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COORDINATED RADAR AND AIRCRAFT OBSERVATIONS OF TURBULENCE

1.0 INTRODUCTION

The ability to sense and display regions of hazardous turbulence aloft is

an essential prerequisite to the selection of safe, minimum-distance-traveled

flight paths. Lincoln kboratory, under a program sponsored by the Federal

Aviation Administration, has undertaken to measure and correlate radar- and

aircraft-sensed turbulence in rainsterms.* This paper presents interim re-

sults of these measurements. Results of the measurements are expected to pro-

vide guidance in the design of equipment that will display areas of hazardous

turbulence with confidence. Plots of turbulence levels measured simultaneous-

ly by a ground radar and an aircraft are shon to illustrate the correlation.

Comparisons,ofthe turbulence levels with”the rain reflectivityare also made.

2.0 BACKGROUND

Precipitation reflectivity and spectral width as measured by a ground-

based weather radar bve been used as turbulence indicator. The current re-
,

search focuses on an investigation of the use of spectral width as a reliable

indicator of turbulence in precipitation.

The dissipation factor, c, of the turbulent air mass can be measured by

both the aircraft and the radar and is independent of type and speed of the

aircraft and of the radar parameter. The dissipation factor, as used in tur-

bulence theory, represents the kinetic energy converted to heat per unit mss

per unit time. This conversion to heat occurs at the end of the sequence

where the large eddies progressively decay into amller and smaller eddies.

The conversion from kinetic t~ therml energy occurs on the scale of milli-

meters. McCready3 has related c to the response of a particular aircraft

as well as to a universal turbulence intensity scale,

*This work is an extension of the work reported in Mference 1 and is noted in
Reference 2.
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The quantity E can be determined directly by the aircraft by simply

meaauring the fluctuation in instantaneous airspeed. Kolmogorov4 haa shorn

that the structure function of the instantaneousairspeed Dv = C(cr)
2/3, where

D“ is defined as the average of the square of the difference of two successive

airspeeds v measured a distance r apart. It is assumed that homogeneous

isotropic turbulence exists.

Dv = E{(v2 WI)*} = C(cr)2/3

The universal constant C has been experimentally determined to be 1.77 ~ .08.

It can alao be show (see Appendix A) that the acceleration* an aircraft

experiences is proportional to E113, i.e.,-

<= KC’J2,.’13:4’3

Here P iS the air density, v is the air-craft speed, m iS the aircraft maas

and K is a constant of proportionality unique for a particular aircraft. It

is obvious from the above relations that..the quantity E1/3 rather than E

itself ia the more useful quantity.

113 from ~asurements of theThe ground-based radar can also determine E

width of the rainstom radar spectrum. If it is assumed as before that the

turbulence is isotropic and homogeneous, then the following relation between
1/3

E and the spectral width Ou holds:s

2
= r($a(6a)

b22/3F(-+, +; :; 1 -—)au
az

where a > b [1]

2

*Actually the square root of the acceleration structure function.



The parameters above are defined as follows:

ga- function (1.35411--)

universal constant (1.35~ .06)
radar hslf beamwidth (cm)
radar half pulse length (cm)
Gausaian hypergeometric
function

dissipation factor (cm2sec-3,

It is shorn in Appendix B that equation [1] can be closely approximated by

.: = r(~)a(ca)2/3 - 1.828(ca)2/3 [2]

Notice that Sqs. [1] and [2] do not contain an unknom constant of pro-

portionality. It is for this reason that the initial emphasis hss been to

measure turbulence in terns of the spectral tidth rather than some other pa-

rameter such as velocity gradient where an equivalent theoretical relationship

is not available.

3.0 EQUIP~NT DESCRIPTION

The bseic experiment consists of flying an instrumented aircraft through-

a turbulent rainstorm while, at the same time, the ground-based instrwenta-

tion radar attempts to estimte the amount of turbulence (e1’3) present via an

appropriate algoritb. One of the objects’of this program is to detemine the

best radar operating parameters and algoritti to use. A brief description of

the aircraft and radar instrumentation follows.

