
 

  
 

Project Report
ATC-206 

 
 
 
 
 
 
 Runway Status Light System 

Demonstration at Logan Airport
 
 
 
 
 

J. R. Eggert
R. J. Sasiela

M. P. Kastner
W. H. Harman
H. Wilhelmsen

T. J. Morin
H. B. Schultz

J. L Sturdy
D. Wyschogrod

P. M. Daly

 
 

 

12 October 1995

Lincoln Laboratory 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

LEXINGTON, MASSACHUSETTS 

 
 

Prepared for the Federal Aviation Administration, 
Washington, D.C. 20591 

 
This document is available to the public through 

the National Technical Information Service, 
Springfield, VA 22161 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This document is disseminated under the sponsorship of the Department 
of Transportation in the interest of information exchange.  The United 
States Government assumes no liability for its contents or use thereof. 



1. Report No.

ATC-206

2. Government Accession No.

TECHNICAL REPORT STANDARD TITLE PAGE

3. Recipient·s Catalog No.

4. Title and Subtitle

Runway Status Light System Demonstration at Logan Airport

7. Author(s)
J.R. Eggert, R.J. Sasiela, M.P. Kastner, W.H. Harman, H. Wilhelmsen,
T.J. Morin, H.B. Schultz, J.L. Sturdy, D. Wyschogrod, and P.M. Daly

9. Performing Organization Name and Address

Lincoln Laboratory, MIT
244 Wood Street
Lexington, MA 02173-9108

12. Sponsoring Agency Name and Address
Department of Transportation
Federal Aviation Administration
Washington, DC 20591

15. Supplementary Notes

5. Report Date
12 October 1995

6. Performing Organization Code

8. Performing Organization Report No.

ATC-206

10. Work Unit No. (TAAIS)

11. Contract or Grant No.

DTFAOI-95-X-02018

13. Type of Report and Period Covered

14. Sponsoring Agency Code

This report is based on studies performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of
Technology under Air Force Contract F19628-95-C-0002.

16. Abstract

The Runway Status Light System (RSLS), developed under the FAA's Airport Surface Traffic Automation
(ASTA) program, is intended to help reduce the incidence of runway incursions and airport surface accidents. It
will do so by providing a preventive, back-up system of automatically controlled lights on the airport surface that
inform pilots when runways are unsafe for entry or takeoff, and by providing controllers with enhanced surface
radar displays. This report documents a proof-of-concept evaluation of the RSLS at Boston's Logan Airport. It
details the methods used to provide the necessary surface surveillance and safety logic to allow a computer to
operate the runway status lights and associated controller displays without human assistance. The system was
installed and tested off-line at Boston's Logan Airport using an inexpensive commercial marine radar as a primary
surveillance source. The system operated live and in real time but the runway status lights were not physically
installed. They were displayed on a scale model of Logan Airport located in a demonstration room that had a good
view of the airport. This allowed visual comparison between the actual aircraft and the resulting lights and displays.
In addition to providing a convincing demonstration of the system, real-time viewing of the aircraft movement was
an important aid in the development of the surveillance processing and safety logic software. Surveillance perfor­
mance and runway status light operational performance were evaluated quantitatively. The probability of tracking
an aircraft in movement areas with line-of-sight coverage was better than 98%. The false track rate was about four
per bour, and the surveillance jitter was about 1 meter rms. From an operational point of view, had there been real
lights on the field, it appears that they would have provided the intended safety back-up with little impact on
airport capacity or controller and pilot workload. Only once in 15 minutes would the pilot population have ob­
served a light in an incorrect state for more than four seconds. From the point of view of a specific cockpit crew,
only once in 36 operations would a runway status light have been seen in an incorrect state for more than four
seconds, and, furthermore, only once in 50 operations would light illuminations have interfered with normal, safe
traffic flow. These are encouraging results for a system in an early demonstration phase because significant im­
provement is possible in all of these performance measures. Specific suggestions for improvement are included in
this document.

