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FUNDAMENTALS OF MODE S PARITY CODING

1.0 BACKGROUND

Mode S. previously named the Discrete Address Beacon System (DABS).
provides an evolutionary upgrade to the present third generation Air Traffic
Control Radar Beacon System (ATCRBS). In particular. it provides an improved
surveillance capability together with an integrated ground/air data link.
Both features are required to support the planned automation of air traffic
control.

Mode S includes a unique code as part of each interrogation. This allows
the ground sensor to adqress each aircraft individually so as to control the
timing of replies from neighboring aircraft. This eliminates the
self-interference due to overlapping replies (synchronous garble). which is a
basic limitation of the present ATCRBS System. By providing for the inclusion
of a message as part of an interrogation or a reply. data link communications
can be accommodated on the same channel with a small increase in equipment
complexity.

The major factors that influenced the design of the Mode S signal formats
were: (1) the need to attain service reliability commensurate with the
projected surveillance and communications demands of an automated ATC system,
(2) electro-magnetic compatibility with ATCRBS to allow both systems to
operate together during the transition from ATCRBS to Mode S. and (3)
minimization of transponder cost to speed the transition from ATCRBS to
Mode S.

In view of these requirements. a study was undertaken to determine the
benefits resulting from the incorporation of error control techniques into
both the Mode S uplink and downlink messages. The results of this study were
previously reported in [1] and [2]. These documents concluded:

(1) signal coding would significantly reduce the probability of
receiving incorrect messages and the need for re-transmissions

(2) uplink error detection was feasible within the transponder cost
constraints

(3) downlink error correction was possible at the sensor.

They also showed that the same code could be used on both links. The
characteristics of the code. its error correction/detection properties. and
the residual error probabilities were described in these documents.

This report updates these earlier documents by presenting the specific
use and implementation of error detection and correction coding as it is now
specified in the Mode S standards and specifications. This report also
stresses understanding and basic theory over detailed theory to make it more
usable by non theorists. Readers requiring more rigorous treatments are
referred to [3J.
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The remainder of this chapter reviews the Mode S material that forms the
background to signal coding. The following chapters then present and explain
the various components of the overall Mode S coding design.

1.1 Coding Problem

One of the primary responsibilities of Mode S is the delivery and
reception of various types of traffic control information to and from
aircraft. It is necessary that such messages be validated before acceptance.
Air Traffic Control voice radio commands are validated in the present system
by repeating the command back to the ground. This same technique could be
used with digital messages in Mode S as a low cost method of message
validation. However, if a message could be validated in a single transaction,
message delivery would require fewer transmissions and thus less channel
capacity, and would also be less strongly affected by link reliability.
Coding techniques offer just such a means of reliably validating a single
transmission, and such coding techniques need not involve a great amount of
circuit complexity. Thus, coding techniques were studied from the outset of
the Mode S program as a promising means of providing a highly reliable and
efficient message validation system with little cost impact on the
transponder.

In order to eliminate the overhead associated with the redundant parity
check bits in coding, a technique for combining parity and address bits was
used as developed by the British in their early work on a discrete address
system referred to as the ADSEL (Address Selection) beacon system. Instead of
having the receiver check two separate messagE! fields to determine if the
received message should be accepted, a cOlnbined address/parity field allows
the operation to be carried out by checking only one field. Whenever the
parity check bits resulting from the received message are nonzero, the
expected address/parity field is different from the actual received
address/parity field, indicating the message should not be accepted. This
scheme removes the overhead associated with the use of coding for message
validation, which is an important step because of the constraints on message
length.

Although the foregoing discussion makes coding appear attractive for
message validation, the key problem is that of selecting a code that performs
adequately in the channel environment. There are numerous error mechanisms
affecting the Mode S uplink and downlink channels. A decision was made early
in the coding investigation to concentrate on codes that can overcome errors
caused by interference sources. Errors caused by noise only or caused solely
by fading of the signal below threshold were not considered. A rationale for
this posture is that errors due to noise alone can be dealt with by virtually
any choice of code, while the fading mechanisms that arise from turning
aircraft, over-the-horizon transmission, etc., have a duration that is longer
than the Mode S message and therefore are beyond the control of any coding
scheme.

Errors due to interference arise from ATCRBS interrogations, TACAN
channels operating near or harmonically related to 1030 or 1090 MHz,
continuous-wave (CW) interference, and multipath. Of these, ATCRBS
interference is the dominant factor, and the code search was largely driven
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by this fact. In an (uncontrolled) ATCRBS environment, an ATCRBS reply,
consisting of several pulses, could overlap a Mode S message, resulting in a
burst error channel. It is this channel that was given the major emphasis and
that led to the eventual choice of a cyclic code, a class of codes specially
suited to burst error detection.

Performance requirements, real-time operation, and low-cost
considerations for the ~fude S transponder were the major factors that resulted
in the decision to have the error control technique provide an error
detection-only capability on the uplink. In particular, the Mode S scheduling
subsystem has sufficient capacity to accommodate an occasional retransmission
because of a missed message. However, the emphasis is somewhat different for
the downlink due to an inherently larger computational capability in the
ground sensor decoder. Thus, error correction techniques become a viable
consideration for the improvement of throughput by reducing the incidence of
rejected messages (containing errors). Other factors that facilitate an error
correction capability for the downlink are the signaling technique, the data
rate, the monopulse receiver processing, and the resulting structure or
characteristics of transmission errors. These factors are summarized below
and lead to a characterization of the downlink as a burst erasure channel.