3.1 Aircraft Equipment

An instrumented, twin e~ine, turboprop Gru-n tilfstream, operated by

the FAA Technical Center was used to penetrate stem cells under surveillance

by the ground-based radar. Within the stem cells-the aircraft sensed El’3by

measuring the pitot differential pressure referenced to static pressure (IAS);

outside total temperature, and absolute pressure (barometric altitude) were

also wasured. In addition,“the aircraft carried a vertical accelerometer

mounted at the centar of gravity of the aircraft to provide a measure of

relative turbulence level, an inertial navigation system to provide the
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aircraft position, and a time-of-day clock. All of the sensor outputs are

digitally recorded on tape with a 1 second update rate with the exception of

the pitot pressure and the accelerometer outputs which are sampled 100 and 20

times per second respectively.

3.? Ground Equipment

The ground-based facilities included, in addition to the instrumentation

radar, a radar beacon interrogator and a station-keeping radar which were

used respectively for the control of the aircraft and for the locatfon of

storms. The instrumentation radar consisted of an S-band ASR-8 coherent

transmitter with its front end coupled to a 15-foot parabolic antenm mounted

on a digitally controlled pedestal. A custom-built receiver consisting of a

Iine?r IF strip drfvea a pair of quadrature detectors which in turn drive

10-bit MD converters. The output of the &D converters fills a faat 256K by

20-bit buffer during a sector scan of the antenna. The data ia then read out

on tape via a NOVA computer. The antenna has a 1.6-degree one-way beamwidth

and ia capable of being pointed in azimuth or elevation either manually or by

computer control.

An ATCBI-4 beacon radar ia used to

a 2.4-degree azimuthal beamwidth, is

antenna, and ia located 30 meters from

locate the aircraft. Ita antenm has-

mounted on the station keeping radar

the instrumentation radar.,,.

The station-keeping radar is an FAA S-band ASR-7 terminal radar connect-

ed to a ASR-5 fan-beam antenna. Its output is presented on a PPI to locate

storms. The instrumentation radar cannot be eaaily used for this purpose.

A Data Entry 2nd Display System (DEDS) preaenta both analog video and

alphanumeric cbracters on a PPI-like display. Normal video from the etation

keeping radar and the beacon returns are presented as analog video. NOVA-

proceased data such as dBz level,
1/3

mean radial velocity, turbulence levels

(e ) as well aa the met recent dnutefa worth of beacon returns are super-

imposed as alphanumerics. Thi~ allowa the operator to determine in real-time

whether a particular area ia hazardoua and should be avoided, or whether it

should be penetrated by the inatrmented aircraft to gather data.
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4.0 WLIBUTION AND ERROR ASSESSMNT

Sources of error in the experiments requiring special attention were:

a. Beacon Antenna Pointing (AZ)

b. InstrumentationAntenw Pointing (AZ + EL)

c. InstrumentationMolar and ktenna Gain

d. Beacon Range Error

e. Synchronization of Aircraft and &dar Clocks

Beacon antenna pointing was calibrated by observing a transponderon the

ground whose position is knom relative to the radar. The Instrumentation

Antenm pointing was calibrated by directing the antenna to an accurately

calculated position of the sun. By noting how far the antenna has to be mov-

ed to be precisely on boresight ,with the sun it was found that the error was

small, less than 0.1 degree over a peridd of approximately six hours. The

InstrumentationRsdar antenm gain was determined by measuring the solar flux

level when observing the sun and comparing it with the published values for

that time and day. The radar receiver gain was determined by injecting a

calibrated ,noisesource into the radar waveguide directional coupler. A fix-

ed beacon range error of 0.26 mi was found when comparing simultaneous ob-

servation of the aircraft by the instrumented radar and the beacon. The er-

ror is attributed to the differences in delay between the ground and aircraft

beacon transponders and has been removed..“It is obvious that the ground in-

strumentation computer clock must be carefully synchronized by the aircraft

instrumentation clock. This is done before takeoff and rechecked several

times during the flight by voice communication. The timing should be better

than one second accuracy and should not cause “anyappreciable error in :he

overall results.

5.0 DATA REDUCTION PROCEDURES

5.1

The

cate the

con data

spurinus

Beacon Algorith

purpose of the beacop data reduction algorithm is to accurately lo-

instrumented aircraft relative to the storm. However, when the bea-

was taken, it was found that some of the data was contaminated by

returns from other aircraft having the same code, from the ground

5



test

have

fort

transponder,and from undetected errors in the NOVA program. The errors

been corrected, however, since tbe data is valuable. A successful ef-

bs been mde to retrieve the contaminated data.