17. Key Words

Runway Status Light System (RSLS)
Airport Surface Traffic Automation (ASTA)
Logan Airport
Airport Surface Detection Equipment-X (ASDE-X)

18. Distribution Statement

This document is available to the public through the
National Technical Information Service,
Springfield, VA 22161.

19. Security Classif. (of this report)

Unclassified

FORM DOT F 1700.7 (8-72)

20. Security Classif. (of this page)

Unclassified

Reproduction of completed page authorized

21. No. of Pages

285

22. Price



EXECUTIVESU~ARY

INTRODUCTION

In the last two decades, at least nine major airport surface conflict accidents have occurred in the
United States. In a thirteen-month period in 1990 and 1991, three airport runway conflict accidents
together resulted in the loss of 43 lives. Runway conflicts start with runway incursions. About 200
runway incursions occur every year at US airports. With domestic air traffic predicted to increase by 3%
annually over the next decade, the airport surface is expected to become increasingly crowded. The
runway incursion problem must be addressed if future runway conflict accidents are to be prevented.

The Runway Status Light System (RSLS), developed under the FAA-administered research and
development program in Airport Surface Traffic Automation (ASTA), is designed to reduce the incidence
of runway incursions and airport surface accidents. The RSLS is a preventive, back-up system intended
to provide runway status information to pilots via automatically controlled lights on the airport surface
.that indicate when particular runways are either unsafe to enter or are unsafe for takeoff. The system will
also provide runway status and traffic information to controllers via surface radar display enhancements.
The technical approach is to use automatic processing of surface primary and approach secondary radar
data to drive the runway-status lights and associated controller surface traffic displays.

This report documents a proof-of-concept evaluation of the RSLS at Boston's Logan airport. It
details the methods used to provide the necessary surface surveillance and control logic to allow a
computer to operate the runway status lights and associated controller displays without human assistance.

THE RSLS SOLUTION

An important design goal of the RSLS is to enhance airport surface traffic safety with minimum
operational impact on air traffic controllers and pilots, and with no reduction in airport capacity. The
RSLS operational concepts were devised using extensive knowledge of actual airport operations, drawing
on the experience of controllers, pilots, and safety experts. The RSLS is designed to be an all-weather,
automatic system providing a safety backup to controllers and pilots, requiring no increase in controller
workload, and incurring no decrease in airport capacity. The result of the RSLS design effort is a system
that works in concert with existing procedures, and enhances runway safety.

Analysis of past runway accidents and incidents has shown that a complete airport surface traffic
safety system should include a good surface radar, controller alerts in the tower cab, and runway status
lights. A surface radar aids the controller to acquire and maintain a mental image of the present and
pending runway operations. Digital display enhancements such as aircraft icons and identification tags on
the surface radar display greatly, enhance the display visibility. These enhancements require automatic
surveillance processing to provide tracking information. The same tracking information derived for the
display enhancements can be used to drive controller alerts and runway status lights. The runway status
lights and enhanced surface traffic displays are the chief outputs of the RSLS system.

The improved controller surface traffic display, depicted in Figure ES-I, provides controllers with
an advanced digital display of airport surface and approach traffic. Aircraft and surface vehicles are
depicted by arrows that point in the direction of motion and whose size represents the size of the radar
image. Tags provide velocity information and, when available from the Automated Radar Terminal

iii



System (ARTS) computer, aircraft flight number, equipment type, and altitude. The traffic is depicted on
a map of the runways and taxiways.

As shown in Figures ES-2 and ES-3, the runway status lights, composed of runway entrance lights
and takeoff hold lights, present runway status information to pilots on and near the airport runways.
These lights are driven automatically by computer processing of surface and approach radar information.
The RSLS software detects the presence and motion of aircraft and surface vehicles on or near the
runways, assesses any possible conflicts with other surface traffic, illuminates red runway entrance lights
if the runway is unsafe to enter, and illuminates red takeoff hold lights if the runway is unsafe for
departure. The runway status lights will have the effect of preventing runway incursions before they
happen. They will prevent runway incursions without interfering with normal and safe airport operations.

