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ABSTRACT

This report presents work done during phase 3 of the US National Microwave
Landing System (MLS) program toward developing a computer simulation model of
MLS multipath effects, the experimental validation of the model, and the
application of the model to investigate the multipath performance of proposals
for the new approach and landing guidance system. The model was developed by
separately considering the charactertistics of the four basic elements affect-
ing system operation in a multipath environment, i.e., airport, flight pro-
file, propagation, and system elements. This modeling approach permits the
examination of the effect on system performance of individual multipath per-
formance factors such as: (a) reflections from terrain, aircraft, buildings
with differing orientations; (b) shadowing by aircraft, buildings, and convex
runways; (c) aircraft flight profiles and approach speeds; and (d) system
design features to combat multipath.

The first two volumes of the report presented an overview of the simula-
tion effort as well as describing in detail the propagation and MLS technique
mathematical models and their validation by comparison with experimental
data. In this volume, we describe the results of comparative simulations for
the various MLS techniques in various scenarios and analyze in detail certain
multipath performance features which were found to be significant in the
scenario simulations.

Simulation results are presented both for the common comparative scen—
arios developed by the AWOP Working Group A (WG-A) multipath subgroup and for
additional scenarios suggested by individual members of WG-A. Shadowing of
the MLS azimuth by taxiing and overflying aircraft is analyzed analytically,
by comparison of various field results and by comparative simulations.

The remainder of the report focuses on multipath performance factors
specific to various individual techniques., These include:

(1) the effects of angle data outlier tests and filtering in
the TRSB receivers

(2) the effects on the DML5 system due to the receiver AGC,
receiver motion-induced Doppler shifts, and the use of

commutated reference systems, and

(3) acquisition/validation algorithms for all three tech-
niques.

The report concludes with a summary and suggestions for future work.

Part 1 of this volume consists of Chapters I through IV; Part II contains
Chapters V through VIII and the appendices,
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I. INTRODUCTION AND OVERVIEW

A principal objective for the Microwave Landing System (MLS), is to
reduce (as compared with ILS) the 1likelihood of guidance errors caused by
reflections of the radio waves from terrain irregularities and objects at the
airport (i.e., multipath). Thus, an important task in the MLS assessment by
the International Civil Aviation Organization (ICAQ) All Weather Operations
Panel (AWOP) was to determine the sensitivity to multipath for the various
proposed MLS techniques. 1In this volume of the report, we focus on the com-
parative behavior of the various proposals in common scenarios as well as
analyzing specific multipath performance features of the systems.

Early in the AWOP assessment, it became apparent that comparative multi-
path performance could only be obtained by subjecting each system to identical
conditions. The panel recognized that the MLS should be operational well into
the 21st century, when far greater numbers of structures are expected to exist
at airports. It was therefore necessary to examine system performance using
airport models related to geometries found at today's airports but at the same
time containing structures which one could expect to find in the future.
Fully validated computer simulation of both airport multipath environments and
MLS equipments was believed to be the most promising means of making the
desired comparisons.

At the Melbourne meeting of the ICAO All Weather Operations Panel (AWOP)
Working Group A (WG-A), it was agreed that computer simulation of the proposed

. . , %
techniques should be accomplished, and a number of airport scenarios were

*A scenario specifies the siting of all ground-based equipment, the location
and pertinent electrical characteristics of each reflecting and shadowing
object and the aircraft flight path and approach velocity.
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specified for this task [22]. These scenarios, while based upon existing
airport layouts, were in most cases exaggerated in ways expected to provide
more stringent tests of MLS capability than would the actual selected airports
themselves, At the May 1976 Washington, D.C. meeting of WG-A, the use of
computer simulation as a tool in assessing comparative multipath performance
was agailn endorsed and a subgroup established to oversee the multipath simula-
tion activity [111]. In particular, this subgroup:
(1) reviewed available system implementation descriptions and
devised a mechanism for timely exchange of any missing
data,
(2) established ground rules for system model validation,
(3) reviewed the existing set of scenarios and augmented it
with several additional scenarios (based on the same
airports) to address issues not foreseen at the Melbourne
meeting,
(4) agreed to use the Lincoln Laboratory propagation model
[29] for all the multipath simulations (consequently, the
multipath signal characteristics for each scenario are
identical for all implementations in a given frequency

band, and

(5) established a common format for the presentation of
results.

At subsequent meetings of the AWOP WG-A, additional scenario modifications
were developed by the multipath subgroup. The results of these generally
agreed to WG-A scenario simulations are described in chapter II. 1In addition,
individual members of WG-A introduced scenarios which were intended to address
specific performance features for one or more systems, Representative scenar-
ios and analyses which involve reflection and shadowing phenomena are presen-

ted in chapters II[ and IV, respectively.
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It is important to note the difference between the scenarios in this
report and the simulations reported in volumes I and II of this report. Two
general classes of simulation were conducted for the various interested par-
ties: sensitivity simulations and airport-specific simulations. Sensitivity
simulations are primarily concerned with identifying system sensitivities to
general airport features (e.g., building and aircraft locations).

Models for the AWOP scenarios* are related to sensitivity simulations and
were developed for the most part by placing simulated buildings at the loca-
tions of actual buildings at actual airports. It was agreed that the build-
ings assumed in some simulation runs were to be higher and/or more reflective
than the actual buildings so as to compare all the systems in the more chal-
lenging environment that could exist when MLS is implemented. Also, it was
agreed to simplify the airport features by representing the buildings by
uniform flat plates, terrain as a horizontal flat sheet, etc. This was done
because inclusion of fine detail (for example, the precise locations and
shapes of windows on airport buildings) would so complicate the resulting
simulation that one might never achieve the desired understanding of system
behavior. Thus, although those scenarios were evolved from actual airports,
the simulation results could not be directly related to MLS performance at the
airport from which the scenario was derived. Although this point was well
understood within AWOP [66], confusion was created outside AWOP by the (un—
fortunate) use of actual airport names to designate the AWOP scenarios derived

from those airports.

*e.g., the "standard" scenarios agreed on by the AWOP [72,111] and/or the
additional scenarios generated by the AWOP panel members from the FRG,
Netherlands, U.K., and U.S.



Airport-specific simulations, intended to predict MLS performance at a
given airport on a particular flight path, require utilization of very de-
tailed airport data in generating the airport model. Airport-specific simul-
ations such as are described in volumes I and II of this report were utilized
to validate the multipath simulations. Careful site surveys are made to
determine precise transmitter and scattering object locations, terrain fea-
tures (e.g., grass height and ground contours), building surface composition,
taxiing and parked aircraft locations, etc. Additionally, precise aircraft
flight profile data is often necessary to give a close replication of resul-
tant error waveform.

As noted in volume I of this report, the comparative scenario simulations
have the virtue of bringing all the facets of multipath performance for a
given system together to better assess the system behavior in the expected MLS
environment. However, it was also necessary to analyze in depth those factors
which emerged as important in yielding system performance differences. Figs.
1-1 to 1-3 show the multipath performance features” suggested as important by
the respective system proposers. These suggestions were used as a starting
point in the process of significant feature identification; however, many of
the significant features were identified principally via the scenario simula-
tioms,

One issue identified in the scenario simulations was the means by which
the TRSB receivers would reject "unreasonable” angle estimates and still time

average the results to reduce noise and dynamic multipath effects. Chapter V

*
Appendix A summarizes the specific implementations used in the simulations
reported here.
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1)

2)

3)

4)

DLS - Azimuth ground station

Large base interferometer system (appr. 95 wavelength for + 40° cover-

age

Mathematical horizontal beam forming, including beam alignment to the

direction of the received signal (virtual diagram)

Use of directional antennas

Growth potential:

. use of vertical aperture antennas

. simple modification of ground antenna arrays according to the special
critical environments, i.e., sharper beam forming in vertical and/or

horizontal direction, reducing of side lobes and grating lobes

DLS - Elevation ground station

Use of vertical beam forming procedures in the computer

Mathematical beam alignment corresponding to the elevation of the
received signal

Lateral diversity antenna configuration for in beam multipath rejec—
tion. With the help of the lateral diversity antenna configuration a
virtual horizontal antenna pattern is formed in additional to the

virtual vertical pattern.

Common features for DLS—-A and DLS-E

Multipath rejection due to time delay between direct and multipath
signal
Coverage control within the computer program

Growth potential for improved mathemetical multipath rejection features

Airborne data processing

Elimination of outliers due to the airborne tracking gate
Variable airborne tracking gate width dependent on signal quality
(reply efficiency, confidence level of the received signal)
Digital airborne data filtering, filter characteristic adapted to the
interrogation rate
Variable airborne interrogation rate

Normal mode: 15 Hz

Approach mode: 50 Hz (automatically changed)

Fig. 1-1. DLS multipath immunity features.
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larger than tracked signal
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Not technique related
Tested on 60-wavelength elevation array
Can give in-beam multipath rejection to signals of known error sign,

e.g., ground reflection in elevation

Fig. 1-2. Overview of DMLS multipath protection features.
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TRSB Multipath Combatting Features Overview

A)

B)

c)

D)

E)

F)

G)

H)

1)

Power programming — ability to vary radiated power as a function of scan
angle.

Coverage control - ability to cutoff radiated power as a function of scan
angle.

Narrow beams - use of wide apertures (e.g., 60 ) to yield narrow beam
angle coding.

Pattern control - use of array elements which provide sharp elevation
cutoff at low elevation angles to reduce ground influence. Shaped azimuth
pattern of elevation arrays to provide centerline emphasis.

Motion averaging — optimized approximately uniform asynchronous scan
spacing within data frame to provide good motion averaging down to low
scalloping frequencies. High elevation/flare data rates.

Amplitude comparison - out of beam multipath rejected by amplitude
comparison. Also, "real time” thresholding.

Data consistency - checks on to—fro beam symmetry, dwell gate widths, slew
rate limiting on output values.

Time gate — Ignores out of beam multipath in making angle measurement
(even if out of beam is momentarily greater than direct).

Single edge processor — makes measurements on clean edge of beam envelope

when multipath is known to affect other edge (e.g., as in flare).

Fig. 1-3. Overview of TRSB multipath features.
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describes the differences which arise when the data rejection is done prior to
the filtering operation as opposed to after the filtering is accomplished.

Chapter VI discusses several multipath performance features which were
unique to the DMLS concept. These include

(a) modification of the effective beam patterns due to multi-
path effects on the DMLS AGC circuit

(b) errors due to dynamic multipath effects on the DMLS

reference signal including the performance interplay with
the DMLS scan format

(¢) errors due to dynamic multipath effects on the DMLS array
signal
and
(d) wuse of lateral diversity for an elevation array to reduce
the effects of multipath from vertical surfaces.
Another performance issue was the capability for acquisition and validation
(ACQ/VAL) of the track on the proper angle signal. In principle, the various
systems could utilize equivalent approaches to this problem. However, cost and
hardware realization factors lead to suboptimal approaches in several cases.
Chapter VII outlines the general ACQ/VAL problem and then discusses specific
performance features of each proposed implementation. Also described is one
scenario intended to explore ACQ/VAL behavior when several competing multipath
signals are present.
The final chapter summarizes the results of the AWOP WG-A studies and

presents some multipath performance areas which merit further investigation in

the context of implementing the TRSB technique which was adopted by ICAO.



II. AWOP WG—A "STANDARD SCENARIOQS"

In the preceding chapter, we indicated how a set of "standard" multipath
scenarios was developed and refined by the AWOP WG—-A. 1In this chapter, we:
(1) present the various airport scenarios
(2) describe the principal multipath characteristics (ampli-
tude, separation angle, time delay, and scalloping fre-

quency) for the scenarios

(3) show the resulting errors for the proposed DLS, DMLS, and
TRSB implementations

The original AWOP WG—-A scenarios developed in Melbourne are described in
Section A.l with the additional scenarios described in Section A.2. Section B
describes the principal multipath characteristics (amplitude, separation
angle, and time delay) for each of the scenarios with terrain reflectivity
characteristics (dielectric counstant and roughness) similar to flat, smooth
snow, Also, one scenario with inhomogeneous terrain characteristics is also
described. Scalloping frequency data for many of the principal reflectors is
also given.

Section C describes the results of simulations of the DLS [7], DMLS [8],
and TRSB [9, 10] systems for each of the AWOP WG-A simulation scenarios. We

emphasize at the outset that tne results here consider only multipath error;

actual receiver outputs would also have a "clean environment” noise component

due to front-end noise, quantization, etc.

A. Airport Scenario Descriptions

1. Scenarios described in the report of the third (Melborne) meeting of

the All Weather Operations Panel Working Group A [72].

2-1



¢-é

1\ 8-10 ft HIGH 3TEEL BLAST

L FENCE ABOUT 1000 ft LONG g
\ <\

HAG/-\R -~

(§>|I!IHIIIII'II.IIIII -
MLS ELEV. /
UNWAY 10K x 150" BL/3gR-

( FRELO g

( 300"
LRIT!RL

‘ .
TAXI YIAY —_
"N 6 f1 HIGH STEEL BLAST 2
FENCING ADOUT 1100%/

JC___
Lo

& /) | B ——
/

APRON

/aX=3<

G WIDE BODIED AiRerAFT

Fig. 2-1. Scenario 1. elevation/flare multipath at decision height and threshold (JFK).



Scenario 1: (Fig 2-1) Elevation/Flare Multipath at Decision Height and
Threshold. Flare Multipath at Decision Height and Threshold. Flare Multipath
in Touchdown Zone, |

The congestion at the end of runway 13L at JFK (Fig. 2-1) demonstrates
how the need for space at major metropolitan airports may create quite chal-
lenging multipath environments. The geometry of this runway end was therefore
used as a starting point for the first scenario.

(1) Equipment Siting

The location of the existing ILS glide path is shown.
The MLS elevation antenna to be sited at the opposite
side of the runways as shown in Fig. 2-1. Similarly, the
flare element will be sited on the opposite side of the
runway.

(2) Flight Profiles

For this case, centerline approaches up to a 2.86° glide
path (20:1) toward the existing GPIP are appropriate.
The approach will begin at an altitude of 500 ft. The
flare maneuver will be an exponential flare commencing at
50 ft altitude and terminating at touchdown 300 ft beyond
GPIP, assuming the aircraft antenna to fly the defined
path and an antenna to wheel height of 8 ft. The
aircraft velocity (important for motion averaging
effects) is chosen as 130 knots,

(3) Multipath Scatterer Characteristics

Buildings - the surfaces towards the runway are taken to
be flat, homogeneous plates whose effective reflection
coefficient is 0.7 for angles of incidence (defined as
the angle between the incident ray and reflecting
surface) above 20°* and 0.9 otherwise.

*Although the locations of the buildings in the model are in agreement with
those on the airport, the panel somewhat arbitrarily specified these reflec-
tion properties and they are not necessarily of the actual buildings (see
volume I of this report). However, the specified properties are not atypical
for U.S. airports (see [27]).
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Aircraft - the aircraft are taken to be wide-bodied
aircraft such as B747, A300, DCI0 and Ll1O11. The
fuselage typically can be represented as a cylinder of
diameter 20 feet which is 125 feet long. The tail fin is
typically 35 feet in vertical extent and approximately 25
feet wide.

Ground reflections - the ground is taken to have a
dielectric constant e/so = 1.2 and conductivity = 0.

(4) Multipath Conditions Generated

Multipath generated by the various scatterers in the
scenario is summarized below and will be considered

simultaneously.
CAT I CAT II Touchdown

Function DH DH Threshold Zone
Elevation*
In Beam BLDG 1 ARCFT, BLDGS 2-6 ARCFT, BLDGS 2-6
Out-of-Beam GND GND, ARCFT
Flare*
In Beam - BLDGS 3,6 BLDG 3
Out-of-Beam - GND GND

*Note: It is recognized that the terms "In Beam"” and "Qut-of-Beam” may only
apply to specific systems.

Scenario 2: (Fig 2-2) Azimuthal Multipath at Threshold and Rollout
The coverage region of the azimuth guidance function typically encom-
passes much of the airport building complex. Thus, it is not surprising that
several multipath reflections may be present simultaneously near threshold.
The details are as follows:
(1) Equipment Siting
Runway 24R at LAX has a category 2 ILS localizer sited some 3000 feet
beyond the end of the runway. For purposes of this scenario, the MLS

azimuth array will be sited 1000 feet beyond the end of the runway.
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(2) Approach Profiles

As in Scenario 1, the primary concern is with the final stages of ap-
proach. Hence, a centerline approach on a 2.86° (20:1) glide slope from
500 ft altitude direct to GPIP is appropriate. As before, the aircraft

velocity considered is 130 knots.