Fig. la shows a plot of the raw beacon returns from the July 3 flight.

Returns from the ground have already been removed. The wide scatter is pri-

marily due to the old error in the NOVA program that considers returns in ad-

jacent range gates as separate targets. As a result of this, a corrective

program was written to cluster the returns on the basis that any returns

within a certain area and time box are the same. The results are shon in

Fig. lb. Any missing returns are then filled in using a fourth order least

square fit. Missing points have been ca$sed by propagation effects such as

the orientation of the aircraft or flying in the cone of silence of the bea-

con radar. Other causes of tissing returns have been an error in the NOVA

program (which has been since corrected) and possible mixups in the settings

of the data collection equipment. Filling in the tissing points is needed to

allow proper smoothing in those areaa adjacent to the missing Points.

Fig. lC shows the dssing points replaced while Fig. ld hs baen smoothed and

interpolated. The smoothi~ and interpolation is accomplished using a Fast

Fourier Transform (FFT) technique. The.x and y components of the beacon

track are Fourier-transformed, zeros are added to the high frequency end ao

that the total number of FFT points are increased by four, the transform is

then multiplied by a Gauasian weighting function, the inverse transform is

then taken, resulting in a smoothed beacon track tith four times as mny

points. hther than having a beacon file with an update of 4.8 seconds, it

is now every 1.2 seconds and will allow a smoother mrging with ‘theinstru-

mentation radar data.

5.2 InstrumentationRadar Algorithms

The instrumentation radar records on tape the unprocessed radar data as

an in-phase and quadrature component for each of the range-azimuth cells in a

selected sector. The tapea are then sent to Lincoln Laboratory for proces-

sing in the following ~nner. The raw data, which represent the returns from

6
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the rain droplets, were recorded range sequentially. However, the processing

requires that the data be first reordered in azimuth. A maxtmm entropy

estimation is then wde of the autocorrelation lags. The lags are used in the

computation of moments. The moments, in turn, provide, by using specific

pulse pair algorithms, the intensity (dBz), the mean radial velocity, and the

spectral tidth (in s1/3 units). The mximum entropy estimation of the lags is

used because it provides a better estimate than a straightforward calcula-

tion. This is because the entropy calculation requires that the estimated

correlation lags b consistent with one another (this insures that the spectra

the lags represent are positive for all frequencies).

tion lage are computed for each radar cell. ~pically

204 returns (I and Q components). The ex~essions for

tion lags to momenta are as follows:

Intensity or O-th moment:

dBz = 10 log(k]Ro1)

Mean radial velocity or 1st moment:

x
v=—

4WT

Velocity variance or 2nd moment:

-1”Im(R1)
tan (— )

Re(R1)

A set of autocorrela-

each cell is made up of

converting the correla-

[3a]

[3b]

[3C]

where ~ is the n!th autocorrelation lag, A the radar wavelength, T is the

Interpulse period, and k a constant detemined from the radar parameters. The
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above algorithms are subject to a minimum signal-to-noise value. In particu-

lar, the 2nd moment estimator requires at least a 3 dB S/~. The S/N estimator

used is

R:;13
s
— = 1/(— - 1).
N 4/3

R1

The 2nd moment

Gaussian-shaped.

rithms are vali~

and S/N estimators were derived assuming the spectra is

Monte Carlo tests of these estimator show that the algo-

for a time series that has a Gaussian-shaped spectrum.

Homogeneous isotropic turbulence theoretically is expected to produce a

Gaussian-shaped radar spectrum.

The computations produce arrays of numbers that represent the mOments at

relatively coarse discrete uniform positions over the recorded sector area.