1.2 Downlink Channel and Receiver Characteristics

The center frequency of the Hode S reply transmission is 1090 MHz, which
is the same as for the ATCRBS reply. The downlink signaling uses a pulse
position modulation (PPH) format with a data rate of 1.0 megabit per second.
Two immediate advantages of this PPM format are (1) a single ATCRBS reply
pulse (0.45-]..1sec width) will not affect both 0.5 microsecond chip positions
comprising a single data bit in the same way, thus increasing the
detectability of interference, and (2) the complementing aspect of PPM ensures
the presence of as many "ones" as there are data bits for use in a monopulse
estimate.

The downlink message shown in Fig. 1-1 contains 56-bits for all-call or
surveillance replies, and 1I2-bits for communications replies. The message
(excluding preamble) is systematically encoded using the same 24-bit parity
check code as in the uplink, with the parity bits overlayed on the 24-bit
address field.

The major source of interference for the Mode S downlink is the ATCRBS
reply. The reply, as shown in Fig. 1-2, is composed of O.45-]..1sec duration PAM
pulses spaced 1.45 ]..1sec apart. Pulses FI and F2 are framing pulses separated
by 20.3 ]..1sec and are always present, the X pulse is never present, and the
remaining 12 interior pulses are used to make up the responses to an ATCRBS
Hade A or Mode C interrogation. The last pulse is a special position
identification (SPI) that is transmitted only on initiation by the pilot. The
important thing to note is that a single reply without an SPI pulse will
adversely affect a span of less than 24 Mode S bits. Moreover, the use of the
SPI is not a frequently occurring event. Thus, this predominant interference
source gives rise to a burst error channel. By using a 24-bit cyclic parity
check code, this single reply cannot create undetected errors in the Mode S
message.
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Another likely source of interference arises from TACAN interrogation
pulse pairs having a carrier frequency close to 1090 HHz (there exist some
special use military TACANS using 1090 MHz). These interrogations have two
3.5 ± 0.5 ~sec pulses separated by 12.0 ± 0.5 ~sec and, again, are seen to
result in burst errors spanning less than 24 Mode S bits. Other interference
sources such as multipath also lead to bursts of errors in the Mode S
message.

The Mode S reply processor uses an amplitude comparator to determine the
data from the PPM reply, assigning a '0' or '1' if the first or second chip
respectively of the bit has greater amplitude. A separate detector determines
whether interference is present for the bit. The data bit is flagged as high
confidence if this detector finds (1) that no interference energy is present
in the "other" chip, and (2) that the primary chip energy is in the mainbeam
of the antenna rather than in a sidelobe. Other bit decisions are labelled as
low confidence. The reply azimuth estimate is constructured by averaging the
monopulse estimates of the first sixteen high confidence bits.

The confidence measures of the bit decision process are used in the error
correction scheme. In particular, by assuming that bit errors can ouly occur
in bits for which a low confidence estimate has been made, the input to the
decoder can be characterized as an erasure channel. The correction ability
for an erasure channel, in which the possible error locations are known, is
the same as the detection ability on a normal channel, in which no such
knowledge exists. Thus error correction becomes feasible on the downlink.
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2.0 PARITY CODING

In general, every possible bit pattern in a message field can constitute
a valid message. Thus if a transmitted message had one or more bits received
in error, the message would be interpreted incorrectly as a different valid
message with no errors. The method employed to permit error detection is to
add parity bits to the message so that most channel errors will produce
recognizably invalid messages. For example, the most common single parity bit
is defined by:

k
p L mk where summation is performed using modulo 2 addition «(±)

i=l

Then any valid message will have an even number of 'l's; any single bit
transmission error will produce an odd number of 'l's. In general, if r
parity bits are added to a message, only 2-r of the possible received messages
will be valid. The information rate in such a case decreases to k/(k+r), so
channel capacity is reduced as protection is increased.

Each of the r parity bits is specified by a different function of the
message to be encoded:

The functions are chosen to maximize the detection (or correction) properties
of the coding scheme.

If random, uncorrelated errors are the main channel problem, the Hamming
distance d of the code is the characteristic to be maximized. The Hamming
distance between two valid code words is defined as the number of bits of the
first that would have to be inverted to produce the second. d is the ffilnlmum
such distance over all pairs of code words. The relationship between d and
the properties of a code are given by:

d
d

t + 1
2e + 1

detect terrors
correct e errors

The former rule states that errors can be detected as long as they cannot lead
to another valid code word, while the latter rule states that errors can be
corrected as long as they produce an error word nearer to the proper one than
to any other valid word.

Another common channel problem is burst errors. On such a channel,
errors tend to be bunched. A burst error of length b is defined as a sequence
of b-bits containing errors in the first, last, and any set of interior bits.
~ading and interference lead to burst errors. For Mode S, ATCRBS reply
interference is the main source of errors. Thus the occurrence of burst
errors is the dominant error mode.
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Parity functions for burst detection codes tend to be quite different
from those for random errors. No longer is distance important. Instead, the
message bits that generate a specific parity bit must be widely spaced, or
said another way, bits within a burst must independently determine different
parity bits. A trivial code for detecting burst errors is as follows:

PI ml + mb+l + m2b+l +
P2 m2 + mb+2 + m2b+2 + •••

(where + sum modulo 2)

This parity code detects any burst of up to b-bits, even though its Hamming
distance is only 2, implying that it can only guarantee detection of a single
random error.

An optimum burst code, such as that chosen for Mode S, will maximize the
random error detection performance for a given burst length capability.