(3) Scatterer Physical Characteristics

Each of the major scatterer types is considered in turn:

Buildings: the surfaces facing the runway are taken as flat homogeneous
plates whose effective reflection coefficient is 0.7 for angles of inci-
dence above 20° and 0.9 for angles of incidence below 20°%, Buildings 1-3
are 30 meters high. Buildings 4 and 5 are 15-m—high terminal buildings
with 50-m wings included some 36° with respect to a line parallel to
centerline.

Aircraft: as in Scenario 1.

Ground: the ground between the transmitter and the approach end of the
runway is taken to be slightly humped as shown in Fig 2-2., The ground
along centerline is taken to be flat smooth concrete (e/so = 13) or flat
snow (e/eO = 1.2)., The ground off the runway is taken to be flat smooth

ground (e/ey, = 13) or snow.

*

It should be noted that the runway facing surface of the actual building 1
which was modified (at considerable expense) to reduce the ILS localizer
nmultipath levels so that a successful ILS installation could be accomplished
(271,
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(4) Multipath Conditions Encountered
The various buildings and aircraft are located such that out-of-beam
azimuth multipath is more or less continually present from the Cat, II

decision height to threshold.

Scenario 3: (Fig 2-3) Azimuth, DME and Elevation Multipath at STOL Port
This scenario shown in Fig 2-3 is derived from an airport layout (Crissy)
which is under consideration as a civilian STOL port. The less stringent
obstruction clearance criteria permits vertical surfaces to be located
much nearer the runway than was the case in Scenarios 1 and 2. This
scenario is also interesting in that building 1 is located and oriented
much like the AWOP azimuth multipath screen test [72], and thus yields
azimuth multipath over a substantial section of the flight path near
threshold. The train assumed to be on the adjacent track yields multipath
in this same region; thus, we have a possibility of simultaneous multipath
analogous to that of Scenario 2,
(1) MLS Equipment Siting
It is assumed here that the MLS azimuth and elevation elements are
not collocated so as to achieve Cat. I (or hopefully, Cat. II) per-
formance., The elevation array is assumed to be on the opposite side
of the runway from the train tracks so as to minimize the likelihood
of elevation signal reflections from trains,
(2) Approach Profiles
The principal multipath here is expected to be encountered near

decision height., The flight profile will be a centerline approach at
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a 6° glide slope from 500 ft altitude to 8 ft altitude or loss of
signal. The approach velocity is 70 knots.
(3) Scatterer Physical Characteristics
Each of the major types of scatterers is considered in turn:
Buildings - the surfaces facing the runway are taken to be flat
homogeneous plates whose reflection characteristics are the same as
those in scenario 2, Buildings 1,3,4, and 6 are 10 meters high,
while buildings 2 and 5 are 25 meters high.
Train Cars - the train car sides facing the runway are flat metal
plates 5 meters high and 12 meters in length.
Ground - the runway is smooth flat concrete (e/e, = 5 or e/e, = 13)
or snow (e/eo = 1,2) while the terrain to the side is taken to be
smooth flat ground (e/so= 13) or smooth fresh snow (e/eo =1.2).
(4) Multipath Conditions Encountered
Buildings 1i-4, and 6 can generate azimuthal multipath at decision
height, as can the train cars. Building 5 can generate elevation
multipath between the Cat. II decision height and threshold.
2. Airport Scenarios Developed by Multipath Subgroup at the Washington Meet-
ing (May 1976) of AWOP Working Group A. [111]
Scenario 4: Elevation/Flare Multipath at Decision Height and Threshold.
Flare Multipath at Touchdown.
This scenario is a variation on scenario 1 in which the MLS elevation
antenna is sited on the same side of the runway as the existing ILS glide
slope (see Fig. 2-1) and at the same distance along the runway as the MLS

elevation position shown on Fig. 2~1. Also, the flare antenna is placed on
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the opposite side of the runway from the flare location shown in Fig. 2-1.
For both this scenario and scenario 1, the elevation and flare antennas are
assumed to be 400 feet and 250 feet, respectively, off the centerline.

All other aspects of scenario 4 (flight profiles, scatterer characteris-
tics) are identical to those of scenario 1. And, as in scenario 1, buildings
1 and 2 generate elevation multipath between Cat II DH and threshold.

The rationale for this variant on scenario 1 is that large buildings near
threshold are either on the same side of the runway as the elevation and flare
antennas or they are on tine opposite side of the runway. Consequently, it was
deemed desirable to compare the various systems for the two siting possibil-
ities.

Scenario 5: Azimuth Multipath/Shadowing on Curved Approach

Large buildings located near the stop end of the runway can produce
significant azimuthal multipath for 1large portions of a curved approach.
Since one of the principal MLS requirements 1is high quality proportional
guidance over a wide coverage volume, it was felt that one scenario should
explore the off centerline capability of the various systems.

The scenario is derived from the airport layout of Fig.2—-1 by siting the
dazimuth unit at the other end of the runway and then considering the aircraft
to be flying at right angles to the extended runway centerline as shown in
Fig. 2-4.

As the aircraft enters the MLS coverage volume (assumed to be +40°), out-
of~beam azimuth multipath is generated by buildings 1-3. Multipath from the
various buildings could be encountered until the aircraft azimuth is less than

10°. As the aircraft crosses over centerline, buildings 1-3 can shadow the



direct signal for considerable periods. Thus, it is seen that a high degree
of immunity to shadowing and out-of-beam azimuth multipath is essential for an
MLS.
(1) Equipment Siting

Runway 31R at JFK airport has an ILS localizer sited 1000 ft beyond the
end of the runway. For purposes of this scenario, the MLS azimuth antenna was
also sited 1000 feet beyond the end of the runway as shown in Fig. 2-4(a).
(2) Flight Profile

In the section where reflections occur, the aircraft is assumed to be
flying level at a height of 1200 feet and a ground velocity of 160 knots,
while the portion where shadowing occurs, the aircraft height is 2000 feet*,
The flight trajectory, shown in Fig. 2-4(b), is at right angles to the ex-—
tended runway centerline at a distance of 2.3 n miles from the end of runway
31R (this distance is the mean of the Carnarsie approaches to JFK, which were
taken as exemplifying noise abatement IFR approaches available with MLS).
(3) Scatterer Physical Characteristics

These are identical to scenario 1 except that no scattering aircraft are
present.
(4) Multipath Conditions Encountered

Qut-of-beam azimuthal multipath is more or less continually present from
an aircraft azimuth of -40° to -10°. Similarly, shadowing (diffraction) is

encountered between azimuths of +10° to +40°.

*It was originally planned [111] that the aircraft height would be 1200 ft in
both sections; however, the shadowing loss at 1200 ft was such (~-30 dB) as to
make unrealistic the assumption of sufficient SNR (e.g., for function
identity decoding). Consequently, it was agreed that the shadowing portion
should be at a greater height.
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Scenarios 6-8 - Scenario 1 Airport Geometry with "Wiggled™ Flight Path

This scenario is a variant on scenario 1 where the aircraft 1lateral
position and heading vary sinusoidally during final approach. This variation
in aircraft position/heading represents typical path holding for a CTOL air-
craft [110]. The effect of the heading changes is to modify the scalloping
frequency along the flight path such that it no longer increases monotonically
as in a straight in approach. The position variation changes the rf phase
relationship between the direct and multipath components at a given location,
and thus changes the errors at a given scalloping rate.

The specific lateral position and heading changes are based on the
Smith's Industry studies [110]:

longitudinal position 2 X =X -~ Vtcos 8

gs
lateral position 2 y = YM sin (0.3t + ¢0)
. o A .
vertical position = z = z - vt sin 6
o gs
. . A _
longitudinal velocity = vV = -V cos egs
lateral velocity 2 vy= 0.3 YM cos (0.3t + ¢0)
A
vertical velocity = v_ = -v sin 0
z gs
where:
x = 18850
o
YM = 17.3 ft
z = 500 ft
o

® = 0.05 radians (2.870)
gs
9, = 0 and + 2n/3 radians

v = 219 ft/sec
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All other aspects of the scenario (ground equipment and sca;terer loca-
tions, scatterer characteristics and multipath conditions) encountered are as
in scenario 1.

B. Airport Models and Multipath Characteristics for Various Scenarios
In this section, unless otherwise indicated, the terrain was assumed to
be a flat homogeneous surface with complex dielectric constant
[e/so = 1.2 + j.01] and the ground reflection multipath computed using the
usual flat plane model.
i. Scenario 1

Scenario 1 is derived from runway 13L at John F. Kennedy International
Airport (JFK). Fig 2-5 is a blowup of the threshold end of the runway where
most of the buildings are concentrated. The six numbered buildings are those
included in the scenario model. The coordinate system used has as its origin
the center of the top end of the runway. The positive x direction is towards
the threshold and positive y direction towards buildings 4, 5 and 6. The
phase center of the elevation transmitter position is (9200, =400, 10) with
the flare at (8000, 250, 10) the DME (0,120,5), and the AZ at (0,0,5) (dimen-
sions are in feet). The six buildings and five aircraft locations are speci-
fied in Table 2-1. It is assumed that the building surfaces are flat rec-
tangles with reflection coefficient prc = 0.7 1if the grazing angle is greater
than 20° ( and 0.9 otherwise). The aircraft are taken to be Boeing 747's.
The flight path along which multipath and errors are calculated is as follows:

Flight Path: v = 219.56 ft/sec (130 knots)

Starting at (18850,0,500) the path descends along
four straight line segments sampled every 43.91 ft
(5 Hz rate) with break points at (9850,0,50),

(9350,0,29) and (9050,0,20) and ending point at
(8850,0,8).



TABLE 2-1
BUILDING AND ATIRCRAFT LOCATIONS FOR

SCENARIOS 1,4, and 6-8

Height
Buildings Building Locations (ft)
B1. (10750, -750) (11400, -750) 100
B2. ( 9100, -~850) (10300, -850) 100
B3. ( 8000, -700) ( 8700, -700) 50
B4, (11150, 890) (11400, 725) 52
B5. (10700, 1200) (10900, 1075) 52
B6. ( 9675, 1150) (10025, 950) 52

Aircraft Location for MLS

Plane Tajl Locations Nose Locations
Al. ( 9200, 400) ( 9399.7, 390.1)
A2, ( 9600, 400) ( 9787.4, 469.9)
A3. (10200, 500) (10399.2, 517.4)
A4, (10400, 400) (10595.3, 443.1)
A5, (10000, 400) (10189.4, 464.1)

Origin at stop-end of runway

Azimuth Transmitter at (0,0,5)

Elevation Transmitter at (9200,-400,10) for C band
Elevation Transmitter at (9200,-400,16.5) for L band
Flare Transmitter at (8000,250,15)

DME Transmitter at (0,12,5)
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Computer generated maps (rotated 180° relative to Fig. 2-5) for this
scenario for C and L band carrier frequencies are illustrated in Figs. 2-6 and
2-7 together with peak multipath levels and the x distance along the flight
path at which the peak occurred. The symbol G refers to specular ground
reflections. The B's represent buildings with the appropriate numbering and
the A's represent airplanes. The levels, as given, assume that both the
transmitter and receiver antennas are omnidirectional (each system simulation
accounts for the antenna patterns in evaluating the system errors). The
computed multipath levels and separation angle for the six largest ranked
reflections are presented for azimuth and elevation for C-band carrier fre-
quency in Figs. 2-8 and 2-9 and azimuth, DME, and elevation for L-band carrier
frequency in Figs, 2-10 to 2-12. |

The azimuth multipath levels plotted at a given point for a scatterer
represent the largest level of the four paths X-0-R, X-G-0-R, X-0-G-R and X-G-
0-G-R (where X denotes transmitter, O the obstacle, G the ground and R the
receiver) by which specular reflections reach the receiver [29]. The effec-
EEXE M/D level for that scatterer involves the (coherent) sum of these four
paths taking into account the ground antenna pattern characteristics of a
given MLS.

The plotted elevation multipath level is only the X-0-R path level. The
rationale here is that the other path components will be heavily attenuated by
the ground antenna patterns ("real” or "virtual"”) and/or signal processing.

Figs. 2-13(a), (b), and (c) illustrate where reflection edge rays inter-
cept the flight path for the transmitter located at the azimuth site, EL 1,

and flare sites, respectively. 1In almost all cases of building and aircraft
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fuselage reflections the multipath will peak between these two limits and be
low elsewhere. An exception to this rule can occur if the height of specular
point is well above the building as we see in the case of building 3 in Fig.
2-10. The peak reflection does conform to our expectations but there are
other lower peaks near x = 14000 feet. These peaks correspond to the point on
the flight path where the height of the specular point is in proximity to that
of the building. Aircraft tail reflections are of lower level and more spread
out due to the curvature of the tail,Comparing Figs. 2-13(a), (b), and (c)
with the corresponding multipath plots, we see the multipath appears where
expected.

Buildings 1 and 2 have elevation multipath levels, separation angles and
a flight path duration such that noticeable elevation errors were produced for
all three systems. Since motion averaging proved to be an important factor in
the end performance, and motion averaging is closely tied to scalloping fre-
quency [28], the scalloping frequencies are of particular interest here. Figs
2-14 and 2-15 show the scalloping frequencies for these two buildings. We see
that the scalloping frequencies vary considerably within the multipath region,

corresponding to a "low persistence” geometry [28].

2. Scenario 2
Scenario 2 is derived from the geometry of runway 24R at Los Angeles
International Airport (LAX)., Fig 2-16 1is a map of the airport. With the
origin of the coordinate system used at the stop end of runway 24R, the azi-
muth and DME transmitter sites are at (~1000,0,6), the elevation and flare

transmitter sites are at (7900,-400,10), and (7000,-400,13). There are five
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buildings and four airplanes included in this scenario, but two of the build-
ings (B4 and B5) have wings extending outwards and they are specified as B6
and B7. The locations of the buildings and aircraft are given in Table 2-2,.
Again the aircraft are assumed to be Boeing 747's. The flight path along
which multipath levels and system errors are calculated is as follows:

Flight path: v = 219.56 ft/sec (130 knots)

Starting at (17700,0,500) and descending along a straight line toward

(7700,0,0) with samples every 43.91 ft (5 Hz rate).

The runway is modeled as being humped with the hump shaped as a segment of

a circular cylinder of radius 25,000 ft and centered at (3800,0,-24995).

Computer generated airport maps are given in Fig. 2-17 for C band carrier
and Fig. 2-18 for L band. These are followed by multipath plots for C band
for each of the transmitter sites (Figs. 2-19 and 2-20) and for L band for
each of the transmitter sites (2-21 to 2-23). The reflection edge rays for
the azimuth and elevation transmitter are illustrated in Figs. 2-24 and
2-25. Again, in comparing region of significant multipath levels to Figs. 2-
24 and 2-25, there are no surprising results.

There is one significant difference in these multipath plots from those
of scenario 1 and that is in the behavior, for azimuth and DME, of the ground
reflection. This difference is due to the shadowing resulting from the hump
in the runway model. Fig. 2-26 shows the diffraction results caused by the
hump in the runway. We see, for C band, that at the start of the flight path
at x = 17700 there is no effect from the shadowing. The receiver descends
along the flight path so that the angle of the receiver above the hump gets

smaller until at about x = 15000 the diffraction model takes over and the
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TABLE 2-2

SCENARIO 2 BUILDING AND AIRCRAFT LOCATIONS

Height

Building Locations (ft)

B1. (3975, -3400) (4400, -3400) 100
B2. (4550, -2100) (5080, -2100) 100
B3. (4800, -3100) (5200, -3100) 100
B4. (6825, -1800) (7125, -1800) 50
B5. (6825, -1800) (8080, -1800) 50
B6. (7125, -1800) (7524, -1706) 50
B7. (8080, -1800) (8209, -17n6) 50

Note: Buildings 6 and 7 are wings of Buildings 4 and 5.

Aircraft Locations

Plane Tail Location Nose Location
Al, (5700, -1150) (5900, -1150)
A2, (6700, -1150) (6900, -1150)
A3. (8758.58, -1150) (8900, -1008.58)
A4, (8900, =-900) (8900, -700)

Origin at stop—-end of runway

Azimuth and DME transmitters at (-~1000,0,5)
Elevation transmitter at (7900,-400,10) for C band
Elevation transmitter at (7900,-400,16.5) for L band
Flare transmitter at (7000,-400,13)
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combined results of the direct signal and its ground reflections is shown in
Fig. 2-26. We see that as the receiver nears threshold it goes into a deep
shadow of the azimuth signal.

Fig. 2-27 illustrates the same results for L band. For the lower fre-
quency, the diffraction model takes over much sooner. In fact, even at the
start of the flight path the diffraction model is used. A deep shadow of the
azimuth signal near threshold is observed for L band as well.

