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1. INTRODUCTION

It is often said that "a picture is worth a thousand words". This is certainly the case when it
comes to giving the pilot of an aircraft a description of the weather. Providing an accurate picture
of the weather conditions in the pilot's area of interest could be a highly useful application of a
ground-to-air datalink. Even those pilots that have onboard weather radars could profit from the
ability to see the weather in regions beyond the range of their radar, or seeing the nearby region
with the greater clarity that a ground-based weather radar can provide.

1.1  WEATHER RADAR INFORMATION

The present TDWR (Terminal Doppler Weather Radar), ASR-9 (Airport Surveillance
Radar), and NEXRAD (NEXt generation weather RADar) radars are designed to provide
hazardous weather information to controllers located at the tower or at an enroute center. While the
voice message pilots receive from the terminal controllers will facilitate the avoidance of hazardous
weather, it will not provide "escape” information. The lack of vectoring instructions will leave the
choice of alternate flight paths to the pilot. With such a system, the possibility of a pilot
encountering weather situations as dangerous, or even more dangerous, than those in the verbal
warning, or his not understanding the message enough to avoid the hazard, becomes a possible
scenario.

During the enroute portions of flight, graphical weather information could be used in a
number of applications to increase flight safety. This information would be useful as wamings of
immediate weather hazards that need be avoided, as information of possible escape maneuvers
once hazardous weather has been encountered, and for long range strategic flight path planning
information. Because NEXRAD images are so important to in-flight decision making, they are
used as examples throughout this report.

1.2 GROUND-TO-AIR DATA LINKS

To provide pilots with the information needed to make informed decisions on the avoidance
of hazardous weather, and to supply them with the same information the controllers have, the FAA
is actively developing the capability to provide real time graphical information of hazardous
weather conditions to aircraft by use of datalink. Several forms of ground-to-air datalinks are
currently under development.

The problem with using any datalink to transmit weather graphics is the large number of
bits required to specify a weather image. For the purposes of this report, a weather image is
defined as an array of 256x256 (65,536) pixels. This array size is typical of a graphic, such as a
NEXRAD image, that could be transmitted and displayed in an aircraft using modern equipment.
Each pixel can indicate either clear sky or one of the six National Weather Service weather
reflectivity levels (see Table 1 below), and thus requires 3 bits to specify. Hence, a weather
image, such as the example shown in Figure 1-1, will consist of 196,608 bits of information, not
counting any datalink overhead. This size will impose a severe load upon any practical ground-to-
air datalink.



Figure 1-1. Sample Stormy Weather Image.
Mobile AL, 11 May 1995, 6 PM.
256 z 256 Pizels, 512 km z 512 km..
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Table 1. National Weather Service Reflectivity Levels

NWS Precip. Rainfall Possible . . .
Level Intensity inshr Turbulence Hail Lightning
LEVEL 6 Extreme =271 Severe Large Yes
LEVEL 5 intense 4.5-7.1 Severe Likely Yes
LEVEL 4 Very Strong 2.2-4.5 Severe - Yes
LEVEL 3 Strong 1.1-2.2 Severe - Yes
LEVEL 2 Moderate 0.2-1.1 Light/ - No
Moderate
LEVEL 1 Weak <02 Light/ - No
Moderate

To make transmission of weather images using datalinks practical, a means must be found
to significantly compress the image; a typical aeronautical datalink would require a 65-to-1
compression if it were to limit the uplinked image transmission to 3600 bits. In addition, the
algorithms used to perform the compression and decompression must be computationally efficient:
the ground computer may have to handle many aircraft requests in a given scan, and the airborne
computer may not be particularly powerful or have extensive memory capacity.

1.3 STANDARD COMPRESSION APPROACHES

There are many data compression techniques that are well-developed and documented.
These techniques include runlength encoding, select encoding, Huffman encoding, Lempel-Ziv
encoding, and arithmetic encoding [1]. These algorithms are drawn from a variety of applications
including text-file archiving, compression of Fax images, and transmission of general pictures. All
of these approaches make use of the redundancies in the data to achieve compression. They are
general techniques, independent of the nature of the data. They also maintain exact fidelity under
compression — the decompressed image exactly matches the raw image. However, as a result of
this property, they cannot guarantee a maximum bit limit.

Several of these general approaches were tested on sample weather images taken from
operating weather radars as well as from weather service providers [2]. The best of these
approaches, the Huffman [3], could only produce compressions of the order of 3-to-1 or 4-to-1 on
the sample images. None ever achieved the compressions required to fit weather images into
typical datalink limitations. It became clear that an algorithm based on the unique attributes of
weather images would be required to achieve the necessary compression.

It also became apparent that exact fidelity under compression could not always be achieved
for this application; some amount of distortion in the transmission of the weather images over the
datalink would often have to be tolerated. This opened the door to modern data compression
approaches such as fractals, cosine transforms, and wavelets. These algorithms were found to be
inappropriate for the types of graphics represented by weather images (few bits, low redundancy),
and also require too great an encoding and decoding overhead for the target class of computers,
especially those aboard general aviation aircraft.



As a result of these observations, two methods of compression tailored to weather images
were developed at Lincoln Laboratory: Polygon-Ellipse [4] and Weather-Huffman. Polygon-
Ellipse was implemented and field tested first, but human factors evaluation indicated that the
images produced were unacceptable at high compression levels. Later evaluations indicated that
Weather-Huffman removed the drawbacks noted by subject pilots.

The algorithm described in the remainder of this report, specially tailored for weather
images, maximizes the number of images that can be sent exactly. When lossless representation is
impossible, it trades off controlled amounts of distortion for increased compression. The ultimate
test of this algorithm is that it produces useful and accurate images when bit-limited by
representative ground-to-air datalink limits.

1.4 WEATHER IMAGE COMPRESSION ALGORITHM

Weather images exhibit a great deal of structure — they are far from random sets of pixels.
If the compression algorithm can make use of this structure, the result will be the achievement of
greater compression than would be possible for a "general" algorithm which simply depended on
the basic redundancy of the image.

One useful property of weather-map images is their "contiguity”. Weather regions tend to
form smooth, continuous areas instead of isolated random spots. Abrupt edges or disconnected
segments of weather are rare as seen in Figure 1-2.

OR

Figure 1-2. Sample weather regions showing the "contiguity” of weather images.



A second property of weather images might be termed "continuity” — regions of intense
(higher-level) weather usually are wholly contained within regions of less intense weather. In fact,
weather transitions are generally restricted to plus or minus one level as seen in Figure 1-3.

Figure 1-3. Sample weather region showing weather transition levels.

These two properties are exploited in the compression technique developed in this project:
The Weather-Huffman (WH) Algorithm. The key element of the WH algorithm is a Huffman-type
runlength encoding scheme that has built-in assumptions tied to typical weather images; when these
assumptions hold, the bit requirements of WH are far less than the theoretically optimum Huffman
code.

The WH algorithm contains procedures for gracefully degrading the resolution of the
transmitted image when necessary to meet a specified bit limit, It also contains an auxiliary Extra
Bit Algorithm (EBA) which makes use of any bits remaining after the WH compression step to
restore as much as possible of the fidelity lost by this resolution reduction.

1.5 REPORT OUTLINE

Section 2 of this report provides an overview of the Weather-Huffman (WH) approach to
weather image compression. This section also includes results of applying the algorithm with a bit
limitation (3500 bits) to sample complex real-life weather images. Finally, it estimates the ground
computer and onboard avionics requirements for implementing the WH encoding and decoding
routines.

Section 3 provides an overview of the theory of the Huffman runlength algorithm, the
foundation of the WH approach. It also presents the principles of the decoding table, which must



be included with the encoded image in the uplink message in order to permit the decoder to
decipher the sequence of codewords that constitute the image representation.

Section 4 then details the complex procedures used to convert the general Huffman method
to one that applies specifically to the weather image situation. In particular, the techniques
employed to compress the bit requirements of the decoding table are described in depth. Without
these modifications, the decoding table alone could use up all the bits of the uplink message.

Section 5 then presents the methods needed to simplify the input weather image when its
exact representation exceeds the datalink bit limit. Both filtering and resolution reduction of the
weather image are employed. The former eliminates isolated pixels to reduce the number of runs
on the image, while the latter maps a block of pixels into a single "superpixel” (2x2->1, or 4x4->1,
or 8x8->1) to reduce the number of pixels to encode.

Section 6 then presents the smoothing algorithm employed by the decoder to eliminate the
blockiness of the decoded image that results whenever resolution reduction was required. That is,
the edges of a 2x2, 4x4, or 8x8 expansion are modified to better match the true shapes of weather
regions.

Section 7 provides the details of the Extra Bit Algorithm (EBA), which utilizes all message
bits remaining after the Huffman encoding of the image to improve the accuracy of the decoded
image whenever resolution reduction was required. In particular, it specifies which quadrants of a
1->2x2 expansion should be set to a weather level other than the level of the expanded superpixel.

Finally, Sections 8 and 9 present the complete set of steps used by the encoder and decoder
respectively in the Weather-Huffman Algorithm, making use of the information provided in the
earlier sections. They also provides a detailed description of the bit format of the encoded data
stream sent on the datalink. The level of detail provided in these sections is sufficient for a
programmer to understand the C-coded subroutines developed as part of this project.

Sample results of the Weather-Huffman algorithm are presented in Section 10. The effects
of including or omitting each part of the algorithm are illustrated, so that the relevant tradeoffs can
be realized. Also various bit limitations are explored, so that the graceful degradation of the
approach will be apparent.

Appendix A presents, for each weather level, the three default codeword sets available for
the Huffman encoding step. Appendix B lists the set of user-specified parameters that currently
exist in the WH software. For each, an explanation is provided of the parameter's effect and its
default setting.



2. WEATHER-HUFFMAN ALGORITHM OVERVIEW

The Weather-Huffman (WH) Algorithm incorporates several subalgorithms in order to
encode as faithfully as possible an input weather image within a specified datalink bit limitation.
The main algorithm component is the encoding of a version of the input image via the Weather-
Huffman runlength code, a variant of the standard Huffman code tailored to the peculiarities of
weather graphics. In addition, this code has features designed to significantly reduce the bits
needed to transmit the decoding table, an overhead concemn of all Huffman codes.

If possible, the input image itself is encoded. Generally, however, a resolution-reduced
version of the image must be created prior to the encoding to meet the bit limitation. In that case,
the output image will contain blocky regions, and higher weather level areas will tend to bloom in
size.

Two routines are included in WH to overcome these problems. The first is a Smoother
Process, which corrects the blocky edges of weather regions. The second, more powerful routine,
is the Extra Bit Algorithm (EBA). EBA utilizes all bits remaining in the message after the Huffman
encoding to correct pixels set at too high a weather level. Both size and shape of weather regions
are adjusted by this algorithm.

2.1 WEATHER IMAGE HUFFMAN CODE

The standard Huffman code is optimal for a random sequence of pixel values. However, a
weather image usually has specialized properties that violate the randomness assumption; these
include the 2-dimensional contiguity and continuity properties illustrated in Section 1. These
properties have been exploited to produce a code, named the Weather-Huffman code, specifically
tailored to weather images, that requires fewer bits on average than the "optimal” Huffman code.

This code, instead of being a strict runlength code (with a codeword indicating a specific
run at a specific level, such as 3 pixels at level 2), is rather a runlength/transition code. In
particular, the algorithm assigns a complete Huffman code to each weather level, 0-6, to encode
runs at that level. Transitions between weather levels, whenever a choice of direction exists (see
example below), are encoded by a single bit:

0: go up to the next higher level
1: go down 1o the next lower level

As long as most transitions are a single change in level, this code will significantly exceed
in performance the standard single Huffman runlength code. In particular, for 6 level weather
images, the savings is 2 bits per run, while for 3 level weather images the savings is 1 bit per run.

Guided by the contiguity assumption, the scanning mechanism used to produce the string
of pixels for runlength encoding is the Hilbert scan, rather than the traditional row-by-row raster
scan. The Hilbert scan is a 2-dimensional space-filling scan with the property that all pixels in a
binary 21 square are visited before that square is left. The Hilbert scan for a 32«32 square can be
seen in Figure 2-1. Note that, as just stated, each quadrant is completed before the next quadrant is
entered.



E_:] L U l___ll"ﬁ Lr e R L
Rl e RS BE T

by -—— - g J ] = -
i e o B
Il p= )1 wl‘-r-l'-l-‘
1= 1 1= 1 D3 o rn
iy LML RIS 2T 2, a2
1-1—151—‘]—"'--'

pul l—-ﬂ l1

| 4
-l
-

d s [ -
| - e 1= | o ™ us
Il 2
my by md poy by gl gy
oed Led Tl BT
1S Iy T
ST 1T M

-y
-lu-l |1~} r‘ hu—‘ mg l l—.—a |—.—| :

LJ

1
1omfl
1

Lo
w-riey

-y Sm
L
e
|
wy Bm
L
puit
wy fm
L

Ll 5.2
nmy gy I b4 1% _ B 111 I - — ae oy _l — — — —
e e W LT L TGO ETLT L
--J Lnd Ll huJ Luﬂ I l- l-' l-l l—l I—J — — l—.-a
) [ 11 tamg (X1 ] [ T - pem -_— —— — -
L grn i sy 38 e e A T i B

L
11 =y r~™- i_r'!_j:l
1

"1}
[ ] comd th
r i rLn L

r
]
L
1
-
!
-t

- -
-

J Lll
i —
l
3
i
Jr—

o | [ =y | yo-) = |.1 % | '
[~ ¥ 1]

I —101 ru- r—i Labtly Boblly |

1

j H H

vz pom

s b= -t r-
o1 - =

r2haan
w e wl pgm L - -— -
i T O O B A A T

LT 7] Lu— -uJ 0 o =l l- *

Figure 2-1. The Hilbert scan for a 32+32 square. Each quadrant (different line type)
is completed before another is entered.

The advantage of a Hilbert scan for 2-dimensional objects such as weather regions is that a
few long runs are produced while the scan meanders within the region, combined with several very
short runs as the scan nicks the region's edges. Although the total number of runs produced is
about the same as would result from a raster scan, the dichotomy of lengths is advantageous to a
Huffman coding: since the large majority of runs are concentrated in a few (short) lengths, short
Huffman codewords can be assigned to most runs. In addition, if filtering of the runs is required
to meet a message bit limit, numerous single length runs are available to the filtering process.