2.1 Cyclic Codes

A cyclic code is defined as one in which the set of valid code words is
expressible as all multiples of a given generator polynominal G(x):

C(x) H(x) G(x) for any H(x) (2-1)

where for burst detection applications G(x) will be of the same order as the
burst length, namely b. The natural length n of a cyclic code, which is the
number of bits each of its code words must contain to produce cyclic code
properties, is the smallest integer for which:

+ no remainder
G(x)

The code words produced by G(x) will have these n-bits broken up as:

n = k + b

(2-2)

where k is the number of information bits in the code word and b is the number
of parity bits. Each potential code word, produced as in (2-1), is reduced to
n-bits by being taken modulo xn-l.

Cyclic codes are so-named because any code word, shifted cyclically, is
still a code word. That is, if one code word is given by:

(2-3)

then a second one can be given by:

8



CZ(x) xH1(x) G(x) = HZ(x) G(x)

an_lxn + an_Zxn- 1 + ••• + alxZ + aOx + (an-l-an-l)

( n-l n-Z +) + (n)an-Zx + an-3x + ••. + aOx an-l an-l x -1 (Z-4)

But, since an_l(xn-l) = 0 modulo xn-l, the new code word is simply a cycled
copy of the original one.

For a given message M(x), encoding consists of first shifting M(x) b-bits
to the left to make room for the parity field, then dividing the resulting
xbM(x) word by the generator G(x) to produce the remainder R(x), and finally
adding this remainder to the shifted word to form the code word C(x).

To show that this process produces a cyclic code word, write M(x) in the
following form:

xb M(x) = m(x) G(x) + R(x) (Z-5)

where the xb multiplication shifts the message by b-bits, and the remainder
R(x) is of order b-l. Adding R(x) in the parity field yields the code word:.

C(x) = xb M(x) + R(x)

That C(x) is a code word follows from (Z-5):

C(x) = xb M(x) + R(x) m(x) G(x) + R(x) + R(x)
= m(x) G(x)

because by modulo Z addition, a + a = O.

(Z-6)

(Z-7)

Figure 2-1 provides an example of the encoding process. Note that, by
convention, the first transmitted message bit is considered to be the highest
order coefficient of the message polynomial. Also note, as explained above,
the encoded transmission consists of the unmodified message followed by the
remainder in the parity field.

To decode the received reply, the received word W(x) is processed to
determine whether or not an error occurred (in either the message or parity
fields, or both) during transmission. If not, the message is obtained
directly from the high order bits of W(x).

Decoding with cyclic codes is merely the complementary process of
encoding. That is, divide the received word W(x) by the generator to produce,
in the general case:

W(x) rex)
= w(x) + (2-8)

G(x) G(x)

If no error was encountered during transmission, rex) = 0 by (2-7). Thus the
presence of a non-zero remainder detects an error.

9



Message: I~I

1st
bit

5th
bit

Generator: x2 + x + b = 2

Encode: find xb M(x) / G(x):

x2 + x + a I x6 + a + x4 + x3 + a + o + a

x6 + x5

x5 + x4 + x3,

x5 + x4

x = R(x)

Code Word: xb M(x) + R(x) = (x6 + x4 + x3) + (x)

x6 + x4 + x3 + x

= 1 a 1 1 a 1 a

I----r--I IT'
message parity

Fig. 2-1. Cyclic encoding example.
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The proof that cyclic codes can detect burst errors is fairly
straight-forward. First assume the burst error is in the low-order b-bits of
the received word. That is:

W(x) = C(x) + E(x)

Then, by (2-7):

E of order b-l (or less) (2-9)

W(x)

G(x)

m(x) G(x) + E(x)

G(x)
m(x) +

E(x)

G(x)
(2-10)

and G(x) cannot divide E(x) as G(x) is of order b. Thus any low order burst
error must produce a remainder. Now assume that the error occurred in a
higher order b-bits. By the cyclic nature of code words, the received word
can be cycled until the burst error is at the low-order end without affecting
the code word properties. Then, since the division of the cycled word by G(x)
yields a remainder, division of the original received word by G(x) must also
yield a remainder (although not the same one). Otherwise, the received word
would have been a code word, which contradicts the fact that the cycled one is
not.

The code chosen for Mode S, for both the uplink and downlink, is a cyclic
code based upon the generator polynomial:

G(x) = x 24 + x23 + x22 + x 21 + x20 + x19 + x 18 + x17 + x16

+ xIS + x14 + x 13 + x 12 + x lO + x3 + 1 (2-11)

This code was first discovered by Kasami [4]. As its order is b=24, it can
handle the expected 24 microsecond Mode S burst environment due to ATCRBS
interference. In addition it has a Hamming distance of 6 to aid in the
detection of random errors.

2.2 Shortened Cyclic Codes

The length n of cyclic codes and their code words is often quite long.
For example, the code chosen for Mode S has a natural length, found as in
(2-2), of n = 21(2 17_1) ~ 2.75 xl06 bits. Clearly, the Mode S messages cannot
be this long. Fortunately, cyclic codes can be shortened without loss of
error detection properties.

An (n,k) cyclic code, meaning one with n-bit code words having k
information bits (and thus n-k parity bits), can always be shortened to form
an (n-i, k-i) code. This is done by only choosing from the total set of code
words those whose first i information symbols are O's, and deleting these
symbols from the code words.
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The resulting code, it should be noted, is ~ a cyclic code, in that not
all cycled code words result in other code words. The code words are still
generated by the same polynominal G(x), however, so all the encoding and
decoding procedures still apply. Mathematically, whereas the natural cyclic
code uses algebra based on modulo xn-l, the shortened cyclic code uses algebra
based on:

F(x) R(x) remainder of
G(x)

(2-12)

Thus, a shortened cyclic code is also known as a pseudo-cyclic code.