The variation of scalloping frequency within the respective multipath
regions was small for the principal multipath scatters, and hence, detailed

plots are not shown.

3. Scenario 3

AWOP scenario 3 was derived from the geometry at Crissy Army Field, San
Francisco. Fig. 2-28 presents a map of Crissy Field, a STOL airport. The
glide slope here is chosen as 6° and the velocity as 70 knots (118.22
ft/sec). The origin of our coordinate system is again at the center of the
stop—end of the runway. The transmitters are located at (-140,0,6) for azi-
muth (-140,12,6) for DME, and (2120,120,10) for elevation and flare. There
are six buildings and a train (denoted as B7) whose specifics are given in
Table 2-3. The flight path along which multipath levels and system errors are
computed is as follows:

Flight path: velocity = 118.22 ft/sec (70 knots)

Starting at (677.18,0,500) and descending along a straight

line to (2096.11,0,8.0) with samples every 23.64 ft. (= 5 Hz
rate).
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TABLE 2-3
SCENARIO 3 BUILDING LOCATIONS
LOCATION OF BUILDING FRONTS

Building From (x,y) To (x,y) Height
Bl (=40, =-200) ( 270, -290) 33!
B2 (400, 340) ( 500, -370) 80'
B3 (1460, -320) (15400, -320) 33!
B4 (1190, -320) ( 1240, -320) 33!
B5 (2500, -320) ( 2600, -320) 80"
B6 (1880, -320) ( 2060, -320) 33

Train (denoted as B7) is from (800, -200)
to (2300, -200) and 16 ft high.

Origin at stop—end of runway

Azimutn transmitter at (-140,0,6)

DME transmitter at (-~140,12,6)

Elevation transmitter at (22120,120,9) for C band

Elevation transmitter at (2120,120,16.5) for L band
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The computer generated map and multipath plot results are given in Figs.
2-29 to 2-31 for C band and Figs. 2-32 to 2-35 for L band. The edge reflec-
tion rays indicated in Fig. 2-36a for azimuth and DME and in Fig. 2-36b for
elevation, coincide with the regions of significant multipath reflections in
Figs. 2-29 to 2-35. The principal multipath errors in this scenario arose
from building 1. Fig. 2-37 shows the variation of scalloping frequency for
this scatteré;kEE a function of distance along the flight path,

This scenario was also simulated assuming inhomogeneous ground dielectric
constants:

(1) e/ey = 5.0 for the runway

(2) e/eo = 1.2 for terrain off the runway
For this case, numerical integration over an appropriate region was used to
determine the ground reflection level as opposed to the closed form (i.e.,
classical Fresnel) expression used in the other scenarios. Only the azimuth
multipath performance was found to be affected by this change. Figs. 2-38 and
2-39 show the azimuth multipath characteristics at C band and L band respec-
tively. The inhomogeneous terrain features and numerical integration computa-
tion procedure are seen to produce ground reflection level fluctuations con-

siderably larger than those computed assuming homogeneous terrain.

4, Scenario 4
All aspects of scenario 4 are identical to those of scenario 1 except for
the MLS elevation and flare transmitter locations. These are:
MLS elevation (9200,400,10) at C band and (9200,400,16.5) at L band

MLS flare (8000,-250,15)
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Computer generated maps (rotated 180° relative to Fig. 2-5) for this
scenario for C and L band carrier frequencies are illustrated in Figs. 2-40
and 2-41.

Plots of the multipath levels and separation angle for the six largest
ranked reflections are presented for elevation for C-band carrier frequency in
Fig. 2-42 and elevation for L-band carrier frequency in Fig. 2-43.%

Figs. 2-44 and 2-45 illustrate where edge reflection rays intercept the
flight path for the transmitter located at the elevation and flare sites,
respectively. In almost all cases of building and aircraft fuselage reflec-—
tions, the multipath will peak between those two limits and be low else-
where., Figs. 2-46 and 2-47 show the scalloping frequencies associated with

the two principal multipath sources (buildings 1 and 2) for this scenario.

5. Scenario 5
Scenario 5 is based on runway 31R at JFK, a map of which was shown ear-
lier in Fig. 2-4. Only the three buildings which will be instrumental in
generating azimuth multipath and shadowing have been retained for this scena-
rio. As before, the coordinate system has as 1its origin the stop end of the
runway (runway 31R and not, as before, 13L) with the positive x axis in the
direction of the approach end of the runway. The building positions are given

in Table 2-4.

* . . .
Azimuth and DME characteristics are identical to those of scenario 1 and
hence are not shown here.
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TABLE 2-4

BUILDING LOCATIONS FOR SCENARIO 5

Building Coordinates Height (ft)
B1. (=400, +750) ( 250, +750) 100
B2, ( 700, +850) (1900, +850) 100
B3. (2300, +700) (3000, +700) 50

Origin at stop-end of runway

GPIP at (9000,0,0)

Azimuth Transmitter at (-1000,0,6)
Elevation Transmitter at (9200, -400,13)
Flare Transmitter at (7200,-400,13)

DME Transmitter at (-1000,0,6)

Flight Profile
(25000, -22000,1200) to (25000,-5000,1200) for

reflection portion
(25000,0,2000) to (25000,22000,2000) for sha-

dowing portion
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Computer generated maps for the reflection portion of this scenario for C
and L band carrier frequencies are illustrated in Figs. 2-48 and 2-49, togeth-
er with peak multipath levels and the x distance at which the peak occurred.
As before, omnidirectional antennas are assumed for these multipath calcula-
tions.

Plots of the computed multipath levels are presented in Fig. 2-50 for
C-band azimuth and in Figs. 2-51 and 2-52 for L-band azimuth and DME*., Fig
2-53 illustrates when edge reflection rays intercept the flight path for the
azimuth transmitter.

Fig 2-54 illustrates the C-band azimuth shadowing loss on the shadowing
portion of the scenario while Fig. 2-55 shows the L-band azimuth shadowing
loss. The aziuwuth shadowing loss plotted is the amplitude of the direct
signal coded component which corresponds to the direct signal when the line of
sight is not blocked. It should be noted that there is also a shadowed ground
reflection with direct signal code which is combined with the plotted direct
signal component in computing the system errors.

The small perturbation at y = 5000 feet is due to edge rays from the top
of building 3. Similarly, the perturbation between y = 7500 and 13000 is due
to edge rays from the top of building 2. In both cases, the LOS is not

blocked so that fairly small signal losses occur.

*
Elevation multipath characteristic plots are not shown since no elevation
building multipath or shadowing arises in this scenario.
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6. Scenarios 6-8

Scenarios 6-8 were nearly identical to scenario 1 except for the sinu-
soidal variation introduced in the flight path and a slightly lower flight
path. Fig 2-56 compares the flight path x,z coordinates with those of scen-
ario 1.

These variations may have a noticeable effect on the system angle errors
since scalloping frequencies and therefore motion averaging will be affect-
ed. The multipath plots were essentially identical to those of scenario 1,
and therefore will not be shown here.

C. System Error Results

In this section, we present the computed errors for the various AWOP
scenarios using the simulation models discussed in volume II of this report.
The bulk of the simulation results pertain to the "most capable” system of
each proposer. This highly capable system uses "any fully defined and costed
features on the list of system features related to multipath protection for
azimuth, elevation and flare functions.” Simulation results for a "cost
reduced 'basic' system proposed for normal sites for azimuth only"” are shown
for several of the azimuth multipath scenarios.

It was noted that some differences between TRSB and DMLS azimuth results
might arise from the differences in the proposed elevation pattern of the
azimuth arrays (the TRSB pattern, based on measured field data, rolls off
nearly twice as fast at the horizon as does the proposed DMLS pattern). Since
identical azimuth column radiator elements were assumed for the DMLS and TRSB
arrays in the WG-A costing, one DMLS simulation was repeated using the azimuth

antenna with the TRSB elevation pattern rolloff.
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The bulk of results presented in this report consist of raw error wave-
forms although in some cases we also present path following error, control
motion noise and rate noise waveforms. These latter three waveforms were
derived by processing the raw error trace through the filters described in
[72].

It had originally been planned (see Appendix C of [111]) that results for
each system would be annotated by the proposing state to show contribution of
each multipath combatting feature to the overall multipath protection before
the results were circulated to the panel wembers. However, due to the late
changes in system features, it was not practically possible to have these
results annotated in the initially planned manner.

However, we still feel that some discussion of the salient features of
the results is necessary to make the results understandable, For this pur-
pose, the results are annotated with three types of comments/analyses:

(1) a general indication of the type of multipath present at

various portions of the flight path, i.e., "in beam' or
"out of beam,”
(2) comparative results for the dynamic error versus the
error on single scans (or interrogations) so as to
provide insight into motion averaging and/or receiver
data rejection features, and
3) discussion of the error mechanism for errors which
exceed a guideline similar to that used in assessing
"basic accuracy"” field data.
The concepts of "in beam” and "out of beam” have proved useful in the MLS

multipath discussions. However, confusion has arisen due to the two different

usages of the phrase "out of beam”:
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(a) Rayleigh criterion [112]:

Direct signal and multipath rays have an angular
separation in the scanned coordinate > k beamwidths,

i.e.,
) > k/(L/N) (2-1)
where is a number between 1 and 2 and L/)A is the

antenna aperture in wavelengths.
(b) MLS processor criterion:
The error due to multipath becomes insignificant for
"reasonable” multipath levels. Also, the direct and
multipath received signal components have angle code
separations meeting criterion (2-1).
In our annotation, we have used the Rayleigh criterion with k = 1.5 since it
is applicable independent of processor, thus bypassing any differences that
arise between the various MLS processors with respect to criterion (b). For
several systems, the criteria coincide under quasi-static conditions.

The relative efficacy of motion averaging for the various systems was
discussed extensively (see, e.g., B.WP/7, 8-BIP/5, B-BIP/9 in [113]; W.WP/35,
W.WP/40, W.WP/45, w-BIP/1, W-BIP/15, W-BIP/16 in [111]; TH.WP/2, TH-BIP/1, TH-
BIP/13 in [114]). Additionally, the various aircraft receivers have logic to
reject "obviously bad"” data. Since both these features play an important role
in the overall system performance, we find it useful to display the error that
would have occurred had only a single measurement (i.e., scan or interro-
gation) been made in a 0.2 second period and no output data consistency tests
applied.

There was no clear WG-A consensus as to quantitative criteria for what

constitutes an "unacceptable” MLS multipath error. Nor 1s there any intention

to propose such a standard in this report. However, we have had to make a
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decision as to the level of detail at which we discuss the various multipath
errors that do occur. The rule we have used is to comment on:

(a) azimuth errors which are greater than 0.05°
and

(b) elevation errors which are greater than 0.07°.

In any case where displayed errors which reach those limits are not multipath
related,* explanatory comments are made.
1. Results for Scenario 1

The results for scenario 1 with a terrain dielectric constant e/eo = 1.2
are shown in Figs. 2-57 to 2-63. The azimuth errors are in all cases very
small as expected since the azimuth multipath at nonzero separation angles was
quite small as well as out of beam.

The elevation multipath diagnostics for this scenario show that multipath
from two buildings is of substantial amplitude and inbeam. Consequently, it
is not surprising that elevation errors arise. Figs 2-59 and 2-60 show that
all three systems were able to substantially reduce their errors by motion
averaging.

A principal factor causing DLS elevation error to be larger that that of
the other two systems is the smaller aperture. The multipath diagnostics show
that the multipath separation angle gets fairly large as the aircraft nears
the threshold. Plots of elevation error as a function of separation angle
(see volume II of this report) show the DLS error is larger than the other two
systems at large separation angles (e.g., 1.5°); consequently, large errors

may be expected here,

*
e.g., due to receiver lags, etc.
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The flight control system filter outputs in Figs 2-61 to 2-63 show that
the bulk of the elevation errors consist of "control motion" and "rate"” noise
as opposed to path displacement of the aircraft.

Changing the terrain dielectric constant to s/eo = 13 yielded virtually
no change in the DMLS and TRSB errors and a small change in DLS error. This
suggests that the DMLS and TRSB elevation errors here were not due to ground
reflections, while the DLS elevation errors were slightly affected by the
ground.

2. Results for Scenario 2

"Most capable” implementation results for scenario 2 with a terrain
dielectric constant of 1.2 are shown in Figs. 2-64 to 2-70. For this scen-
ario, the principal multipath threats are a series of large buildings (han-
gars) located abreast of runway midpoint. These building locations generated
very little elevation multipath. However, they do generate a significant
amount of out of beam azimuth multipath,

The low DLS azimuth error is due to the time delay discrimination against
the building multipath. The DMLS error that arises near 0.4 nmi is due to
scalloping of the reference signal. Simulation (see fig. 2-71) of the origin-
ally proposed DMLS system [7] showed sizable errors for this scenario due to
reference scalloping effects [41]. The DMLS error magnitude shown in Figs. 2-
64 and 2-66 is considerably lower than that reported initially, primarily due
to the use of centerline emphasis and the revised scan format. The TRSB
azimuth error reflects "sidelobe leak through.”

Figs 2-72 and 2-73 show the azimuth errors with a "reduced capability”

azimuth array. Increase in the DLS and TRSB errors due to higher sidelobe
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antennas is evident. The DMLS errors are reduced somewhat due to the use of a
comnutated reference antenna,

The elevation errors here arise primarily from ground reflections.
Consequently, they have a very slow period. By countrast, the high scalloping
frequencies of the azimuth multipath cause the errors to principally appear as
“"control motion” and “"rate” noise,

3. Results for Scenario 3

The principal multipath threats here were the series of buildings beside
the runway from near the transmitter to abreast of the elevation transmit-
ter. These building locations generate relatively little elevation multipath;
however, there is considerable out of beam azimuth multipath at a low scallop-
ing rate over much of the approach.

Results for scenario 3 with a terrain dielectric constant of 1.2 are
shown in Figs. 2-74 to 2-82. Figures 2-74 to 2-80 correspond to the "most
capable” azimuth array implementation proposed. In Figs. 2-81 and 2-82, we
see the corresponding azimuth errors with a "reduced capability” azimuth
array. The TRS and DLS errors are significantly increased in Figs. 2-81 and
2-82 due to the higher array sidelobes. The DMLS errors in 2-81 are very
similar to those in Fig. 2-74 since no multipath occurred at the angles where
the DMLS commutated reference array has high sidelobes. Figs 2-83 and 2-84
show results for the "most capable” azimuth arrays in an "inhomogeneous"
terrain in which the runway surface has a dielectric constant of 1.2 while the
off runway terrain has a dielectric constant of 5.0.

The DLS azimuth spike near 0.2 nmi appears to represent the effect of a

velocity term in the tracker algorithm. For several consecutive ground esti-
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mates, resolution breakdown occurs and updated tracker estimates are made
using this velocity term. This causes the tracker estimate to drift until
good input estimates are once again received. The very large DLS errors in
Fig. 2-83 (20° to 40° peak) represent ambiguity resolution breakdown. Compar-
ison of the tracker output with the single interrogation ground estimates
shows that up to the time at which ambiguity breakdown occurred, the DLS err-
ors were comparable to those of the other systems.

The DLS elevation error due to building multipath 0.1 nmi from the
threshold does not arise to the same extent for the other systems due to the
large separation angle (in elevation and azimuth). The DLS and TRSB elevation
errors after threshold are not due to multipath, but rather, represent tracker
lag due to very rapid change in conical elevation angle in that region.* Not
only is the angular rate of change very high (> 1 deg/sec at the end), but
there is also a substantial angular acceleration which cannot be closely
followed by the second order tracking loops in the DLS and TRSB receivers.
Since the elevation transmitter-to-receiver distance is small (= 200 feet at
the flight path end), the height errors due to tracker lag is small (< 0.5
feet).

4. Results for Scenario 4

The results for scenario 4 with a terrain dielectric constant s/so = 1.2

are shown in Figs. 2-85 to 2-89. This scenario was derived from scenario 1 by

moving the elevation transmitter across the runway so that it was on the

*To verify this, separate simulations of the DLS and TRSB trackers were
conducted with a tracker input angle equal to direct signal angle. These
yielded similar behavior as the aircraft neared the threshold.
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opposite side of centerline from the principal building threats. The effect
of this siting change was to increase the separation angle, azimuth and scal-
loping frequencies of the in beam elevation multipath.

For DMLS and TRSB, the errors are generally smaller than those of scen-
ario 1 while the DLS errors are similar to those of scenario 1. Again, a
principal factor in the larger DLS errors is believed to be the (electrically)
smaller aperture,

5. Results for Scenario 5

Scenario 5 was broken into two parts: one in which multipath reflections
from buildings are encountered and one in which building shadowing occurs.
The two portions have a different receiver altitude. Figures 2-90 and 2-91
show the "most capable” azimuth implementation results* for the reflection
portion with a terrain dielectric constant e/eo, of 1.2. Figures 2-92 and
2-93 show the reflection portion azimuth errors using the "lesser capability”
azimuth implementations while the results for the shadowing portion with e/so
= 1.2 are shown in Figs. 2-94 and 2-95.