In the azimuth dimension they are a beamwidth apart while in range they are

spaced 112.5, 225 or 450 meters. Consequently, quantization occurs when one

attempts to assign a value to the moments along the aircraft track. Smoothing

and interpolating these discrete points is accomplished using a two-dimensiOn-

al FFT procedure. Fig, 2 and Fig. 3 are contour plots that were processed in

this mnner. Superimposed are the aircraft.tracks. In general the tracks ex-

tend in time halfway to the previous scan tfme to halfway to the next scan
1/3

time. Comparing dBz and E contours for the same scan, it is clear that the
1/3

E centours are much more structured. The intensity plots are smooth and

featureless compared to the widths (c1/3 ). The .1/3 contours on the right

side have low spectral widths, which imply low turbulence levels while ‘he

left side indicates that there are areas of strong turbulence. In contraat,

the intensity contours give no indic.ation of heavy turbulence on the left

side. Comparisons with the aircraft data will be discussed later.

5.3 Mrcraft Data Reduction

The effect of turbulence

measuring the ms acceleration

on the pitot-equipped aircraft iS sensed by

and the dissipation factor. The acceleration

12
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is measured directly. The dissipation factor c.ia fouridfrom the pitot dif-

ferential pressure Ap, the total (stagnation) temperature’T t and the absolute

pressure Pf (free stream pressure or barometric altitude), and is as follows:

RT 1/3 2/3

1/3
(;) (> TP

c= [4]
y+2 y-1 2/3—

~1/2(1 + g) %.[.(l. +Y) y- 1] Pf

‘f ‘f..

wh~re the Ap structure function is defined as

DAp:~:E{(Ap(t+ T) .-AP(T))2],
,

R = 2.87 X 106(%) 2.K-1
sec.

y..= 1.4”””

T = o.2-i.o’”
(see) .

and c = 1.77

gas constant,

ratio of specific
heataj

time between
successive Ap
measurements,

Kolmogorov’ a
constant.

Eq. [4] takes into account the aircraft altitude, airspeed

Both the structure function and the aircraft ~s vertical

and Wch number.

acceleration are

continuouslyaveraged over a 7.5 second period using a cosine squared weight-

ing. Examplea of time plots of c1/3 and rw acceleration are shorn in the up-

per and tiddle curves of Figs. 4 through 7.



6.0 COMPARISON OF AIRCRAFT AND WM DATA
.,.

The lower curves of Fig. 4 and 5 are the values of c
1/5

measured by the

radar using Eqs. [2] and [3]. This is of the July 17, 1980 flight and will be

examined at length here because it includes cases where the aircraft passed

through low and high-turbulence areas. The aircraft made wny passes at a

5,000 ft. altitude through a moderately violent thunderstorm in the Atlantic

City area. Many other flights have been examined but not in as much detail.

Figs. 6 and 7 are of the corresponding reflectivity in dBz. The numbered dots

above the radar data (lower curve) represent the midpoint time when a particu-

lar radar scan (or snapshot) was taken. If the afrcraft is in a radar cell,

it will appear at this time. The smallest value of reflectivity that can be

measured with the radar is 8 dBz. How&e r, it is felt that in order to
1/3

trust the width algorithms (radar c ) the

than 14 dBz.

The time interval 17:08 to 17:15 Fig. 4
1/3

tion between radar and aircraft E while

reflectivity should be greater

exhibits a reasonable correla-

te corresponding reflectivity

Fig. 6 does not. The radar peak at 17:09 is contaminated by the aircraft.

A spectral analysis of the radar return at this time, range and azimuth show

the aircraft to be present. The peak at scan 12 (17:10:30) ia real (no air-
.,. 1/3

craft) and correlate with the rms acceleration and the aircraft s . A

scatter plot has been generated over this time interval and is shown in

Fig. 8a.
1/3 1/3

Here the aircraft c is compared to the radar c . A reasonable

correlation is evident. The corresponding correlation coefficient is 0.81.

The correlation with reflectivity (Fig. 8b) is 0.57. If the entire flight of
1/3

17 July 1980 ia used, then the correlation is 0.50 using spectral width (E )

and 0.29 using reflectivity. The respective scatter plots are shorn in Fig.

SC and 8d. In tbia calculation the data was edited to remove those parta that

were knom to be contaminated by the aircraft. For example, at time 17:47,

scan 39, the large lobe is due to the aircraft in a range cell. See Fig. 5.

Fig. 9a and 9b show the interval 17:18 to 17:31. The width correlation is

0.48 while the reflectivity is 0.10. This data includes the large anomalous
1/3
E peak at 17:30:10.
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The large E
1/3

peak at 17:05:14 has a double maximm spectrm (Fig.