The codes for the various weather levels are all runlength in nature. Codewords are
provided for each possible length run:

0 pixels at the level

1,2,3 ... n consecutive pixels at the level (common lengths)

63 consecutive pixels (longest encoded run)

"other” (uncommon) length runs

The codeword for O length runs is required to cover the case of transitions of more than one
weather level. The uncommon "other” length runs all share the same initial codeword to provide a

manageable number of codewords and minimize the decoding table length. The bits after this
codeword then specify the actual runlength.



As an example of the Weather-Huffman approach, a typical codeword sequence for a given
segment of the image might be as follows:

-- 00 101 O 1101 1| 11\00(?10 (I) 101 101 ---
level O up to down to up 10 level 3
length 5 |level 2 level 1 level 2 length 1
level 1 level 2 level 1 level 2
length 4 length 2 uncommon,  length O
length 6

Note the following facts illustrated by this example:
1. Implied level transitions are not explicitly stated:
after any run of O's, such as the initial one, level 1 must follow

b. after a 0 length run, such as that at level 2 near the end, a transition in the same
direction as the previous one must occur

¢. (not shown) after any run at the highest weather level on the image, the next
lower level must follow

2. Since each level uses its own set of codewords, the same codeword (such as 101) can
have different interpretations on different levels: length 4 for level 1, length 0 for level
2, and length 1 for level 3 in this example

3. Uncommon lengths require a codeword signifying that fact (11 for level 1) followed
by the length in binary (6 bits are needed when the longest run is 64 pixels)

4. As with any Huffman code, codewords vary in length

A drawback to the Huffman encoding technique is that the Huffman code tables must be
sent along with the data, and the overhead of the tables may outweigh the benefits of the data
compression. The WH algorithm uses two techniques to minimize the Huffman table transmission
drawback. First, a set of default tables is defined for each weather level. If one of these tables
proves to be suitable, only the default table index need be transmitted for that level.

A second technique uses techniques to significantly compress any Huffman table that must
be transmitted. In particular, only the code lengths are sent, never the codes themselves. The
decoder can infer the actual codes from the list of lengths. Furthermore, the code lengths are sent
via very few bits, often only 1 bit per codeword even when the lengths are as great as 7. Finally, a
special codeword represents all uncommon long runlengths; this codeword is then followed by a
specification of the actual length of the run. This feature removes the need for a large section of the
coding table.



2.2 RUNLENGTH FILTERING AND RESOLUTION REDUCTION

If the Huffman runlength encoding of the exact input weather image requires more than the
allowable number of bits, some form of detail reduction must be performed on the image to lower
the encoding load. Two types of image simplification are used as part of the WH approach:
runlength filtering and resolution reduction.

Isolated weather pixels add substantially to the Huffman runlength encoding requirement.
For example, the following sequence of pixels — 221222 — produces code for 3 runs and 2 level
changes. By changing the isolated pixel to a 2, the encoding reduces to that for a single run.
Altering the weather level of such isolated pixels is in some cases deemed acceptable distortion for
the large benefit in data compression that is achieved.

In the example of the NEXRAD radar graphic, for pilot safety considerations, no reduction
in level is permitted for moderate (level 2) or greater pixels in the filtering operation; only level 1
pixels may be reduced. Any weather level pixel, however, may be increased a single increment by
filtering, and in addition level O pixels may be set to level 2. Thus, examples of the application and
rejection of filtering operations are:

(a) 11011 —> 11111 Ocanincrease

(b) 33433 —> 33433 4 can't be reduced

(c) 12033 —> 12233 Ocanberaisedto?2

(d) 11233 —> 11233 no gain by changing the 2to0 3
(e) 101010 —> 111111 prefer raising 0 to lowering 1

Another, more severe, way to decrease the Huffman runlength encoding bit requirements
of a weather image is to reduce the resolution of the image from 256x256 pixels to 128x128 pixels,
with each new pixel representing 4 of the old ones (a 2x2 square). This change produces a
blockier image, but maintains reasonable fidelity. If this reduction is not sufficient to satisfy the bit
limit, further reduction to 64x64 pixels, or even 32x32 pixels, is utilized in the WH algorithm.

The approach chosen to produce the various size superpixels emphasizes higher levels of
weather, in that the new pixel setting is influenced most by the highest weather level in the
superpixel square. The level chosen also depends upon the weather in the neighboring
superpixels, in that no region of weather of level 3 or above, even if only 1 pixel in size, will ever
be permitted to be lost via resolution reduction.

2.3 SMOOTHING PROCESS

Whenever the Weather-Huffman encoding requires resolution reduction of the input image
to meet the datalink bit limitation, the decoder must expand the received image back into its full
resolution. Without any other information about the original image to go by, the decoder is
reduced to replicating each received superpixel into 4 quadrants of same-level pixels at each step of
the regeneration. Thus, if a received superpixel were of size 4x4, the decoder would generate 4
2x2 superpixels, and then 16 1x1 actual pixels, all of the same weather level. The result of this
operation is the generation of an output image with weather regions that are larger and blockier than
those on the input image.
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The Smoothing Process attempts to mitigate this effect by using knowledge of weather
region shapes to reduce in level some of the pixels at each regeneration step. For example, weather
regions do not often have sharp corners. The Smoothing Process, for reasons of pilot safety, is
not allowed to reduce the extent of weather regions. It is only permitted to reshape the edges of
regions to drive them closer to expected reality.

2.4 EXTRA BIT ALGORITHM (EBA)

Should the Huffman coding of the Hilbert-scanned input image produce too many bits to
meet the datalink limit, the Huffman encoding will need to be applied to a reduced resolution
version of the input image, with pixels replaced by superpixels (2x2, 4x4, or 8x8). Then the
decoder will expand each received superpixel into an array of pixels, each with the same level.
This will result in output weather regions being noticeably larger and more blocky than those on
the input image. While the smoothing algorithm attempts to reduce this effect, it has two major
drawbacks:

1. only a few pixels are subject to level reduction, and

2. the smoother makes its reduction without any knowledge of the actual weather
contours

In effect, the smoothing algorithm uses knowledge of typical weather region shapes to
produce a more esthetically pleasing result, which is usually, but not guaranteed to be, more
accurate than the decoder output.

The Extra Bit Algorithm (EBA) utilizes the bits remaining in the uplink message to relate to
the decoder correction information for selected quadrants of as many superpixels as possible. The
information, one bit per quadrant, says either to leave the quadrant at the superpixel level or to
reduce the quadrant by 1 weather level. Successive applications to the same quadrant, via more
than one pass through EBA, can achieve greater than 1 level reductions, and quadrants that were
incorrectly smoothed down can be returned to their original correct values.

2.5 SAMPLE IMAGE RESULTS

Weather images representing light weather conditions require no compression to meet a
3500 bit limit. Figures 2-2a and 2-2b illustrate the performance of the Weather-Huffman
Algorithm on images that do require compression, namely severe weather images (the worst we
could find) produced at various U.S. locations. The first and last images were taken in the New
York area, the third at Mobile, and the second represents hurricane Allison at Tallahassee.

Each image is 256x256 pixels, with a pixel representing 2 kilometer by 2 kilometers; thus
each image covers a region approximately 300 nautical miles on a side. The figure in each case
compares the input weather image to the output image provided the pilot.

It was required in each case that the WH algorithm input at least a 4x4 resolution-reduced
image to the runlength encoder (the last image required 8x8 reduction because of its extremely large
number of small heavy weather regions). This level of reduction appears typical for severe
weather images. However, the output images were in each case quite reasonable representations of
“truth”. Some blockiness and region blooming are apparent in each output, though the fidelity was
judged operationally acceptable in each case.
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Input Image Output Image

Input Image Output Image

Figure 2-2a. Compression Performance at 3500 Bits.
Top: New York NY, 31 July 1992, 9 PM.
Bottom: Hurricane Allison, Tallahassee FL, 5 June 1995, 7 PM.
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Input Image Output Image

Figure 2-2b. Compression Performance at 3500 Bits.
Top: Mobile AL, 11 May 1995, 6 PM.
Botlom: Bridgeport CT, 11 May 1995, 6 PM.
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Based on the results seen to date on a large number of weather images, it appears that the
Weather-Huffman Algorithm is successful in providing accurate weather images to pilots over bit-
limited datalinks.

2.6 PROGRAM SIZE AND TIMING MEASURES

The Weather-Huffman algorithm has been fully coded in the C language and tested on a
Digital Equipment Corporation MicroVAX 3500 Color Graphics Workstation. (The 3500 is a
minicomputer whose performance can be matched or exceeded by modern high-capability 32-bit
microcomputers). Considerable effort has been made to optimize the coding for computational
efficiency.

The compression routines start with a 256x256 pixel image array (read from a disk file) and
produce a bit-string in memory. The decompression routines perform the inverse transformation.
The WH algorithm requires about 2 megabytes of memory to execute its compression procedure
and about 1 megabyte of memory to execute its decompression procedure. This includes all code,
data areas, and C libraries used.

The algorithm was tested on a set of severe weather images derived from data supplied by
weather services. Timing the procedures was done with the VAX system clock, accurate to a 10
millisecond quantization. All testing assumed a 3500 bit limit. The algorithm, as presently coded
and run, requires about 3 seconds on average to encode these severe images. (Tests on more
typical weather images required significantly less time per image). The decoding routines, on the
other hand, require only 0.35 seconds processing per image.

It is clear that the processing requirements for the airborne datalink computer to perform
decoding for the WH algorithm is quite reasonable:

onboard memory : 1 megabyte
onboard processing : 0.35 seconds per image

The speed-optimized WH algorithm requires more computer resources to do its encoding
procedure, but, its requirements are still reasonable for modern ground-based computer systems.
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3. HUFFMAN RUNLENGTH CODING

Coding theory tells us that if successive runlengths are independent random variables, the
most efficient codes for representing them are entropy codes. Entropy codes are those whose
codeword lengths are based on the frequency of occurrence of the symbol being encoded; more
common runlengths will be assigned shorter codewords. In order for variable length codes to be
uniquely decodable, their codewords must satisfy the prefix constraint: no codeword can be the
prefix of any other codeword.

The most efficient entropy prefix code is the Huffman code. This code assignment is
optimum in the sense that the total number of bits required to transmit a set of runlengths
describing a given random image is minimum. Unfortunately, since the code assignment will be
different for each image, the Huffman approach requires the overhead of transmitting a decoding
table as part of each encoded message. This overhead can easily eliminate the optimality of the
Huffman approach '

The Weather-Huffman algorithm is a modification of the standard Huffman encoding
scheme, with weather runs being the entities to be encoded. It introduces variations to reduce the
number of bits required for encoding such images, particularly concentrating on methods of
reducing the decoding table overhead. In order to help the reader understand the WH approach,
this section presents the details of the general Huffman algorithm. The next section then provides
details of the Weather-Huffman modifications.

3.1 IMAGE SCANNING PROCEDURES

A run on a weather image is a number of successive pixels having the same weather level.
In order to determine a run, the term "successive” must be defined. The "normal” method of
scanning a 2-dimensional picture is the raster scan, which proceeds left-to-right, row-by-row
down the picture. The raster scan takes advantage of the continuity, or smooth edge, property of
weather regions. That is, successive rows will tend to have similar run characteristics, which
makes the Huffman coding job more efficient.

An alternative scanning method, the Hilbert scan, exploits a different property of weather
regions, namely their contiguity, or tendency to form large 2-dimensional areas. The Hilbert scan
is a 2-dimensional space-filling scan with the property that all pixels in a binary 2® square are
visited before that square is left. The Hilbert scan for a 32+32 square can be seen in Figure 3-1.
Note that, as just stated, each quadrant is completed before the next quadrant is entered.

15



o

1 ==1
-y =
|12
by '—-- rJ
I pm I pw

Jddd
I rT e

-1 =it
- =
| 1]

=51 e

" wy be '-

ey | pog
Ly il
= - -
il
rl e o= 4 L—‘

=y mem ==

i | Y-l ] Les |
1 1

o ufl l—-- t1

] po-

“ —l

Lol | | I

. h—J
|

hj

I- oy = 'ﬂ

my | pow =
Ll
"y - -~
Ll
L-d l—l e o L—‘
= 1
- bes = = 4 =

oty | |}

e

L
..

oy Om
a bl

—— -

w—timy

"ﬂ

r-‘

-

et I i i

Lyl
rip |
.l L N S L—

] =1 1

e ¢ ot

I l—.—l h-c-—l H

ln-'

1h
i
1

~ -y [P, _l
11
|

1 d
"o

=1 L.l
11

- rnq Fu1

I _nJ Lud' L‘ LnJ Lud l

iJid
Mt

=1

L
L, !

(T
lo =1 L, )
. ~J

.l

— —

| Q—

l—.—c ——

Figure 3-1. The Hilbert scan for a 32+32 square. Each gquadrant (different line type)
is completed before another is entered.

The advantage of a Hilbert scan for 2-dimensional objects such as weather regions is that a
few long runs are produced while the scan meanders within the region, combined with several very
short runs as the scan nicks the region's edges. This is illustrated by Figure 3-2, where the runs
produced by the Hilbert scan of a typical weather region are given. Although the total number of
runs produced is about the same as would result from a raster scan, the dichotomy of lengths is
advantageous to a Huffman coding: since the large majority of runs are concentrated in a few
(short) lengths, short Huffman codewords can be assigned to most runs. In addition, if filtering of
the runs is required to meet a message bit limit, numerous single length runs are available to the
filtering process.
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Long Meandering Run:
Runlength 33 Pixels
Short "Nick" Runs:

Runlengths 1 Pixel

Figure 3-2. The Hilbert scan of a typical weather region. Several long meandering
runs and several short “nick” runs are produced.