First, we consider the building reflection portion results. The princi-
pal multipath threat here is out of beam azimuth multipath from two buildings
near the azimuth transmitter. These yield substantial multipath over a con-
siderable flight path region, similar to that in scenario 3. However, in this
case, the receiver is not on centerline and the scalloping rates are much

higher.

* ; .
Only azimuth results are shown since the elevation multipath in this case
arose only from the ground.
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The DLS errors are primarily due to ambiguity resolution breakdown.
Also, in this case, the DLS data rate was 15 Hz so that there is less effec-
tive motion averaging and/or data editing in the airborne receiver. The DMLS
error is due to reference scalloping effects, centerline reference emphasis
not being effective in this particular case. The TRSB error represents side-
lobe leak through.

In the shadowing portion, diffraction rays from the building edges are
the principal multipath threat (the direct signal decrease due to shadowing
does not itself directly yield an error). At L band, these rays are V5 stron-
ger at a given direct signal - edge separation angle; this is felt to account
for much of the error differences in Figs. 2-94 and 2-95 between the C and L
band systems. The diffraction rays essentially have zero scalloping rate;
consequently, differences between DMLS and TRSB here reflect differences in
static error characteristics (e.g., error versus separation angle at fixed M/D
level). Since the DMLS and TRS azimuth static error characteristics are quite
similar, so are the shadowing errors in this case.

The short spike in the DLS and TRSB error traces at the start of the
flight path are due to start up of the trackers in the middle of an orbital
characterized by high angle rate’ of change. The single measurement errors
(Fig. 2-95) show no error.

6. Results for Scenario 6

The results for scenario 6 are shown in Figs. 2-96 and 2-97. Scenario 6

is the elevation portion of scenario 1 with a flight path which has a lateral

sinusoidal oscillation around the extended runway centerline. For scenario 6,
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the starting phase of the sinusoid is 0°. This yields much the same multipath
that occurred in scenario 1 except that the scalloping frequencies and rela-
tive rf phases are changed somewhat.

The error waveforms are somewhat changed, but their gross characteristic
(e.g., region of peak errors and peak error magnitude) is quite similar to
that of scenario 1 (compare, e.g., Fig. 2-96 to Figs. 2-58 and 2-60). The
cause of the DLS elevation errors here is the same as that in scenario 1.

7. Results for Scenario 7

The results for scenario 7 are shown in Figs. 2-98 to 2-99. Scenario 7
is identical to scenario 6 except for the starting phase of the receiver
sinusoidal lateral displacement (now 120°). The elevation multipath environ-
ment is basically that of scenarios 1 and 6.

Again, the error waveform details are different, but their gross charac-
teristics are quite similar to those of scenarios 1 and 6.

8. Results for Scenario 8

The results for scenario 8 are shown in Figs. 2-100 to 2-10l. Scenario 8
differs from scenarios 6 and 7 only in the starting phase of the receiver
lateral displacement (now 240°). The elevation multipath environment is
basically that of scenarios 1, 6 and 7.

Again the error waveform details are different, but the gross character-
istics are quite similar to those of scenarios 1, 6 and 7.

9. Sensitivity of DMLS Azimuth Error in Scenario 2 to Elevation
Pattern of the Azimuth Array

The elevation pattern used for the DLMS azimuth array in the simulations
above was derived from a theoretical pattern* in the U.K. proposal. This

pattern has a rolloff at the horizon which is substantially less than that of
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the corresponding TRSB pattern (which was derived from measured field pat-
terns). This rolloff plays an important role in determining the extent to
which various secondary paths involving ground bounces combine to yield an
effective M/D ratio. Since the WG-A cost group assumed identical column
radiators would be used for TRSB and DMLS, it seemed appropriate to simulate
DMLS in at least one case using the elevation pattern of the TRSB azimuth
array.

Scenario 2 with e/eo = 1.2 seemed an appropriate choice since (1) the
elevation angles here are small enough to yield significant changes in multi-
path and (2) this scenario was the object of considerable controversy. Fig-
ures 2-102 and 2-103 compare the azimuth simulation results using the eleva-
tion pattern of the UK proposal to those using the TRSB elevation pattern. We
see that the peak errors near 0.35 nmi are reduced approximately 30% whereas
those near 0.05 nmi are little changed. This suggests that the M/D levels
near 0,35 nmi were increased by fading on the direct signal due to the specu-

lar ground reflection whereas such fading was not present near 0.05 nmi.
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III. ADDITIONAL COMPARATIVE SCENARIOS SUGGESTED BY INDIVIDUAL AWOP MEMBERS

The “"standard” AWOP comparative scenarios discussed in the previous
chapter were developed by the panel to explore the sensitivity of the various
systems to in-beam and out-of-beam multipath. However, due to the differences
in system features such as antenna patterns, motion averaging, etc., a
scenario that was stressful for one technique might not be stressful for the
others. To explore the behavior of specific systems in stressful situations,
various panel members suggested additional scenarios for simulation.

In this chapter, we present several of these additional scenarios which
focus on reflection phenomena. Tne first pair of scenarios, due to T. Hagen-
berg [115] of the Netherlands, is intended to explore possible sensitivity of
the TRSB system to building multipath. The second set of scenarios, presented
by T. Bohr [116] of the Federal Republic of Germany (FRG), are intended to
explore the sensitivity of CW systems (DMLS and TRSB) to terrain reflection

multipath in a mountainous environment.

A, Hagenberg Building Reflection Multipath Scenarios
1. Considerations Used by T. Hagenberg in Developing the "TRSB
Stressful” Scenarios
T. Hagenberg's memo VV-77-041 [115] characterizes the unfavorable multi-
path factors for TRSB as follows:
"The performance of TRSB might be critical, if the multipath meets some
conditions:
A, The multipath preferably must be in-beam (in main beam or in side
lobe) with a high level,

B. The scalloping frequency must be lower than 1 Hz or must be situated
in a frequence grating lobe.
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C. The multipath region of different reflectors preferably must coin-
cide.

D. The duration of the multipath phenomenon must be sufficiently long.

ad A.

For the azimuth subsystem, in-beam multipath along centre line origi-
nates from ground reflections in the antenna main beam or from
buildings in the antenna side lobes. The peak angle error caused by
reflections in a side lobe is given by:

M1
6—37 ¢O (3 1)
in which
M . .
3t the multipath to direct signal ratio.
T : the side lobe to main beam antenna gain ratio
¢0: beamwidth of the antenna main beam.

ad B.

The scalloping frequency fg is given by

v
fs =3 (1 - cos B) (3-2)
in which
v : speed component to ground antenna
A : wave length of the signal transmitted
B : angle between the line segments ground antenna-aircraft and

reflector-aircraft

ad C.

The geometry of the reflectors must be such that the multipath of
these reflectors coincides with the (extended) runway centerline.

ad D.

The duration of the multipath phenomena 1is dependent on aircraft
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groundspeed and the extension of the multipath region.”
2. Multipath Scenarios As Described in Memo VV-77-041 by T. Hagenberg
[115]

The airport scenarios are derived from the existing AWOP WG-A
scenarios. The equipment siting, the flight profiles and the multipath scat-
ter characteristics of the buildings, aircraft and ground will be the same as
the original AWOP WG-A scenarios [66, 72]. The modifications incorporated

meet the OCL criteria set in ICAO annex 14 [117].

(a) Scenario for elevation multipath

The new scenario for elevation multipath is based on AWOP WG-A scenario 1
(Rennedy Airport New York) with the following modifications (Fig. 3-1).
- From the existing geometry omit buildings 1, 2, 3, 4 and 5.
- Add two buildings with the following coordinates of the frontplane
Building A: (9700, =-900) (10700, -952) height 70 ft.
Building B: (11300, 1250) (12140, 705) height 40 ft.

In figure 3-1 the location of the buildings A and B is shown and the
region along the extended runway centerline where multipath can be expected.
In this region the scalloping frequency will lie in a frequency grating lobhe
for an aircraft groundspeed of 130 kts.

(b) Scenario for azimuth multipath

The new scenario for azimuth multipath is based on AWOP WG-A scenario 1
(Los Angeles International Airport) with the following modifications (Fig.
3-2).

Three buildings are added to the existing geometry. The coordinates of

the frontplates of the buildings are:

Building A: (1500, -1300) (2486, -1468) height 120 ft.
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Fig. 3-1. Modification to AWOP WG-2 scenario 1 for
elevation multipath (from [12]).
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Building B: (2600, 1150) (3579, 1228) height 100 ft.
Building C: (4500, 1150) (5499, 1184) height 100 ft.

Incorporate longitudinally upsloping terrain with a slope of 0.8% from x
= 5500 ft. up to x = 10,000 ft. The elevation of the original buildings and
aircraft has to increase in accordance with the increased terrain elevation
(due to the sloping terrain).

The location of the buildings A, B and C and the region along the extend-
ed runway centerline where the multipath can be expected is shown in figure 3-
2.

In this region the multipath scalloping frequencies of the added build-
ings will lie in a frequency grating lobe for an aircraft groundspeed of 130
kts. The scalloping frequency of the ground reflections will be so low (<1

Hz) that motion averaging has no effect on performance improvement anymore.

3. Elevation Multipath Scenario Results
Simulations were made for five elevation scenarios based on the scenario
1 description above in section 8. The building locations and flight paths

were identical in all cases; however, several choices of building heights were

considered as shown below.

Version Building Heights
1 as described in Section B
2 meeting ICAO OCL criteria
3 as in 2 except heights of Hagenberg's building B and
original building 3 were increased to 150 ft. and 64 ft.
respectively
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It is our understanding that ICAO annex 14 obstruction clearance criteria
[117] for class A, B, and C runways calls for a clear zone with edges parallel
to runway centerline and extending some 200 feet beyond each threshold. The
edges parallel to the centerline are 500 feet away from centerline. To the
side of the clear zone, there is a transitional region which slopes upward and
outward at a slope of 1:7 as measured in a vertical plane perpendicular to
runway centerline. Thus, the obstruction clearance height corresponding to a

building which is at threshold at a distance y from centerline is to yield:

1 (lyl =500 Iyl > 500
7

hoer, (3-3)
0 lyl < 500

Applying (1) to building A in section III we obtain hOCL = 57 feet whereas the
scenario description calls for a building height of 70 feet.

The multipath 1levels and errors due to Hagenberg's building A were
essentially identical for all three versions. Hagenberg's building B did not
yield significant multipath nor errors with versions 1 and 2 due to the
aircraft flying above the specular region. Since the scalloping frequencies
associated with the multipath from buildings B2 and B3 were much higher than
that for building Bl and the scalloping frequencies in the AWOP scenarios, it
seemed useful to explore the TRSB capability to resist high level in-beam
multipath at such scalloping rates. Therefore, the heights of Hagenberg's
building B and the original scenario's building 3 were increased substantially
to insure the aircraft would not fly over the respective specular regions.
Specifically, the height of Hagenberg's building B was increased to 150 ft.

(110 ft. in violation of the ICAO OCL criteria!) while that of original
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building 3 was increased to 64 ft.

Figure 3-3 shows the airport map while figure 3-4 shows the computed
elevation multipath characteristics. We see that the Hagenberg objective of
simultaneous high level in-beam multipath was achieved with the increased
building heights,

Figures 3-5 and 3-6 show the computed TRSB and DMLS errors for this
scenario. It was found that single scan errors are higher than those for
scenario versions with lower building heights, but that dynamic errors are
quite similar. This suggests that the multipath errors due to Hagenberg's
building B were effectively eliminated by motion averaging for both systems.

The results for this scenario are in accordance with the analytical
studies and bench test data presented in volume II of this report. Figures
3-7 and 3-8 show the static error versus separation angle curves for TRSB and
DMLS. These plots show the in-beam region to be approximately +1,7° around
the direct signal. There is a relatively high DMLS sidelobe at -8° separation
angle which results in the ground reflection sidelobe error just after thresh-
0ld in the DMLS error plots.*

The elevation multipath from building Bl, B2 and B3 is of high level and
in-heam. To understand the resulting receiver errors, we must consider the
system error characteristics in a dynamic environment (i.e., when the scallop-
ing frequency is non-zero).

Figures 3-9 and 3-10 show the dynamic elevation in-beam multipath error
versus scalloping frequency for TRSB and DMLS respectively. Also shown in

these figures are the scalloping frequencies associated with the multipath

*

The flight path flown had a 2,86° planar elevation angle. Hence, near thres-
hold, the separation angle in conical coordinates became greater than
2 x 2.86° = 5,92°,
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from buildings Bl and B2. The general reduction in TRSB error at high scal-
loping frequencies (e.g., above 600 Hz) arises from the motion averaging
between the to—and-fro scans of a single TRSB angle measurement.

The multipath from Bl encompasses several of the TRSB motion averaging
"grating lobes” which occur at multiples of 40.5 Hz, [28], but lies between
the DMLS motion averaging "grating lobes” at 0 - 15 Hz and 400 Hz. Since Bl
was the dominant error source for the scenarios, it is not surprising that the

DMLS errors due to multipath were generally lower than those of TRSB.

4, Azimuth Multipath Scenario Résults

Simulations were made for several azimuth scenarios based on the scenario
description in section 2. The flight path and building heights were the same
in all cases; however, several building locations were considered as shown

below:

Buildings and runway
Version Slope Locations

1 Section B text as applied to previous
coordinate system of Chapter II.

2 From figure 2 in Hagenberg report [115].

The building location differences arise because the numerical values given in
[115] for building locations were presumed to apply to the AWOP scenarios
described in [72] in which the point (0, 0, 0) corresponds to the stop end of
the runway. However, in figure 3-2, it appears that the point (0, 0, 0) is
beneath the azimuth array which is the point (-1000, 0, 0). To ensure a full
investigation of the effects, both possible locations were simulated. Both

versions gave similar results; version 2 will be discussed here.
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The original AWOP scenario based on Los Angeles included a humped runway,
whereas the modified scenario has a runway which slopes upward towards
threshold. The multipath from the rectangular plates used to model the
runway sections was computed using the same algorithms [29] that are used to
compute scattering from the plates used to model buildings, except that only
the path transmitter-plate-receiver was considered [29]. This permitted the
multipath from each runway section to be displayed in the multipath diagnostic
plots and act as separate input to the receiver models.

There were a total of seven buildings and four aircraft in the original
AWOP scenario. Program limitations at the time these scenarios were run
permitted a total of 10 plates to be simulated, thus it was necessary to drop
out two of the original buildings (B5 and B7) which did not yield significant
multipath. The locations of the remaining buildings were unchanged; however,
the heights of the building and aircraft bases were increased to be the same
height as the nearest section of the runway in accordance with Hagenberg's

memo. This yielded the following building base elevations:

3-18



Building or Aircraft Building or

in Present Simulation Aircraft Origin Base Elevation*

Bl Previous Bl 0
B2 Previous B2

B3 Previous B3

B4 Previous B6 13
B5 Previous B7 21
B6 Hagenberg bldg. A

B7 Hagenberg bldg. B

B8 Hagenberg bldg. C

Al Previous Al 2.4
A2 Previous A2 10.4
A3 Previous A3 26.6
Ad Previous A4 27.2

*elevation = 0 ft. is terrain beneath azimuth array

The airport map for version 2 of the scenario is shown in figure 3-11 and
the computed azimuth multipath diagnostics are shown in figure 3-12. Figures
3-13 and 3-14 show the computed TRSB and DMLS errors using the "most capable”
filled array implementations. Figures 3-15 and 3-16 show the computed TRSB
and DMLS errors using the "lesser capability” thinned array implementations.

The peak errors for version 2 of the scenario were very similar to those
shown in figs. 3-13 to 3-16 except that the region of greatest errors was
0.40 nmi before the runway threshold. This displacement in error region is
approximately twice the 1longitudal difference in the assumed location of
Hagenberg's buildings A and B. Hagenberg's building C gave very low multipath
levels in all cases because the aircraft flew above the specular reflection
level.

