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1.0 INTRODUCTION

1.1 Motivation and Method

Results of a CONUS-scale surveillance coverage study are presented. The
study was motivated by a need to better understand the trade-offs behind such
questions as these:

Will a network of DABS beacon sensors located at present and proposed

ASR and ARSR sites provide surveillance and communication coverage
of all major airlanes within CONUS? - if so, down to what altitude?
- Are DABS sensors at every ASR and ARSR site planned really necessary?;
what fraction might be eliminated?
~ What free space maximum range must DABS provide?
- Will ARSR long range sensors be essential should surveillance data from
ASR type radars eventually become available to other facilities via a
network?
Coverage patterns were calculated for sensors located at each of the 146 ASR
sites and 94 ARSR sites existing in 1974 and those 117 ASR sites and 21 ARSR
sites being proposed at that time*. These were superimposed to form composite,
national—scale,,coverage maps. All coverage calculations were made by the
DOD Electromagnetic Compatibility Analysis Center (ECAC), based upon computer

stored representations of the topography surrounding each site. Topography

% .
Proposed sites identified by ECAC.



data were provided by ECAC and sensor characteristics and specific altitudes
of interest by Lincoln Laboratory. Analysis of the resulting composite coverage
maps was performed at Lincoln Laboratory.

Coverage for a given sensor was defined simply as the region of space
that could be seen without terrain obstruction up to some maximum range.
Coverage at a given altitude represents a horizontal slice through this
coverage volume. Coverage, thus obtained, is usually circular in shape with
circumferential scalloping in the direction of interferring terrain. Con-
stant altitude above mean sea level (MSL), rather than above sensor or ground
level, was used sincevaircraft generally fly at a specified "above MSL
altitude'" based upon a pressure altimeter.

The method employed by ECAC* to calculate sensor coverage for given
maximum range cut-off, and given altitude takes into account terrain features,
but does not take into account the effects of obstructions such as buildings
or other man-made objects visible along the horizon. In some locations, e.g.,
the Boston ASR site, airport and skyline obstructions reduce coverage much
more than the hills of the surrounding terrain. Thus it was necessary to
partially take the effects of obstructions along the horizon into account by
arbitrarily seﬁting the sensor elevation coverage lower limit to a small
angle above the horizontal (i.e., by setting the sensor elevation.cut—off
angle at 1/4 degree). Refractivity due to the earth's atmosphere was

handled by assuming an earth of radius 1/3 greater than actual.

*
See References [2], [3] and [4].



It is important to recognize the limitations of this model. First,
Section 2 shows that the terrain model used is not applicable to a low altitude
coverage study; i.e., MSL altitude where some terrain features are above the
altitude being considered. Secondly, for many sensor locations, buildings
have a far greater affect upon coverage than does topography. This is more of
a problem for the ASRs located on the airport surface than the ARSRs. An
example of this is the Boston ASR where building obstructions far exceed
that due to terrain or the 1/4o cut-off angle; see Section 3.

The assumed model, along with a sensor maximum range cut-off, resulted
in most coverage patterns at high altitudes being cirgles. In retrospect,

a model which simply draws circles of coverage around each site where the
radius of the circle depends upon the sensor altitude, and maximum range
would have been nearly as good for this study.

1.2 Composite Coverage Summarized

Percent coverage statistics have been computed for the Golden Triangle
(Boston - Chicage - Atlanta), the Eastern United States, and the entire CONUS
(see Fig. 1.1). By percent coverage is meant the percent of a geographic area
at a given MSL altitude that can be seen by at least one sensor. The Golden
Triangle was considered separately due to the high traffic volume. The
Eastern United States, including the Golden Triangle, was considered only for
5000 ft. and 10,000 ft. MSL altitudes. CONUS, including the Eastern United
States, was considered only for altitudes of 10,000 ft. MSL and above. Lower
altitudes were not considered for CONUS since much of the ground in the Western

United States is between 5,000 and 10,000 ft. MSL.
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Percent coverage predicted by these models are summarized in Figs. 1.2
through 1.5 for various sensor deployments and geographic regions. Figs. 1.2
and 1.3 describe ASR and ARSR coverage separately and combined. The left
hand side of Fig. 1.3, below 10,000 ft., summarizes only the Eastern United
States; the right hand side above 10,000 ft. summarizes the entire CONUS.
This accounts for the coverage discontinuity at 10,000 ft. Figs. 1.4 and 1.5
repeat the study combining the present and proposed sensors.