This assertion was tested by processing 11 sample NEXRAD weather images via both
scanning methods. The ensemble average number of bits required by the Huffman runlength
encoding were as follows:

Scanning Method input Image 4x4 Filtered Image
Raster 22546 2444
Hilbert 20179 2168

Thus, the Hilbert scan saved an average of 10% for the unedited images, and 11% for the
filtered images. Considering the fixed decoding table overhead, these savings, particularly the
latter one, are quite substantial.
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The generation program for the Hilbert scan can be expressed in the following iterative
form:

Hilbert(i) /* main routine */
{
hilbertl('e','s','w’,'n",1);

}

hilbert1(r,u,L,d,i) /* subroutine */
{
if(i>0)
{
hilbert1(u,r,d,1,G(-1)); /* iterative calls to itself */
move(r);
hilbert1(r,u,l,d,(i-1));
move(u);
hilbert1(r,u,l,d,(i-1));
move(l);
hilbert1(d,Lu,r,(i-1));
}

ottt LI

where ‘'e.'s','w','n' are the directions of the compass, the move function tells you to
move in the direction of its argument, and

i=1log2(n) (1= 8 for a 256x256 image).

Note that the iterative calls to hilbert! have various permutations of the original arguments;
this is what causes the reflections and rotations of the curve components.

32 CODEWORD DETERMINATION

The Huffman algorithm takes as its input a non-increasing list of runlength probabilities.
At each step, it combines the two lowest entries on the list into a single new entry. The two
merged entries are removed, and the new entry is sorted into its proper location to create a new
shorter ordered list. The process terminates when only a single entry remains. The record of pair
mergings is then used to construct a binary tree which specifies the Huffman codewords in the
manner now to be explained.
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First, the lone entry in the final list is mapped into the root node of the tree. Thereafter, for
every node that represents a pair merging, the two joined entries that created it are placed in the tree
as that node's children, with the entry representing the fewer levels of joinings becoming the left
child. (The selection of which node to be the left child is irrelevant to the Huffman algorithm; this
rule is required for our decoding table tricks introduced below). On the other hand, every node
that represents a single entry from the original starting list is made a leaf node labeled by the
runlength it represents. Finally, when the tree is complete, the codeword for each runlength is read
by traversing the tree from the root to that runlength's leaf, with a left branching labeled as a 0 and
aright branching a 1.

This process is best understood through an example. Figure 3-3 presents from left to right
the list generation procedure for an ensemble of six runlengths and their associated probabilities.
In each column, the two entries joined are shown, as is the position of the combined entry in the
subsequent list. For record keeping, each joined entry is "boxed"; if either or both of the paired
entries already has a box, another one is added beyond the present maximum of the entries.

Length Prob. = --eeee- Tree Construction -----e----- Root
4 .40 .40 .40 40 .60 || 1.0
2 .20 20 ; 25 / 35 40 /
5 15 .15 .20 .25
7 A2 13 .15
1 .07 / 12
9 .06

Figure 3-3. List generation procedure for an ensemble of six runlengths and
their associated probabilities.

Next, the tree shown below is constructed from these lists in the manner described above.
The root node has two children, one that represents a pairing (boxed) and the other an original list
entry (unboxed). Thus, the latter is placed on the left and made a leaf node, the former is placed on
the right and made an intermediate node. Then, this new intermediate node is given its two
children. Since both of these entries represent pairings, they both become intermediate nodes; the
one with the lower level of pairings (single box) is placed on the left. Continuing in this manner,
the tree is completed as shown. Finally, the codewords shown in Figure 3-4 are read from the
tree.
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Runlength Codeword

0
100
101
110
1110
1111

W - NN P

Figure 3-4. A complete binary tree specifying the Huffman codewords.

3.3 HUFFMAN DECODING TABLE REPRESENTATION

Whenever the Huffman codes are determined individually for each message, rather than
being pre-determined on an ensemble average, the encoded message must explicitly contain the
decoding table. Since this table represents an overhead on the message, its bit representation must
be minimized. There are many possible methods for encoding this table. This section presents the
fundamental concepts of table representation, while the next section describes the method actually
employed in the Weather-Huffman approach.

One representation method that is often optimum, and the one generally presented in the
literature, is to transmit the tree structure of the Huffman code. With this approach, both the tree
shape and the list of runlengths in the tree are specified. The tree shape is encoded by scanning the
tree left to right, level by level from root node down, sending a O to indicate a leaf node and a 1 for
an intermediate node. Thus, for example, the tree shown above is encoded as 10111000100.
Then the list of runlengths is presented in the order they are encountered in the tree; for this
example 4,2,5,7,1,9.
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Upon reception, the decoder constructs the tree from the shape specification, knowing that
every intermediate node will have two children. Every time a leaf node is encountered, the next
runlength is read from the runlength list and its code read by traversing the tree to its position.
This approach to decoding table presentation requires at most 2n bits for the tree specification,
where n is the number of runlengths, plus n«m bits for the runlength list, where the longest

runlength L satisfies L < 2m,

A more straight-forward, though more bit-consuming, method of representing the decoding
table is to list the n triplets of runlength, number of codeword bits, and codeword. Thus, the table
for the above example would be the following:

pumber of runlencths n=6

runienath pumber of bits codeword
1 4 1110
2 3 100
4 1 0
5 3 101
7 3 110
9 4 111

This manner of representation can be shortened considerably by leaving out the entire third
column. This "trick" can be performed because it is possible, with our tree rules described above,
to infer the codeword from its number of bits through use of the following algorithm:

1. Reorder the runlengths in increasing order of number of bits; if two or more have the
same value, list them in the order in which they appear in the decoding table.

2.  Initalize:
b1 = number of bits of first runlength
code; = by bits of 0
3. Compute each other codeword from the previous one:
b; = number of bits of runlength i
codej = (code;.1 + 1) followed by (b; - bi-1) O's

Applying this algorithm to the above example, the re-ordered list of runlengths would
become 4,2,5,7,1,9. Then, for instance, the code for a runlength of 1 (i=5) is generated from the
code for a runlength of 7 (i=4) as follows:

codes = (codesq + 1) followed by (bs - bg) O's
= (110 + 1) followed by (4 - 3) O's
=1110

Proceeding in this manner, all the codes shown above would be produced.
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A further modification to this method of presenting the table is to leave out the first column
as well. To permit this approach, the number-of-bits entries must be listed for each runlength in
order from 0 to n*, where n* is the largest value of the original n values. The above example with
this approach thus becomes:

longest runlength n* =9
(inferred runlength)  number of bits

(V) null
D 4
) 3
3 null
4 1
&) 3
(6) null
)] 3
(8) null
©) 4

Note that a special symbol, null, is used to indicate a non-coded runlength.

Finally, the longest runlength n* also can be eliminated and need not be specified. That is
because it is possible to know when all the codewords have been presented. In particular, let

wj = b; >0

7bi
Then, the code has been completely specified after the j entry if and only if:

i
Swi = 1.
i=l1

This last approach requires the fewest bits of any method, including the tree approach, if
the set of coded runlengths is reasonably dense; that is, if n* is not much larger than n. Otherwise,
the overhead of listing all the extraneous null entries can cause it to be less efficient than other
approaches.
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To overcome this efficiency problem, a hybrid approach is possible when many short
runlengths, but only a few scattered longer runlengths, exist. The hybrid approach starts with a
sequence of inferred-length number-of-bit entries from 0 to n/, followed by the remaining entries
given by a series of explicit runlength and number-of-bits pairings. The above example might then
be presented as follows:

longest sequential runlengthn/ = 5
(inferred runlength)  number of bits

()] null
(1) 4

¢)) 3

3 null
) 1

) 3

runlength number of bits

7 3

9 4

Note that the number of explicit runlengths need not be specified because of the end
determination rule given above. A modification of this last method, described in Section 4 , is the
approach used by the Weather-Huffman algorithm.
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4. WEATHER-HUFFMAN CODING TABLE

The Huffman theory section presented general methods for creating the codewords to be
used in encoding weather runlengths, as well as alternatives for transmitting to the decoder the
tables specifying the chosen runlength/codeword pairings. This section develops the specialized
techniques developed for the Weather-Huffman (WH) application that result in 2 major reduction in
the number of bits needed to transmit the Huffman tables. In fact, it is these enhancements that
make the WH approach feasible as a data compression algorithm for the Mode S data link; with the
"normal” approach, the decoding tables alone could on occasion exceed the bit capacity of the
Mode S message.

4.1 REPRESENTATION OF LONG RUNLENGTHS

Providing a separate codeword for every runlength existing for a given image level would
generally be very inefficient because of the large decoding table overhead, even if the hybrid
approach to table representation described in the theory section were adopted. Thus, the Weather-
Huffman algorithm makes use of two special codewords to represent "other" length runs, where
"other" is defined as any length beyond the longest one explicitly given a codeword. These words
obviate the need to list numerous explicit runlengths and their codeword lengths.

The first special codeword (denoted by S1), when encountered, informs the decoder that
the next set of bits will state the actual length of the run; in the simplest implementation these extra
bits would just be the binary value of the length (i.e.: 000110 = 6). Since the longest possible
runlength is 65536 (for a 256x256 image), 16 bits would be required for the extra field every time
an "other" length occurs.

To reduce this overhead to only 6 bits, only lengths up to 63 are represented by the special
codeword S1. Longer lengths are encoded by the use of a second special codeword (S2); this
codeword tells the decoder that a run of greater than 63 pixels is present. The decoder then records
the initial length 63 part of the run, doesn't change level, and reads the length of the remainder of
the run in the normal manner. For example, a run of 149 would be encoded as follows:

(word S2) (word S2) (word S1) (binary 23)
63 + 63 + 23 = 149

if a run of 23 were an "other” length.

4.2 ENCODING "OTHER'" LENGTH RUNS

Even using only 6 bits for specifying the length of "other" runs is inefficient when these
runs are generally at the short end of the spectrum. Thus, the Weather-Huffman implementation
considers the use of shorter binary fields on a level-by-level, image-by-image basis. It does this
either by uniformly reducing the number of bits if the longest runlength is sufficiently short to
make this possible, or by employing a "long-short" dichotomy for the set of runlengths otherwise.

With a "long-short" scheme, short runs use fewer specification bits than do long runs; a
single extra bit preceding the binary field indicates which bitlength applies. The long-short
approach makes sense when most of the "other” runs are at the short end of the spectrum, as then
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the loss encountered by having to include the extra bit is more than offset by the gain of having
numerous short specifications.

The full set of options utilized by the Weather-Huffman algorithm, including both uniform
bit reduction and long-short approaches, for the representation of "other” lengths for a given image
level are as follows:

Option Bit Field Lengths Extra Bit Needed
0 6 no
1 6 3 yes
2 6 2 yes
3 5 no
4 5 2 yes
5 4 no
6 3 no
7 2 no

For example, with option 1, a long-short scheme, "other” runs that are 8 pixels or fewer
greater than the longest explicitly specified runlength will require a 3-bit binary field (plus the
single extra bit); longer runlengths will require 6 + 1 bits. Conversely, with option 5, a uniform
reduction method, all runlengths are specified by 4 bits, but the longest "other"” run must not
exceed the longest specified length by more than 16 for this option to be applicable. The option in
use for each level will, of course, have to be included in the transmitted decoding table.

Once the longest runlength Rpyax to be explicitly coded is determined (by the method
discussed below), selecting the proper long-short option to employ is quite simple: try all eight,
and choose the one requiring the fewest bits to encode all the "other” runs. In particular, the
"other" bit requirement for option i is given by:

Rmax+Si Rmax+Li
Bi= ZRj*(Ei+B Sp) + ZRj*(Ei"”BLi)

where R; is the number of runs of length j, Sj and L; are the number of runlengths accommodated
by the short and long bit fields, respectively, for option i, BS; and BL; are the number of bits in the
short and long fields, and E; is 1 if the option uses a long-short dichotomy:

Option BSi Si LSj Li Ej
1 — 0 6 64 0
2 3 8 6 64 1
3 2 4 6 64 1
4 — - 5 32 0
5 2 3 5 32 1
6 — 0 4 16 0
7 — 0 3 8 0
8 — 0 2 4 0
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Note that an option i is not a viable candidate if the longest runlength for the image level
exceed Rpax + Lj, which is the longest runlength that can be represented by the option.

4.3 ELIMINATION OF LONG CODEWORDS

Since for any given image level there are 66 potential runlengths to be assigned codewords
(0-63, S1, S2), it is quite possible for the Huffman algorithm to produce codewords that exceeds
the desired 7 bit limitation. (The theoretical limit is 65 bits, but a weather image does not contain
enough pixels to ever approach that value). In these cases, the codewords must be modified to
satisfy the imposed limit. In particular, some of the shorter codewords must be lengthened to
permit the outlier codewords to be brought down within the 7 bit limit.

The algorithm adopted is, when a choice exists, to start by modifying codewords of length
6, then proceeding if necessary to codewords of length 5, etc. until all the longer codewords have
been brought down to length 7. This approach, of not lengthening any codeword for common
runlengths, minimizes the number of bits required for image encoding.

When the longest codeword is restricted to have at most 7 bits, there are 27 = 128 bit
sequences in the code space. Each codeword of length m, because of the prefix nature of the
Huffman code, exhausts 2(7-M) of these sequences. For example, the codeword 01001 removes
the sequences 0100100, 0100101, 0100110, and 0100111 from possible assignment, while any 7
bit codeword removes only its own sequence from the available list.

This realization has led to the following algorithm for the reassignment of Huffman codes
when the longest codeword produced by the Huffman algorithm exceeds the 7 bit limit, where the
codewords are ordered from the shortest to the longest:

1. Initialize i =0, and let n = number of codewords.

Initialize the number of sequences used to U = 0.

Increment i by 1; if i > n, quit.

Increase U by 2(7-b)), where b; = number of bits currently assigned to codeword i.
If (128 - U) = (n-i), set bj = 7 for all j = i+1, ... ,n; quit.

I

Otherwise, if (128 - U) < (n-i), repeat the following actions:
a. incrementb; by 1

b. adjust U=U - 20-bi+1) 4 2(7-bi)
until (128 - U) 2 (n-i), then return to step 3.

7. Otherwise, if (128 - U) > (n-1), repeat the following actions:
a. compute A = 2(7-bi+1) . 2(7-bi)
b. if (128 -U-A)2(n-1),

decrement bj by 1 and adjust U=U + A
until the test in b fails, then return to step 3.

Step 5 recognizes the fact that if the number of remaining sequences and remaining
runlengths are equal, each remaining runlength can be assigned a 7-bit codeword. Step 6 handles

27



the case that fewer sequences than runlengths remain, so that more available sequences have to be
generated by increasing the length of the codeword assigned to the current runlength. Finally, step
7 recognizes the case when previous applications of step 6 have freed up more sequences than
were required, so that the codeword for runlength i may be able to be decreased to absorb some of
the extra sequences.