For Mode 5, the message codes employ 24 parity bits, and are shortened to
either a length of S6 or l12-bits depending upon whether a 32-bit or 88-bit
message is being transmitted.
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3.0 MODE S CODING

This chapter shows how the general theory of cyclic code encoding and
decoding presented in the previous chapter has been adapted to the Mode S
uplink and downlink messages. The major considerations that led to the
specific algorithms being employed are:

(1) transponder simplicitYt and

(2) minimization of retransmissions

The first consideration took precedence over the second t so that only error
detection is attempted on the uplink. On the downlink t however t error
correction is implemented in accordance with the latter consideration.

The specific methods of encoding the parity fields on the two links
differ t even though both include the Mode S address. These differences yield
a transponder implementation, as presented in Chapter 5, that minimizes cost,
and has the benefit that the same shift register circuit can be used for both
decoding uplink messages and encoding downlink ones.

3.1 Uplink Coding Theory

If the only requirement on the uplink signal were error detection, the
scheme presented in the previous chapter, namely appending the b-bit
remainder to the shifted message, would be sufficient. However, a transponder
must insure that it only processes messages intended for its aircraft. The
unique aircraft address serves to identify the intended message destination.
Thus an uplink signal must contain the data field t the address, and the parity
field.

To minimize message length (and thus channel time), the address and
parity fields have been merged into a single field. The transponder, upon
decoding the message, will look for the pattern that would result if

(a) the address were its own t and
(b) no transmission errors have occurred

Failure to produce this pattern results in message rejection. Note that the
transponder cannot determine whether (a) or (b) was violated. Differentiation
between other aircraft messages and message errors was sacrificed by the
address/parity merger.

The actual merged field is the sum of the parity bits and a function of
the address. This function, rather than the address itself t was chosen to
simplify the transponder decoding logic. The actual function is the
high-order bits of the product of the address and the generator polynominal:

f [A(x) G(X)]high order b-bits

13
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For Mode S, b=24. Thus mathematically:

A(x) G(x) r(x)
f --------- with remainder lost

x24 x24

The actual uplink message can then be written as:

(3-2)