Sensor maximum ranges (Rmax) of 60, 100 and 150 nmi are also considered
in Figs. 1.2 and 1.5. Due to earth curvature and the sensor model no addi-
tional coverage would be provided at 10,000 ft. for Rmax greater than 1305 nmi.

A concept under consideration includes the netting of all DABS sensors
within a given region. This will tend to remove the distinction between ASRs
and ARSRs since enroute centers may very well receive surveillance data from
a network of ASR sites. For good low altitude coverage, a sensor on or
near the airport would be required at many airports. Fig. 1.2 shows that
excellent coverage of the Golden Triangle is supplied by the ASRs and that
little additiomal céverage is gained by including the ARSRs. Therefore in
this region the ARSRs would not be needed in a netted DABS deployment. In
addition, due to the large number of sensors in this region, increasing
the sensor maximum range to 100 nmi instead of 60 nmi yields only a small
increase in coverage.. The increased range may be desirable to provide back-
up coverage in case of sensor outage.

Fig. 1.3 also shows that in the Eastern United States, the ARSRs would
provide little additional coverage over what would already be provided by

the ASRs, and thus many of the ASRS's would not be needed in a netted
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deployment of sensors. However, in this region, increasing the maximum range
to 100 nmi has a significant effect on coverage.

Fig. 1.3 also considers altitudes of 10,000 ft, and above over CONUS.

It shows that in the West many of the existing ARSRs will be needed to £fill
in the gaps between the ASRs., The missing regions can be filled in with a small
number of new sensors.

Figs. 1.4 and 1.5 show the percent coverage where the 117 proposed
ASRs have been added to the existing ASR's and the 21 proposed ARSRs have
been added to the existing ARSRs. A comparison between Figs. 1.2 and 1.4
for the Golden Triangle shows that little increase is gained with the proposed
ASRs added; coverage aﬁove 5000 feet was already good. The extra ARSRs do
help. On a CONUS basis, a comparison between Figs. 1.3 and 1.5 shows that
the extra sensors help.

Results presented here should be viewed as a rough approximation to
coverage on a national scale. Sensor location selection requires detailed
on-site analysis and should not be made solely on the basis of terrain models,

1.3 Conclusions

Broad conclusions which follow from the study are:

(1) 1In the Eastern United States and especially the Golden Triangle,

DABS sensors at the ASR sites would provide good surveillance data
for both tefminal and en-route Air Traffic Control with netting.
Sensors at most ARSR sites will not be needed.

(2) 1In the Western United States, sensors at many of the ARSR sites

will be needed.
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(3)

(4)

(5)

Buildings can be a far greater limiting factor on coverage than
terrain.

The model used here is not valid for a low altitude coverage study
and is only slightly better than a smooth 4/3 earth model at high
altitudes.

Selection of a particular site for sensor installation requires
detailed on-site analysis and should not be made solely on the basis

of terrain models.

12



2.0 COVERAGE MAPS

Graphical coverage data has been supplied by ECAC in the form of: (1)
Composite Coverage Maps at specific altitudes above MSL, ané (2) Route Cover-
age Plots of minimum coverage altitude along specific routes. Route covérage
plots represent vertical slices through the coverage volume, whereas composite
coverage maps are essentially horizontal cuts at fixed altitudes. These
graphical results are based upon quantized topographic data (ignoring buildings*)
for a grid spacing of 30 sec latitude x 30 sec longitude (roughly 1/2 mile x
1/2 mile). A four point linear interpolation estimates_terrain altitudes
between grid points. Atmospheric refractivity is modeled by assuming an effec-

[1]. This allows

tive earth's radius which is 4/3 the actual earth radius
radio waves to be drawn as straight lines over a 4/3 radius earth.