An example of the application of this algorithm is given by the following before and after
set of codeword length assignments:

Runlen rder Huffman Length Adjusted Length

1 1 1
2 2 2
3 3 3
4 4 5
5 6 5
6 6 7
7 6 7
8 7 7
9 3 7
10 9 7
11 10 7
12 11 7
13 11 7

Note that the 4th runlength had to have its codeword length increased to accommodate the
codewords over the limit, but that by doing so the number of sequences freed up also allowed the
5th codeword to be shortened.

44  WEATHER-HUFFMAN (WH) TABLE ENCODING

The actual Huffman table encoding employed by WH can now be described. The general
method utilized is a variant on the implicit runlength scheme presented in the previous section, in
which a list of codeword lengths (with null meaning no codeword because that runlength never
occurred) is presented. The order of the implicit runlengths is S1, 82,0, 1, 2, 3, ..., n, where n
is the longest encoded runlength, and thus (n+1) is the first "other” length. Since the null length is
expected to be the most common encoded value, the runlength codes are encoded in two parts: a
single bit indicating null (0) or not null (1), and a field for the non-null cases which presents the
actual length of the Huffman code for that runlength.

The simplest way to present the latter field would be to set a limit on the acceptable length
of a Huffman codeword, and then use enough bits in the field to cover all possible values of that
maximum length. For example, if the limit is set at 7, 3 bits would be required for the field. Note
that limiting the codeword length required the modification to the codeword generating algorithm
presented above to cover the cases when the algorithm produces longer codewords.
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Rather than use a constant length field, the Weather-Huffman algorithm saves bits by
computing, for each runlength, the set of codeword lengths that could possibly still exist. This set
can be determined from the previously listed codeword lengths if the longest codeword for the
level is known and the rule given earlier,

]
>wi =1
i=1

where wj = —2-15 b; > 0 is used. The specific algorithm for encoding the codeword lengths is
provided below.

Putting together all of the above pieces, the Huffman table for each image level is presented
as the following set of fields:

Field No. of Bits
Table present (i.e., non-default) 2
Longest codeword used 3

S1 encoded? 1

if yes, S1 codeword length variable
S2 encoded? 1

if yes, S2 codeword length variable
Length 0 encoded? 1

if yes, 0 codeword length variable
Length 1 encoded? 1

if yes, 1 codeword length variable
Length n encoded? 1

if yes, n codeword length variable
if S1 encoded, option used 3

As described below, three default codeword sets are available for each image level. The
first two bits above either specify one of these default sets, in which case the table specification
terminates, or state that the actual table description is to follow. The codeword-reading process is
known to be over when the completion rule above is satisfied, that is, when the length n has been
read such that:
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Also, for image levels 0 or mapmax, no runs of length O can exist; thus that length is not
encoded.

4.5 ENCODING CODEWORD LENGTHS

The concept of counting the number of "used" sequences presented earlier can also be
applied advantageously to the problem of determining how many bits are required to encode the
lengths of codewords in the decoding table. If the length of the longest codeword used for a given
image level is stated to be Liyax, then the length Ly of the first codeword presented in the table is

restricted to the range:
1<L1<Lpax if Lpax >0

Note that if a O-length codeword is used, it must be the only codeword for that level since it
would use up all 128 available sequences; thus knowing another length Ly ax exists precludes the 0
length.

After each codeword length is specified in the decoding table, the number of available
unused sequences decreases. Thus the range of possible codeword lengths also decreases as one-
by-one the shorter lengths drop out as possibilities. In particular, by the formulas of the last
section, length L is still an option only if:

20-L)< (128 - U)

As the set of codeword length options decrease, of course, the number of bits needed in the
decoding table to specify the actual length will also decrease (in fact, if only 1 option remains, no
bits at all are needed!). For example, consider the codeword length assignments in the following
list of runlengths when the longest codeword is stated to be 4:

Sequences Runlength Code Length Bits Needed to Actual Code
Used So Far Options Specify Length Used
0 1 1-4 2 3
16 2 1-4 2 2
48 3 1-4 2 2
80 4 2-4 2 2
112 5 3-4 1 4
120 6 4 0 4

where the sequences used so far entry is increased at each step according to the length used in the
last column of the previous row. The total of the bits needed to specify column represents a
savings of 50% over the 3 bits per codeword length that would be required by the "normal”
approach when a 7-bit codeword limitation is enforced.

The bit requirement for specifying the codeword length can be reduced even further by
employing a Huffman approach (Huffman encoding the entries of the Huffman decoding table!).
For example, if the code length options available at a given point are 5, 6, and 7, it takes 2 bits for
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the specification by the above logic. But it is possible to shorten the specification for length 7 by
choosing the following set of decoding table entries:

5: 11
6: 10
7: 0

In particular, whenever the number of options is not fully 2™, some of the options can be
assigned m-1 bits for their specification. The WH algorithm in such cases assigns the 1-bit shorter
m-1 bit specifications starting with length Lp,y, then with Lpax-1, etc. until only m bits
specifications are available.

Complete details of the encoding and decoding of the decoding table are presented in
Sections 8 and 9, respectively.

4.6 DETERMINING THE "OTHER" LENGTH BREAKPOINT

The final piece of the decoding table puzzle is how to determine the longest runlength to
explicitly give its own codeword, with the remaining longer runlengths relegated to the "other”
category. In a pure Huffman coded system, the "optimum" codewords would be determined as
outlined in the theory section, with each length assigned its own codeword. However, the
requirement of transmitting the decoding table in the message changes the problem from
minimizing the total codeword bits to instead:

Problem: Minimize T = { (Table bits) + (Codeword bits) }

With the table architecture described earlier, the only variable that affects the minimization
problem is Lyay, the longest explicitly encoded runlength. Since providing each runlength with its

own codeword will always minimize the number of bits needed to encode the weather runs, the
tradeoff when changing L,y can be expressed by:

as Lmax 1s raised, the bits for encoding runs decreases, but

as Lmayx is raised, the decoding table size increases.

The optimum value of Lax is the value that minimizes the sum of encoding bits and table
bits.

Because of all the "tricks" used to represent the decoding table, there is no simple
calculation that will produce the optimum value of L. If the optimum is truly sought, all values
of Limax from O to the longest runlength must be processed through both the Huffman codeword

assignment and the table generation algorithm to learn the number of bits required for that value;
the smallest total found then determines L.

For a given value of Ly, the computation of T proceeds as follows:

63
1. LetRgs= 2 R; be the number of "other" runs.

i=n+1

2. Determine the Huffman codewords C; for the lengths i=81,82,0,1,..., n
using the frequencies R;.
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3. LetT1=3%RiG
1

4. Determine the "other" option number that minimizes the bits T3 required to state the
explicit second codewords for the "other” runlengths (if Rgs = 0, T1 =0).

5. Determine T3, the number of bits required to encode the Huffman table for this value
of n.

6. T=T1+Tr+T;s.

If this calculation is performed for all values of Ly,x, the minimum value Tyin will be
determined.

Clearly, this process is very time consuming, and a shortcut that eliminates many of the
Lmnax values from consideration would be highly desirable. The method adopted to attain this goal
is to not test any value i if its number of runs R; satisfies either

(@ Ri<Rjsy,0r
(b) Rj<1

If the first condition applies, the next runlength value will probably be a better stopping
point than this one; if the second condition applies, this runlength value will probably not beat the
current optimum stopping point. The length Rpyax is always tested even if it has only 1 run, as the
elimination of the need for "other” runs is a significant savings of bits.

47 DEFAULT CODE ENSEMBLES

The above "tricks" for encoding the Huffman decoding table have severely reduced the bit
requirements of these tables. In fact, tests on sample images show that often as few as 20 bits are
needed for a table for a particular weather level.

Alternatively, a default Huffman codeword set can be employed for the level. The
predefined codewords will generally not be optimal for the level's actual runiength statistics, but
the elimination of the need for the decoding table can result in fewer total encoded bits. The
Weather-Huffman algorithm has defined 3 default codeword sets for each weather level, matched
to statistics found on a set of test images. These default sets, which vary by level, are presented in
Appendix A. Since each default set has a defined value of Lnax, the approach given above can be
followed to determine for each set the number of bits Tgef; that are required if it is selected for the
encoding. The only differences are that step 2 is avoided (the default codewords are used) and in
step 5, T3 = 5 (2 bits for the default number and 3 bits for the option selection). The default set
with the smallest result is the winner, with Tgef being its calculated value.

Finally, the proper encoding scheme for each level is found by comparing the table-driven
value of Tpijn to the optimum default-driven value of Tger. If the latter if smaller, the encoder
simply lists the number, 0, 1, or 2, of the optimum default option; if the former is smaller, the
encoder lists the value 3 followed by the decoding table.
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5. WEATHER IMAGE SIMPLIFICATION

If the Huffman runlength encoding of the exact input weather image requires more than the
allowable number of bits, some form of detail reduction must be performed on the image to lower
the encoding load. Two types of image simplification are used as part of the Weather-Huffman
approach: runlength filtering and resolution reduction.

5.1 RUNLENGTH FILTERING

Isolated weather pixels add substantially to the Huffman runlength encoding requirement.
For example, the following sequence of pixels — 221222 — produces code for 3 runs and 2 level
changes. By changing the isolated pixel to a 2, the encoding reduces to that for a single run.
Altering the weather level of such isolated pixels is in some cases deemed acceptable distortion for
the large benefit in data compression that is achieved.

For pilot safety considerations, no reduction in level is permitted for significant weather
pixels (level 2 and above) in the filtering operation; only level 1 pixels may be reduced. Any
weather level pixel, however, may be increased a single increment by filtering, and in addition
level 0 pixels may be set to level 2. Thus, examples of the application and rejection of filtering
operations are:

(@ 11011 —> 11111 Ocanincrease

(b) 33433 —> 33433 4can't be reduced

() 12033 —> 12233 Ocanberaisedto2

(d) 11233 —> 11233 no gain by changing the 2 to 3

() 101010 —> 111111 prefer raising O to lowering 1

() 33133 —> 33233 1 canonly be raised to 2

Example (d) recognizes the fact that a sequence of 11333 would still require a 0 length run
specification for level 2, and hence no gain would be achieved by making the change. Similarly,
example (f) saves the two 0 length runs that would have been required for level 2, one on the
descent and the other on the subsequent ascent.

Figure 5-1 presents before and after views of the filtering operation for two typical weather
images. Note that the significant reduction in bit requirement for the Huffman encoding is
achieved at a very minor distortion in the weather regions on the image.

52 RESOLUTION REDUCTION

Another, more severe, way to decrease the Huffman runlength encoding bit requirements
of a weather image is to reduce the resolution of the image from 256x256 pixels to 128x128 pixels,
with each new pixel representing 4 of the old ones (a 2x2 square). This change produces a
blockier image, but maintains reasonable fidelity. If this reduction is not sufficient to satisfy the bit
limit, further reduction to 64x64 pixels, or even 32x32 pixels, is utilized in the Weather-Huffman
algorithm. To generalize the notation to apply to any size image, not just 256x256 ones, the
various levels of resolution reduction are denoted by the size of the encoded "superpixel”. Thus
the original image is labeled 1x1, the first reduction in resolution becomes the 2x2 image, followed
if needed by the 4x4 and 8x8 images.
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Input New York Image — 12651 Bits Filtered New York Image — 9516 Bits

Input Allison Image — 29582 Bits Filtered Allison Image - 22530 Bits

Figure 5-1. Effect of Fillering Weather Images.
Small Change in Fidelily, Significant Reduction in Bit Requirement.
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The approach chosen to produce the various size superpixels emphasizes higher levels of
weather, in that the new pixel setting is influenced most by the highest weather level in the
superpixe]l square. The level chosen also depends upon the weather in the neighboring
superpixels, in that no region of weather of level 3 or above, even if only 1 pixel in size, will ever
be permitted to be lost via resolution reduction.

To determine the proper weather level setting of a superpixel, the number of its constituent
pixels at or above each level is counted (that is, for example, the level 2 count includes all pixels of
levels 2, 3, 4, 5, and 6). Then, highest level to lowest, each level count is compared to its two
threshold values. If the level count satisfies the "mandatory” threshold, the superpixel components
by themselves are sufficient to justify setting the superpixel to that weather level.

Otherwise, if the level count satisfies the "maybe” threshold, the superpixel components by
themselves are insufficient to warrant that weather level setting. However, the count is enough that
the weather region must be represented on the output image. Thus, if not enough of the
superpixel's neighbors will be set to that weather level to adequately represent the region, this
superpixel must assume the responsibility by being set to that level.

To determine if such a case exists, the superpixel's 8 horizontal, vertical, and diagonal
neighbors are checked to determine how many M of them have already, or will when checked,
assume responsibility for representing the weather region. M is determined by comparing the
neighbor setting (if already processed) or the neighbor counts (if not yet processed) of each of the
8 neighbors. For each neighbor of the former class, M is incremented if its setting is the level in
question or higher, while for each neighbor of the latter class, M is incremented if its count for this
level is at least the "mandatory” value. Finally, if the resulting value of M is less than 3, the
superpixel is set to the level being tested. For this operation, a left-to-right, top-to-bottom row-by-
row scan is assumed, so for a superpixel, its W, NW, N, and NE neighbors will have already
been processed, while its E, SE, S, and SW neighbors will not have been processed as yet.

As an example, assume the "mandatory” and "maybe” thresholds for level 2 for a 4x4
image are 5 and 2, respectively. This means that any 4x4 superpixel with 5 or more level 2 pixels
out of 16 is automatically set to level 2. Otherwise, any superpixel with a level 2 count between 2
and 4 is set to level 2 only when the neighboring superpixels cannot adequately represent the
weather region. Applying the above rules, the following superpixel settings are generated from the
indicated level 2 counts as seen in Figure 5-2.
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\

1 Number in each Superpixel
is Number of Input Pixels
of Level 2 or Greater

1

"Mandatory" Count=5

"Maybe" Count =2

\\ Set to Level 2, "Mandatory” Count Exceeded
N\

y Set to Level 2, "Maybe" Count Exceeded
A and Fewer than 3 Neighbors Set to Level 2
Figure 5-2. Superpixel settings generated from the indicated level 2 counts.