10a). The pulse pair algorithm Eq.[3c] will fail under these conditions and

will produce too large a value. The spectra, in general, have various

shapes. The pulse pair algorithm la designed specifically for Gaussian

shapes, however, sawtooth, flat-top, multimaxim as well as Gaussian shapes

are observed. Consequently it is not surprising that perfect correlations are

not observed. It is reasonable that an algoritb that takes into account

the various shapes should be used. Many of ~he excessive values of
~1/3

can

be ascribed to either multi-modes or to flat-top spectra. The anomalous peak

at 17:30:13 has a wide flat-top spectrw (Fig. 10b),

7.0 CONCLUSIONS, AND FUTUW PLANS

1/3 ~ is superior to the reflectivity in determiningThe spectral width (E

the presence of turbulence. The reflectivity is featureless compared to

spectral width. The correlation between aircraft and radar s
1/3

is not per-
1/3 is higher and On occaSiOn MaY be ‘Xtreme.feet and in general the radar e

The extreme radar c1/3 values appear to be caused by flat-top or dual=axima

spectra.

Work is underway to design new algorithm that will take into account the

spectral shape. Since the raw radar data has been recorded on tape, various

algorithms are being tested to determine,.theone which results in the best

correlation with the aircraft data. Comparisons between flights have to be

made and an overall correlation coefficient haa to be generated.
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Fig. 9. (a-b) Scatter plots of radar e
1/3 (Flight of 17 JUIY 1980).

(a) Conflation coefficient = 0.48, (b) co~relation coefficient= 0.097.
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APP~IX A

AIRCUFT ACCELERATION STRUCTURE FUNCTION

The lift of an aircraft is given by

L=+ CLV2S

where

CL = coefficient of lift,

o = air density,

v = aircraft true airspeed,

S = wing area.

The coefficient of lift, CL, is a lihear function of the angle of

attack, over the range of interest. Therefore

lU 2
L =z(x CL)pv S

where ~ is the lift curve slope and u $s the vertical component of
a

airspeed. Thus
1

L = ~ CL PSUV

a“

Taking differences we find

AL = + CL pS[uAv + VAU]

a

Since U<<V and (Au)2~s (Av)2 we find

1
AL = ~ CL PS[VAU]

a
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and since the force AL = mAa where m is the aircraft mss, we obtain for the

acceleration difference
1

Aa=– C ~vAu
2Lm

a

The structure function is defined as the average of the square of the

differences

Kolmogorov’s

where c

c

r

tlowever,r =

measurements.

D = E{(Aa)2} = (~ CL ~ V)2DU
a

a

hypothesis* states that for lateral velocities

Du = 4/3c(cr)2/3

universal constant (1.77)

dissipation factor

“separationdistance

where t ia the time

Therefore, we find

,

when meaauring the two velocities

difference between successive acceleration

for the square root of the acceleration

structure function

m=2c
1/2 1/3 “4/3

scp E—
-a fi ‘La m

. ..

4/3
1/2 lJ3 v

=KC PE —
m

For the tilfstream
-1

CL = 5 (radians )
a

s = 610 square feet

m = 933 slugs

*S. Panchev, “’hndom Functions and Turbulence,” Pergamon press (lg71) P. 151.
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APPWIX B

SOME BASIC RELATIONS CONCERNING ~E RADAR ~ASU~MENT OF AIR TURBULENCE

INTRODUCTION

The use of a radar to measure the level of air turbulence in a rain storm

is a relatively new concept. Consequently, the purpose of this note is to pre-

sent the connections between what a radar measures and the physical properties of

the turbulent atmosphere. In the first section we will show that the radar

spectrm represents the velocity distribution of the rain drops and appears to

have a Gaussian shape. In the second section we will show how the radar spectrum

width (variance)is related

size.