A basic controller alerting capability is included in the RSLS for demonstration purposes. The
RSLS safety logic was designed to support a full aircraft conflict identification capability in order to
demonstrate that an integrated and uniform safety logic can support both lights and alerts. A full
controller alerting capability would be required to also provide protection for certain conflict scenarios
that cannot be prevented by status lights on the airport surface, such as an arrival to an occupied runway.
The RSLS Logan Demonstration actually includes only one type of alert at present. A complete alerting
capability was not implemented because of programmatic and scheduling constraints.

RSLSTECHNOLOGY

The development of the RSLS technology involved significant technical challenges. A major
challenge was to detect and track aircraft and surface vehicles on the airport surface or in the approach
space, with high reliability and with a low false track rate. Another challenge was to use these tracks in a
safety logic to operate runway status lights automatically in a way that yields significant safety benefits
without interfering with normal runway operations. The RSLS accomplishes both tasks well.

The design philosophy of the RSLS proof-of-concept evaluation was that it use commercial off-the­
shelf hardware and custom portable software. A fully operational RSLS system would use the best
available surface radar or ASDE (Airport Surface Detection Equipment), namely the ASDE-3. However,
because the Logan ASDE-3 was unavailable for this proof-of-concept test, a Raytheon Pathfinder marine
X-band radar was used instead. This radar was modified to improve its performance, but the
modifications were done without significantly increasing the cost of the radar. The radar-to-computer
interface, the only custom hardware component in the whole RSLS system, was designed to operate either
with the X-band ASDE radar or with the ASDE-3. The RSLS system thus retains a great degree of
hardware flexibility.

The flexibility of the RSLS system is achieved by relying on software to perform nearly all of its
functions. The software was written using modular object-oriented programming techniques. This allows
performance enhancements and new functions to be incorporated fairly easily. The software, which relies
only on non-proprietary (or "open") operating system and display utilities, was successfully ported to
several vendors' computers during the development process. It can be easily transferred to less expensive
computers as they become available. Since the price of computation is decreasing rapidly, it may thus
become economically feasible to field such systems at smaller airports in the future.

By using advanced digital image processing and tracking techniques, the radar tracking system
achieved good surface surveillance performance with inexpensive radar hardware. The surveillance

IV



processing software contains specific algorithms designed to overcome problems imposed by clutter,
tMget splits, shadowing, and multipath. Sensor fusion software combines the surface radar tracks with
approach radar tracks to provide one coherent picture of the airport surface and approach space. Display
software shows the airport, aircraft, and data tags. This surveillance system could in fact be fielded
separately from the runway status lights themselves, and represents a major advance in technology.

The RSLS safety logic includes capabilities for identifying the operational state of the aircraft under
surveillance, projecting their possible future trajectories, and identifying potential conflicts. The
projections are used to generate runway status light commands, and the preliminary conflict identification
is used as the first step in an advanced alert-generation capability. Using a single safety logic for both
runway status lights and controller alerts results in coherent and complementary safety benefits from the
lights and alerts.

THE RSLS LOGAN DEMONSTRATION

Boston's Logan airport has proven to be an excellent testing and demonstration facility for the
RSLS. Both Boston and New England Region FAA and Massachusetts Port Authority (Massport)
personnel have given exceptional support during system installation, testing, and demonstration. Because
of its complex layout, difficult radar environment, good traffic mix, variable weather, and high operations
volume, Logan airport is a good airport for the RSLS demonstration.

The demonstration system does not affect airport operations in any way; there are no runway status
lights on the airport surface, there are no displays in the Logan tower cab, and there is no interaction with
either controllers or pilots. The demonstration is off-line but real-time.

The demonstration site is a Massport conference room on the sixteenth floor of the new air traffic
control tower building at Boston's Logan Airport. This room has large windows that offer a good view of
the airport and provide an opportunity to observe the live performance of the system. A photograph of the
room is shown in Figure ES-4. The demonstration room has a simulated D-BRITE (Digital Bright Radar
Indicator Tower Equipment) display, monochrome and color versions of simulated ASDE-3 displays, and
(for reference purposes) an unmodified Raytheon Pathfinder marine radar display.