2.1 Composite Coverage Maps

Line of sight coverage is illustrated in Figure 2.l.,a. The unshaded
region represents the covered volume for the region in which the DABS sensor
can detect aircraft. The Target Acqﬁisition Model (TAM) (21,031,041 coverage
approximation used by ECAC for this study is illustrated in Figure 2.1.b.
éoverage is assumed to be provided for all altitudes (even altitudes below
ground level) between the sensor and the terrain feature subtending the
greatest angle to the sensor. The results are thus not applicable for a
detailed low altitude coverage study. For example, a nearby airport in the

valley between the two peaks in Figure 2.la would not be well covered but the

TAM model would indicate that it is.

*
See Section 3 for the effect buildings have upon coverage provided by the
Boston ASR.
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For results presented here, a simple model was adopted in which the
sensor antenna characteristics and nearby buildings limit the coverage to
elevation angles in excess of 1/4O above the horizontal*. If B, the elevation
angle of the terrain feature limiting the horizon, is less than 1/4O then
coverage 1s as illustrated in Figure 2.2. If B > 1/4° then Figure 2.1lb is
applicable.

The ASRs and ARSRs existing in 1974 and the proposed ASRs and ARSRs are
listed in Tables A.1-A.4 and located on a map of the U.,S. in Figs. A.1-A.4.
Each of these four groups of sensors are considered separately in the composite
coverage maps in Figs. A5-A40. Each coverage map is for a constant altitude
above sea level; altitudes 3000, 5000, 10000, 15000, and 20000 feet have been
considered. Maximum sensor ranges of 60, 100, 150, and 200 have also been
considered. To permit quick retrieval of the desired map, the figure numbers
and corresponding parameters are listed in Table A.5. Summary coverage
statistics appear in Figs. 1.2-1.5 of Section 1.

Figure 2.3 depicts the lowest altitude above sensor level (or above
sea level for a sensor at sea level), as a function of range, that a sensor
can cover for a smooth 4/3 earth model under the above assumptions. For a
given MSL altitude, the coverage ranges in Tigs. A5-A40 (which include terrain
blockage and sensors above sea level) will always be less than depicted in

Fig. 2.3.

*
A bgtter choice for the ARSRs might have been a cut-off angle on the order of
-1/4" since ARSRs are usually well sited - frequently on top of a hill or
mountain with few buildings around them.

15
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Sensor height used was the present ASR or ARSR height above ground level
(from the ECAC data file). For the proposed ASR locations, the sensor height
used was 50 ft; 50, 80, or 100 ft. was used as the sensor height for the
proposed ARSRs. Changes in sensor height may be expected to have a signifi-
cant effect upon coverage.

2.2 Route Coverage Plots

Route coverage plots partially determine: (1) the minimum MSL altitude at
which continuous coverage 1s provided, and (2) how extensive are the regions of
airspace visible from multiple sensors.

Fig. 2.4 is a ''route coverage plot' depicting present-day coverage
on a route from Boston to Washington, D.C. which passes very near to New York,
Philadelphia, and Baltimore at intermediate points. In a route coverage
plot, attention is limited to a one-dimensional ground track, which together
with altitude constitutes a vertical slice through airspace. An aircraft is
assumed to be covered if it falls in the unshaded region of Fig. 2.1l.a.

The term "route coverage plot' should not be taken to imply that only en route
coverage is of interest, for in fact terminal coverage was of no less interest
in this investigation. The limitation to a single ground track in any one
élot is only a means of limiting attention to two dimensions for plotting
purposes.