A(x) G(x)
U = x24 M(x) + R(x) + --------­

x 24
~~~

(3-3)

message

where, for review:

parity address
function

lost
remainder
(- = +)

x24 M(x) = m(x) G(x) + R(x) (3-4)

The transponder decoding procedure (to decode the address) is to multiply
the received message by x24 and then divide the result by G(x):

x 24
u..

G(x)
u (3-5)

If no errors were made in transmission, the result would be by (3-3) and
(3-4):

G(x)

A(x) G(x)
[m(x) G(x) + R(x) + R(x) + --------­

x 24

r(x)
+ ----J

x 24

r(x)
x24 m(x) + A(x) +

G(x)
(3-6)

high
order
bits

low
order
bits

remainder

Thus the address will be directly readable as desired. If an error occurred:

[U+E(x)]
G(x)

x24 E(x)
u" + --------

G(x)

14
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For a burst error of 24-bits or less, E(x) cannot be a multiple of G(x).
Thus:

E(x) e(x) G(x) + £(x) £ of order < 24 (3-8)

producing by (3-7) and (3-8):

x24 dx)
u.. + x 24 e(x) + -------­

G(x)
~~

(3-9)

high
order
bits

low
order
bits

The second term, being in the same bit field as the address from (3-6),
produces a decoded address different from that being sought, and the message
will be rejected.

3.2 Downlink Coding Theory

On the downlink, the desire is to minimize the transponder encoding
complexity. Thus the combined parity/address field in this case is
constructed as a simple addition:

AP = R(x) + A(x)

producing the downlink message:

D = x24H(x) + R(x) + A(x)
~ ~

high low
order order
bits bits

(3-10)

(3-11)

The decoding logic, being performed in the sensor, is not as restricted
in its complexity. In particular, error correction is employed in this case
to minimize the need for retransmissions due to downlink errors. The basic
steps of this process are:

1. compare the decoded remainder with the expected address to determine
whether an error was made

2. locate the error using the receiver confidence bits

3. correct the error.

15



If step 1 indicates an error exists, the
is removed is called the error syndrome.
3 operations as explained below.

residual remainder after the address
It is used to perform the step 2 and

Whenever an error is present, the syndrome will be non-zero. For a given
24-bit message segment, there are 224_1 possible burst error patterns. Each
of these patterns will produce a different one of the 224_ 1 possible
syndromes. Thus, there is a 1-to-1 correspondence between errors and
syndromes. The syndrome pattern will differ from that of the error because of
the division of the message by G(x) during the decoding process. The only
time this pattern transformation does not occur is when the error burst is in
the low-order 24-bits; in that case the syndrome and the error are identical.

Of course, the burst error can occur in any 24-bit segment. Since the
errors in each such segment can generate every possible syndrome, the mapping
from syndromes to errors is many-to-one. A given syndrome is produced by
different error patterns in different segments, however, as the transformation
is a function of error location. The syndrome thus contains no information
concerning the location of the error; an independent source is needed for that
function. Once the position of the error is located, though, the syndrome
will specify the error pattern.

Each received bit is decoded in the Mode S sensor as a a or 1, with a
separate confidence bit produced as described in Chapter 1 to indicate the
receiver's certainty as to its decision. High confidence bits are assumed to
be correct, and are not permitted to be changed. If the error syndrome
indicates a burst error, and some 24-bit segments of the message has a pattern
of low confidence bits that matches the l's in the transformed syndrome that
applies to that segment, the errOr will be assumed to be located, and these
bits will be corrected. Errors due to multiple bursts, or errors in high
confidence bits, can not be corrected. Of course, infrequently a wrong
correction will be performed.

The first decoding step is division of the received message by the
generator polynomial. If no error has occurred, and using (3-11) and (3-4):

D x24M(x) R(x) A(x)
-------- + +

G(x) G(x) G(x) G(x)

m(x)G(x) R(x) R(x) A(x)
-------- + + +

G(x) G(x) G(x) G(x)

A(x)
m(x) + (3-12)

G(x)

16



Thus. if the remainder matches the address, no correction is needed. If,
however. a burst erro~ has occurred, then by (3-8):

D A(x) E(x)
= m(x) + +

G(x) G(x) G(x)

A(x) F(X)
m(x) + e(x) + + (3-13)

G(x) G(x)

and the remainder differs from the address.

The maximum length 24-bit burst error polynomial, assumed to be located j
bits from the end of the message. can be written as

E(x) F of order 23 (or less) (3-14)

where E(x) is of order 23 + j. After the decoding division by G(~) (which is
of order 24):

E(x)

G(x)
= e(x) +

G(x)
e of order j-l (3-15)

and only the E(X) part is visible in the syndrome. If j=O, that is if the
error were in the low order 24-bits, then e(x)=O, E(X) = E(x). and the known
part would in fact be the erro~ itself. For any other case, correction is not
possible at this point in the process.

Since a cyclic code is being employed, the whole message could be cycled
right jtimes without changing the decoding properties. At that time, the
burst error would be in the low order bits. and the remainder syndrome would
be the error pattern. Of course, j is unknown to the receiver. Thus the
process would have to be:

1. subtract (add) the address from the received message to get N(x) =
D(x) - A(x). which by (3-12) is a code word if no errors have been
made

2. divide the message N(x) by G(x) to determine if a remainder exists.
and thus an error has been made

3. compare the remainder (syndrome) pattern to the low order 24-bit
confidence pattern

17



4. if alII's in the syndrome are paired with a low confidence bit, the
error has been located

5. else cyclically shift right the message and the confidence word

6. return to 2, using the new shifted message as N(x).

Fortunately, the need to perform the whole division process each time can
be eliminated. This is because the syndrome S1 of the lef t cycli cally s hif ted
message can be produced directly from the original syndrome SO. By definition
of the syndrome, it is the remainder when dividing N(x) by the generator
G(x):

So = N(x) - G(x) QO(x) (3-16)

where QO(x) is some quotient, and So is of degree 23 or less. The left
shifted message's syndrome Sl is given by:

where xN(x) is the left shifted message, Q1(x) is a different quotient, and Sl
is again of degree 23 or less. Then:

(3-18)

But the degree of the left side is at most 24, while that of G(x) is exactly
24. Therefore the quantity in brackets must be a constant c (0 or 1) to keep
the right side degree no greater than 24. Furthermore, if the degree of So is