S~PE OF THE RADAR SPECTR~

to the turbulence intensity and to the radar cell

Consider a volme of scatterers such as rain drops that are being carried

by a homogeneous, turbulent atmosphere. ‘Let us look first at one of the rain

drops. The radar return, in voltage, at time ‘Itfrand ‘rt+ T“ is proportional

to:

i 4m x(t) i4T X (t +T)

e
A

and e
a

where x is a random variable representing the position of

the radar and A is the radar wavelength. The correlation

is by definition
.,.

i4T x(t) -i4T X(t + T)

p(~) =% = E{ea. e
A

(1)

the drop relative to

Functionof the return

(2)

i: [x(t) - x(t + Tjj
=E{e }

= E

where
Au=

i~uT

{ea}

X(t) - X (t + T)
T

is a random variable representing the average velocity over the interval T. ,ttt,

drops out because the statistics are asswed to be stationary. Evaluating (2)

we find
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1 ,

P(T

Here p(u) is

iqT ~

‘E{ea}=~ P (u)
-m

he probability density of u.

ig UT

e a du. (3)

However,

elWT du (4)

where S(w) is the spectrm observed by the radar. Equating (3) and (4) we find

~q “T

S(u) eiuT dm = 2m p(u) e A du.

We see that

(4a)

and find that

S(u)du = 2mp(u)du and S(m) = ~ p(u). (5)

Thus, we see that the spectrm is a replica of the probability density of the

velOcity averaged over the interval T. Because the spectra of independent pro-

cesses can be added, Eq. (5) is valid for many raindrops, if one ass,mes all

the droplet cross sections are the same.

It is not difficult to generalize Eq. (5) for “arying droplet Sizes. The

return at time t for N droplets is

N
z An e’% ‘n(t)

~=1

where An is the amplitude of the nth droplet. The covariance function is

i4mxi(t)N—
R(T) =E{ZAiel

i=1

Separating out the terms where i = j,
4n

R(T) =E{~ A~e ‘~ “nT ~

~=1

N
i4TX (t+T)

z
TJ ~

.
j=l ‘j e

we have

NN i% (xi - x,)
E ZAi Aje J }.

j=l 1=1

j#i
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Remembering that if two random variables (rv’s) are independent, the expectation

of the product of two rvts is the product of the expectations,we find

~~ UT

R(T) =NE{A2}E{e A }

and

R(0) = N E {A2}

Since xi and Xj are independent, the cross terns drop out because

4n ~~ *

E {e
‘T (Xi-xj)~ = ~ {,

‘i}E{e
i? Xj~

-Owhenj #i.

Thus

or as before

s(w) =+

Thus, the “radar” spectrm is

du

(6)

P(u) . (5)

a replica of the velocity probability density.

There appears to be sme theoreticaljustification
(1)

for the velocity distribution

to be Gauasian. Experfientally, in homogeneous turbulence, the velocity dis-

tribution ia s~etric and tends to be nearly Gausaian
(1,2,3)

It should be pointed

out that in a related process, the motion of a molecule in a gas, that the dis-

tribution of one cmponent of the velocity is Gaussian and is hom as a Mwellian

distribution.

VARIANCE OF THE RADAR SPECTR~

We have just

distribution. It

0; is related to

established that the radar spectrum is a copy of the velocity

follows from Eq. (4a) that the variance of the radar spectrum

the velocity variance U“2 aa follows:

29
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We will now show

pation factor E.

The variance u
2

u

.: = (%)2““2
how U“2 (or u@2) is related tO the air turbulence dissi-

is by definition equal to

OU2=E{(u-E {u} )2}

= E {U2} - (E {U ])2

where the expectation value E{ } is generally taken to

sembles. However, the radar takea an average not over

radar cell volme. If the

averaging is the sae as a

function “f” is

<f>

where

,
statistics are stationary over

sampled average. Therefore, a

= ~ A(z) f d;

mean an average over en-

ensembles but over the

~A(~j d; = ~ and d: is a differential

the volume, then volume

sampled value of the

volue.

,,.

A(:) is the cell size and ia closely approximated by

P
2
+ Z2

2
,- 2++

A(z) = 1(2m)3~2ba2e2% *b ‘
We are assming a cylindrical antenna beam of width “a” and a pulse length “b”.

Thus, a sampled value of the variance would be

<o
2> = <U*> - <u> <u>

u

or

We find u
2
hy taking the expectation of the s=pled average <~

2>
u u
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Since E{u2} is not a function of ~ and u(~l) and,u(~2) are correlated, we

have

(7)

+
r ) is the correlation of the two longitudinalvelocities atwhere BLL(~l, ~z

points ;I and rz. Because the turbulence is assmed homogeneous

‘ince‘it is a correlation, it can be defined in terms of a 3-dimensional Fourier

transform

The energy spectrm of the 3 dimensional velocity field @(~) is often

confused with the radar Doppler spectrw S(w). @LL(~) follows an inverse

11/3 power law
4,5

and has a pole at the origin while S(w) is gaussian-shaped.