The result for this scenario is generally in accordance with the bench

3-19



0z-¢

Hagenberg bldg. B Hagenberg bldg. C
/

\
j ! ! \1 T B/ ! ! ! T T
e = \ terrain plate B9
o. | M= = &..‘ —eete—f | _|
g2 L1

terrain plate BO . - i‘
™ T

Y POS FT : 4 oS

(om ¢ o}
_ase0. | Hagenberg bldg. A i
(= oo
| | | { | | | | | j
-1000. e. 1009. 2000. 3000. 4000. 5090. £000. 7000. 800€. 9000.
FLT PTH A X POS FT
AZ SYSTEM EL SYSTEM .
OBST RANK AMP  DIST RDOP OBST RANK AMP  DIST RDOP  AMP = peak M/D ratio (in dB)
SR Mt RPN o3 SRS b 1168 7sess 13 - flight
B2 4 -1 7376.6 -69. 22 72263 7157.1 fgs. DIST = distance a1.°',29 ] 19 0
B3 6 —2 17025.3  -13e. B3 9 —66 7376.6 -146. path at point of pea
B4 12 —42 10010.1  -832. B4 5 —69 8825.5 -263. M/D = 17500 = x
:2 g -4 3352.4 -978. 35 450 9703.6 -m_s"(.
» d =1 uxt & [+ 19 -6 5%l.32 2. RDOP = scalloping frequency in
3 13 — 54 10010.1 -69. s 14 —70 9793.6 2e. Hz at point of peak M/D
B9 1 +1 8430.3 .. +) 1 0 9659.7 -1. ti
30 2 o 2766.3 e. e 3 -39 0.0 .. ratio
Al 11 —22 4873.9 -14, AL 8 —64 0.9 -4,
a2 10 —21 9484.1  -225. A2 6 —62 351.3 -6.
A3 9 —18 9132.8 -1361. A3 2 —22 9176.7 -1186.
A4 14 —68 8957.2 -1333. a4 12 —69 9001.1 -1284.
D o —8¢ ..0 o. D ¢ —80 o.0 .

Fig. 3-11. Airport map for scenario 2-C.



T¢-¢

M/D RATIO (DB)

SEPARATION ANGLE (DEG)

t » B9 X = Bo + =+ B6 Y -B 0 = B7 Z B3

-18.9

-27.9

“20.0 e

10000

ettt gt st e A ——————— ety oyt o S o]

2 W

8000 X 4990 2e0e

DISTANCE (FT.) ALONG FLIGHT PATH A
AZ SYSTEM

Fig. 3-12. Azimuth multipath characteristics for scenario 2-C.



R

1468

1458

RAN ERROR (DEG!
<
§
ﬁ’
I
1
l
\

c> © ©
lg ‘{X 18

[=3
rn

o
j'f—;

RAN ERROR {DEG)
5

—~

T T L A S| T 7T 7 T T T T
£.300 0.800 1.300

DISTANCE. FROM THRESHOLD (W) THRESHOLD: §700. FEET
1468

1468

TRy AZ -

i 1
2.200

555 0.1G0000 M/t

Fig. 3-13.

T T T T T T T T T T T ; T ]
0.300 1,800 1.300

DISTANCE FROM THRESHOLD (MM THRESHOLD:  8700. FEET

Dynamic filled array azimuth errors for scenario 2-C.

3-22



0.0

RAN ERROR (DEC)
! .
2 2
& 8
-
" L3
w (Sl
W
u
A
e
W

.- : DYNAMIC ERROR
S - STATIC ISINGLE SCANI ERSOR
[} T 1 T L]

a0 o o | im ‘
S 0.:00000 MO DISTAKCE FROR THIESMOLD (1) TMESHLD: 708, FEET

1468 A
(468

0.3, l -

™ 0F A =

0.2¢]

0.1

0.18 .

RAM ERROR (DEG!

=0.3
X -- ¢ DMNIC ERSIR
S - STATIC (SIWGLE SCAN) ERROR
— | S DR A SN RS ANNE SN RN (N N RS RERR RENNS RRNE S N | 1
.20 0 0.300 0.800 1.300
KSF 0.100000 MM/CH DISTAKE FRON THEESHOLD (M) THRESHOLD:  $700. FEEY

Fig. 3-14. Dynamic and single scan multipath errors for filled
azimuth arrays in scenario 2-C.

3-23



RAN ERRUK (DEG!

]
=4
&R

«3

[

>4

I

|

~0.25

-0.30]

X5¢ -

RAN ERROR [DEG)

Fig. 3-15.

R

0.

0.

n
V.

0.

c.

.

T  m—— T — T T T T T T T T
0.200 0 9.300 0.800 1.3¢

100000 KW/ X DISTANCE FRON THRESHOLD (MMi THRESHOLD: 8700, FEET

1468 m

X0
]

2
15
N

s

T ] 7 7 LA H 1 T : T T 17 771

T T
-0.200 0 0.3%0 3.800 .30

.100000 NW/CH DiSTANCE FROM THRESHOLD (M0 THRESHOLD:  8700. FEET

Dynamic thinned array azimuth error for scenario 2-C.

3-24



KAM ERROR (DEG)

RA¥ ERROK (DES)

X5F

0.%

.28

5.2

c
)
]
v

- = DYNANIC ERROR

S : STATIC (SINGLE °CAN' ERRGR
! T T T T N A S T T T T T T T T 1
-0.200 0 0.300 0.800 1.30¢

0.100000 oL/ CN DISTANCE FRON THRESHOLD (M) THRESHOLD- 8700, FTET

1468 B

1468

w A

6.20]
0.2
03 -~ : DYNANIC ERRR
§ < STATIC (S'NGLE SCAN: ERROR
R D T H 1 T T 1 T T - 7 1 T 1 - 1 1
-0.200 0 0.300 0.800 1,300
G.100000 NH/CH SISTANCE FIOM THRESHELD <MW TRESHILD: 8700, FEET

Fig. 3-16. Dynamic and single-scan thinned array azimuth errors
for scenario 2-C.

3-25



test data and system theory discussed in volume II of this report. Figures
3-17 and 3-18 show the static error versus separation angle curves for the
models of filled TRSB and DMLS arrays while figures 3-19 and 3-20 are the
‘corresponding plots for the thinned TRSB and DMLS array models. We see that
both filled arrays have low sidelobes at the angles of concern for the azimuth
scenarios of this section. Hence, we expect the sidelobe errors for these
arrays to be small.

However the TRSB demnsity tapered array has high sidelobes in the angular
region of the Hagenberg buildings, whereas no buildings were located in the
high sidelobe region of the DMLS thinned array. Hence, it is to be expected
that the TRSB thinned array would exhibit much larger errors for those scenar-
ios than either filled array or the DMLS thinned array.

The static error versus separation angle curves together with the azimuth
multipath diagnostic data (figure 3-12) give a reasonably good estimate of the
TRSB and DMLS single scan errors during the initial portion of the flight path
(when the scalloping rates are lLow). The reflections from the ground are seen
to be in-beam, but at zero separation angle, which yields zero error. The
other scattering objects are all out-of-beam so that the dominant error sour-
ces are sidelobe and reference scalloping effects. To understand the motion
averaging differences as well as tne error behavior nearer threshold, one must
consider the system dynamic azimuth multipath error characteristics.

Figure 3-21 shows the TRSB dynamic azimuth error versus scalloping fre-
quency for the TRSB thinned array with multipath located at a high sidelobe
position. Also indicated are the scalloping frequencies or some of the prin-
cipal multipath sources. We see that the multipath from Hagenberg's building
A (= B6 in the figures of this section) overlaps the motion averaging "grating

lobe™ at 26 Hz. This is believed to account for the large TRSB density ta-
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pered array error "spike"” which arose near the threshold.

The DMLS error at low scalloping rates (e.g., below 30 Hz) in these
scenarios 1is primarily due to sidelobe errors. Figure 3-22 shows the DMLS
Taylor weighted correlator sidelobe error behavior at low scalloping rates.
At higher scalloping frequencies, reference scalloping errors become the
dominant DMLS multipath error source. Figure 3-23 compares the DMLS filled
array reference scalloping error data from RAE bench tests with computer
simulation results. Nonlinear aspects of the DMLS angle processor algorithms
yield the reference scalloping error below 300 Hz, consequently it is hard to
make a precise quantitative estimate of the error due to overlapping multipath
signals from figure 3-23. We surmise that the larger DMLS errors result from
the Bl multipath near 200 Hz scalloping frequency combining with deeper fades
due to multipath from buildings 32 and B6.

Whereas the DMLS filled array reference scalloping error due to out-of-
beam multipath is a very weak function of the multipath angle, the DMLS commu-—
tated array scalloping error is much more dependent on the multipath azimuth
as shown in figure 3-24. This difference in azimuth angle dependence is
believed responsible for the lower reference scalloping errors which arose for

the commutated reference array.

B. Specular Reflections from Mountainous Terrain
The multipath performance of MLS systems in mountainous areas has been of
considerable interest since it has been quite difficult, if not impossible, to

provide ILS service in such regions. None of the MLS implementations* pro-

*

Field tests with Ku band scanning beam systems [21] had shown good
performance at such sites. Subsequent TRSB and DMLS tests in mountainous
terrain gave good results [63].
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posed to ICA0 had been tested at such sites during the WG~A assessment. At
the London meeting of AWOP WG-A, it was proposed that comparative computer
simulations be made for the ICAO MLS proposals in a representative mountainous
scenario [119].
A standard VFR approach to the Salzburg, Austria airport was simulated
for two terrain models:
(1) a Lincoln Laboratory generated model in which the moun~
tains are represented as flat snow covered rectangular or
triangular plates whose orientation corresponds to pub-
lished map contours [120].
(2) an FRG generated model in which the terrain of concern
was represented by a number of flat vertical rectangles
simulating vertical cliffs [116].
Model (1) yielded no significant multipath for either the AZ or the EL func-
tion. This lack of multipath occurred because the terrain plate slopes were
not steep enough to yield specular reflections for the assumed transmitter-
receiver-mountain geometries.
The same is true of model (2) for reasonable roughness and verticality
assumptions. Under an "exaggerated worst case” condition in which the cliffs

are assumed to be perfectly vertical smooth metallic surfaces, significant

multipath was encountered.

1. Terrain Models

Model 1

Figure 3-25 (taken from [116]) shows the approach superimposed on a
contour map of the airport vicinity. 1In an initial simulation, five sloping
surfaces were modeled as triangular or rectangular plates on tilted ground.

These are partially sketched in Fig. 3-25 and are shown in plane view in Fig.
3-37



8E-¢

Galsberg Mt.

- —

)
Tennen birge Mt.
25000. | éf/”___Hengstberg —
. ARNE QUNEREP —
Y POS FT \\\
Runway / Untersberg Mt.
-25009. H | 1 | | —
e. 20000. 40000, 60000, 80000. 100000.
FLT PTH A X POS FT
AZ SYSTEM EL SYSTER
OBST RANK AMP  DIST RDOP OBST RANK AMP _ DIST RDOP
G 1 @ 37554.4 0. G 1 2 291e62.9 0.
AMP = -peak M/D ratio (dB)
DIST = distance along flight path at point where peak M/D occurred
RDOP = scalloping frequency (Hz) at point of maximum M/D

Fig. 3-26. Computer-generated airport map; tilted ground scenario.



3-26. The flight path was essentially that of the FRG paper [116].

Model 2

Model 2 is based almost entirely upon data given in an FRG AWOP/6 paper
[116]. Seven vertical walls representing reflecting surfaces either in the
mountains to the south of the city or structures within the city itself were
modeled (see Fig. 3-25 and the computer—generated map in Fig.3-27). Multipath
computations were made with several different assumptions regarding the sur-
face characteristics:

(a) Smooth rock surface with an 85° slope

(b) Smooth rock surface with a 90° slope (perfectly vertical)

(¢) Perfectly vertical rock with a 1 ft rms roughness

(d) (worst case) Perfectly vertical smooth metal

2. Multipath Computation Results

In all cases, the flight path shown in Fig. 3-25 was flown at a ground

speed of 150 knots.

(a) Terrain Model 1
The results of the C band simulation for the tilted ground scenario are
shown in Fig. 3-28. No AZ or EL multipath component other than the ground
reflection ever exceeded -40 dB along the entire flight path.* It was subse-

quently determined that the tilted elements were not oriented for specular

*In these and similar plots, the level and separation angle of the six largest
specular components relative to the direct signal are plotted. If less than
six components are shown, the remaining components had levels less than -40
dB. The M/D levels shown do not take into account ground antenna patterns nor
various secondary paths involving the ground - thus, they should not be inter-
preted as a precise quantitative estimate of the M/D levels that would be
measured at the airborne receiver.
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reflection with respect to the flight path.

This may be explained as follows (Fig. 3-29). If the aircraft is between
the transmitter (XMTR) and the mountain (as in position 1), the inclination ¢
must exceed 45° for there to be specular multipath. To place in context the
likelihood of encountering such slopes, we might note that the steepest ski
slopes are usually < 40°. Contours on the Salzberg map suggest a maximum
slope of 41° on the mountain sides facing the runway, so it is not surprising
that very low multipath levels were encountered. Had the aircraft been above
or slightly beyond fhe mountains, there would be a possibility of specular
reflection from tilted plates. However, the M/D levels would be reduced by
depolarization, the vertical pattern of the azimuth array, and the gain of the
airborne antenna (especially top-mounted antennas).

In view of the very low M/D levels found for this terrain model, no
system simulations were carried out inasmuch as bench tests and analysis have

shown that such levels do not cause significant errors.
b. Terrain Model 2

(i) tilted smooth rock "cliffs"

Figures 3-30 and 3-31 show the computed multipath characteristics for a
smooth rock (concrete) surface with at 5° tilt away from normal (i.e., an 85°
slope). 1In AZ, specular reflections from B2 are encountered on both passages
of the aircraft through the specular zone, but their amplitudes are low QS -19

ds).

(ii) rough vertical rock "cliffs”

Figures 3-32 and 3-33 correspond to the case in which the rock walls are
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vertical (no tilt) and have 1 ft rms roughness. 1In this case, no C band
specular multipath greater than ~-40 dB 1is found, other than ground
reflection. In this case, it is possible that a diffuse reflection from the
surface might be greater thamn —-40 dB (see Appendix D of reference [53]).
However,

(i) the current [29] multipath model does not consider dif-

fuse reflections from building surface

and (ii) there is no measured data available on C band scattering

from vertical walls with a "randomly rough” surface

(iii) smooth vertical rock "cliffs”

By reducing the roughness to zero in the above scenario, specular reflec-
tions from a number of surfaces are found in both AZ and EL (Figs. 3-34 and 3-
35). Similar reflections are found in the worst case scenario described below

and their analysis is given there.

(iv) smooth vertical metal "cliffs"”

In the worst case runs (smooth vertical metal reflectors), significant C-
band multipath was found in both AZ and EL (Figs. 12 and 13). As is indicated
by the geometry in Fig. 3-24, the aircraft encounters specular reflections
twice from some of the surfaces on the curved path. In AZ, peak amplitudes
range from -6 dB to 0 dB; the separation angles lie betwen 20° and 40° and are
therefore out-of-beam (Fig. 3-36).

Fewer specular reflections are found in EL, and the peaks are slightly
lower (-7 dB to -2 dB). In this case, the separation angles are near the in-
beam region (Fig. 3-37).

The multipath levels and time delay diagnostic for the L-band DME
multipath are shown in Fig. 3-38. The levels are identical to those which an

L-band azimuth system (e.g., DLS) would encounter. Because of the large
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differential path lengths, no multipath component has delay less than 7.5
usec. In the elevation case, the geometry shows the minimum delay to be even
greater. These delays are large enough that DLS time delay discrimination
would prevent the corresponding multipath components from causing angle

errors.

3. C-band System Simulation Results

The DMLS and TRSB systems were simulated for the smooth vertical metal
surfaces scenarios only and the results are shown in Figs., 3-39 to 3-42. The
system models used were those described in volume II of this report. The
coverage limits for the run were +60°, not the ICAO suggested +40°. Since the
azimuth and elevation sites are located at different points on the airport
surface, the azimuth coverage is entered some 2.5 nmi before entering eleva-
tion coverage.

a. TRSB Results

In azimuth (see Figs. 3-39 and 3-40) and elevation (see Figs. 3~41 and 3~
42), the TRSB receiver acquired and validated the guidance signal within 1
second upon entering coverage. The transient in the dynamic azimuth data on
entering coverage arises from the a - p tracking filter start-up procedure
wherein the filter takes a while to converge to the high angular rate of
change. Although the error that arises is probably not operationally signifi-
cant, it may be advisable to utilize an alternate filter initialization proce-
dure (e.g., to obtain a non-recursive estimate of the angle rate of change
over the initial acquisition period and then initialize the o - B recursive
filter with this initial estimate).