less than 23 (that is, if its leading coefficient s23=0), then the left side
is of degree 23 or less, requiring c to be O. Otherwise, if s23=1, xSo is of
degree 24 while Sl is of degree 23 or less, so the left side cannot be zero,
requiring c to be 1. Summarizing these results:

xso + G(x) if s23 = 1

xSo if 823 o

(3-19)

This equation states that the syndrome of the left shifted message can be
obtained from the original syndrome by a shift and add the divisor operation.
The process can be implemented by entering the original syndrome into a
division circuit set to divide by G(x), of the type shown in Fig. 4.4, and
operating the circuit with no input. Each cycle then shifts the syndrome, and
adds G(x) or 0 according to whether the rightmost stage (s23) is 1 or 0
respectively, as required by (3-19).
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This procedure would be directl6 applicable only to the full length
message, that is, with n = 2.75 x 10 bits of zeroes appended to its
beginning. Thus the total number of left shifts required to bring the error
burst to the right end of the message, namely n-j, would be enormous.
Fortunately, a modification of this procedure, using the polynomial F(x)
defined earlier in (2-12), is available for shortened codes.

Instead of employing the usual shortened code modification, though, the
Hade S implementation has chosen to use a revised form of the above basic
procedure. This alternate version in effect uses a backward (rig~t shift)
process. That is, in place of multiplying the Inessage by the xn- J needed for
lef~ cycltng, it multiplies by the x-j that produces right cycling. That
xn- J = x-J in xn- 1 modulo arithmetic is shown as follows:

(3-20)

Thus, a j cycle reverse shift and division process would be equivalent to the
much longer n-j cycle normal left shift process. Since shift regis ters don It
shift in reverse, the implementation of this process requires inserting the
original syndrome So in reverse bit order into another shift register, and
setting its taps to divIde by the reciprocal polynomial G'-(x), where the
coefficient g'-i is defined as the coefficient gZ4-i of the original G(x). The
implementation chapter presented later clarifies this procedure. The
additional shift register required for this procedure is not a drawback, but
rather a plus, as it frees the original register to process the next downlink
message.
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4.0 POLYNOMIAL ARITID1ETIC

As seen in the previous chapter, encoding and decoding procedures require
numerous polynominal arithmetic operations: addition, multiplication, and
division (subtraction is the same as addition, as +1 = -1 in modulo-2
arithmetic). Addition is implemented simply by a modulo-2 adder, also known
as an exclusive-or circuit. Multiplication and division, however, require
fairly complex shift register implementations. This chapter presents the
details of these circuits.

4.1 Polynomial Multiplication

The product of two polynomials, p(x) = H(x) G(x), is formed by grouping
together and summing modulo-2 all cross-coefficient terms having the same
exponent sum. In particular, the product coefficient Pj is given by:

r
Pj E gihj - i

i=O

where

hj-i = a for j-i < 0

hj-i 0 for j-i > k

(r the degree of G)

(k the degree of H)

(4-1)

Thus, the product coefficient can be computed if all the g coefficients are
available along with the r+1 h coefficients from hj down through hj - r •

Figure 4-1 presents a tapped r-stage shift register circuit that
implements this operation. The h coefficients are entered one by one, highest
one first, into the register (initialized to all zeroes). After the last one
(hO) is entered, zeroes are fed in until the multiplication is completed.
Thus the input plus the register always contains the sequence hj' hj-l, •• hj - r
as required, for all j from n=r+k to O. The g coefficients are represented by
the presence (gi=1) or absence (gi=O) of the inter-stage taps. Thus, each
clo~k cycle, the summation box produces the product coefficient according to
the above summation formula.

An alternate multiplication circuit is also commonly employed. This
circuit, shown in Fig. 4-2, generates each product coefficient piece by piece
as the input h coefficients are encountered. The above summation formula
indicates that the coefficient hi contributes to r+1 different product
coefficients as follows:
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Multiply p(x) = H(x) G(x)

1-' I-I
-~......~. ~ •• -...i

1_' I_I

/-, = Delay

_ ..J-'
I_I

8 1----- OUTPU'.

-------------------:-- 1

Register: for jth product coefficient (Pj)

I hj-r+l I---~I hj - r +2 I---~
, I I I
with hj - r at the input.

Fig. 4~1. First multiplication circuit.
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Multiply p(x) H(x) G(x)

'--'.......~I--I~--I...-+ ...-OUTPUT
1_' I_I I_I .

-I---~-I-... +_, I_I

INPUT.. , , ~...-·· •

Regis ter:

contains r partial product coefficients, each of which is
generated one term at a time- as they pass through the regis ter
stages.

Pj is output when hj - r is input

Fig. 4-2. Second multiplication circuit.
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Thus, in this second implementation. the shift register stages store the r
product coefficients that are being generated. When the new input coefficient
is input, its contribution completes one product coefficient which is then
output. adds to r-l already started coefficients. and initiates one new
coefficient. The multiplication is completed r cycles after hO is input
(zeroes being input during these cycles).

4.2 Polynomial Division

The process of polynomial division, Q(x) = H(x)/G(x), as illustrated by
the example in Fig. 4-3, is similar to long division. At each step, the high
order coefficient gr of the divisor is divided into the highest order
coefficient of the current remainder, with the result being the new quotient
coefficient. This quotient coefficient is then multiplied by the divisor, and
the result subtracted from the old remainder to form the new remainder. Since
modulo-2 arithmetic is being employed, two simplifications result. First, the
quotient is 0 or 1 according to whether the highest order remainder
coefficient is 0 or 1, and second, subtraction is equivalent to addition (-1 =
+1).

A circuit to implement this process is shown in Fig. 4-4. The shift
register stages store the highest order r coefficients of the remainder, which
are the only ones affected in the next step. The new quotient coefficient,
which is the output, is multiplied by the divisor via the shift register tap
circuitry (compare with Fig. 4-2). This product is then added (i.e:
subtracted) to the shift register stages to form the new remainder.