The shaded area is a reasonable representation of the extent of the level 2 weather region.
Without the "maybe" superpixels, the region would appear much smaller than the reality of the
weather.

The "maybe" count for levels 3 and above, for any degree of resolution reduction, is
always 1. This guarantees that no region of intense weather can ever be lost, even if only 1 pixel
in extent. Appendix B contains the full set of default parameter settings.

Figure 5-3 presents the changes in image that result from 2x2, 4x4, and 8x8 resolution
reductions for a typical weather image. Note that higher weather levels tend to bloom in size,
while the effect for levels 1 and 2 is to provide an average representation of the true contours. The
blooming of higher levels is desirable for pilot safety, as any reduction in size could lead to flying
into the edge of a severe storm.

It is clear from this figure that substantial bit reduction occurs with the Huffman runlength
encoding as the degree of resolution reduction increases.
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Input Image (1x1) — 22660 Bits Image at 2x2 Resolution — 8927 Bits.

Image at 4x4 Resolution — 3245 Bits. Image at 8xB Resolution - 1182 Bits

Figure 5-3. Mobile Image Encoded at Various Levels of Resolution Reduction.
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6. SMOOTHING PROCESS

Whenever the Weather-Huffman encoding requires resolution reduction of the input image
to meet the link bit limitation, the decoder must expand the received image back into its full
resolution. Without any other information about the original image to go by, the decoder is
reduced to replicating each received superpixel into 4 quadrants of same-level pixels at each step of
the regeneration. Thus, if a received superpixel were of size 4x4, the decoder would generate 4
2x2 superpixels, and then 16 1x1 actual pixels, all of the same weather level. The result of this
operation is the generation of an output image with weather regions that are larger and blockier than
those on the input image.

The Smoothing Process attempts to mitigate this effect by using knowledge of weather
region shapes to reduce in level some of the pixels at each regeneration step. For example, weather
regions do not often have sharp corners. The Smoothing Process, for reasons of pilot safety, is
not allowed to reduce the extent of weather regions. It is only permitted to reshape the edges of
regions to drive them closer to expected reality.

6.1 SMOOTHING PROCESS RULES

The rules of the Smoother Process are quite simple. When a superpixel is reproduced, 4
corner quadrant pixels are generated. A quadrant may be smoothed down 1 level only when:

1. All 3 neighboring superpixels of its parent superpixel are of lower weather level than
it is, and

2. Neither the horizontal nor vertical neighbor quadrant in its superpixel meets rule 1.

Figure 6-1 illustrated these rules pictorially, while Figure 6-2 presents sample applications
of these rules. The effect of rule 1 is to smooth the edges of weather regions by eliminating sharp
comers. Rule 2, on the other hand, precludes the losing of the full extent of the weather region
that would occur by smoothing away two neighboring regions. The bottom two examples of
Figure 6-2 show how rule 2 prevents compromising the size of the weather region.

A simple cartoon example of smoothing is presented in Figure 6-3, while a full-scale
example of the application of smoothing when a 4x4 superpixel image is expanded first to 2x2
superpixels, and then to 1x1 output pixels, is provided by Figure 6-4. It should be clear that the
result is more indicative of the actual underlying weather region than is the unsmoothed post-
Huffman picture.

6.2 SMOOTHING PROCESS IMPLEMENTATION

Implementation of the Smoothing Process is simplified via use of the four pre-computed
neighbor value lookup tables UL(score), UR(score), LL(score), and LR(score), one for each of
the four quadrants of the superpixel. The tables are generated by assigning the following values to
the 8 neighbor positions of a superpixel (see Figure 6-1).
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In Order to Smooth a Corner Quadrant

3.5!’.1‘,%54

a) All 3 Neighboring Blocks Must be Lower Level, and

b) Neither Neighbor Quadrant May be Smoothable

Figure 6-1. Rules of smoothing process algorithm.
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Smooth Corner Quadrant

Smooth Diagonal

Don‘'t Lose Extent of Weather

Can't Smooth Isolated Region

Figure 6-2. Examples of application of smoothing process rules.
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(a) Original 4x4 Decoding. (b) After Smoothing to 2x2.

(c) Final Smoothing to 1x1.

Figure 6-3. Example of smoothing process algorithm applied to sample weather region.
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Input Image Image at 4x4 Resolution (No Smoothing)

A

= L] |
|

2 - .
| g

I ?

- |

Image at 4x4 Resolution after Smoothing at 2x2 Image at 4x4 Resolution after Full Smoothing (2x2 and 1x1)

Figure 6-4. Effect of Various Levels of Smoothing on Output New York Image.
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Value Value Value

= = =4
Value |- Value
=8 | =16

Value Value Value
=32 =64 =128

For the shaded upper left quadrant of the center superpixel to be smoothable, by the first
rule stated above, the neighbors of values 1, 2, and 8 must all be of lower weather level. But, by
the second rule, either neighbor 4 or 16, and either neighbor 32 or 64, must be of equal or higher
weather level. Thus, if a score is generated for the center superpixel by adding the values of all
neighbors that are of lower weather level, the set of scores that permit smoothing of the UL pixel
are:

Pligy=1 fors= 11,15.27,43.47 39,75,79, 91,
139,143,155,171,175,187,203,207,219
Similar tables are generated for the upper right, lower left, and lower right quadrants.

6.3 SMOOTHING PROCESS OPERATION

When the smoothing algorithm is run, two images are input: the lower resolution image MS
already decoded, and the higher resolution image MR to be created by the Smoothing Process. For
example, the MS image may be resolution 4x4, in which case the MR image will be 2x2. For each
superpixel of image MS, each of the 8 neighboring superpixels are checked to determine the
smoothing score by noting which set of them has lower weather levels.

Then, using the UL table, the upper left quadrant on MR is set equal to the superpixel
weather level if UL(score)=0, or instead set one weather level lower if UL(score)=1. Similar
actions are taken for the three other quadrants of the superpixel on image MR. To save time,
superpixels of weather level 0 are not checked, as all of its quadrants on MR must also become
level 0.



7. THE EXTRA BIT ALGORITHM (EBA)

Unless there is only sparse weather on the image, the Huffman encoding of the image will
need to be applied to a reduced resolution version of the input image, with pixels replaced by
superpixels (2x2, 4x4, or 8x8). Then the decoder will expand each received superpixel into an
array of pixels, each with the same level. This will result in output weather regions being
noticeably larger and more blocky than those on the input image. While the smoothing algorithm
of the previous section attempts to reduce this effect, it has two major drawbacks:

1. only a few pixels are subject to level reduction, and

2. the smoother makes its reduction without any knowledge of the actual weather
contours

In effect, the smoothing algorithm uses knowledge of typical weather region shapes to
produce a more esthetically pleasing result, which is usually, but not guaranteed to be, more
accurate than the decoder output.

The Extra Bit Algorithm (EBA) utilizes the bits remaining in the uplink message to relate to
the decoder correction information for selected quadrants of as many superpixels as possible. The
information, one bit per quadrant, either says to leave the quadrant at the superpixel level or to
reduce the quadrant by 1 weather level. Successive applications to the same quadrant, via more
than pass through EBA, can achieve greater than 1 level reductions, and quadrants that were
incorrectly smoothed down can be returned to their original correct values.

Examples of the improvement in output image fidelity produced by applications of the Extra
Bit Algorithm are presented later in Section 10.

7.1 SCORING OF QUADRANTS FOR EXTRA BIT APPLICATION

Since there will never be sufficient bits left to specify all quadrants (if there were, a lower
amount of resolution reduction would have succeeded), the quadrants are ranked in order of
predicted probability of requiring reduction. The weather levels of the neighboring superpixels are
used to divide the set of quadrants into a hierarchy of classes from most likely to least likely
needing reduction; the four quadrants of a single superpixel may fall into four different classes.
The following is the scoring values for the neighbors of the upper left quadrant:

Value Value Value
=4 =3 =2

Value Value

Value Value Value
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where the number indicated for each neighbor superpixel is added to the score of the upper left
quadrant if that superpixel is at or above the level of the quadrant.

Thus, a quadrant totally within a weather region will receive a score of 17 and be the least
likely to require reduction, while a quadrant of an isolated superpixel will receive a score of 0. The
score values were determined by examining a set of sample images and computing the percent of
the time a quadrant required reduction when a particular neighbor was below its level; the greater
the percentage, the higher the assigned score.

7.2 SELECTION OF CLASSES FOR EXTRA BIT APPLICATION

Once all quadrants are scored, the EBA algorithm determines, for each score class, the
fraction of its quadrants that require level adjustment. Adjustment is required if either:

(a) the quadrant has not been smoothed down, but its correct value is below that of its
superpixel, or '

(b) the quadrant has been incorrectly smoothed down.

For each weather level, a minimum fraction parameter Pjeye; exists; if a class adjustment
fraction exceed this parameter, it is deemed worth using extra bits for that class.

In theory, the adjustment fraction will be a monotonically decreasing function of score, so
that a "highest worthwhile score” can be found. All scores up to and including this score would
then be encoded by EBA, and the rest ignored. In practice, however, the fraction for one score can
easily exceed that of its next lower neighbor. Thus, the algorithm selected to find the highest score
H to use is as follows, where N1 and Ny are the total number of quadrants of score N and the
number of quadrants requiring adjustinent of score N, respectively:

Initialize winning index H=-1.

2. Initialize search index J=-1.
3. Increment].
4. If JT =0 (no quadrants exist at score J), go to step 3.

5. If ;% 2 Pjevel (score J is worthwhile), set H=J, go to step 3.

Set temporary index K =1J.
Increment K.

Increment J5 by K and JT by K1 (combine scores J through K).

J
9. If T% > Plevel » set H=K, J=K, go to step 3.

10. If K<17,gotostep7.
11. H is the desired score.

Thus, when a score fails the requirements test, and combining that score with successive
scores fails 1o correct the situation, the last successful score is used by EBA. Should the final
value of H be -1, no successful score exists, and so no EBA is used for this weather level.
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Of course, the number of bits remaining in the message may not be sufficient to
accommodate all the quadrants for scores through H. In that case, only a number of quadrants
equal to the number of remaining bits can be specified. The value of Hacpya) used by EBA will then

by necessity be less than the desired value of H. In particular, if B is the number of bits available,
Hacmal is the smallest value such that:

Hacual
ZiT 2B

i=1

The values specified to the decoder in the encoded message are the score Hyemal and the
number Nppax of quadrants of level Hyepai that can be accommodated:

Hactal-1
Nmax = B - 2 it
i=1

If no bit limitation is encountered, the score Haenal = H and Npay is unlimited. 5 bits are
used to transmit Hycryal, followed by 1 bit to indicate whether Npax is limited (O=no, 1=yes),
followed by 9 bits for Nmax if a limitation exists.

7.3 ENCODING ALGORITHM FOR EXTRA BIT APPLICATION

Extra Bit Algorithm (EBA) encoding is performed on one combination of image resolution
and image weather level per call to the routine. The first series of calls is at one level less
resolution reduction than was used for the Weather-Huffman encoding, and occurs after smoothing
was applied to generate the new higher resolution image. The levels are processed in decreasing
order, starting at the image maximum L,y If sufficient bits exist for a full pass through EBA to
occur, so that all weather levels are processed, smoothing is again applied to generate the next
higher resolution image, after which EBA starts again at the highest image level. In the most
extreme case (8x8 Weather-Huffman resolution), three passes can occur through EBA.

The encoder employs three images in its processing:

1. Image MS, the superpixel image that exists after Weather-Huffman decoding and any
previously completed EBA passes are performed.

2. Image MR, the image at the resolution of the routine call, which is one level less
resolution reduction than MS, that exists after the latest smoothing application.

3. Image MA, the input image at the same resolution as image MR.

Image MS is used to determine the neighbor score discussed above for each of the quadrant
pixels on image MR, the image to be corrected by EBA. Image MA provides "truth”, so that the
algorithm will know which pixels are to have change bit indications sent to the decoder.

The first step in the decoding process is to scan image MS row by row. For each
superpixel whose level is at or above the level of the subroutine call, its four quadrants (NW, NE,
SW, SE) on image MR are scored and evaluated as to whether a change is required. A change is
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needed either when the MS pixel is at the same level as the MS superpixel but the true pixel of MA
is lower level, or when the MS pixel has been incorrectly smoothed below the MS level.

After this scan is complete, the selection of classes for EBA application is determined as
described above. Using this selection, and the number of message bits remaining, the values of
Haena and Npy,4 are calculated and added to the message, also as described above.

The remaining part of the EBA is the listing in the encoded message of the information bits
themselves, one for each applicable quadrant on image MR. The superpixels of image MS are
once again scanned row by row, and for each quadrant on MR of an applicable superpixel, its
neighbor score is checked (it was computed and saved in the class scoring procedure). If the score
is less than Hacal, or is equal to Haemal and is one of the first Nypax of that score, a '0" bit is
added to the message if the quadrant should be lower level than the MS superpixel, or a '1' bit is
added if the quadrant should be at least as high as the MS superpixel.

In order for the encoder to process successive EBA calls, it must modify its MR image to
track the actions to be taken by the decoder. Thus whenever a ‘0’ bit is created, if the pixel on MR
is above the level of its MS superpixel, the pixel must be set one level below that value. Similarly,
whenever a '1' bit created, and the pixel is of lower weather level than its superpixel, the pixel on
MR must be set to the superpixel level. These actions ensure that further applications of EBA will
refer to the same image as that used by the decoder.

7.4 DECODING ALGORITHM FOR EXTRA BIT APPLICATION

The EBA decoder is responsible for modifying the weather levels of a set of the superpixel
quadrants on the output image that exists after Weather-Huffman decoding. The actions to be
taken for the set of quadrants judged worthy of consideration are listed via the message bits
remaining after the Weather-Huffman decoding is completed.

The EBA decoder is called separately for each weather level processed by the encoder. It
may be called two or three times for the same level if more than one pass through the levels has
occurred. Of course, successive passes occur at different degrees of resolution reduction.

The EBA decoder uses two weather images. The first is the reference superpixel image MS
that exists after Weather-Huffman decoding and any previously completed EBA passes are
performed, while the second is the currently active image MR, of one level less resolution
reduction than MS, that exists after the latest smoothing application. For example, if MS is a 4x4
superpixel image, MR will be a 2x2 image. Each superpixel of MS corresponds to 4 elements of
MR; these elements (which can be pixels or superpixels) are referred to as the quadrants of the MS
superpixel.