The sensors in question are the 1974 ASR sensors without any range
limitation. A map showing the route and the sensors is given in Fig. 2.5.

Fig. 2.6 gives cumulative coverage distributions, derived from
Figure 2.4. At least single coverage is provided at all peints above 1300 ft,.
(above MSL), and at least triple coverage is provided at all points above
3700 ft. (above MSL).

Route coverage plots provide a good means for dipicting the results of

this analysis technique for the heavily used routes.

18



10
AIRCRAFT LOCATION (along o Boston ~ Washington contour )
9l ° —
ol (a) -
-~ T
J
(%)
=
» &
3
=3
o
o
T 5
=
a
> 4
o
=
-
- 3l
2=
-
GROUND
LEVEL
o
POINT NUMBER (interval = 5 ami)
A a a b
BOSTON NEW YORK PHILADELPHIA BALTIMORE WASHINGTON
10
AIRCRAFT LOCATION ( olong a Boston — Washington contour )
ol .
l:l COVERAGE BY 3 OR MORE SENSORS
8l (b) ]
HIUIU:U]] DOUBLE COVERAGE
;L .
i 77 77] smaLe coverase
(%]
>3
-«
$
o
a
o
=
w
=)
=
[
fuy
=
<

POINT NUMBER ({interval = 5 nmi)

A A A A A
BOSTON NEW YORK PHILADELPHIA BALTIMORE WASHINGTON

Fig.2.4. ASR route coverage plot for Boston to Washington
(1/4° elevation cutoff angle): (a) Coverage provided by
present FAA ASR sites, (b) Coverage multiplicity.
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Fig.2.5. Map of sensors and
flight path (flight path de-
scribed by line latitude =
(420 25" 00") — x(3° 35" 00");
longitude = (71° 00' 00") +
x(6° 00' 00™) for 0 < x < 1).
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3.0 BOSTON ASR STUDY

3.1 Effect of Near-In Buildings

To assess the effect of not including man-made obstruetions in the ECAC
terrain models, the horizon elevation angle, as measured with a transit, and
the radio horizon angle as computed using the ECAC terrain models, have been
compared for a sensor at ground level (transit and hypothetical sensor both
placed 63 feet west of the present Boston ASR location). These results are
illustrated in Fig. 3.1. Note that over much of the horizon there is little
resemblance between measured and computed results. Much of this difference
is obviously due to the close proximity of the buildings in downtown Boston,
bridges, buildings at the airport, and trees.

Attempts were made to improve upon the ECAC model by more realistically
accounting for the buildings. These methods, tried on the Boston ASR coverage
calculations, met with limited success* and are discussed below.

The effect of buildings at short range on the horizon angle is depicted
in Fig. 3.2. As expected, small buildings close to the sensor have a signifi-
cant effect upon the horizon angle. The ECAC model of the terrain surrounding
. the Boston ASR is characterized by short ranges to the terrain features
limiting the line-of-sight (see Figure 3.3). This is reasonable since there
are few tall hills at long range. Small buildings at short range would thus
be expected to have a significant effect upon the horizon angle.

To test the sensitivity of the ECAC model to close-in small buildings, the

radio horizon angle was recomputed with two changes: (1) all terrain greater

* .
They were not used in the CONUS coverage projections presented in Section 1,
and 2.
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Fig.3.1. Horizon angles from ECAC model compared to optical measurements
for a point 63 ft. west of Boston ASR at ground level.
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Effect of buildings at short ranges on the horizon angle.
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ATC-75(3.3)
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Fig.3.3. Distance to the line of sight terrain feature in the ECAC model
for Boston ASR. '
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than 4 nmi from the sensor was raised 50 feet when computing the radio horizon
angle, and (2) if the terrain feature limiting the radio horizon angle was
less than 4 nmi from the sensor (with the assumption in (1)), then 50 feet
were added to the height of this terrain feature in computing the radio hori-
zon angle. These ECAC model results are compared to the measured data in
Fig. 3.4. Note that there is better but still not good agreement.