In a deployed system the radar tracking information would be used to control runway status lights
visible to pilots on the runways and taxiways. In the RSLS Logan Demonstration, these runway status
lights are simulated by a scale model depiction of the airport surface with computer-controlled lights. A
photograph of the airport model is shown in Figure ES-5.

The X-band radar antenna is located on the roof of the old control tower building as shown in
Figure ES-6. Supporting equipment is located on the fifteenth floor and on the seventh floor of the old
control tower building.

The RSLS was first demonstrated in October 1992, its last major component was added in
December 1992, and it has been shown to many FAA, other governmental, and industry personnel since
then. In the same period the software and hardware have been upgraded to further improve performance.

v



RSLS PERFORMANCE

The RSLS was subjected to two types of performance assessment: surveillance tracking reliability
and runway status light performance. For the surveillance reliability assessment, probability of tracking,
false track rate, and surveillance accuracy statistics were evaluated. For the runway status light
performance assessment, missed detection, false alarm, interference, and light infringement statistics were
evaluated. The assessment was based on a brief but representative excerpt of operations at Logan airport.
A brief summary of the results is given here.

The RSLS performed well for a proof-of-concept system. The probability of detection was better
than 98%, the false track rate was about 41hr, and the surveillance jitter was about I meter rms. From an
operational point of view, had there been real lights on the field, it is likely that they would have provided
a valuable safety back-up benefit with little impact on either airport capacity or on the workload of the
tower controllers and the cockpit crews. There were few false alarms and no light infringements. Only
once in 15 minutes would the pilot population have observed a light in an incorrect state for more than
four seconds. From the point of view of a specific crew, only once in 36 operations would a runway
status light have been seen in an incorrect state for more than four seconds, and, furthermore, only once in
50 operations would light illuminations have interfered with normal, safe traffic flow. This interference
would usually have been of quite short duration. The principal effect of the immature performance of this
system would not have been to adversely impact airport capacity or controller workload, but simply to fail
to live up to its full potential for detecting unsafe conditions and preventing runway incursions.

These are encouraging results for a proof-of-concept system in an early development phase;
improvement would be possible and necessary in every component of the system if it were to be used
operationally. Where appropriate, specific suggestions for improvement are given in each chapter of this
document.

THE NEXT STEP

The next step in the development of the RSLS concept is to transItion from an off-line
demonstration to an on-line field demonstration with real lights. That step requires a) the procurement
and installation of a set of runway status lights at appropriate locations on an airport, b) improving the
RSLS performance (by further analysis, algorithmic improvements, measurements, off-line field testing,
and tuning), and c) improving the RSLS software reliability via a rigorous hardening and validation
process. With the experience gained in the development of the demonstration system, the required
improvement of the system to bring it to a field demonstration would be achievable within two years after
a go-ahead decision if such a field demonstration were to be conducted at Logan Airport.

VI



-< ..... .....

F
ig

ur
e

E
S-

l.
Im

pr
ov

ed
co

nt
ro

lle
r

su
rf

ac
e

tr
af

fic
di

sp
la

y.



.... ><

T
A

X
I

H
O

LD
-P

O
S

IT
IO

N
("

W
IG

-W
A

G
")

LI
G

H
T

S

T
A

K
E

O
F

F
-H

O
LD

LI
G

H
T

S

R
U

N
W

A
Y

-E
N

T
R

A
N

C
E

LI
G

H
T

S
T

A
T

E
S

:

R
E

D
:

R
U

N
W

A
Y

N
O

T
S

A
F

E
F

O
R

E
N

T
R

Y
(I

.E
.,

IIH
O

T
II )

O
F

F
:

O
T

H
E

R
W

IS
E

N
O

T
E

:
W

IG
-W

A
G

LI
G

H
T

S
A

L
T

E
R

N
A

T
E

A
M

B
E

R
/O

F
F

T
O

IN
D

IC
A

T
E

H
O

L
D

P
O

S
IT

IO
N

F
O

R
A

C
T

IV
E

R
U

N
W

A
Y

Fi
gu

re
£5

-2
.