Lag in the a - B filter angle rate tracking during turns yields the low

frequency ramp errors. The shorter duration TRSB azimuth errors represent
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sidelobe errors which have been reduced by motion averaging (compare the
single scan and dynamic errors in Fig. 3-40). The elevation TRSB errors
represent in—beam elevation multipath which has been reduced by motion averag-
ing. The elevation multipath is nearly out-of-beam due to the longer path

traveled by the multipath; hence the static errors are small,

b. DMLS results

The DMLS receiver acquired and validated the azimuth signal within 1
second, but took 2 seconds to acquire and validate the elevation signal due to
difficulties in homing under a condition of a high angular rate of change.
The DMLS azimuth errors arise principally from dynamic motion effects since
the static errors are small for the angle ranges of interest (see Fig. 3-
43). The errors near 4.3 nmi along the flight path are due to multipath with
a scalloping frequency near +200 Hz from BIl. The errors near 5.0 nmi
represent a mixture of reference scalloping errors and AGC-induced sidelobe
errors (B2 yields multipath near 1200 Hz, which is a multiple of the azimuth
scan rate). Figure 3-42 shows that reference scalloping effects from the
various scatterers yielded significant single scan errors; however, these were
effectively reduced in most cases by the 12 scan averaging.

The error near 6.5 nmi represents a reference scalloping error due to
multipath with a scalloping frequency of 491 Hz. Had the final approach
segment been flown at 116 knots ground speed as opposed to 150 knots ground
speed, the peak error at this point would have been on the order of 0.2° for
the flat metal scenario and 0.1° for the flat vertical rock scenario.

The low frequency errors seen in the DMLS elevation data are due to high
sidelobes in the current Taylor weight digital correlator algorithm. Figure

3-44 shows a plot of peak DMLS error as a function of multipath angle for a
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direct signal at +3.9 degrees and an M/D ratio of -2.5 dB (= ground reflection
level at the time of largest errors). Also shown in the figure are the separ-
ation angles for this scenario and for a standard radial approach along 3° and
6° glideslopes over flat terrain. As a consequence of the flight profile
geometry, the separation angles pass through the region of high sidelobes
here, whereas they would not do so on "standard"” approaches. The higher
frequency DMLS errors arise from a combination of reference and array scallop-
ing effects associated with the reflections from plates Bl, B2, and B3. Plate
B3 is particularly significant because its multipath is near a multiple of the
DMLS elevation scan rate. In such cases, normal motion averaging improvement
benefits are not obtained.

As was the case in the other AWOP simulation scenarios, omnidirectional
azimuth and elevation patterns were assumed for the on-board antenna. For
some portions of the approach (e.g., the initial 130° leg where the direct
signal arrives aft of the aircraft and the reflection from B/ arrives to the
fore), this assumption could underestimate the received M/D (multipath/direct)
ratios, and hence the errors as well. Alternatively, aircraft equipped with
switched front-back antennas could discriminate against multipath even more
effectively than the simulation indicates. In considering the sensitivity of
the results to the aircraft antenna assumption, it is well to recall that
signficant multipath errors were found only in the "worst case” scenarios in
which the reflected levels are unrealistically large.

We must re-emphasize that the airport model used here may be a very crude
approximation of the actual Salzburg environment., No data was available to
permit modeling of fine details of the immediate airport environment (e.g.,
terrain, runway contours, reflecting and/or shadowing buildings, etc.).

Moreover, no detailed data was available regarding the degree of vegetation
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cover on the mountain slopes nor the actual terrain slope fine structure (e.g,
the terrain contour maps [120] do not indicate the presence of the vertical

cliffs postulated by the FRG).

4, Extrapolation of Results to Other Mountainous Situations

The insights gained from this particular scenario suggest that situations
in which the flight profile lies between the mountains and the runway should
not yield significant multipath errors for any of the proposed MLS systems.
In particular, we have seen that even small deviations from verticality can
yield very low specular levels.

Two other types of flight profile can occur which could yield larger
errors:

(a) flight paths passing beside a hill or mountain (e.g., as
down a valley)

(b) flight paths which pass over the top of a hill or moun-—
tain.

In both cases, especially in case (a), geometric considerations suggest
that rough terrain (e.g., diffuse) reflections are likely to be the greatest
threat, Unfortunately, there is not currently available sufficient experimen-—
tal data regarding rough terrain reflection characteristics to adequately
validate the propagation model for such scattering [121].

Scanning beam tests at Ku band using AIL equipment were conducted at
French and Norwegian mountainous sites such as cases (a) and (b) above. A
paper by AIL indicates that good performance was obtained at these sites.
Theroetical considerations suggest that Ku band would yield lower specular
reflection levels over rough and/or vegetated terrain than would be the case
at C or L band.

Both of the mountainous situations discussed above would be more likely
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to yield substantial DLS errors than was the case for the Salzburg scenarios
considered here. This is because the multipath time delays would generally be
much shorter than in the Salzburg scenarios. Additionally, the larger wave-
length of the DLS system is expected to yield greater specular reflection
levels for rough and/or vegetated terrain than would be the case at C band.

Another factor in DLS performance which was not simulated here, but may
be worthy of future study, is the decoding problems generated by multipath of
long delays such as arose here. This could take two forms:

(1) downlink garbling of the ground station identity

(2) coherent uplink angle code garbling
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IV. STUDIES OF COMPARATIVE PERFORMANCE WITH SHADOWING BY AIRCRAFT

A. Introduction

At the November 1976 meeting of WG-A in London, considerable controversy
arose over the comparative resistance of DMLS and TRSB to azimuth shadowing by
intervening (i.e., taxiing or overflying) aircraft [126 - 129]. Subsequent to
that meeting, a variety of analytical studies of the shadowing phenomena were
conducted as well as field tests. This chapter summarizes the various results
which bear on this issue.

In the next section, we present a conceptual background for representing
shadowing phenomena with the two systems. The viewpoint taken is that shadow-
ing can be thought of as a multipath problem in which various diffraction rays
(from the obstacle center or edges) act much like specular reflections. This
permitted us to investigate the phenomena using the same framework that was
successfully used by the AWOP WG-A performance subgroup to study low angle
elevation performance.

The "new" feature here is that the most severe shadowing problems arise
when there is more than one inbeam multipath component present. The hybrid-
bench simulators at RAE (UK) and CALSPAN (US) were limited to a single multi-
path component; thus, computer simulations were done to quantify the respec-
tive system responses to multiple inbeam multipath signals. Results for these
are shown in Section C.

Some useful information can be obtained from the various field test

results. The results for DLS, DMLS, and TRSB systems in the AWOP WG—-A tests
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are compared in Section D. Also presented in Section D are summary results
for the Doppler and Scanning Beam contractor tests in the U.S. Phase II pro-
gram.

The field test data proved difficult to compare directly due to
differences in shadowing geometry, shadowing aircraft size, etc.
Consequently, a unumber of comparative simulations were carried out. The
results of these are shown in Section E. Section F summarizes the results of

the various investigations.,

B. Conceptual Framework
1. Shadowing Environment
The philosophical framework proposed here is that shadowing is analogous
to specular reflections from the ground and buildings. Although this approach
has been used in the quantitative studies to date, some of its consequences

may be surprising. The basic idea is simple:

1. the received signal can be written

r(t) = fs(t) + shad(t) (4-1)

where fs(t) is the received signal in the absence of shadowing,

shad (t) = signal generated by shadow (4-2)
~ — a(t)



a(t) = signal generated by diffraction through an aperture
which has the projected shape of the shadowing object

2. fs(t) can be represented by a direct signal ray

3. a(t) can be represented by a set of diffracted rays which
have all the characteristics of specular reflections.

Mathematical models based on this viewpoint have been shown to agree with
field data in MLS [29, Volumes I and II of this report] and ILS studies [3].
Theoretically, this general approach has its roots in the geometric theory of
diffraction [126, 130]. Capon [29] gives an explicit description of the
diffracted ray angles and amplitudes for rectangles (as well as some theoreti-
cal refinements not covered in the brief treatment here)*. Two cases are
worth noting:
1. diffraction by a high wide rectangle when line of sight
(LOS) is not blocked as in Fig. 4~1. Here, the diffracted
ray from the near edge is of greatest concern. Its ampli-

tude relative to the unshadowed direct signal is given by
[11, 29]:

(4-3)

where Rf is the Fresnel zone radius.

Since Ay > 0 if the LOS is not blocked, p < 0.5, i.e., the
equivalent M/D ratio is always less than -6 dB.

*The discussion here is based on the initial MLS shadowing model described in
[29] as opposed to the refined model discussed in Volume I of this report.
These two statements differ only in the number of diffracted rays associated
with certain situations (e.g., shadowing obstacle in near field of an array or
Ay < Rg for a large blocking obstacle).
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2. diffraction by a large rectangle which blocks the LOS.
Now, there are direct signal coded rays which pass over
and under the object as well as side edge rays. The
side edge ray amplitudes are given by (4-3) with Ay as
shown in Fig. 4-2. The top and bottom ray amplitudes are
approximated by (4-1) with Ay replaced by the Az; from
Fig. 4-2. 1If Ay; < Az, and Az,, then the effective M/D
can be > 1.0. Such cases are clearly challenging for an
MLS.

More complicated shapes such as aircraft can be treated as a set of

nonoverlapping rectangles with (4-2) becoming a sum over the signals
diffracted through the various rectangles.

One of the rather surprising consequences of the above framework is that
the shadowing environment is identical for DMLS and TRSB unless the ray ampli-
tudes were to vary “substantially” over a‘single scan duration. Here, "sub-
stantially” means Ay or Az is changing a sizable fraction of Rg. This does

not occur in realistic cases:

Example 1: aircraft taxiing off runway at 15 mph at a dist-
ance of 1000 feet. Here Re =V (.197) (1000) =
14 ft. The aircraft moves:

(a) 0.16 feet during a TRSB to-fro scan and 0.002 feet
during the time the main beam is scanning by the
TRSB receiver

(b) 0.76 feet over a DMLS frame (12 scans) and 0.06
feet during a single DMLS scan

**It is suggested in [128] that rays beneath a fuselage are not important due
to the rolloff in elevation pattern of azimuth arrays. This, however, is not
quite the case, since the elevation angle subtended by fuselages is often
small. For example, the fuselage of a VC-10 1500 feet from the azimuth trans-
mitter subtends an angle of 0.46°. A "typical” pattern rolloff of 6 dB/degree
attenuates the bottom ray by 2.8 dB. The 1971 paper of J. Benjamin and Reich
[132] notes the importance of rays passing beneath the fuselage in interpret-
ing the RAE shadowing field data.
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Example 2: aircraft taking off over azimuth site at 160 knots
at a distance of 1000 feet at an angle of 6°. The
receiver is at an elevation angle of 1° with
respect to the azimuth site. The projected shape

moves upward:
(a) 0.2 feet during a TRSB to-fro scan and 0.003 feet

during the time the main beam scans by the TRSB
receiver

(b) 0.96 feet over a DMLS frame (12 scans) and 0.08
feet during a single DMLS scan.

In both examples, we see that the aircraft movement is a small fraction of Rg.

Consequently, the errors do not arise from variations of shadowing loss

due to movement of the taxiing or overflying aircraft, but rather from the
distortion in the radiated field caused by the shadowing object. We stress
this point because people with a comminications background often have the
notion that the angular errors arise entirely from a reduction in recelved
signal amplitude during the measurement period.
The fact is that shadowing causes problems in two ways:
1. signals from a single element (e.g., a function ID an-
tenna) are reduced in amplitude such that there might not
be adequte SNR.
2. the shadowing of the signal from distributed apertures
(e.g., line arrays) changes as a function of position on
the aperture so as to cause angle errors when the antenna
is scanned.
This second phenomena is what we represent by the edge ray formulation.
The principal new factor introduced by aircraft shadowing 1s the likeli-
hood that more than one in-beam multipath signal may be present at a given

instant of time. For example, the rays diffracted around the sides of a

taxiing (or overflying) aircraft which is on runway centerline may both be
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inbeam (e.g., the sides of a B747 at 1000 feet are at *0.6°). By contrast,
the AWOP multipath scenarios of Chapter II generally had, at most, a single

in-beam multipath signal at a given point along the flight path.

2. Direction Finding for DMLS and TRSB
The objective of this section is to set forth a common framework for
understanding DMLS and TRSB direction finding in a static environment®. The
arguments here also are simple:

1. the received DMLS spectrum on a scan is equivalent to the
received TRSB time envelope on a scan

2. both systems attempt to track the peak of the appropriate
envelope: spectrum envelope in the case of DMLS and time

envelope for TRSSB,

3. the current implementations of peak tracking are differ-
ent, but interchangeable. For example, the DMLS
sum/difference tracker is analogous to the split gate
tracker used in Australia for TRSB [16].

The equivalence of TRSB time envelopes and DMLS spectrum have long been
recognized [131, 133]. Figure 4-3 illustrates the equivalence for a direct
signal plus a single multipath signal. For the general case of N multipath

ok
components, it can be shown that:

*In a dynamic multipath environment (i.e., appreciable scalloping frequen-
cies), the equivalence argued here disappears, as will be discussed in the

next chapter.

*We ignore here TRSB phase shifter noise and DMLS AGC effects; both of these
yield second-order modifications to (4-4) and (4-5).
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1. The DMLS spectrum is

3¢
R(w) = ) a; e S[(w-w)T_]

v
) ) _ s, o . -
with (urma)TS = = (sin 8 - sin ei)fs (4-4)

) .
S(u) = f a(x) eI%¥ 4x

2. while the TRSB envelope is

jei L .
r(t) = |) a, e 8 [5 (sin 0t - sin ei)]i (4-5)

where vg is the DMLS scan velocity and Tg the DMLS scan duration and

a(x) = aperture weight -- applied as a time weight at
receiver for DMLS and as driving coefficients for
TRSB .

For equal aperture sizes, vl = L so that |R(w)| = r(t).

The importance of the above equivalence 1is that any distortions which

occur in the received TRSB envelope also occur to the same degree in the

received DMLS spectrum! Thus, there is no reason to believe a priori that the
DMLS use of amplitude as a function of frequency will be markedly different

from the TRSB use of amplitude as a function of time, although differences
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could arise from the fact that the DMLS has access to the phase information in
R(w).

We now want to show that the DMLS processor using the sum/difference
tracking loop is quite similar to the TRSB split gate trackers in a static
multipath environment. The DMLS tracker derives an error signal Im(A/I) on
each scan and uses this error signal to change the correlation frequency until
a zero error signal is achieved (see Volume II Chapters 3 and 4). This gener-
ally* corresponds to A = 0. If we assume a(v) = 1.0, then we have the condi-

tion

A= [D(w) S(w=-u) du=0 (4-6)

where D(w) = the transfer function corresponding to the difference time weight
coefficients. A typical D(w) is shown in Fig. 4-4.

1f we approximate D(w) by a square wave as shown in Fig. 4-4, then the
solution to (4-6) can be interpreted as a point at which equal masses lie
under the S{w) on each side of the tracker position.** Similarly, a TRSB
split gate tracker achieves equilibrium when equal time envelope masses lie on

each side of the tracker position. Such an equilibrium point may not neces-

*More precisely, the component of A which is in quadrature with the I must be
zero. The worst case error condition corresponds to a multipath relative
phase of 0° or 180° with respect to the direct signal, in which case A=0 for
equilibrium,

* % : .
The rigorous interpretation is that equal masses lie under the two sides of
a weighted S(w) curve,
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be stable, i.e., one must determine whether the tracker returns to the null
position when perturbed slightly away from it.

Figures 4-5 and 4-6 provide a graphical illustration of peak finding by
the two methods: thresholding and split-gate tracking. The key questions to
be addressed are the:

1. differences between thresholding and split-gate tracking

2. utility of the "phase information” wutilized in forming
Im(A/T)

These topics are addressed in the next three sections.

cC. Static Error Characteristics for DMLS and TRSB With Two Multipath
Components
In this section, we present the results of computer simulations in which
two multipath signals are present in addition to the direct signal. The
objective is to give some insight into the errors that arise when the LOS is
blocked by a tail fin or fuselage.

The current hybrid simulators at RAE (UK) and CALSPAN (US) cannot inject
two multipath signals into the respective receivers - thus, it is not possible
to compare these computer results with bench simulator data. However, the
comparisons made between the DMLS and TRSB simulation models and single multi-
path component bench simulator data in Volume II of this report showed good
agreement.

It is quite hopeless to show all the possible combinations for two multi-
path components. Thus, we will, for the most part, confine attention to the

case of multipath signals symmetrically separated from the direct signal. 1In
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a number of cases, we will show the corresponding time/frequency envelope to
give some insight into a particular error phenomena.

The computer program used to drive the respective system models treats as
its independent variable one of the multipath characteristics for the first
multipath signal. It is convenient to use the rf phase of that multipath
signal relative to the direct signal as the independent variable.

One problem that arises with two multipath signal tests is that of past

. *%
inputs.