3.2 Terrain Sampling Granularity

Finally, the method used to compute terrain height was considered as a
possible source of errof. As illustrated in Fig. 3.5, the ECAC terrain model
takes points on a 30 sec x 30 sec grid, and a 4 point linear interpolation
is used to estimate terfain height between grid points. Thus, as illustrated
in Fig. 3.5, the estimated and actual terrain height for Point A can differ
significantly. To determine the significance of this difference, the radio
horizon angle was recalculated using the maximum of 4 points to estimate the
terrain (i.e., Point A in Fig. 3.5 was taken to be 700 ft. instead of 575 ft.
These results are compared in Fig. 3.6. Note that the differences are small,
and thus it may be concluded that the linear 4 point interpolation was a good
technique considering the close spacing of grid points. This method should

also be checked in mountainous terrain.

25



1.0 ," ATC 75(3 4)

0.9 r
= buildi
{ % = tall buildings Boston skyline
0.7 bldgs range *
T from 0.8° £0 2.6°
a
[«I]
0.6 L
o
QU
=
= 0.5 *
£ Measured w1th transit k3
<
[=]
N 0.4
~
Lo
0.3
0.2
0.1
Modified ECAC Model
0.0 [ | |
0 90 180 270 - 360

Azimuth (degrees from true north)

Fig.3.4. Horizon angle from ECAC model with terrain raised 50 feet compared
to optical measurements.
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Fig.3.5. Interpolation of grid points for hypothetical terrain.
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Fig.3.6. Horizon angle from ECAC model using (1) maximum of 4 points
terrain interpolation and (2) 4 point linear interpolation.
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Table A.1.

Location (Lat, Long, Ground Level (ft. MSL),

ASR Listing - 1974

Sensor lieight (ft. above ground level)
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Table A.2.

ARSR Listing - 1974

Location (Lat, Long, Ground Level (ft. MSL),
Sensor Height (ft. above ground level)
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BENSON [HC
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350417N
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4350371
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Table A.2 (continued)
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l1165202w
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(continued)
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Proposed ASR Listing

Table A.3.

Location (Lat, Long, Ground Level (ft. MSL),

above ground level)

Sensor Height (ft.
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Table A.4. Proposed ARSR Listing

Location (Lat, Long, Ground Level (ft. MSL)
Sensor Height (ft. above ground level)

302b31N VgocU20w 100.

AL S4120UN Vg73800w 925.

AZ 332700N  1142200W 480.
414500n UT724200W 19,

L 295800N VUpsl7y0w 40.
S3UBO0ON  Us319500w 385

FS L 400520UN U4 /50w 724«

1 1A 425330N UIL2915wW 920,
KY 375950N UB8bUUQ9w 900.

MN 47¢500N  UYLl1440W 1520.
325030 Up24b 15K 420,

37T4U00N  U924U00W 1323,

_ HoH400N L040UQ0wW 2950,
FS nw 470100N UIG7HUQ0W 1450.
364200N U945 /00W 800.

410600N VUT784600wW 1817.

MEM N 35460UN 850000w 1881.
e TN 362100  UE93YQ0W 280
324500  U995200W 1710.

305610 V9/71330w 550.

382539N UB14100w 1179.
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Table A.5. Coverage Map Listing and Parameters