R
un

w
ay

-e
nt

ra
nc

e
lig

ht
s

in
op

er
at

io
n/

or
an

ai
rc

ra
ft

la
nd

in
g

on
a

ru
nw

ay
.



T
A

X
I

H
O

L
D

-P
O

S
IT

IO
N

("
W

IG
-W

A
G

II
)

L
IG

H
T

S

T
A

K
E

O
F

F
-H

O
L

D
L

IG
H

T
S

T
A

K
E

O
F

F
-H

O
L

D
L

IG
H

T
S

T
A

T
E

S
:

R
E

D
:

R
U

N
W

A
Y

N
O

T
S

A
F

E
FO

R
T

A
K

E
O

F
F

O
F

F
:

O
T

H
E

R
W

IS
E

R
U

N
W

A
Y

­
C

3
/

E
N

T
R

A
N

C
E

v
'

L
IG

H
T

S

N
O

T
E

:
W

IG
-W

A
G

L
IG

H
T

S
A

L
T

E
R

N
A

T
E

A
M

B
E

R
IO

F
F

T
O

IN
D

IC
A

T
E

H
O

L
D

P
O

S
IT

IO
N

F
O

R
A

C
T

IV
E

R
U

N
W

A
Y

F
ig

ur
e

ES
-3

.
Ta

ke
of

f-l
uJ

ld
lig

ht
s

in
op

er
at

io
n/

or
an

ai
rc

ra
ft

in
po

si
ti

on
/o

r
de

pa
rt

ur
e

w
ith

cr
os

si
ng

tr
af

fic
.



F
ig

ur
e

ES
-4

.R
SL

S
Lo

ga
n

de
nw

ns
tr

at
io

n
ro

om
.



F
ig

ur
e

E
S-

5.
R

SL
S

L
og

an
de

m
on

st
ra

ti
on

m
od

el
bo

ar
d.



F
ig

ur
e

E
S-

6.
R

ad
ar

an
te

nn
a

an
d

vi
ew

o
fL

og
an

ai
rp

or
t.



ACKNOWLEDGMENTS

The primary authors of the sections of the report were as follows.

Executive Summary, James R. Eggert

The RSLS Demonstration System Architecture, James R. Eggert

Ground Surveillance Radar, Richard J. Sasiela

Surveillance Processin~, Richard J. Sasiela

ARTS Interface, James R. Eggert

Sensor Fusion, James R. Eggert

Safety Logic, Marcia P. Kastner

RSLS System Software Architecture, Peter M. Daly, James R. Eggert, Theodore J. Morin, Hayden B.

Schultz, James L. Sturdy, Daniel Wyschogrod.

ASDE Performance, William H. Harman

Status Li~ht Performance, Harald Wilhelmsen

In addition, the following were significant contributors during the development of the
demonstration.

Radar Equipment and High-Speed Data Hardware: John L. Cataldo, Ralph S. Cataldo, Joseph DiBartolo,
Richard L. Ferranti, James M. Flavin, Robert, D. Kenney, Melvin Labitt, John J. O'Rourke, John A.
Macinni, Wallace A. Reid, Kenneth W. Saunders, Melvin L. Stone.

Surveillance Processing: Richard W. Bush, Archon Fung, Walter S. Heath, M. Loren Wood.

Sensor Fusion: Teresa L. Hall

Safety Logic: Walter L. Brown, Steven Bussolari, Walter M. Hollister, Ervin F. Lyon, Douglas Marquis,
Steven D. Thomson, Jerry D. Welch.