The scoring classes employed by EBA have been discussed above. The encoder
determined the highest class to be adjusted by EBA, and if a bit limitation existed, the number of
quadrants at this class that were processed. The decoder's first action is to read these values. The
first 5 unread message bits specify the highest class H. If H=31, this is a signal that no EBA is to
occur at this level, and the decoder simply returns. The next bit indicates whether a limit exits (1)
or not (0); if yes, the next 9 bits specify the quadrant count C for score H (if no limit, C is set to
100000).
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The remainder of the EBA decoder simply scans image MS row by row, one superpixel at
a time. For each superpixel whose level is at least as high as the level of the subroutine call, its
four quadrants (NW, NE, SW, SE) on image MR are processed. For each, the decoder computes
the neighbor superpixel score, referencing image MS, using the scoring algorithm detailed above.

If the quadrant score S satisfies S < H, or if S = H and the count of such occurrences is
one of the first C, a message bit is read to determine the action to take for the quadrant pixel on
image MR. If the bit is '0’, the quadrant should end up lower than the level of the EBA call; thus if
it is not, it is set to one level less than the calling level. On the other hand, if the bit is 'l', the
quadrant should end up at least as high as this level. If it is lower, due to being incorrectly reduced
by the smoothing algorithm, it is returned to the calling level.
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8. WEATHER-HUFFMAN ALGORITHM ENCODING

This section provides the complete message encoding process utilized by the Weather-
Huffman Algorithm. This process incorporates two sub-algorithms:

1. encoding, via the Weather-Huffman runlength algorithm, the highest resolution
version possible, given a specified data link bit limit, of the original input image

2. using the Extra Bit Algorithm on some or all weather levels to improve the fidelity of
the output image generated by the runlength decoder

The details of the encoding procedures for the Extra Bit Algorithm have already been
provided in Section 7, so that information will not be repeated here. Also, many of the details of
the Weather-Huffman runlength encoding algorithm have been provided in Sections 3 and 4. On
the other hand, the full set of steps of the Weather-Huffman encoding logic, including when each
of the already discussed routines are utilized, is fully specified below.

8.1 SEQUENCE OF ENCODING METHODS

Unless the input weather image has only very sparse weather, the attempt to losslessly
encode the image via Weather-Huffman runlength encoding will generally exceed the bit limitation
imposed on the link. In such cases, a sequence of progressively more reduced resolution and
filtered approaches are applied; the first to meet the bit requirement is used to transmit the image
over the link to the decoder. This section describes in order the sequence of combination
runlength, smoothing, and extra bit algorithm (EBA) selected for WH. For each method, the size
of the superpixel (1x1, 2x2, 4x4, or 8x8) used for runlength encoding is listed first. Section 5
presented the method employed to construct these superpixels from the original input pixels.

1. 1x1 encoding

This is the attempt to losslessly encode the input image using the actual pixels. No
smoothing or extra bits are required.

2. 2x2 encodingThis case attempts to encode the reduced resolution 2x2 image. The
result is smoothed to 1x1, after which any remaining message bits are used by the EBA to correct
as many as possible of the incorrect 1x1 pixels.

3. 4x4encoding

Experience with sample complex weather images has revealed two facts: most such images
require at least 4x4 resolution reduction to have a chance of meeting typical link bit limitations, and
any further resolution reduction to 8x8 produces a decoded image with severe loss of fidelity.
Thus, the WH algorithm pursues several subcases in an attempt to encode the image as accurately
as possible within the 4x4 resolution reduction restriction.

3.a. 4x4 encoding using unfiltered 4x4 image

This case attempts to encode the reduced resolution 4x4 image produced as described
earlier. If successful within the bit limit, the output image is smoothed to 2x2 resolution and the
EBA algorithm is applied. The lowest level L acted upon by EBA is then noted, and the following
actions taken:
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L = 3 or failed bit limit — convert processing to case 3.b.

L £2 and L < Ljpax — convert processing to case 3.c.

If processing remains in case 3.a., the encoding is completed. The decoder will smooth the
2x2 image version existing after EBA to 1x1 resolution to form the output image.

3.b. 4x4 encoding using filtered 4x4 image

In Weather-Huffman encoding, the original 4x4 image in case 3.a., either the attempt failed
to meet the bit limit or there were insufficient bits remaining for EBA to correct the high weather
levels on the 2x2 image. Since these levels are more critical to pilots, a tradeoff is made by pre-
filtering the 4x4 image as described in Section 5, which has the effect of slightly distorting the
lower weather levels. When the filtered image is runlength encoded, more bits are available for
EBA; hopefully, the higher weather levels can now be completed. If sufficient bits are generated to
complete all weather levels at 2x2 resolution, EBA can be continued on the smoothed 1x1 image to
further refine the high weather levels.

3.c. 4x4 encoding using modified 4x4 image

In Weather-Huffman encoding, the original 4x4 image in case 3.a., there were sufficient
bits for EBA to fully correct one or more higher weather levels on the 2x2 image. Unfortunately,
the 4x4 image may not have had the data it required for its job. For example, consider the
following situation in Figure 8-1.

1x1 map 2x2 map 4x4 map
3|12 |2 ]2
3 2
2 1212 |1 5
1
2 |2 1 o 1
2 |1 (1|1

Figure 8-1. An example of Weather-Huffman resolution reduction (numbers are weather levels).

When the 4x4 superpixel is expanded to 2x2 via smoothing, all quadrants will become
level 2. The EBA algorithm cannot create the higher level 3 quadrant seen on the 2x2 image; it can
only reduce quadrant levels.

The solution to this defect is to modify the 4x4 image prior to encoding. Specifically, this
4x4 superpixel is set to the maximum of its 2x2 image constituents (which 1s 3 in this example).
Then the EBA can operate on the four level 3 quadrants produced in the expansion to leave one at
level 3 and reduce the others back to level 2 in order to produce a 2x2 image with the desired set of
values. The 4x4 superpixels that are modified in this process are any that have:

a) aconstituent 2x2 quadrant of higher level than the superpixel level,
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b) that quadrant is of level L+1 or greater, as case 3.a. has already indicated that these
are the levels that will be completed by EBA, and either

cl) this quadrant is of level 3 or higher (severe weather), or
c2) two or more quadrants of the superpixel exist with this level
4. 8x8encoding

If 4x4 resolution reduction was insufficient to Weather-Huffman encode the image, a final
attempt using 8x8 reduction is made. First, the 8x8 image generated as described in Section 5 is
employed; if this image requires too many bits, the pre-filtered version of the 8x8 image is created.
No tradeoff case as used for 4x4 is employed here, as the lower weather levels have already been
strongly distorted by the resolution reduction.

4.a. 8x8 encoding using unfiltered 8x8 image

This case attempts to encode the reduced resolution 8x8 image produced as described
earlier. If successful within the bit limit, the output image is smoothed to 4x4 resolution and the
EBA algorithm is applied. If bits still remain, the new 4x4 image is smoothed to 2x2 and the EBA
algorithm is continued. In the most extreme case, EBA can even be applied to the smoothed 1x1
image.

4.b. 8x8 encoding using filtered 8x8 image

This case is identical to step 4.a. except that the filtered 8x8 image is the starting entity.
Again, EBA is applied to each new resolution level in succession until the remaining bits are all
used.

5. Increase the message bit limitation

If even 8x8 resolution reduction with filtering fails to produce a image that can be encoded
within the message bit limitation, this limit must be increased and the encoding process restarted.

8.2 WEATHER-HUFFMAN ENCODING OVERVIEW

The image encoding process of the Weather-Huffman algorithm has four main phases:
scanning the image to build the runlength statistics, determining the codewords to use for each
weather level, encoding the decoding tables corresponding to these sets of codewords, and using
these codewords to sequentially encode the runs of the image. Scanning can be performed by
either a row-by-row raster scan or by a Hilbert scan. As discussed in Section 3, the Hilbert scan
will in general lead to fewer encoding bits and as such has been selected.

Three preparatory operations are required prior to the image encoding itself. The first is
generating the input image at the resolution reduction level that matches the sequence step being
pursued. The details of the creation of the superpixels for this degree of reduction were provided
in Section 5. Next, the linear 1-dimensional string of superpixels corresponding to the Hilbert
scan of this image must be generated by the code provided in Section 3. During this process, the
maximum level superpixel Lyax resident on the image is noted.

Finally, the maximum level superpixel in each 16x16 image quadrant (corresponding to
256 consecutive Hilbert-scanned superpixels) is found and stored in the qmax array. These values
are encoded in the message so as to be available to the decoder; 3 bits are employed if Lmax>3, 2

53



bits otherwise. Using these quadrant maximums, the maximum level applicable to each pixel is
stored in the quadval array. To ensure proper end of image processing, the arbitrary value 13 is
stored in the lastpixel+1 array element.

8.3 BUILDING THE RUNLENGTH STATISTICS

The general procedure for building the level-by-level runlength statistics is Qquite
straightforward: examine the superpixels one-by-one, noting every time the level changes. At each
such occurrence, increment the array element corresponding to the count of consecutive pixels just
completed for the level just exited.

Two minor complications must be added to this process. First, if the new level is not
contiguous to the previous level, the count of 0 length runs must be incremented for each level
passed over. Second, the longest length run explicitly permitted is 63 pixels. Therefore,
whenever a longer run is encountered, the count for length "S2" must be incremented and a new
count initiated. Specifically, when the 64% consecutive pixel at a level is noted, the count for "S2"
is incremented and the count reset to 1.

One alteration to the "S2" process occurs if the run is at level 0 and the 64 pixel occurs in
a quadrant having qmax=0 (that is, a quadrant of all 0 pixels). In this case, the "S2" run is
extended to the next-to-last pixel in the quadrant prior to the first quadrant for which qmax is no
longer 0 (see Figure 8-2).

gmax>0 gmax=0 qmax=0 gmax=0 gmax>0

222200 000000 000000 000000 122233

] t

Start of "S2" Run End of "S2" Run

Figure 8-2. Example case indicating extension of S2 run.

This action saves the bits that would be required if several consecutive "S2" runs had to be
specified (since a quadrant is 256 pixels, 6 runs of "S2" would be needed to traverse it normally).
The decoder, of course, will know the values of gmax, and hence can follow this action.

The specific action taken is to extend the run until the next pixel has a value of qmax>0,
then increment the count for "S2" at level 0, and finally reset the count of level O pixels to 1. Note
that the "S2" run cannot include the last pixel in the quadrant, as then no method would exist to
encode a higher level at the first pixel in the new quadrant (the pixel after an "S2" run is always
assumed to be at the same level, and length O runs are not permitted for level 0).
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When the last superpixel of the image is reached, a final explicit length run is recorded.
This last run cannot be a long "S2" run due to the setting of quadval(lastpixel+1)=13.

The result of this step is the generation of the array Run(L,G), where L ranges from
weather level 0 to level Lyay and G ranges from runlength O to runlength 63 and then the 64th
entry is used for runlength "S2". For each level, the longest normal non-S2 runlength Rpyax is
noted for later use.

8.4 DETERMINING THE CODEWORDS

Once the Run array is determined, for each image level the encoder must determine the
codewords that will correspond to each non-null runlength. The resulting decoding table must then
be encoded and added to the message for use by the decoder. The winning codeword set can be
one of the three default sets defined for the level, or be a set tailored specifically for this image.

Before the codewords can be generated for a level, two parameters must be calculated: the
longest explicitly encoded runlength Gpax, and the option O to use for encoding "other” longer
runlengths. The methods employed for indicating the incremental runlength of an "other” run were
presented in Section 4. To review, eight options were defined, five of which always use the same
number of bits for all runlengths (a different number for each option), while the other three are
long-short options which use two fixed numbers of bits: the smaller for runlengths near Gy and
the larger for longer runlengths. Depending upon the distribution of "other” runlengths for a level,
one option will require the fewest message bits for the encoding of the set of "other" runs.

The first step in determining the codeword set to use for a level is calculating the number of
bits that would be required for encoding its runs with the default settings. Each default set
specifies the value of Gpax and the codewords for runs of length O through Gpax and S1 (the

"other" length) and S2 (length exceeding 64). The "other” option to use for runlengths beyond
Gmax, however, is open. Thus, all eight are tested against the set of "other" runs to select the best,

using the procedure detailed in Section 4. The number of bits assigned to each default option is
then the sum of:

1. 3 bits for specifying the "other” option selected

2. the number of bits required by the winning "other” option
3. number of S1 runs x length of S1 codeword

4. number of S2 runs x length of S2 codeword

Gmax
5. Y. (Run(L,)) x length of runlength j codeword)
=0
The index of the winning default set, and the number of bits it requires for level L runs, is stored.
Should there be no runs at level L (winning total =3), the first default set is automatically used for
the level.

Next, the number of bits required for level L by a tailored set of codewords is computed for
comparison. This total would always beat the default case if it weren't for the fact that the bits for
the decoding table now has to be included.
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With a tailored set, the best value of Gpax to use has to be determined. Section 4 explained

the method employed in this search to avoid trying all possible values, which is to skip any
runlength i for which the number of runs R; satisfies either:

(@ Rj<Rj41,0r
() Ri<1

For any other potential value of Gpax, from -1 (all runs are "other" runs) to Rpax, the
number of bits required to encode the level is calculated, and the minimum-bit value of Gpax is
noted. For each tested value of Gpay, the steps are as follows:

1. Compute the number of "other" runs:

Rmax
Rother= ¥ Run(L,j)
.=Gmax+1

2. If Rother > 0, determine the number of bits required by the winning "other" option as
described above for the default cases.

3. Order in decreasing order of number of runs the non-zero runlengths from O to Gmax

plus S1 and S2.

4. Calculate the Huffman codeword lengths for each of these runlengths (see Sections 3
and 4 for the method).

5. Calculate the number of bits required for the decoding table (see Section 4 for the
method).

The number of bits corresponding to this value of Gpax then becomes the sum of:
1. if Roher > 0, 3 bits for specifying the "other” option selected
2. the number of bits required by the winning "other" option
3. number of S1 runs x length of S1 codeword
4. number of S2 runs x length of S2 codeword

Gmax
2 (Run(L,j) x length of runlength j codeword)
j=0
6. number of bits to specify the decoding table

Finally, the bit requirement for the winning default option is compared to the bit
requirement of the tailored codeword set with the optimum value of Gpax. If the tailored set is

victorious, the ensemble of codeword lengths produced by the Huffman algorithm call
corresponding to that Gy value will be employed in the weather image decoding. The actual

codewords themselves are determined in the next step during the encoding of the decoding table.