Figure Number Sensor Type MSL Altitude Maximum
(thousands of feet) ngggf

(nmi)
A.5 ASR 20 100
A.6 ASR 20 60
A.7 ASR 15 >133
A.8 ASR 15 100
A.9 ASR 15 60
A.10 ASR 10 100
A1l ASR 10 60
A.12 ASR 5 > 71
A.13 ASR 5 60
A.14 ASR ’ 3 > 52
A.15 ARSR 20 >156
A.l6 ARSR 20 150
A.17 ARSR 20 100
A.18 ARSR 15 >133
A.19 ARSR 15 100
A.20 ARSR 10 106
A.21 ARSR 10 100
A, 22 ARSR 5 > 71
A.23 Proposed ASR 20 100
A.24 Proposed ASR 20 60
A.25 Proposed ASR 15 >133
A.26 Proposed ASR 15 100
A.27 Proposed ASR 15 60
A.28 Proposed ASR 10 100
A.29 Proposed ASR 10 60
A.30 Proposed ASR 5 >71
A.31 Proposed ASR 5 60
A.32 Proposed ASR 3 > 52
A.33 Proposed ARSR 20 >156
A, 34 Proposed ARSR 20 150
A.35 Proposed ARSR 20 100
A.36 Proposed ARSR 15 >133
A.37 Proposed ARSR 15 100
A.38 Proposed ARSR 10 >106
A.39 Proposed ARSR 10 100
A.40 Proposed ARSR 5 > 171

*
Coverage maps for ranges greater than values preceded by ">'" would be identical.

(Due to earth curvature; see Section 2.1 and Fig. 2.3 for further explanation.)
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Existing ASR locations.
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Fig. A.2. Existing ARSR locations.
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Tig. A.16. ARSR composite coverage map, 20,000 ft. MSL, maximum range
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Fig. A.18. ARSR composite coverage map, 15,000 ft. MSL, maximum range
Rmax > 133 nmi.



C44-1698

N :

e o

\

e s = BTN g
A DAL

IO
A SN
SNl

A

1 )»,.N«-v;
’ e

\

G
&

5
‘\.‘ 7K ‘_".\'%
=
Sy



ce-v

C44-1699

e map, 10,000 ft. MSL, maximum range




| C44-1696

A-33

ge

age map, 10,000 ft. MSL, maximum ran

Fig. A.21. ARSR composite cover

R
ax

= 100 nmi.



A-34

map, 5,000 ft. MSL, maximum range

age

Fig. A.22. ARSR composite cover

71 nmi.

R >
ax



| cu44-1679

—

A-35

Proposed ASR composite coverage map,

100 nmi.

20,000 ft. MSL, maximum

Fig. A.23.
range R

max



]

C44-1681

B

A-36

Proposed ASR composite coverage map, 20,000 ft. MSL, maximum
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Proposed ASR composite coverage map, 10,000 ft. MSL, maximum
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Proposed ASR composite coverage map, 10,000 ft.

Elges A28,
range R
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Fig. A.30.

range RmaX
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E

Proposed ASR composite coverage map, 5,000 ft. MSL, maximum
> 71 nmi.
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Fig. A.31. Proposed ASR composite coverage map, 5,000 ft. MSL, maximum
= 60 nmi.

range Rmax
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Fig. A.32. Proposed ASR composite coverage map, 3,000 ft. MSL,

rangs Rmax > 52 .nmi.
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Fig. A.34. Proposed ARSR composite coverage map, 20,000 ft. MSL, maximum
range RmaX = 150 nmi.
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Proposed ARSR composite coverage map,
= 100 nmi.
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20,000 fr. MSL, maximum
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Fig. A.36.

range RmaX

C44-1669

Proposed ARSR composite coverage map, 15,000 ft. MSL, maximum
> 133 nmi.
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Fig. A.37. Proposed ARSR composite coverage map, 15,000 ft. MSL, maximum
range RmaX = 100 nmi.
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Fig. A.38.
range R
max

C4t-1674

Proposed ARSR composite coverage map, 10,000 ft. MSL, maximum

> 106 nmi.
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A-51

,000 ft. MSL, maximum

Fig. A.39.
range R

Proposed ARSR composite coverage map, 10

= 100 nmi.

max
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Fig. A.40. Proposed ARSR composite
range R > 71 nmi.
max —

CLt-1673

coverage map, 5,000 ft. MSL, maximum






