use of a radar to measure the level of air turbulence in a rain storm
is a relatively new concept. Consequently, the purpose of this note is to pre-
sent the connections between what a radar measures and the physical properties of
the turbulent atmosphere. 1In the first section we will show that the radar
spectrum represents the velocity distribution of the rain drops and appears to
have a Gaussian shape. In the second section we will show how the radar spectrum
width (variance) is related to the turbulence intensity and to the radar cell
size,
SHAPE OF THE RADAR SPECTRUM

Consider a volume of scatterers such as rain drops that are being carried
by a homogeneous, turbulent atmosphere. ~Let us look first at one of the rain

drops. The radar return, in voltage, at time "t and "t + t" is proportional

to:
. 4r x(t) AT x(t +1)
Y S
e and e (1)

where x is a random variable representing the position of the drop relative to

the radar and A is the radar wavelength. The correlation function of the return

i

W
=2

t
(=
D
Hh

Ar x(t) i4r x(t + 1)
l—r-w 1—-—*——-x-——-—-—

p(t) = ror - E {e . e }

~~
[\]
-

itL [x(t) - x(t + 73]
}

= E {e
.47
I‘TUT

= E{ e }

where
g2 X)) - x (¢t + 1)
T

is a random variable representing the average velocity over the interval t. "Mt''.

drops out because the statistics are assumed to be stationary. Evaluating (2)

we find




.47 4w
1-1—-111: e lT ut
oty = E {e b= f  p () e du. (3)

Here p(u) is the probability density of u. However,

o(1) = -2-71? [Ps(w) T 4y (%)

where S(w) is the spectrum observed by the radar. Equating (3) and (4) we find

47
iwt i*i ut
S(w) e dw = 27 p(u) e du.
We see that
= 4T dw _ 4m
w="u and du 3 (4a)

and find that

S(w)dw = 2mp(u)du and S{w) = 5 p(u). (5)

RS>

Thus, we see that the spectrum is a replica of the probability density of the
velocity averaged over the interval T. Because the spectra of independent pro-
cesses can be added, Eq. (5) is valid for many raindrops, if one assumes all

the droplet cross sectlons are the same.

It is not difficult to generalize Eq. (5) for varying droplet sizes. The

return at time t for N droplets is

N ié% xn(t)
X A e

n=1 n
where Ah is the amplitude of the nth droplet., The covariance function is

14ﬂxi(t)

N T N 14;x j(t+r)
R(t) =E { & A e . I A, e }.

1 3

1

Separating out the terms where i = j, we have

N 9 ii% UnT N N i%ﬂ (xi - x,)
R() =E{Z & e * L I A A e Iy
n=1 j=1 t=1 * J
j#i
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Remembering that if two random variables (rv's) are independent, the expectation

of the product of two rv's is the product of the expectations, we find

9 i—% ut
R(t) = N E{a°} E {e }
and
2
R(0) = N E {A°}
Since X, and x, are Independent, the cross terms drop out because
iﬁg {x,-x.) iéﬂ-x iéﬂ x
E{e * 1737y Cpfe ™1y Efe * 3} =owhenj#1. (6)
Thus
4
e i—= ut
1 iwT _ _ R{1) . A
o {m S(w) e dw = p(1) R(0y = F {e }
® AT
= f p(u) e A du
-
or as before
A
Sw) =5 plu). (5}

Thus, the "radar" spectrum is a replica of the velocity probability density.
There appears to be some theoretical justification(1) for the velocity distribution
to be Gaussian. Experimentally, in homogeneous turbulence, the velocity dis-
tribution is symmetric and tends to be nearly Gaussian(l’2’3). It should be pointed
out that in a related process, the motion of a molecule in a gas, that the dis-
tribution of one component of the velocity is Gaussian and is known as a Maxwellian

distribution.

VARIANCE OF THE RADAR SPECTRUM

We have just established that the radar spectrum is a copy of the velocity
t

ot

1. It follows from Eq. (4a) that the variance of th
2
% is related to the veloclty variance g, as follows:

[
“w0



We will now show how Guz {or sz) is related to .the air turbulence dissi-

pation factor €.

The variance Ouz is by definition equal to

il

a 2 E{( - E {u} )2}

u

g {u?) - (& {uhH?

where the expectation value E{ } is generally taken to mean an average over en-
sembles. However, the radar takes an average not over ensembles but over the
radar cell volume. If the statistics are étationary over the volume, then volume
averaging 1s the same as a sampled average. Therefore, a sampled value of the

function "f" is
<> = [A@ £ dr

where

>, > >
IA(r) dr =1 and dr is a differential volume.