W

To save encoding time, if the bit requirement of the selected alternative, when added to
those of the lower levels already processed, exceeds the message bit limitation, the encoding
procedure is terminated, and the next method of the encoding sequence pursued instead.
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8.5 ENCODING THE DECODING TABLE

If a default codeword set is selected, the encoding of the decoder table is trivial:
1. Use 2 bits to encode the number (0-2) of the default set selected.
2. Use 3 bits to encode the winning "other" option.

Then the codewords lengths and codewords themselves of the default ensemble are read
from storage and transferred to the encoding arrays.

The process is more complicated if a tailored codeword set is selected. In that case, the
encoding of the decoder table proceeds as follows:

1. Use 2 bits to encode the number '3', indicating a tailored set of codewords is being

used.
2. Use 3 bits to encode the longest Huffman codeword Hpax being used (maximum
length allowed is 7).
Initialize runlength G =-1.
Increment G.

If G > Gpax, g0 to step 10.

If no runs of length G exist for this level, that is if R(L,G) = 0, add a '0’ to the
message, and return to step 4.

N W

Add a'l" to the message.

Determine, as explained in Section 4, the number of bits required to encode the length
of the codeword Hg for runlength G.

9. Encode (Hmax - Hg) using that many bits, and return to step 4.

10. If "other" runs exist, that is if Rother > 0, use 3 bits to encode the winning "other"
option.

The last step prior to encoding the image itself is determining the actual codewords for each
runlength, including S1 and S2. This process, which uses the codeword lengths already known
from the call to the Huffman algorithm, was presented in detail in Section 3.

8.6 ENCODING THE IMAGE

The last phase of the encoding process, encoding the image itself, is the simplest. The
image's superpixels are traversed once again from beginning to end. As each new run termination
is encountered, the codeword (or codewords if an "other” length run is found), followed by the
level transition bit (if needed), corresponding to the previous runlength and next level combination,
are added to the encoded message. The method of determining the end of a run is the same as
above, including the special "S2" cases.

If the terminated runlength has an explicit codeword assigned to it (always true for "S2"
runs), that codeword is added to the message. Otherwise, the codeword for "S1", the "other"
length run, is added to the message. This "S1" codeword must then be followed by the bit
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sequence that spells out the differential length G-Gmax of the run, where Gmax is the longest
explicitly coded runlength.

The steps taken by the encoder for an "other” length run of length G on level L are as
follows, where the option to use for level L was determined above in the previous step:

If level L does not use a long-short option, go to step 4.

2. Determine if G exceeds the short field maximum length for the option.
3. Ifitdoes, add a'l' to the message, else add a '0' to the message.
4. Add the binary value G-Gpgx to the message using the appropriate number of bits for

the option in effect.

After the completed runlength has been encoded, the encoder must check to see what type
of level transition message must be generated. The normal case consists of adding a '0' to the
message if the new level is higher than the old one, or adding a '1' if the new level is lower. No
bit is required, however, if the old level was O (must go up) or if it was at or above the quadrant
maximum of the new runlength’s starting pixel (must go down).

Another problem arises whenever the level change is greater than a single unit, such as
going from level 1 to level 3. The decoder must be informed of the levels skipped over, by
including codewords for length O runs at each such intermediate level. The codewords are
determined as just specified; length O can be either an explicit runlength or an "other” runlength.
However, if the transition is downward, and any intermediate level is above the quadrant
maximum of the new runlength’s starting pixel, no length O run need be given for such a level, as
seen in Figure 8-3.

End of Run
of Level 3 gmax=1

NN M~

4433333 1110000

T

After Down Transition,
No Length 0 Run at Level 2 Needed

Figure 8-3. Example where 0 length run specification is not required.

No level transition bit is required after a length 0 run, as the same direction as the one last
specified is known to apply.
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9. WEATHER-HUFFMAN ALGORITHM DECODING

This section provides the complete message decoding process utilized by the Weather-
Huffman Algorithm. This process incorporates three sub-algorithms:

1. decoding the Weather-Huffman runlength-encoded image, which may be resolution
reduced from the original input image

2. applying the Smoothing operation sufficient times to regenerate a image with the
original resolution

3. using the Extra Bit Algorithm on some or all weather levels to improve the fidelity of
the smoothed images

The details of the decoding procedures for the Smoothing and Extra Bit Algorithm have
already been provided in their respective Sections S and 6, so that information will not be repeated
here. The Weather-Huffman decoding logic, on the other hand, is fully specified below.

9.1 DECODER CONTROL LOGIC

Depending upon the degree of input image resolution reduction required to enable
application of the Weather-Huffman (WH) runlength encoding, and the number of weather levels
that the Extra Bit Algorithm (EBA) was successful in completing, the decoder will process one of
seven possible cases. The first 3 bits of the message specify the applicable case. The next three
bits provide the highest weather level Ly of the input image. Finally, the next 3 bits specify the
lowest weather level LEga processed by the Extra Bit Algorithm (EBA) on its final pass; different
cases are used to represent different numbers of EBA passes. For the last pass, EBA progresses in
order from the highest weather level Lyax to level LEpA; on all prior passes it progresses all the
way down to level 1.

The actions taken by the decoder for the 7 possible cases are as follows:

Case 1: 1x1 WH resolution

The WH decoding will produce directly the Hilbert scanned version of the output image.
This image is then transformed back to the raster scan version which constitutes the final image.

Case 2: 2x2 WH resolution

The WH decoding will produce the Hilbert scanned version of the 2x2 resolution output
image. This image is transformed back to the raster scan version of the 2x2 image, which is then
smoothed to a 1x1 resolution image. For each weather level in order, from the highest level Lpax
down to the level LEpA specified in the message, EBA is applied to correct this image and produce
the final output irnage.

Case 3: 4x4 WH resolution with a single 2x2 EBA pass

The WH decoding will produce the Hilbert scanned version of the 4x4 resolution output
image. This image is transformed back to the raster scan version of the 4x4 image, which is then
smoothed to a 2x2 resolution image. For each weather level in order, from the highest level Liax
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down to the level LEpA specified in the message, EBA is applied to correct this image and produce
a corrected 2x2 image. This image is then smoothed to 1x1 resolution to generate the final output
image.

Case 4: 4x4 WH resolution with 2x2 and 1x1 EBA passes

This case starts the same as case 3, except that all levels of the 2x2 image receive EBA
treatment to produce the corrected 2x2 image, which is then smoothed to generate a 1x1 image.
For each weather level in order, from the highest level Ly ax down to the level Lgga specified in
the message, EBA is applied to correct this image and produce a final 1x1 output image.

Case 5: 8x8 WH resolution with a single 4x4 EBA pass

The WH decoding will produce the Hilbert scanned version of the 8x8 resolution output
image. This image is transformed back to the raster scan version of the 8x8 image, which is then
smoothed to a 4x4 resolution image. For each weather level in order, from the highest level Limax
down to the level LEpa specified in the message, EBA is applied to correct this image and produce
a corrected 4x4 image. This image is then smoothed to 2x2 resolution, and then further smoothed
to 1x1 resolution, to generate the final output image.

Case 6: 8x8 WH resolution with 4x4 and 2x2 EBA passes

This case starts the same as case 5, except that all levels of the 4x4 image receive EBA
treatment to produce the corrected 4x4 image, which is then smoothed to generate a 2x2 image.
For each weather level in order, from the highest level Liyax down to the level LEga specified in
the message, EBA is applied to correct this image and produce a corrected 2x2 image prior to the
final smoothing to 1x1 resolution.

Case 7: 8x8 WH resolution with 4x4, 2x2, and 1x1 EBA passes

This case starts the same as case 6, except that all levels of the 2x2 image receive EBA
treatment to produce the corrected 2x2 image, which is then smoothed to generate a 1x1 image.
For each weather level in order, from the highest level Ljax down to the level Lgpa specified in
the message, EBA is applied to correct this image and produce the final 1x1 output image.

9.2 WEATHER-HUFFMAN (WH) DECODING PROCESS

The basic Weather-Huffman decoding process consists of iteratively reading a runlength at
a known weather level, followed by determining the direction of transition to the next weather
level. In order for the decoder to know the codewords employed by the encoder to specify the
runlengths, the message must contain the specifications of the decoding table.

The first step of WH decoding is to check for a maximum weather level of 0; in that case,
an empty image is immediately returned. Otherwise, the decoder next reads the weather level
maximums for each image quadrant. These are used to reduce the number of weather transitions
that require explicit specification: if a run is at the quadrant maximum, a down transition must
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follow. The number of bits for each quadrant maximum is either 2 or 3, depending upon the
maximum weather level for the image (3 bits if Ly,x > 3).

After these preliminaries are completed, the process of reading the decoding table and
decoding the weather runs commences.

9.3 DECODING TABLE REPRESENTATION

The first step, and by far the most complex step, of the image decoding operation is the
construction of the decoding tables for each weather level. As explained in the decoding table
Section 4, numerous "tricks" are employed by the encoder to compress the number of bits required
to transmit these tables. The job of the decoder is to read the message bits allocated to decoder
table specifications, undo these tricks, and produce the array that expresses the decoding tables.

~ The decoding table array is a 3-dimensional entity of the form:
dec_run(level, #bits, codeword) —> length of run
For example, the entry
dec_run(3,4,5) —> 2

says that if you know that the next run consists of level 3 pixels, and the next 4 message bits to be
decoded are 0101 (binary ), then the run is of length 2.

Most of the entries in the decoder array will set to -1, which is a signal that the entry does
not correspond to a valid codeword. Since the Huffman code is a prefix code, the following
entries are mandated by the above example:

dec_run(3,1,0) — -1,
dec_run(3, 2, 1) —> -1, and
dec_nun(3,3,2) —> -1

since the codewords 0, 01, and 010 are all prefixes of the assumed codeword 0101. When the
decoder accesses a decoder array entry of -1, it knows that it must read another message bit in its
search for the next runlength codeword.

In addition to the decoding array, the decoder must know how to read the actual length of
the "other” length runs that are signaled by the presence of an S1 entry in the decoding array.
These lengths are those beyond the longest length explicitly assigned a codeword for the level. As
detailed in the decoding table theory Section 4, there are 8 possible options for the number of bits
used to encode these runlengths; in 3 of the options, two different lengths, a "long" length and a
"short" length, are used. Since the length parameters of each option are fixed, the decoder need
only be told the option number in effect for each level

94 DECODING TABLE CREATION

The actual operation of decoding the message bits that encode a given level's decoding table
commences with the determination of whether a default table or a tailored table has been selected.
For the default cases, the total decoding table generation process is extremely simple:

1. Read T, the value of the next 2 message bits.
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If T = 3, a tailored table specification follows; go to step 5.
Copy the default array init(T, i, j, k) into dec_run(i, j, k).
Read V, the value of the next 3 message bits;
Set up the parameters for "other” option V for this level.
Appendix A lists the default codeword assignments for each level's default tables.

When a tailored table has been constructed for the weather level, the decoder must read the
specification of that table from the message bits. As already described in the encoding Section 8,
this specification has been severely compressed to minimize its bit requirement. To review, the
basic form of the specification is a list, in order of runlength, of the number of bits in the codeword
assigned to that runlength. The specific runlength ordering is as follows:

S]., SZ, (O), 1, 23 .... ’ Rmax

where Rmax is the longest explicitly encoded runlength, S1 is the "other" length designation used
to signal runs between Rpax and 63, S2 signals a run of length greater than 63, and the length of 0
is not required for weather levels 0 and Lyax. Once the set of codeword lengths are known, the
actual codewords themselves can be determined by the method described in the Huffman theory
Section 3.

For each runlength assigned its own explicit codeword, the number of bits required to state
the length of that codeword is a function of the number of lengths still possible. The process
connected with determining this number was detailed in the Huffman table Section 4. That section
also explained how a Huffman coding scheme could result in the number of bits actually employed
varying with the codeword length being utilized.

The actual decoding algorithm continuation for determining a level's tailored decoding table
thus becomes:

5. Initialize the sum of the number of codewords used so farto S =0, and the runlength
whose codeword length is being read to R = S1.

Read G, the longest codeword length, as the value of the next 3 message bits.
Read the next message bit;
if it is 0, no codeword exists for length R, go to step 13.

8. Use Sand G to look up D, the range of possible codeword lengths for R, and then
use D to look up the fewest message bits B that could provide the actual codeword
length for runlength R.

9. ReadV, the value of the next B message bits.

10. If Visnot a valid Huffman code for range D, read the next message bit M and set V =
2xV + M.

11. Look up the offset F corresponding to V;
the codeword lengthforRisLr =G - F.
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12. Increase S by the number of codewords covered by Lg;

if § = 128, all explicit lengths have been specified, go to step 14.
13. SetR to the next runlength in the list;

return to step 7.

14. Using the set of values Ly, determine the actual codewords for S1, S2, and each
explicit length run and create the decoding array dec_run.

15. If a codeword exists for S1, the tailored decoding table uses an "other" option;
read V, the value of the next 3 message bits;

set up the parameters for "other" option V for this level.

9.5 IMAGE RUNLENGTH DECODING

After the decoding array dec_run has been established, the actual decoding of the
runlengths of the Weather-Huffman encoded Hilbert-scanned image can commence. The next 3
bits of the message specify the level L of the first image superpixel. Each runlength in turn is then

read. The basic idea is to read message bits until a valid codeword is located.

Level transitions are read via one message bit (up or down) after each run except when the
choice is predetermined. In particular, up is assumed after level 0, down is assumed after a run at
the quadrant maximum level, and transition to the new quadrant maximum level is assumed after a
run above that level. Multiple level transitions are handled by having a runlength of length 0 for
each skipped over level, after which a transition in the same direction is assumed.

The sequence of steps for determining each runlength and transition pair is as follows:
1. Initialize last decoded pixel P to 0, level L to L.
2, Initialize codeword C to 0, number of codeword bits N to 0.
3. IfR=dec_run(L, N, C) is 2 0, the runlength has been found;
go to step 5.
4. Increment N and read the next message bit B;
set C =2+C + B;
return to step 3.