The shift register is initialized to zero. The first r shifts fill the
registers with the first r coefficients of H(x), which is the first remainder.
The remaining k-r+l shifts then produce the quotient coefficients starting
with qk-r' the highest of the quotient. The division remainder then resides
in the shift register, where it can be read in parallel or shifted out with
the feedback disabled.

An alternate circuit for division is presented in Fig. 4-5. This
implementation considers division to be a vertical column, rather than a
horizontal row, operation. As stated earlier, only the high order remainder
coefficient determines the quotient coefficient. This high order coefficient
is generated by the actions in the column above it, as indicated in the
Fig. 4-3 example. The coefficient value is initialized by an h coefficient.
Then it is inverted at each division step for which the quotient is a 1 and
the lining up g coefficient is also a 1. That is, the leading coefficient for
the jth division step is:

(4-2)

This coefficient, which determines the quotient coefficient qk-j-r' is thus
affected by the previous r quotient coefficients. Conversely, each quotient
coefficient affects the next r quotient coefficients to be produced.
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Divide Q(x) H(x) / G(x)

-x' + XO + x..} + a II- a + o + x + 1

x7 + 0 + x5 + a 1"'x
3

x6 + a + a II- x3 + 0 +x + 1

x6 + a + x4 II- 0 + x2

a + x4 x3 + x2 + x+ 1

a + a a + a + 0

~4 x3 + x2 + x + 1

Pc4 a + x2 + a + 1

x3 + 0 + x + 0
L

ROW

A

B

C

D

E

F

G

H

I

Row A: Input Stream
B, D. F, H: feedback for Fig. 4-4 type divider
C, E, G: intermediate remainders
I: final remainder

Column L: shows formation of leading coefficient of remainder in Fig. 4-5
type divider

initial value (Row A) - given by input
final value (Row G) - modified by prior quotient terms in rows

B, D. F

Fig. 4-3. Sample division process.
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Divide Q(x) = H(x) / G(x)

--------r--_;---~-OUTPUT

-,
1_1-

-1-.- ... --J-I~ +
I_I I_I

I-I
I_I

INPUT.

Input: hk' hk- I • ..• • hI' hO

Register: stores intermedtate remainder (see Fig. 4-3)

Feedback: multiplication of new quotient term by G(x) (see Fig. 4-3)

= high order remainder coefficient /gr (gr = I always)

Fig. 4-4. First division circuit.
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Divide Q(x) H(x) / G(x)

... -------........-------,

OUTPUT
for

division

-I~---I
I_I

---.1-1­
I_II-I---..j-Il~-I----...

_I I_I '_I"

INPUT

8
~I ...-OUTPUT for remainder

hI' hO during division phase

, q-r during remainder phase

Register: as qj is being generated (and qj+r is being output)

I QJ'+1 1---+ I q '+2 1---+
I I I J I

••• ---+ qj+r-l 1---+ 1qj+r I---+OUTPUT
I I I

final value: remainder quotients q-r --+ q-l
must be multiplied by G(x) to get remainder

Switch: thrown to disconnect feedback and connect input to produce
the multiplier needed to generate remainder

Feedback: new quotient coefficient

Fig. 4-5. Second division circuit.
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The shift register in this figure stores the last r quotient coefficients
generated. As each input is entered, it is summed with the contributions of
these quotient coefficients multiplied by the proper g coefficients. thereby
producing the proper leading coefficient of the remainder (which as stated
earlier is the new quotient coefficient) according to the formula (4-Z).

Outputs from the register first appear when the r+1st input coefficient
is encountered. This "delay" serves to match the fact that the highest
quotient coefficient is qk-r. When the last input coefficient arrives, the
last quotient coefficient. qQ. is output. The register then contains quotient
coefficients q-1' q-2 •••• '~-r' not the remainder. The remainder can only be
produced by a multiplication of the register contents and G(x):

( ) r-1 [ + ] r-ZR x q-1 gr K + q-1gr-1 q-Zgr x

+ ···+[q-1gr-j+lq-Zgr-j+Z+···]xr -j

Q+ •• ·+q~rgrx (4-3)

Comparing this division circuit of Fig. 4-5 with the multiplication circuit of
Fig. 4-1. it is clear that the divider can be converted to a multiplier by
switching out the feedback loop and s'N'itchingin the input line as shown in
the figure. Then the remainder coefficients must be read out of the register
and re-introduced to the circuit as inputs, q-1 first. Finally. the remainder
polynomial is produced at the output of the summing circuit. which as shown in
Fig. 4-1 is the normal multiplier output port. after r more cycles of
operation.

The result is that this division circuit requires at least r cycles more
time to compute the remainder than did the previous one. This additional
delay can be eliminated. though. in the special case in which the polynomial
to be divided has its last r coefficients all zeros. This condition
fortunately applies in the Mode S situation. as the message to be encoded is
shifted out of the parity field. leaving that field all zero.

By referring to Fig. 4-5, it is clear that the quotient coefficients are
actually generated r cycles before they are output. as they are the values
placed in the feedback loop. Thus, if the output is taken at the feedback
point. all coefficients qk-r through qQ will be obtained before the last r
inputs have been introduced. These inputs, in general, are needed to
determine the remainder. However. since they are all zero. they make no
contribution in this special case.

By definition. the remainder is the difference between the input
polynomial and the product of the quotient and divisor polynomials:

R(x) = H(x) - Q(x) G(x)

Since R( x) is of order r-1 t thought this can be wri t ten as:

R(x) = H(x)low order - Q(x) G(x)low order
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Using the facts that the low order H(x) terms are all zero, and that - = +,
the final result is:

R(x) = Q(x) G(x)low order

Expanding this result:

R(x) [qo gr-l + ql gr-2 + +q g ]xt'-lr-l a
+ [qo gr-2 + ql gr ....3 + +qr_2g0]xr '-2

(4-6)

+ (4-7)

At the time the last quotient qo has been generated by the division
circuit feedback, the register stages contain qo through qr_l.Furthermore,
qo is aligned with gr-l' ql with gr-2' etc. Thus the circuit, when placed in
a multiplier configuration, will generate, sequentially, the remainder terms.
The circuit in Fig. 4-6, therefore, implements both the required division and
remainder generation operations. This secbnd type of division circuit now
requires no more cycles than the first to perform these operations.
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Divide Q(x) = H(x) / G(x)

... 1-1
'_I

..
...I-I~... ~-I---,~·-L..

I_I '_I 1_'

:z

INPUT

LUTPUT

Register: same as Fig. 4-5
final value: quotients qo -) qr-l

Switch: thrown to disconnect feedback after input hr