O&) is the velocity spectmm while S(W) represents the velocity distribution.

w has the dimensions of radians/second while ~ is radians/meter. The

function @LL(~) is know when the turbulence is isotropic and in the

inertial subrange. We should notice that

E{uz } = BLg (0) = /@kL(t) d ~

consequently, Eq. (7) becomes

Evaluating the inner integral, by changing to rectangular

i%.;
~A(~l) e 1 d~l =

coordinates, we

(8)

have

1
~l,e-[Y22+a;2 ~ X2 ] i(kx x + ky ~ + ~z ,,

2b2 e
(2n)3/2 b az

dx dy dz



<+ikyy
2 2

m_ ‘+ikxx

(2T)3~2b az lo e ‘a

~y J;-a+ i “d:Jm ,- ~bz dx

Therefore, Eq. (8) becomes

0“2= [
- [kx2 bz + kyz az + kz2 .23

j OIL(Z) 1- e 1d$

For isotropic turbulence in the inertial subrange4

where5 E(k) = a E213 k-5’3

k2 ~z + ky2 + kzz=k

k = 111

a = 1.35 ~ .06 (dimensionless)6
,,.

and
E= the dissipation factor.

Substituting and using the following relations

kx2 = k2 coa2@

d~ = k2 ain$ dk d$ de,

we convert Eq. (8) to polar coordinates

= # ~“sin3 @ ~m k-5/3 [1 - e-kz “2 ‘in20 + bz COS2$}] dkd$.
o 0
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Using the following sol”tion7 for the inner integral

v

Jo xv-’
(l _ ,-V Xp) dx = - Au

Ipl
-I r’(;)

o

and using s~etry we find

0“2 = :
T/2 .

aE2’3 r (5/3) f sin> $ (a2 sin2 $ + b2 COS2 $)
1/3 d$

o
(9)

Substituting t = COS2 $, we find

ou2 = ~ aE213 r (5/3) a213 ~1 (1 - t) (1 - [1 -~] t)l/3 t-1/2 dt.
o a

Since we are dealing with real nubers, the integral iS “slid “hen

bz
o:~ :1.

The integral representation of the Gaussianhypergeometric function is given by8
.,.

F(a, b; c;.z) = r (c)
11 tb-l (l-t)c-b-l (l-t~)-adt

r (b) r (c-b)

where Re(c) > Re(b) > 0.

Therefore, ~

0“2
2

=r(~)a(ca)
2/3 F(_~,~;,l - >’-) (lo)

where b2 <a2

The hypergeometric series converges when h2 ~ 1 and is given by tbe monotonic

series”*

*A1l the terns after the first are negative. It can be shorn that there are no
maxima or minima when O < h < 1.—
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and O<h<l— —

we find that

Consequently,

.917 < F(-;, ~; ~; h) s1.—

the hypergeometric fac~or in Eq. 10 has little effect and

that the approximation

is valid.

For the case when the bemwidth is smaller than the pulse length

we can substitute

t = sin2 $

into Eq. 9 and find in the same mnner as before

The series F (- ~, 2; ;; g) =

l-+g-&g2-~ ~701g3 -.. . [g= l-$]

(11)

converges as before when O < g < 1, is also monotonic, and is bounded by——
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.491 :F(-+, 2; ~; g) < 1—

Consequently, the approximateion

0:= r (;) a(. b)2/3

ia not alwaya justified.

CO~NTS

In a typical radar the pulse length is usually smaller than the beamwidth

and therefore Eq. 10 will apply. The spectral “idth, u“, will thus be pro-

portional to (s a)l’3. Since the beamwidth is proportional to the radar
1/3

range, and that the buffeting of an aircraft can be ahom to be proportional to c ,
1/3

we find by solving Eq. (10) for e that

2 1/2
;,l ->)

a 1

where R is the range to the turbulence and C is a

be directly proportional to the spectral width aa

proportional to the cube root of the range.

constant. Thus the buffeting will

seen at the radar and inversely

The use of a Gaussian fmction to approxtiate the range dimension of the

cell is reasonable if one considers the effect of convolving the impulse

response of the radar receiver with the transmitted,.rectangularpulse shape.