5. If R=S1 ("other” length), follow rules of the "other" option in effect for level L to
determine actual R (see below).

6. IfR =82 (run > 63), set R = 63 unless L = 0 and the quadrant max level is 0, in
which case extend R through the next to last superpixel for which the quadrant max is
0 (if extended to last one, a change from level O at the next superpixel would be
impossible to specify, as no length O run at level 0 is permitted).

Set superpixels P+1 through P+R to L.
8. Increase P to P+R.
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9. If P =end of image, quit.

10. Iflevel transition is not assumed to be known, read next message bit B;
B=0 -> up, B=1 -> down.

11. Setnew value of L;
return to step 2.

As described earlier, two types of "other" options exist. The first type always employs a
fixed number of bits F to specify the actual runlength. When such an option is in effect, the next F
message bits are read to produce the value V, and the true runlength R is given by

where Rpay is the longest explicitly encoded runlength for level L.

The second type of option employs two different numbers of bits for runlength
specification. Thus the next message bit must be read to determine which length to use: the shorter
length (bit = '0") or the longer length (bit = '1"). Once the length is known, that many bits are
read, and the procedure for computing R is then the same as for the single length case.



10. WEATHER-HUFFMAN ALGORITHM RESULTS

This section presents more detailed results (beyond those provided in Section 2) of
applying the Weather-Huffman Algorithm to various sample weather images. It also highlights the
effectiveness of each part of the algorithm by showing incremental results. Various bit limitations
are also applied to indicate the graceful degradation properties of the algorithm. For ease of
viewing results, all images have been converted to 3-level weather: green for light rain, yellow for
moderate rain and turbulence, and red for heavy rain and severe turbulence.

10.1 DEGREES OF RESOLUTION REDUCTION

The greater the degree of resolution reduction forced on the algorithm by the bit limitation,
the greater the loss of fidelity that results in the encoded image. Figure 10-1 presents, for a sample
image, the four levels of reduction considered by the Weather-Huffman Algorithm: none (or 1x1
superpixels), 2x2, 4x4, and 8x8. It is clear that as resolution decreases, two significant effects
occur: the weather regions become blockier, and higher weather level regions bloom in size. The
blooming alternative is to lose small regions of high level weather, which for pilot safety reasons is
unacceptable.

The figure also provides information on how the encoder bit requirement decreases with
greater resolution reduction. The ratio for each step is approximately 2.5 : 1, rather than the 4 : 1
that might have been expected by just counting pixels to be encoded. The reason for this is two-
fold: the decoding table overhead increases in importance as the message decreases in size, and the
Huffman efficiency decreases as the number of runs decreases.

The algorithm also allows image filtering at both the 4x4 and 8x8 resolution steps, in order
to decrease the encoding bit requirement and thus possibly meet the bit limitation without needing
further resolution reduction. Figure 10-2 indicates the output images, and bit requirements,
produced both with and without filtering for the 4x4 and 8x8 levels. Two results are clear from
this figure:

1. Filtering provides a significant reduction in encoding bits for a minor change in
image.

2.  Afiltered 4x4 image is strongly preferable to an 8x8 image, and thus is worth trying
first.

10.2 INCREMENTAL RESULTS

The Weather-Huffman Algorithm contains three separate subalgorithms:

1. Weather-Huffman runlength encoding a resolution-reduced version of the input
image.

Smoothing the resolution-reduced output image back to the original resolution.

Applying the Extra Bit Algorithm to correct errors introduced by the resolution
reduction.

Figure 10-3 illustrates the effectiveness of each step by presenting the results of skipping
some of the subalgorithms. The upper left picture is the input image. The upper right picture is the
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output of Weather-Huffman runlength encoding when a 3500 bit limit is imposed. The algorithm
was forced to encode a reduced version of the input with 4x4 superpixels, which required 1962
bits. The blockiness of this resolution reduction is quite apparent. The lower left picture shows
the effect of employing smoothing on the previous image: the edges of the regions have become
more realistic, but unfortunately the regions are still as large as before. Finally, the lower right
picture includes the Extra Bit Algorithm processing, using the bits remaining in the 3500-bit limit.
It is clear that the red regions have been significantly altered, removing most of the blooming that
resulted from the original resolution reduction. In addition, the shapes of the yellow regions have
been significantly improved.

10.3 ALGORITHM TRADEOFFS

It is possible to trade off resolution reduction for increased extra bit coding. That is, a
possible alternative is 2x2 runlength encoding with no Extra Bit Algorithm versus 4x4 runlength
encoding with 2x2 EBA correction employed in the freed up bits. Figure 10-4 considers these
alternatives. The upper left image is the input image for the example. The upper right image
presents the result of 2x2 Huffman encoding only, while the lower left image is the output from
4x4 Huffman encoding followed by a complete pass of EBA at the 2x2 level.

The first thing to note is that 4x4 with EBA requires significantly fewer bits. This is
because EBA only attempts to correct the edges of existing regions. Thus, as seen in the
comparison of the images, several more green regions, with superior internal structure, exist in the
2x2 image. The red areas, however, are very similar between the images.

A more fair comparison would be to allow EBA to utilize all the bits freed up by going to
4x4 resolution. The lower right image presents this result. Comparing it with the 2x2 image
above it, it is seen that, although the green regions are still inferior, the red regions are significantly
more accurate. This results from the EBA being able to correct the red at the 1x1 resolution in its
second pass through the weather levels.

Thus, a real tradeoff exists for operational evaluation: is it better to concentrate on accuracy
of higher or lower level weather regions. The resulting opinion could alter the decision currently
used in the Weather-Huffman algorithm, which is to use the least possible resolution reduction for
the Huffman encoding step. It should be noted, however, that if the tradeoff for a severe weather
image is between 4x4 reduction versus 8x8 with EBA, the loss of fidelity with 8x8 reduction
makes it the losing alternative.

10.4 VARIATION IN LINK BIT LIMIT

Obviously, the more bits allocated to image encoding, the more faithful will be the output
result. Figures 10-5a and 10-5b illustrate this effect by presenting the output images produced for
two sample images at three different bit limits: 2300, 3500, and 4700.

As the bit limit is increased, the shape and sizes of the various weather regions increase in
accuracy. Note that because of the priority scheme employed by the Extra Bit Algorithm, higher
weather regions are better preserved than lower ones with lower bit limits. Put another way, the
degradation of the output images as the bit limit is tightened is moderate for the most critical
weather information. In fact, both of the 2300-bit images are probably acceptable for strategic
flying.
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Input Image (1x1) - 12651 Bits 2x2 Resolution - 4974 Bits

4x4 Resolution — 1962 Bits 8x8 Resolution - 731 Bits

Figure 10-1. Effect of Different Resolulion Reduction Levels on New York Image.
As Resolulion Decreases, Image Fidelity Degrades but Bit Requirement Drops.
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4x4 Resolution - No Filtering - 1962 Bits

4x4 Resolution - With Filtering - {507 Bits

A

8x8 Resolution - No Filtering - 731 Bits

8x8 Resolution - With Filtering - 538 Bits

Figure 10-2. Effect of Runlength Filtering at Lower Resolution Levels on New York Image.
Fidelity Undergoes Minor Change while Bil Requirement Drops Significantly.
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Input Image Huffman Runlength Encoding Only (4x4) — 1962 Bits

Smoothing Process Included - 8till 1962 Bits Bxtra Bit Algorithm Applied to 3500 Bit Limit

Figure 10-3. Output New York Image Existing after Each Incremental Step of the WH Algorithm.
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Input Image

4x4 Resolution and 2x2 Bxtra Bits — 7524 Bits 4x4 Resolution and Extra Bits Until 11354 Bits

Figure 10-4. Tradeoff for Allison Image Belween Resolution and Extra Bits.
Eztra Bit Algorithm Compensates for Resolution Reduction
by Using Bits Freed Up by Application of Lower Resolution.
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Output Image with 3500 Bit Limit Output Image with 4700 Bit Limit

Figure 10-5a. Qutput Mobile Image as a Function of Datalink Bil Limit.
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Output Image with 3500 Bit Limit Output Image with 4700 Bit Limit

Figure 10-5b. Output Allison Image as a Function of Datalink Bit Limil.
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APPENDIX A
DEFAULT HUFFMAN ENCODING ENSEMBLES

This Appendix presents, for each image level, the 3 options available for default Huffman
codeword ensembles. For each option, the codeword bitlength L and the actual codeword
assignment are listed for each applicable runlength. The special "runlengths” S1 and S2 are also
included, where as described in the report:

S1 indicates an "other” length run, length > Linax
S2 indicates a long run, length > 63
where Limax, also listed for each option, is the longest runlength assigned its own codeword.
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Level 0

Option 0 Option 1 Option 2
Lmax=7 Lmax = S2 Lmax=8
Runiength L Code L Code L Code
S1 4 1000 1 0 2 01
S2 1 0 1 1 2 00
1 4 1001 4 1000
2 4 1010 4 1001
3 4 1011 4 1010
4 4 1100 4 1011
5 4 1101 4 1100
6 4 1110 4 1101
7 4 1111 4 1110
8 4 1111
Level1and2
Option 0 Option 1 Option 2
Lmax=5 Lmax = S2 Lmax=7
Runlength L Code L | Code L Code
S1 3 000 1 | o 2 00
S2 3 001 1 1 2 01
0 3 010 4 1000
1 3 011 4 1001
2 3 100 4 1010
3 3 101 4 1011
4 3 110 4 1100
5 3 111 4 1101
6 4 1110
7 4 1111
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Levels3.4.5. and 6

Option 0 Option 1 Option 2
Lmax=2 Lmax=2 Lmax=4
| _Runlength L Code L Code _ L | Code
S1 3 110 1 0 2 | oo
S2 3 111 3 111 3 010
0 2 00 3 100 3 011
1 2 01 3 101 3 100
2 2 10 3 110 3 101
3 3 110
4 3 IR R
Level 7
Option 0 Option 1 Option 2
Lmax=2 Lmax=2 Lmax=4
Runlength L Code L Code L Code
S1 3 110 1 0 2 00
S2 3 111 3 111 3 010
1 2 00 3 100 3 011
2 2 01 3 101 3 100
3 2 10 3 110 3 101
4 3 110
5 3 111

Note that, for levels 0 and 7, no codeword need be assigned to a runlength of 0. A
runlength of 0 is used to cover multi-level weather changes through the given level. For example,
a change from level 3 to level 1 requires a codeword for a length O run at level 2. Clearly, no
change "through” level 0 or 7 is possible. For an actual image, no codeword for length 0 would be
required for the highest weather level existing on that image. Thus, whenever the highest image
level is 3 or greater, the default ensemble of level 7 is used for that highest level.
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APPENDIX B
WEATHER-HUFFMAN (WH) PERFORMANCE-TRADEOFF PARAMETERS

This Appendix lists and defines each of the performance-tradeoff parameters currently
existing in the WH algorithm software. It also lists the current default settings of each parameter,
and discusses the performance effects of changing to other values.

Image Bit Limit (maxbits) Default = 3500

This parameter is the maximum number of bits that can be used to encode the weather
image. Changes in the setting will increase or decrease the distortion produced in the image
representation output to the pilot.

[ evel Renumbering (remapp) Default =0

This parameter specifies whether the standard weather level numbering scheme should be
maintained on the input image, or whether some of the levels should be grouped. The meanings of
the possible values are:

0 = no renumbering of weather levels
1 = renumber the weather levels _
the user must enter in order the new numbers for levels 1 through 6.

The remapping feature is useful when fewer than 6 levels of weather are desired on the
output display. For example, a 3 level display — light rain, heavy rain, storms — would be
produced by entering 1 followed by the 6 values 1,2,3,3,3,3, which combines together all pixels
of levels 3 through 6.

Minimum Level Count for 8x8 (wt8g) Default = 32,20,6,1,1,1

These parameters specify, for each level 1 through 6, the minimum count of pixels at or
above that level that require the 8x8 resolution reduced superpixel to be set to that level. For
example, if 20 or more of the 64 pixels in the superpixel are of level 2 or above, and if none of the
higher level thresholds are satisfied (i.e., there are fewer than 6 at or above level 3, and none at
levels 4, 5, or 6), the superpixel is set to level 2. If the values are decreased, weather regions will
be "averaged up" in size, and more weather "spots” will be maintained on the output image; if they
are increased, the larger regions will be more faithfully represented as more bits are freed up for
encoding them.

Minimum Level Count for 4x4 (wt4g) Default = §,5,2,1,1,1
The analog for 4x4 superpixels.

Minimum Level Count for 2x2 (wt2g) Default = 2,1,1,1,1,1
The analog for 2x2 superpixels.

Provisional Level Count for 8x8 (wt8) Default = 12,6,1,1,1,1

These parameters specify, for each level 1 through 6, the provisional count of pixels at or
above that level that require the 8x8 resolution reduced superpixel to be set to that level if not
enough neighboring superpixels are available to adequately represent the weather region. For
example, if 6 or more of the 64 pixels in the superpixel are of level 2 or above, and if none of the
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higher level thresholds are satisfied (i.e., there are none at levels 3, 4, 5, or 6), the superpixel is set
to level 2 if less than two neighboring superpixels are set to level 2. This parameter works as a
protection against the previous parameter (wt2g) causing the loss of a significant weather region.
If the values are decreased, weather regions will be further "averaged up” in size, and additional
weather "spots” will be maintained on the output image; if they are increased, the larger regions
will be more faithfully represented as more bits are freed up for encoding them.

Provisional Level Count for 4x4 (wt4) Default = 4,2,1,1,1,1
The analog for 4x4 superpixels.
Provisional Level Count for 2x2 (wt2) Default = 1,1,1,1,1,1

The analog for 2x2 superpixels.
Extra Bit Usefulness Multiplier (mult) Default = 4,5,7,7,7,7

This parameter specifies, for each weather level, the fraction of the quadrants in an extra bit
class that must require level adjustment for the class to be encoded by the Extra Bit Algorithm. For
example, for level 2, a given extra bit class must satisfy:

mult[2] « (adjusted quadrants) 2 (total quadrants)

for the class to be encoded. By reducing the value for a level, that level will be more accurately
represented on the output image at the expense of lower levels. (Due to the possibility of multiple
extra bit passes, reducing the value for a level can in some cases degrade that level as well).
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