With single multipath signals, there 1is generally only one stable
equilibrium point for a tracker; thus, the previous inputs will generally not
effect the error for a given multipath input. However, with two (large)
multipath signals, there can be more than one stable equilibrium point, in
which case the history of past inputs can substantially change the error. To
minimize such effects, the input sequences have been chosen to

(a) yield a single stable point for both systems at the start

of a sequence of rf phase changes,
and

(b) Dbe the same for both systems.

Another aspect which can modify the results is the acquisition/validation
tests., For example, the TRSB thresholding processor has dwell gate validation
tests which have no direct counterpart in the current DMLS implementation.
Similarly, the DMLS correlator comparison of tracked signal level with the
results of the Ord bin search process 1is not quite equivalent to the TRSB

checks due to the width of the DMLS search bins (6°). To understand the

"basic" error phenomena, tests were also run in some cases with this logic

**Some discussion of this topic also appears in the UK studies [126].

4-15



0.0,

ERROR  DES

Yl i lJfJltrtrrgJyrrrryro 77 1T T T

T

=

L

A

— 0 TRSe

— LS

U

eed A L4

IR DD U U S B O S B E e . |

.l (_V' § U Y TN W T TS T Y W O T S T S D e e |
n. 100. 200. 300.
L 7T T Ty rrrryr oy rTrrrrrrro T LU
F
- e
- — - — TRSE ' )
[ = -07
0.500 —— s 2
s [ d 5= 30
- H
o 1o

;

BTN ST NEUEE SRS ALALIIAAA]l]JAlAlIx

0.cC
[ .
0.50F
-1_00%’11)_1 Al 1111001 T WY 0 W T T T Y S W A T N WY S U N W S N O |
g — e — .
o G s 3
P ; ——— om0 .
= 1,00 d s, 180 .
E . - G, 0 3
- 3
n.50 F 3
g BN e e ]
) \\/' 7
0.0 ;_L_J_'_A_ILIIIIAILIIQA lllEIJLA‘ i |3
0. 100. 200. 300.

%

Fig. 4-7.

path signals at + 0.7

rf phase of multipath signal 1

Comparison_of errors for two -6 dB multi-
separation angle.

4-16



disabled so that a more direct comparison of thresholding versus null tracker
performance could be made.

The principal focus in the simulation tests was the case of two multipath
signals at +0.7° separation angle. Such angle might correspond to:

1. a narrow body jet fuselage parallel to centerline 500

feet from azimuth transmitter, or a similarly oriented
wide body jet 1000 feet from the azimuth transmitter,

2. the average width of a large narrow body jet (B707) tail

perpendicular to centerline (as in turnoff) some 550 feet
from the azimuth transmitter; or the average width of a
similarly oriented B747 some 1100 feet from the azimuth
transmitter.

In Fig. 4-7, we compare the system errors when both multipath signal
levels are -6 dB. The error behavior here is quite similar. Zero error
arises when both multipath relative phases are 0°, 90°, or 180° because the
received envelope has a single large peak and is symmetrical about the direct
signal.

In Fig. 4-8, we compare the system errors when both multipath signal
levels are -3 dB. Zero error again arises when both multipath relative phases
are 0° or 90°; however there i1s a large error when both multipath relative
phases are 180°, The reason for this is obvious from Fig. 4~9; the received
envelope has its largest peaks at +1.0° due to cancellation at the direct
signal angle. Since both systems attempt to find the peak of the respective
envelopes, it is not surprising that they both make a large error.

In the UK analytical investigation of shadowing [126], it was suggested

that in this situation, TRSB would make a large error, but that DMLS would not

due to symmetry. The argument presented in [126] for no DMLS error is



0.0 PUIRLINS S0 I AR N N R B A A BN S AR B N B e A B o o
- -
- B
@
gt 1
-0. 50 .
B — o — RSB 7
- . LS T 0T B
| . , = 0.7° E
L a0
[ o ]
[ E
5 4
B 0.1 TS T T 0 W U0 T U5 N S A Y A S U U S WD S U6 S SRR Y T NS U U |
0. 100. 200. 300.
JUAY o o o o e S S S S L S S S 0 B A e A e
P —a— s Tt ]
- ) ]
= = 0.7 ]
E — e . TRSH Vo ]
B 30 -4
- e ]
o 3
- p
s p
| .
- e
w s q
= - B
|- -
w 00F .
g s ]
- -
- P
- p
5 -
L 3
- -+
|- 4
o -
_10"L1111111111nlullelnlnAlAnlxlnAnj_L“
0. 100. 200. 300.
2.00

IBERE ASEEE AL et p el

Ttitgrrrryrryry o rrryrryrrryrryrryrrorry

i

SN VS EEU SN INENE U NEN S U N

— & — RSB *
TRSB dwell gate logic
flags measurements in
Q this region
g 1.00
- P
F~ - ©— — — © O — —w0 = —d
- g
L 3
-
t -
r PR ]
2.0 VDU U T A U O S WU N A O S W B S U A W N B B G R B 1
0. 100. 200. 300.

%y

8
70

= rf phase of multipath signal 1

Comparison of errors for multipath signals

separation angle with -3 dB M/D.
4-18



6T~

Envelope

LILELIRELER

8,4

_
e
=

2,2 b
_
-

5,1 b

6.0

Py Ty rTrirTryrotrvryn b it

= 0 g
-6, = 0.7

= ¢, = 180°

S
u—
|

| S U U I S T I I (N A

s

-
-’

;-_f.b'

Fig. 4-9.

RSN EN N
-1,% -1.6 U PY 0.0 .9 1o8 1.5 é.@

time or frequency (deg)

Envelope for -3 dB M/D multipath signals at 1_0.7O separation angle with multipath

phases 180° out of phase with direct signal



0‘0 -‘J\l\l ISR R S D L s -
- & P ]
~
L N P ]
) s
N \ , .
- \ ; -
i « [
s \ , 4
| \ / E
»
= - \ / B
L] -3
E 0.5 ——e&—  ous RN -7 -
~p
ut [ 4 -4
T -6 - —mw TR h
[ ) " u.7° 7
5 o .
o
L 2 _{
| .
-1 U U WD V00 WS N IS W SN NV SN0 U5 S G5 (N WS SO A U U0 S SN S W U SO 0 W00 A W SO S0 U e 1§
0. 100. 200. 300.
l.m }_ PP TR Tty rooryryoyy2y3yrrrvy
= oy s L= 1.0 :
o Vo2 p
- = o o 0 -
C 1 P 4
- L 390 ]
o A .
o -

o6
Ty
f
f
/

L;’/

Pz
|
™

4 L&Ll

0.0

o
-
o p
o \ / 3
F —a— s b $ ]
o A / 5
o N .
o N % -
[ — & — Tt / B
- ] b
b \/————"‘ -
o -
o -
o -

_l 00 ) U ST U I T U T N B U T D S U N D Y VN A T B T A Y B I G e »

100. 200. 300.

2- 00 [ Tr1r 7 10 01T T 7% LRSI T i 1713y T1T 7T P 1T 0T T°F
- N = = 1.1
P —&— oS 172
s I
o 1 2

(g

[ —— e — ms 7 o

EROR  DEG
8

T e RRRERLEREEE)
1
!
|
1]

\

\

'

g

Al

[USEE SUEN P | NS ENT ST UUTEE UNEEE B

l'lllllllLllLLllllllAAlllklllLL

100. 200. 300.

0.0

oIy

¢l = rf phase of multipath signal 1 wrt direct signal

Fig. 4—]8. Comparison of errors for multipath signals
at + 0.7 separation angle with +1 dB M/D ratio.

4-20



obscure; our interpretation is that the error that would result = sum of the
errors for each multipath signal alone = 0 by symmetry. This argument is
equally applicable to TRSB -- and erroneous in either case. We have found
that in certain anti-phase cases, where the M/D > -3 dB, one or both systems
may stay in a no error condition provided exact symmetry holds and the
receiver acquisition/validation logic is disabled. However, changing
amplitudes or phases slightly (e.g., a 20° phase change) yields a large error.

Figure 4~10 compares the errors when both multipath signals are +1 dB.
The error behavior here is quite similar to that in Fig. 4-8, and for much the
same reasons. Figure 4-11 shows the received envelope in the out of phase
condition. We see that there 1s virtually no peak left at the direct signal
angle.

The two component simulations of this section show some differences in
error magnitude at certain multipath parameter combinations; however, the
overall error characteristics and peak error are very similar. Both
techniques yield zero error for symmetrical multipath situations where the
multipath phase is not near 180°. When the multipath phases are near 180°
with equal amplitude signals, the residual direct signal peak typically was so

small that neither peak location technique could succeed it.

D. Comparison of DLS, DMLS, and TRSB Shadowing Field Test Results
In this section, we attempt to compare the published shadowing field test
results for DLS, Doppler, and scanning beam systems. The available data base

consists of the WG~A tests and the data from the US Phase II contractor

4-21



-1 7T ¥ T ¥ 7T vV 1T 7 ryY vy TV Yy VT rryovrn T 7 1 'ﬂ LI L
oo [ ]
N —
- -
ﬂ
0.6 L -
-
L- —
os L ]
-y
B pp = 1.1 oy = 1.1 ]
p— - Y = 0 B
Eé - 9, 0.7 e] 0.7 -
0.4 | _ 0 - 0 -
0 . b, =180 4, = 180 -
0. [
& - -
: -
.3 L A
-
o2 L -
L
NN NN NN | 1 {1 1 1 Ll [ N U I S U U I (N T B I |
-2,¢ -1.8 “1,% -0, & 00 X% 1,0 1§ 2,0

time or frequency (deg)

Fig. 4-11. Received envelopes for two -1 dB M/D multipath signals at 10.7o separation angle and anti phase
condition



tests. Such a comparison necessarily must include assessment of differences

in the experimental conditions and test equipment.

1. AWOP WG-A Tests
a. Experimental Conditions/Test Equipment

In Fig. 4~12, we compare the runway geometries in the DMLS and TRSB
shadowing tests performed for the AWOP assessment. The DMLS site and the TRSB
February 1977 test site are fairly similar as far as transmitter-to-runway end
distance 1s concerned, whereas the original TRSB azimuth test site was much
further back from the runway. This factor is important for comparing the
taxiing aircraft test data. Also lmportant in comparing taxiing test data are
the runway profiles shown in Fig. 4-13.

Figures 4-14 and 4-15 compare the aircraft used for shadowing in the FRG,
UK, and US field tests for which full test condition and tracker data is
available. We see that the BAC-11l1 used for the UK tests is similar in size
to the CV-580 used for the October 1976 TRSB tests, but substantially smaller
than the CV-880 used for the 1977 TRSB tests. Consequently, the TRSB CV-880
data is probably more closely related to the UK B707 and VC-10 data for which
there are only raw MLS plots.

The final factor concerns the ground and airborne equipment. The most
striking difference here was ground system aperture where the DMLS aperture
was 120), whereas the TRSB aperture was 60X, The shadowing data discussion in
[7) suggests that the errors are proportional to beamwidth, in which case the

DMLS errors with a 120X aperture should be doubled to yield errors for the
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proposed 54\ implementation. However, at small separation angles, the DMLS
(and TRSB) single component errors are independent of beamwidth (see Volume II
of this report). A similar relationship can be shown with multiple compo-
nents. Consequently, it is not clear how the array length difference should
be handled.

From the discussion of shadowing multipath characteristics, it should be
clear that TDM vs FDM signal formats would yileld similar shadowing errors.
The UK field test airborne receiver was a sine/cosine tracker. It is not
clear how shadowing errors with that processor relate to those with the corre-
lation processor--single multipath signal tests suggest the two are quite

similar.

b. Overflight Test Results

In Table 4-1, we compare the DLS, DMLS, and TRSB test results for over-—
flying aicraft. Lines have been drawn between the various flight results to
indicate those cases which might be comparable. Tt is difficult, however, to
draw strict comparisons, since there is insufficient data to ascertain where
the same degree of blockage took place.

In the case of the US January 1977 TRSB tests, the overflying aircraft
and receiving aircraft were tracked simultaneously so that the direct physical
evidence of blockage could be established. Additionally, airborne recordings
of the TRSB (wideband) video were made so that fade 1levels could be
determined. Some UK data did have signal level plots from which fade depth

can be ascertained; in those cases, the fade depths were comparable to those
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DMLS APPROACH A7

TABLE 4-1

IMUTH OVERFLIGHT INTERFERENCE

—I RANGE OF TEST MLS MAX MLS LS MAX ns
TES? INTERFERING | FLIGHT DATE A/C FROM HEIGHT | PK TO PK DURA- PK TO PK [ DUFRA-
AIRCRAFT AIRCRAFT /RUN LTHRESHOLD ERROR TION ERROR TION,
| ' nm feet degree sec degree se
Andover | BACI-11 |AA34/6 !30.10.75 22 660 0-05 18
Andover | BACI-11 [AA34/8(30.10.75 19 550 0-06 5 [~
Andover | BACI-11 [AA34/3 30.10.75 24 720 007 1 . \}
BAC!-11| Comet IV |AB0S/4 475 1-0 004 1
BAC!-11| Comet IV |AB08/6 4.75 1-0 0-07 4
BRACHE-11| Comet IV | ABOS;/8 4.75 07 0-05 4
BACI-11] Comet IV |AB08/10 4.75 1-0 010 5
HS748 vC10 B.5.8.9 11.73 12 0-21 4 1-27 6
Hs748 | B707  [BSs10| 1173 03 <0047 1 [>235 8 (T4
HS748 VCI0 B.5.8.11 11.73 0-75 014 02 2412 1t
HS74% VCi0 B.5.8.12| 11.73 0-2 0-21 20 >2-35 9
H5742 VCi0 B.5.8. 13| 11.73 1-2 0-07 40 1-32 io
HST748 B707 B.5.8.14| 11.73 1-2 0-23 20 2:0 7
HS748 3707 B.5.8.15| 11.73 03 <0047 — 129 158
HS748 3707 B.5.8.16] 11,73 -— <0-047 — >235 16
HS748 B747 B.5.8.17| 11.73 1-7 012 2 1-29 11
115748 B747 B.58.18] 11.73 — <0-047 — 1-15 9
: HS748 B707 B.S.&219| 11.73 1-5 <008 10 0-5 30
DLS APPROACH AZIMUTH OVERFLIGHT INTERFERENCE
l B ?_ Range of !
; | Test A/C |
i Flight from J Max Error MLS
Test Interfering ! or Threshold } Height Peak to Peak Duration
Aircraft Alrcraft ’L Time Date (nmi) L(ft) (deg) (sec)
D0O-~28 C-160 r T
Skyservant | Transall 14:27 3/26/76 3.41 | 700 0.13 ' = 4
I R L | |
TRSB APPROACH AZIMUTH OVERFLIGHT INTERFERENCE
i Range of |
Test A/C MLS
Test Interfering Flight from Max Error MLS
Aircraft Aircraft or Threshold Height Peak to Peak Duration
Time Date (nmi) (ft) (deg) (sec)
1
DC-6 CV-580 17/12-1 10/21/76 0.5 ! 200 .15 4 )
" " 17/12-2 " -0.2 20 .06 3
17/12-3 -0.3 8 .05 2
DC-6 CV-880 1355 1/6/76 0.2 , 180 0.04 2 sec
” " 1416 * 0.3 220 0.04 2 sec
1427 0.15 200 0.14 1 sec
-‘-—-4
DC-6 1400 2/8/77 0.5 170 0,15 2
- 1411 " 0.7 192 0,08 1.5
1422 0.2 L 173 n,10 3
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Fig. 4-16. Comparison of turnoff test geometries.
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for TRSB.
c. Taxiing Aircraft Tests

It had been hoped a priori that this data would be fairly comparable
since the shadowing aircraft locations are well known. However, there was a
considerable difference in the shadowing geometry for the various sites.

Figure 4-16 compares the RAE site with the site used for the US TRSB
October 1976 tests. We see that the principal shadowing threat for the UK
tests is the fuselage, whereas the tail fin would be the principal threat at
the US test site. For a receiver nearing the threshold, there would be consi-
derable propagation beneath the taxiing aircraft fuselage at the UK site and
very little at the US site. The greater distance from the azimuth transmitter
would yield lower M/D levels for the US site, but a greater "in-beam” region.

Figure 4-17 compares the test site for the February 1977 US tests with
the UK test site. We see that the two sites are comparable distances from the
taxiing aicraft, but have rather different heights with respect to the fuse-
lage underside. For example, for a receiver nearing threshold, the DMLS
azimuth antenna has a nearly unobstructed LOS to the aircraft, whereas the
TRSB LOS is blocked. Conversely, at greater heights, the TRSB azimuth antenna
would have an LOS over the fuselage, whereas the DMLS LOS was blocked.