The effective pulse shape will be rounded and look like a Gaussian curve.

This will be particularly true if the receiver bandpass is closely matched to

the transmitted pulse. The use of a Gaussian curve to approximate the main-

lobe of the antenna has long been used and is considered to be quite accurate.

The variance derivation assmes that (1) the turbulence is uniform througho-

ut the cell, (2) we are in the inertial subrange, (3) the raindrops move with

the wind, and (4) there is no wind-shear. ~ese sssvmptions are valid be.

cause of the following reasons. (1) By using smsll radar cells, homogeneity
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becomes more likely. This is accomplished by operating at shorter radar

ranges and/or using narrower antenna hems. (2) The inertial subrange

signifies that the effects of inertia override the effects of viscosity and

of gravity. The inertial subrange scale extends from about a millimeter to

about a kilometer. Consequently radar cells less than a kilometer long can

be filled with homogeneous turbulence. (3) The horizontal velocity com-

ponents of the rain are expected to follow the wind but not the vertical

components. At most antenna elevation angles of interest (i.e., smal1 eleva-

tion angles), the horizontal components will dominate. (4) First-order ef-

fects of wind-shear broadening can be taken into account by measuring the

mean velocity of adjacent cells and subtracting out the effect.

In the above derivation of the radar‘spectrumvariance, the approach is
11similar to that of Frisch and Clifford with the following differences. It

was not necessary to explicitly take the 3-dimensional Fourier transfom

Fp(~) in ~ space of the antenna pattern. The universal

Frisch paper) is not .47 but 1.3S. The solution of the

pulse length is longer than the beawidth is in error.

constant a (A in the

case where the
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The following

measure turbulence

APPE~~ C

1/3
AIRCRAFT MEASUMMRNT OF E

parameters are available on the

‘f
= Static or free stream pressul:e

Ap = Pitot tube differential pressure

Tt = Stagnation or total temperature

‘Pf is taken from the static port of the pitot

where Pt is the

flow conditions

Gulfstream aircraft to

tube. Ap = Pt -Pf,

Here M is the Mach

constant, and u is

Combining (1)

total or stagnation pressure. Isentropic and ideal gas

are assumed permitting the following relations to be used.

P
7

t y-1 2 y-1
— =(1+—M) (1)

‘f
2

T
t

_=l+~M2

‘f

(2)

2
u

M2=— (3)
yRTf

number, y is the ratio of specific heats, R is the gas

the free stream airspeed.

and (3) we have

y-1

Py

(:)
=1+pu2

‘f
2 yRT~

(4)



Even under conditions of heavy

M and u will be smll compared to

we can take differentialsof (4),

turbulence, the fluctuations of Pt, Tt,

their respective mean values. Consequently,

substitute differences and we find

()
P -:
tyAp UAU

— —=—

‘f ‘f ‘Tf

(5)

The structure function D is defined as

of successive measurements squared or

DU(T) ~ E{[u(t+T)

Therefore, we can rewrite (5) as

()
2

P
-—

yD U2 D
t Ap u

—=_
< 2

‘f
(RTf)2

the expectation of the differences

a(t)lz}

(6)

blmogorov’s Hypothesis relates D~ to c as follows:

Du = C(SUT)2/3 ‘“ {7)

where T is the time between measurements and C is a universal constant.

Combining (6) and (7) we find

[l-
1

P
1/3 -1/2 -1/3 -413RT -t

-y r
AP

c = CTU —

f
‘f ‘f

(8)
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However, since the temperature sensor does not measure the free stream

temperature
‘f

but the total temperature Tt, we must cOmbine (1), (2)

and (3) with (8) and finally find

~T 1/3 213

(J) (~ %p
1/3 T

E“=
7+2 y-1 2/3

~ljz
(1 + 9)

T
[(1 +&) y-l] Pf

‘f ‘f

(9)

where Ap is taken to be the mean of the differential pitot tube Pressure Over

the averaging period of the structure function.
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