A(;) is the cell size and is closely approximated by

#[y2 + 22 . x2 ]
.1-:\ — .._]-_.__._.___ ‘ ~ L n ,..2 9 k2 .
AALL) = 3/2 2 [~ FAN-) .1. U M
(2m) b a

We are assuming a cylindrical antenna beam of width "a" and a pulse length "b'".
Thus, & sampled value of the variance would be i

<oﬂ2> - <u2> - <u> <>

2 > z2 -+ -> - - > -+ -

< > o= -

or Oy fA(r) u“(r) dr f A(rl) u(rl) drl f A(rz) u(rz) dr2

We find Ou2 by taking the expectation of the sampled average <0u2>

o 2= A B W) dF - [[ AG) AG) E {u@) uE)) 4 &,
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Since E{uz} is not a function of T and u(?lj and‘u(;z) are correlated, we

have
2 2 - -+ > -+ - -
o, = E{u"} - /f A (r)) ATy By, (ry, T,) dr) dr, 7
where BRR(;I’ ;é) is the correlation of the two longitudinal velocities at
points ?1 and ?é. Because the turbulence is assumed homogeneous

-

+ > -+
Boo (F1s T2) = Byp (&) - 1)
Since Bgz is a correlation, it can be defined in terms of a 3-dimensional Fourier

B T - T - f¢ (i e .

The energy spectrum of the 3 dimensional velocity field @(K) is often

confused with the radar Doppler spectrum S(w). Qﬁld:) follows an inverse
11/3 power 1aw4’5 and has a pole at the origin while S(w) is gaussian-shaped.

¢d€) is the velocity spectrum while S(W) represents the velocity distribution.
w has the dimensions of radians/second while K is radians/meter. The
function ¢22(§) is known when the turbulence is isotropic and in the

inertial subrange. We should notice that
24" n > >
E{u®} = By, (0) = [, (k) d k

consequently, Eq. (7) becomes

. e -+
Guz = [0, (®) dF - [IAG) AG,) o, () k() - T g df, dz,

i %y, i TR

o, ¥ {1 - JAG) e 1 dr, JA(E,) e 2

d?z J ak " (8)
Evaluating the inner integral, by changing to rectangular coordinates, we have
>
iker

[AG) e 1 dr, =

_"yZ . 22 <2 ] 1'(kx X + ky y + kz z)
1 .
fffe L 2 a2 2 b2 = , dx dy dz

(2m3/2 4 42
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2 2
- I 4+ 4 -z 4 -
i I _jooe 2a2+1kyy J’°°e 2a2 i__kzzjoo
em3'% o2 e ¥ 4
—%[k2b2+k2 a? + k% a%7.
= X b4 t 2
= e
Therefore, Eq. (8) becomes
R S
o= [o,, & [l—e X y z ]dii
u 2L

For isotropic turbulence in the inertial subrange4

2
k

@ = B 2
4m k k

209

Where5 Ek) = a 62/3 k—5/3

2 = k?+k24pg?

k

[

|

a 1.35 + .06 (dimensionless)®

and

€ the dissipation factor.

Substituting and using the following relations

k2 c052 ¢

=
[

2

dk k% sind dk dé a#,

It

we convert Eq. (8) to polar coordinates

2 2 2 2 2
2/3 m w 2T . ~k° {a“ sin® ¢ + b“ cos” ¢}
0,2=____0t€ I f Ik5/3$in3¢[l—e ]
u A 0 0 0
2/3 m oo 2 2 2 2 2
_ a€2 f sin3 é f k—5/3 [1 _ e—k {a“ ein“d + b° cos ¢}] dkdd.
0 0
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Using the following solution7 for the inner integral

-— - T . —_—— AV
I < 1 a-e B x") dx ]p] HooPp (2
0 P

we obtain

m
o= 2 a3 (5/3) [ sin? ¢ (a? sin® ¢ + b7 cos? )13 ap
0
and using symmetry we find
/2 -
0.2 -2 w?Pr (5/3) [ s1n’¢ (o stn® ¢ + b% cos? )13 a9 )
0

Substituting t = cos2 ¢, we find

»

1 2
0P 5 2P [ a-n a- -]l V2
0 a

Q
]
e R V.

Since we are dealing with real numbers, the integral is valid when

9
b
0_<_"§- il.

a
The integral representation of the Gaussian hypergeometric function is given by8
1

F(a, b; c; z) = L (c) [P @ (1)@ g
P () T (c-b) O

where Re(c) > Ré(b) > 0,
Therefore,

. 2

2.
e TP (5reea®? rd L5, by o)

where b2 5?2

The hypergeometric series converges when h2 < 1 and is given by the monotonic

*
series

*All the terms after the first are negative. It can be shown that there are no
maxima or minima when 0 < h < 1,
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- 2 2
l l 5- — - .h_ — .b—- — —-é-—-—- 3 — — — b_.
FCp o D=1-35- f55-Fg P -+ [bh=1 2 ]

11 5 12?‘-%) F(%)
F(— =Y "'2“; '5_'; 1) = F(-];l) 2 917

we find that

.917 < F(- %— ; %; h) < 1.

Consequently, the hypergeometric facfor in Eq. 10 has little effect and
that the approximation

2 2/3

o] _’gl‘(%)cx(ea)

u

is valid.