Output: quotient coefficients qk-r -) qo while input exists
rem~inder coefficients Rr-l -) Ro in next r cycles

Fig. 4-6. Revised circuit for inputs with trailing zeroes.
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5.0 MODE S IMPLEMENTATION

Now that the mathematical description of the Mode S uplink and downlink
coding processes has been developed (in Chapter 3). and the polynomial
arithmetic circuits have been described (in Chapter 4). the actual Mode S
sensor and transponder coding implementations can be provided. This chapter
presents the actual figures contained in the Mode S National Standard and
Specification (FAA-E-2716). Each figure is functionally explained by putting
together the knowledge provided by the previous two chapters.

5.1 Uplink Impl~mentation

The sensor uplink encoder is shown in Fig. 5-1. Basically. it is the
revised division circuit presented earlier in Fig. 4-6. Note that the output
is taken at the feedback loop. rather than 24 cycles later when this value
exits the shift register as in the true division circuit of Fig. 4-5. This
change is thus equivalent to multiplying the input by x24 • yielding the
division x24M(x)/G(x) as desired.

With the switch up, the division is performed. and the remainder quotient
coefficients placed into the shift register as explained in the previous
chapter. Then. when the switch is lowered to remove the feedback. two
simultaneous operations occur in the now multiplier circuit (refer to
Fig. 4-6). First. the remainder R(x) is generated in the manner explained in
the last chapter when the input of the address is ignored. Second. the
presence of this input through the switch causes it to be multiplied by G(x).
This latter multiplication is not completed. however. as the 24 trailing
zeroes needed to complete the forluation of the product (see 4.1) are not
input. Thus only the high-order hits are produced. The result. by
superposition. is that the AP field output is:

AP = R(x) + A(x) G(x)hi~h order
o

as desired.

(5-1)

The transponder decoder circuit, also shown in Fig. 5-1, is again of the
type of Fig. 4-6. Only this time. it is always left in the division mode.
Once again. the input is multiplied by x24 due to the position of the output.
Thus the result is:

U' =
G(x)

as desired.

u (5-2)

5.2 Downlink ~mp~ementation

The transponder encoder circuit. also shown in Fig. 5-1. is virtually
identical to the sensor uplink encoder. The difference is that the address is
not input to the multiplier circuit through the switch for the second part of

30



INPUT

SENSOR ENCODER

OUTPUT: AP FIELD (LAST 24 BITS)

L- .. OUTPUT: TEXT (FIRST 32 OR 88 BITS)

INPUT: ALL BITS, INCLUDING ADDRESS

SWITCH: UP EXCEPT FOR LAST 24 BITS

TRANSPONDER DECODER

INPUT: ALL BITS. INCLUDING ADDRESS

OUTPUT: ADDRESS (LAST 24 BITS)

L- -- OUTPUT: TEXT (FIRST 32 OR 88 BITS)

TRANSPONDER ENCODER

INPUT >-,....--,

OUTPUT: AP FIELD (LAST 24 BITS)

L- OUTPUT: TEXT (FIRST 32 OR 88 BITS)

INPUT: ALL BITS, INCLUDING ADDRESS

SWITCH: RIGHT EXCEPT FOR LAST 24 BITS

----0-
BIT INTERVAL DELAY FOR ALL CODERS: NULLS IN D AT START OF PROCESS

Fig; . :5-1. Mode S implementation.

31



the operation. Thus, no multiplication of it by G(x) takes place. Instead,
the input is merely added to the remainder being generated. Thus the AP field
is now:

AP = R(x) + A(x)

as desired.

(5-3)

The sensor decoder represents the major hardware complexity of the coding
system. Figures 5-2, 5-3, and 5-4 t taken from the Mode S specification,
highlight the implementation. First, as shown in Fig. 5-2, the downlink
message is entered into the A-Register t which is a division circuit of the
type of Fig. 4-4. This circuit produces the remainder in parallel-readable
form in the shift register. Thus, the remainder can be bit-by-bit added
(compared) to the expected address to produce the error syndrome. Meanwhile,
the message and confidence bits are being stored in the DB and CB registers
respectively. The confidence test shown in the figure is discussed below.

If the syndrome is non-zero, an error burst is present. This burst can
be in any 24-bit segment of the message. To produce the sequence of
successively cyclic shifted syndrome patterns, the "reverse division"
E-Register circuit of Fig. 5-3 is used. This circuit, as explained
in Section 3.2 t is filled by the initial syndrome in bit reversed order, and
its taps implement the reciprocal polynomial G'(x) (compare the g coefficient
order with Fig. 5-2). The explanation also indicated, as shown, that it
has no input, only feedback. The CB and DB registers are tranferred to the L
and M registers respectively, also in reverse order, so that the low-order
24-bits are the first set to be checked.

One shift at a timet the successively cycled syndrome is produced
according to equation (3-19). In parallel, the message and confidence stream
are cycled one-bit at a time. When the l's of the syndrome pattern match the
low confidence l's in the low order 24-bits of the confidence bit pattern, the
error has been trapped. The correction enable bit is then set by the error
location function.

At this time, as shown in Fig. 5-4, the feedback of the E-Register is
disabled, so that the syndrome can be read out serially. In parallel, the M
register shifts out the message bits. Each bit corresponding to a 1 in the
error syndrome is then corrected by adding the two streams bit-by-bit.

One further check is made during the detection phase of the correction
process, namely the number of low confidence bits contained in each 24-bit
segment of the message is determined. If the number of them ever exceeds a
threshold, error correction is rejected. This is because the possibility of
an erroneous correction goes up sharply with the number of low confidence
bits. In the limit, if any 24 consecutive bits were low confidence t the
syndrome pattern would be matched no matter what it was, and correction of
those specific 24 bits would always occur.
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4r- S24 S23 S2 } ERROR
S1 SYNDROME

A24 A23 A 2 A1 )BIT
DECISION

SEQUENCE
INPUT

A-IREGISTER

OB112 =056 0B 111=055 OB 57 =01 OB
56

OB 2 DB 1

OB­
REGISTER!I . . I I

~ DO

CB51 =C 1 CB.6 =, CB 2,' CB, =, )

~ I !\CB-
~~\REGISTER

I

CONFIDENCE
BIT

SEQUENCE
INPUT

...
CONFIDENCE

TEST

CORRECTION DISABLE BIT

FIG. 5-2. ERROR DETECTION LOGIC
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LgO ••

D t--.......~! L REGISTER •

\L111 \L112

m. CORRECTION
ENABLE BIT

INITIALIZED
TO S1

ERROR LOCATION FUNCTION

INITIALIZED
TO S24

D D o E REGISTER

g* = {1: J = 1,2,.... 12.14.21

J 0: OTHERWISE

FIG. 5-3. ERROR LOCATION LOGIC
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FIG. 5-4. ERROR CORRECTION LOGIC
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