Another potential difference is the precise way in which the aircraft
turned off the runway since this seems to generate the largest errors. In the
US tests, it was noted that the largest error occurred in cases where the
aircraft rotated to put the tail fin on the opposite side of the runway from

the exit before taxiing off.
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Fig. 4-17. Comparison of taxi/turnoff test geometries.
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Table 4-2 summarizes the various test results. Again, lines have been
drawn to denote results which may be comparable.

2. US Phase IT Tests of Doppler and Scaunning Beam

Several of the UK shadowing papers [126, 127] called attention to the
scanning beam shadowing test data from the US Phase II tests. Thus, it is
appropriate to compare that scanning beam data with the Doppler scan data from
the same tests. The US Phase II azimuth shadowing tests involving two Doppler
scan (Hazeltine and ITT/Gilfillan) and two scanning beam (Bendix and Texas
Instruments) utilized a C-124 aircraft parked in front of the azimuth array.
At three of the four sites, this distance was 800 feet, whereas the fourth
site was that shown in Fig. 4-12, in which the minimum distance was 2400 feet.

Both static pole tests and flight tests were to be conducted. All four
contractors submitted pole test data, but only three (Bendix, Hazeltine, and
Texas Instruments) submitted flight test data.

In Table 4-3, we compare the static pole test data for the four con-
tractors taken at a common test point. We see that the scanning beam errors
were generally lower than that of the Doppler scan systems.

Table 4~4 compares the flight data. The flight recording data was not
film corrected, and there are some cases of perturbations from other than
shadowing. Thus, it is doubtful that any significant conclusion could be
developed from the Phase II flight test data.

Several observations can be made regarding the relevance of this data for
the ICAQ analysis:

1. The aircraft used (see Fig. 4-18) was much larger in
terms of fuselage height than that used for the ICAO
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TABLE 4-2
COMPARISON OF AZIMUTH ERRORS DUE TO SHADOWIRG BY TAXIING AIRCRAFT
RANGE OF TEST MLS MAX MLS ILS MAX ILS
TeST INTERFERING | FLIGHT DATE A/C FROM HEIGHT | PK TO PK DURA- PK TO PK | DURA-
AIRCRAFT AIRCRAFT / RUN THRESHOLD ERROR TION ERROR TION
nm feet degree sec degree sec
Andover | BACI-11 [AA34/2 (30.10.75 01 120 05 18
Andover | BACI-11 |AA34/4|30.10.75 1-2 386 0-07 7
Andover | BACI-11 |AA34/7 [30.10.75 17 527 012 20
BACI-11] Comet {V | ABO8/5 | 16.4.75 15 —_ 004 3 )
BACI-11{ Comet IV |ABO08/7 | 16.4.75 1-0 —_ 0-23 10 { ,
BACI-11| Comet IV |ABO08/9 | 16.4.75 1-75 —_ 0-13 5
BACL-11| Comet1V |ABO03/11| 16.4.75 2:0 — 011 3
HS748 VCl0 B.5.5.13| 11.73 1-0 300 0-52 3 1-06 10
HS748 B.747 B.5.5.14| 11.73 2-8 540 0-40 6 0-98 15
HS748 B.707 B.5.5.15| 11.73 — — — - 0-26 8
HS748 B.747 B.5.5.16 11.73 20 600 0-05 —_ I-60 22
15748 B.707 B.5.5.17| 11.73 0-8 - — -- 0-12 24
HS748 VC1i0 B.5.5.18| 11.73 0-5 150 0-48 1 x2 0-12 30
HS748 YCi0 B.5.5.19) 11.73 -05 70 0-24 0-2 096 12 !
15748 VCI0 B.5.5.20| 11.73 1-5 450 0-48 4-0 0-36 11
DMLS Errors with 0.5° beamwidth FDM System
I Range of
I Test A/C | MLS
. . From Max Error MLS
) Test In?erfer]ng Flight/ Threshold | Height Peak to Peak Duration
Aircraft Aircraft Run Date {nmi) (ft) (deg) (sec)
DC-6 CV-580 ! 10/21/76 | -.15 30 0.6°
; " " 2 “ 50 0.4°
i "n u 3
N | I 50 0.5°
r |
DC-6 | cv-880 4 2/8/77 1 1 250 0.3 3
" ! " 5 " 0.3 90 .45 6 )
i " . 6 " 0.3 90 .50 6
1 T 7 " 0.5 107 .45 6
\ DC-6 CV-880 2 2/18/77 0.4 181 .44 6 ‘
‘ " " 3 " 1.00 364 .40 5 ><—
" P 4 " 1.56 547 .45 4
" s " 5 " 1.64 574 .36 3
" " 6 " 1.56 547 .37 3
" " 7 "
" " 8 n
" H 9 m /
" " 10 " 0.90 312 .04 2 :
! S

TRSB Errors with 1°

1

"
34

beamwidth TDM System




Pole
Height

10
15
26
25
30
35
40
45
50
55
60
65
76

*Note:

TABLE 4-3

COMPARISON OF U.S. PHASE IT POLE TEST RESULTS
ON CENTERLINE FOR PARKED SHADUWING AIRCRAFT

Doppler Scan

(Error in deg)
Hazeltine

ITT*

.134
.131
161
.140
.110
-.09
-.06
.05
.086
.084
.103
.106
.106
.08

.07

-1.0

2
.14
.02
.07
.075
272
.06
.22
A7
.10
.06
.03

mean unshadowed error ~ 0.046°.
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Scanning Beam

(Error in deg)

Bendix

.02 -.
.03 -
.07 -.
.08 -
.03 -
.01
.07
.15
.08
.05

TI

03
.02
03
.04
03
.02
.02
.03
.02
.02



TABLE 4-4

COMPARISON OF U.S. PHASE II SHADOWING FLIGHT TESTS

9€-¥

FLIGHT DOPPLER SCAN SCANNING BEAM
Texas
Hazeltine ITT/G Bendix Instruments
of f scale in _ +1/-
] both directions® - NO .08/-.15 1/-.52
mean = 0.81 LIGHT
TEST
2 off scale in PRESENTED .15/-.15 +.2/-.27
both directions*®
mean = -2.27

*fu11 scale = + 0.3°
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Fig. 4-18. C-124 shadowing viewed from K AZ antenna.
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*
tests.

2. The use of an identical parked aircraft and pole tests at
a standard location helped reduce some of the experi-
mental condition variance -- however, there were still
runway layout/profile differences.

3. The principal error mechanism for the scanning beam
receivers was the same as that which arises with the
proposed TRSB receiver; namely, dwell gate shifts due to
the beam envelope distortion.

4, It is not clear how the error mechanism for the Doppler
receivers tested compares to that of the proposed DMLS
implementation. Hazeltine, using a zero crossing counter
which discards the scan amplitude information, had by far
the worst performance.

5. The shadowing aircraft location is probably unrealistic
operationally since all the US contractors had deemed
that location to be a part of the critical area for the
azimuth array.

6. From a comparison of the US Phase II scanning beam and
Doppler scan shadowing data, one might conclude that
Doppler was more susceptible to such effects than scan-
ning beam. However, it is felt that differences in test

condition were too great to warrant drawing any definite
conclusions.

E. Comparative Simulations of DMLS and TRSB**
In the preceding sections, we have seen that there were considerable
experimental condition differences in the shadowing field tests. These dif-

ferences included:

*For example, the C-124 fuselage height is greater than the total height of
the BAC-111.

**The DLS technique was not considered in these simulations because the scena-
rio geometry was such (shadowing obstacle in the near field of the 90X linear
array) that the propagation model used for AWOP WG-A studies would not be
valid.
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1. trial antenna beamwidth vs that proposed

2. ground antenna elevation pattern

3. shadowing by intervening terrain

4. type and location aircraft relative to the LOS

5. flight paths
Consequently, a fairly wide tolerancing band must be applied about each sys-
tem's field data before direct quantitative comparisons are made.

The multiple component simulations in section C above were more nearly
comparable, but it is not clear whether any of those situations will arise or
persist in practice. Moreover, we have seen that the past history of the
receiver can substantially change the error for a given combination of multi-
path components.

A more attractive way of obtaining more nearly comparable operationally
relevant data was to simulate several operationally relevant scenarios. In
this section, we present such comparative simmlations for three scenarios:

1. an overflight aircraft situation based on one such over-
flight in the US January 1977 TRSB tests [129]

2. a taxiing aircraft case based on one of the US February
1977 TRSB tests [129]

3. a case with an aircraft parked parallel to centerline
based on the scenario in a UK paper [126]

The TRSB simulation results were shown in Volume II to agree with actual
flight test results corresponding to scenarios 1 and 2.

The TRSB and DMLS system models used were those used for the AWOP WG-A
scenario simulations, except that the DMLS azimuth array was given the same

vertical pattern as that used for the TRSB system. This was done so that the
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ground reflection paths would be treated identically for both systems.

1. Blockage by Overflying Aircraft
This scenario was based on a TRSB test conducted January 6, 1977, in
which both aircraft were tracked (one by laser and the other by theodolite) so
that good position data was available. The blockage occurred when the shadow-
ing CV-880 was ~400 feet from the azimuth transmitter, while the receiver was
0.7 nml from threshold. Figure 4-19 shows the computer generated map. Figure
4~20 compares the TRSB and DMLS errors. The error waveforms are quite

similar.

2. Blockage by Taxiing Aircraft

This scenario is based on a TRSB taxiing aircraft test conducted February
6, 1977. The shadowing CV-880 aircraft rotated approximately 60° on center—
line so the the nose and tail were on opposite sides of the centerline and the
azimuth site region was visible to the pilot of the landing aircraft. The CV-
880 then taxied off the runway.

The computer simulation currently allows the shadowing aircraft to move
in a straight line only at fixed velocity. Therefore, the rather complicated
taxi maneuver was approximated by having the CV-880 taxi across centerline of
an angle of 60° starting with the fuselage across centerline. Figure 4-21
shows the computer generated airport map.

Figure 4-22 compares the TRSB and DMLS simulations for this scenario.

The error waveform differences are again small. The TRSB lag in dynamic

4-41



a1y
0.1¢

TRS AZ //\L\

-0.08 )
-0.04
-0.1¢
I

=1
Iy
(¥]

Az 1MUTH ERROR (DEG)

DOP AZ

B 55

&I
S Nii

kb

Fig. 4-20.

DISTANCE FROM THRISHOLD (NMI)

Similarity of simulated raw MLS errors for comparative

scenario based on TRSB overflight field test of part II.

4-42



Ev-v

Y POS FT

2000.

1009.

-1000.

-
i I i { { i 1 BB [ [ i
Azimuth —
FLe gLt
SAal
fz = T —LPP )
7 FUNAY
A V\'\
Taxiing a/c
path
—4
| ! I | | ] | | i | 1
e. 10ee.  2eea. 3200. 4600. 5e00. 6000. 2000, 8ee0. 9e0e.  1ecea.
X POS FT
Fig. 4-21. Geometry for taxiing aircraft scenario.



0.%

V1 TAKI CVBBD..RSS WOKPTR. SCPLRA BukDIA PTG, 0940 FEB 18

1333 TAX! CYBB0 ALA RUN 6 FEB 8,1977 ..1948 FEB 17

®S A

¢
€cc1555653556€556556555658666556656655555 cc5” S LN ogfc

RAN ERROR (DEG)
2
]

¥ XXX

- = DYNAMIC ERRCR

§ = STATIC (SINGLE SCAN) ERROR
T . 3

0.30
0.25
0.20_|

0.15 |

RAN ERROR (DEG!
=

T T T T T T T T T T T

T
0.0 6.2 24
DISTANCE FRON THRESHOLD (W)

1356 PARKED (VB30 REPSH TRSB w6473 [CPLS4 K0 T5 ..1628 FEB 23

1353 RIR.N T TAXD (VBED AT TWPAL ROV EROM RUN 6 r26 F..1730 FEEZ3

Xp M

-2 DYSAMIC ERRCR

Fig. 4-22.

S = STATIC (SINGLE SCAN) E-502
T T T [

T T T T T I T 1 T T T

T
-0.0 0.2 0.4

DISTANCE FROM THRESHOLD (MW}

DMLS and TRSB raw errors for shadowing by

taxiing aircraft scenario.

4-44



G-t

| T R I T
2000, | -
B6 %35
1000, | \ 78
Shadowing aircraft (B707) %
e % t ki
. X tr— —zpre— -
0. |- R¥E.gar OO
Y POS FT Q fu
Azimuth site P <
_1M. - L K7 ) -
| | ] ] i
8. 2500, 5000, 7500, 19000,
FLT PTH A X POS FT
AZ SYSTEM EL SYSTEM
OBST RANK AMP DIST  RDOP OBST RANK AMP  DIST  RDOP
G 11 (] 0.0 0. G 11 80 0.0 0.
B ?7 37 6630.7 -110. B1 i 8 461e.8 ~-26.
Be 5 29 0.0 -6. Be e 1 6542.9 -71.
83 3 24 1405.2 ~2. B3 18 36 9528.9 -374.
34 6 30 737.e -770. B4 9 3 7772.4 -1265.
BS 4 27 7640.7 ~740, | 13 4 1S B606.7 ~1414,
.0 1 15 8658.7 -649., Bé 8 30 9177.6 ~-ieve.
Al 10 70 1317.4 -1, Al k) 14 8475.0 -£9.
Al 9 68 9528.9 -2063. A 6 17 8299.4 -170.
[ X] 8 65 §708.6 -3. A3 S 17 5181.6 0.
A4 e 1?7 7048.1 ~-1116. A4 ? 17 86%50.7 -1866.
D @ 80 0. . D ] 8¢ 0.0 0.

Fig. 4-23. Computer map of airport for parked shadowing aircraft scenario.
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output again is due to the multipath computation.
3. Blockage by Aircraft Parked on Runway

This simulation was based on a scenario described in [126], in which a
B-707 is parked on centerline pointing at the azimuth transmitter a distance
of 500 feet from the azimuth site. The receiver makes a normal 2.86° approach
down to threshold. It should be noted that the shadowing aircraft 1is parked
in the region suggested as being an azimuth array critical area in the DMLS
and TRSB proposals to ICAO.

The airport layout and computed multipath characteristics are shown in
Figs. 4-23 and 4-24, Analysis of the scenario revealed that ground
reflections play an important role in the overall performance, and that the
overall effect was sensitive to the elevation pattern of the azimuth array.

Since the proposed DMLS pattern rolled off more slowly than did the
proposed TRSB patterun, the simulation used the TRSB elevation pattern for DMLS
and TRSB. The raw errors are shown in Fig. 4-25. We see that the DMLS and
TRSB performances are quite similar. Simulation of DMLS with the proposed
DMLS elevation pattern yielded errors 100% larger than those shown in Fig. 4-
25. The fact that the errors for a given system (DMLS) could be changed by
50% by what appear to be small changes in the elevation pattern characteris-

tics illustrates the difficulty in comparing shadowing field trial data.

F. Summary of Results
The comparative analysis results can be summarized as follows:

1. As a consequence of the equivalence of the TRSB received
time envelope and the DMLS received spectrum envelope in
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static conditions, performance differences were expected
to be small. Moreover, the proposed DMLS digital
correlator is very similar to the TRSB split gate tracker
utilized by Australia.

2. Shadowing errors when the line of sight (LOS) is not
blocked essentially reduce to the single component multi-
path problem with an M/D ratio < -6 dB. Differences for
this case were shown to be small in the bench simulation
tests and in simula;ions of elevation shadowing by an ILS
monitor (fig. 4-26) .

3. Shadowing when the LOS is blocked often becomes a two-
component multipath problem where the multipath signals
are on either side of the direct signal. The M/D ratio
here can be high. It is found that in most cases, the
two systems give similar errors. In some cases, DMLS
gave a large (0.4°) error, while the Phase III TRSB
receiver logic flagged the measurement.

4, The field data suggests that for similar geometries and
shadowing aircraft size, the TRSB and DMLS performance
was quite similar. The US Phase II contractor data shows
larger errors for the Doppler systems, but this probably
reflected site conditions and implementation character-
istics rather than fundamental differences.

5. Comparative scenarios 1involving parked, taxiing, and
overflying aircraft (based on the US field tests and UK
suggestions) yielded quite similar results.
Given the above, it 1is concluded that shadowing by taxiing and overflying
ailrcraft is a principal MLS multipath error source; however, there was not a

significant difference between the DMLS and TRSB techniques in terms of sensi-

tivity to these shadowing effects.

*The ILS monitor simulation is based on the Aeroparque (Buenos Aires,

Argentina) TRSB elevation shadowing by an ILS glideslope monitor which was
described in volume II, chapter 4 of this report.
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