For the case when the beamwidth is smaller than the pulse length

0 < EE-< 1
_.bg > s

we can substitute
t = sin2 ¢

into Eq. 9 and find in the same manmmer as before

2
2 o2 2/3 . 1 5.5 . _a>
0, = TG o € P FC-3, 2 551 -2, (11)
The series F (-~ %3 2; gi g) =
4 8 2 32 3 2
] = =g - —= _—e——— g = . g = 1 - a- 1
15 © 105 © 1701 * Le b2 d

converges as before when 0 < g < 1, is also monotonic, and is bounded by



5

27 L, 3, '
= ML S F(-%, 23 53 8) <1

55
Consequently, the approximation
2 0 2 2/3
o, =T (3) aleb)

is not always justified.

COMMENTS

In a typical radar the pulse length is usually smaller than the beamwidth

and therefore Eq. 10 will apply. The spectral width, Ou’ willl thus be pro-

portional to (& a)1/3. Since the beamwidth is proportional to the radar
1/3

range, and that the buffeting of an aircraft can be shown to be proportional to € R

we find by solving Eq. (10) for 81/3 that

g 1
1/3 u
£ = 2 1/2
b
31/3 [F(2/3) a F(- %3 %; g; 1 - — ) ]
a
%
~ C
Rl/3

where R is the range to the turbulence and ¢ is a constant. Thus the buffeting will
be directly proportional to the spectral width as seen at the radar and inversely

proportional to the cube root of the range.

- The use of a Gaussian function to approximate the range dimension of the
cell is reasonable if one considers the effect of convolving the impulse
response of the radar receiver with the transmitted rectangular pulse shape.
The effective pulse shape will be rounded and look like a Gaussian curve.
This will be particularly true if the receiver bandpass is closely matched to
the transmitted pulse. The use of a Gaussian curve to approximate the main-

lobe of the antenna has long been used and is considered to be quite accurate,

The variance derivation assumes that (1) the turbulence is uniform through-
out the cell, (2) we are in the inertial subrange, (3) the raindrops move with
the wind, and (4) there is no wind-shear. These assumptions are valid be-

cause of the following reasons. (1) By using small radar cells, homogeneity
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becomes more likely. This is accomplished by operating at shorter radar
ranges and/or using narrower antenna beams. (2) The inertial subrange
signifies that the effects of inertia override the effects of viscosity and
of gravity. The inertial subrange scale extends from about a millimeter to
about a kilometer. Consequently radar cells less than a kilometer long can
be filled with homogeneous turbulence. (3} The horizontal velocity com-
ponents of the rain are expected to follow the wind but not the vertical
components. At most antenna elevation angles of interest (i.e., small eleva-
tion angles), the horizontal components will dominate. (4) First-order ef-
fects of wind-shear broadening can be taken into account by measuring the
mean velocity of adjacent cells and subtracting out the effect.

In the above derivation of the radar’spectrum variance, the approach is
similar to that of Frisch and Clifford11 with the following differences. It
was not necessary to explicitly take the 3-dimensional Fourier transform
Fp(i) in k space of the antenna pattern. The universal constant o (A in the
Frisch paper) is not .47 but 1.35. The solution of the case where the

pulse length is longer than the beamwidth is in error.
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APPENDIX C

AIRCRAFT MEASUREMENT OF é/B

The following parameters are available on the Gulfstream aircraft to

measure turbulence

Pf = Static or free stream pressure
Ap = Pitot tube differential pressure
Tt = Stagnaation or total temperature

'P_ is taken from the statlc port of the pitot tube. Ap = Pt -Pf,

f
where Pt is the total or stagnation pressure.
flow conditions are assumed permitting the following relations to be used.

Isentropic and ideal gas

P .
ta (1+1-_1M2)Y_1 (1)
P, 2
T
Er.= 1+ ;%1 M2 _ (2)
f
2
2 u
M = {3
YRTf

Here M is the Mach number, y is the ratio of specific heats, R is the gas
constant, and u is the free stream airspeed. '

Combining (1) and (3) we have
v~1

-1
A 4)
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Even under conditions of heavy turbulence, the fluctuations of Pt’ T

. t?
M and u will be small compared to their respective mean values. Consequently,

we can take differentials of (4), substitute differences and we find

t p ubu
— ~ = (5)
Pe P, RT;

The structure function D is defined as the expectation of the differences

of successive measurements squared or

D (1) 4 Efru(t-!-'l_'\ -1__(1;)]2
as’ LN 7 0 IS

Therefore, we can rewrlte (5) as

2
P\Y D w2 D
t Ap u
P, 7 2 ()
f PF (RTF)
\/ N -
Kolmogorov's Hypothesis relates Du to £ as follows:
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where T is the time between measurements and C is a universal constant.
Combining (6) and (7) we find
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However, since the temperature sensor does not measure the free stream
temperature T

£ but the total temperature Tt’ we must combine (1), (2)
and (3) with (8) and finally find
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where Ap is taken to be the mean of the differential pitot tube pressure over
the averaging period of the structure function.
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