Documentation: David Kassay

xvii



TABLE OF CONTENTS

Executive Summary

Acknowledgments

Table of Contents

List of Figures

List of Tables

1. THE RSLS DEMONSTRATION SYSTEM ARCHITECTURE

1.1 Introduction
1.2 Motivation
1.3 Approach
1.4 RSLS Demonstration Methodology
1.5 RSLS Demonstration Description
1.6 Future Improvements
1.7 Documentation Overview

2. GROUND SURVEILLANCE RADAR

2.1 Radar Equipment
2.2 Radar Perfonnance
2.3 Data Recording and Play Back Equipment
2.4 Possible Radar Improvements

3. SURVEILLANCE PROCESSING

3.1 Overview of the Surveillance Algorithms
3.2 Processing Software and Equipment
3.3 Surveillance Processes
3.4 Possible Surveillance Processing Improvements

4. ARTS INTERFACE

4.1 Requirements
4.2 ADIOS design
4.3 Hardware implementation

5. SENSOR FUSION

5.1 Sensor Fusion Overview
5.2 ARTS Demultipathing
5.3 Parameter estimation
5.4 MDBM-SCIP subfusion
5.5 Geographic Feature Filter
5.6 Fusion Algorithm Requirements
5.7 Track coasting
5.8 Artificial target handling
5.9 Potential Sensor Fusion Improvements

6. SAFETY LOGIC

6.1 Overview of the Safety-Logic Architecture
6.2 Target State Machine
6.3 Prediction Engine
6.4 Logic for Runway-Entrance Lights

XIX

U1

xvii

XIX

xxi

xxv

1-1

1-1
1-1
1-4

1-10
1-13
1-19
1-19

2-1

2-1
2-4
2-6
2-7

3-1

3-1
3-3
3-4

3-14

4-1

4-1
4-3

4-10

5-1

5-1
5-2
5-6
5-9

5-10
5-14
5-21
5-21
5-21

6-1

6-1
6-1
6-5
6-9



6.5 Logic for Takeoff-Hold Lights 6-14
6.6 Logic for the ARRIS1P and LDG/S1P Alert 6-20
6.7 Future Topics for Development 6-21

7. RSLS SYSTEM SOFIWARE ARCHITEctuRE 7-1

7.1 Introduction 7-1
7.2 System Overview 7-1
7.3 Radar Processing 7-6
7.4 SCIP Interface 7-43
7.5 MDBM Interface 7-47
7.6 Sensor Fusion 7-52
7.7 The Surface Monitor Module 7-59
7.8 The Light Governor 7-85
7.9 The Voice Generator 7-87
7.10 RSLS Display 7-88
7.11 Master Clock 7-97

8. PERFORMANCE OF TIIE ASDE-X SURVEILLANCE SUBSYSTEM 8-1

8.1 Examples of Swveillance Quality 8-1
8.2 Surveillance Reliability 8-3
8.3 False Track Rate 8-7
8.4 Swveillance Accuracy 8-8

9. PERFORMANCE OF TIIE RUNWAY STATUS LIGIIT SYSTEM 9-1

9.1 Introduction 9-1
9.2 Purpose and Scope 9-1
9.3 Performance Measures 9-2
9.4 Data Collection 9-6
9.5 Data Analysis 9-9
9.6 Summary and Conclusions 9-25

APPENDIX A. DETAILED OUI1..INE OF THE SAFETY-LOGIC ALGORITIIMS A-I

A.I Target-State Machine A-I
A.2 Runway-Status Lights A-5
A.3 Double-Target Alerts (between targets A and B) A-lO

APPENDIX B. SAFETY-LOGIC PARAMElERS REFERENCED IN CHAPTER 6 AND
APPENDIX A B-1

APPENDIX C. CONFIGURATION-DEPENDENT RUNWAY SETTINGS FOR
OVERRIDING THE SAFETY-LOGIC PARAMETERS C-l

APPENDIX D. ANALYSIS OF SURVEILLANCE TITTER D-l

APPENDIX E. LIST OF ACRONYMS E-l

xx



Figure
No.

ES-l
ES-2
ES-3
ES-4
ES-5
ES-6
1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
3-1
3-2
3-3
3-4
3-5

3-6
4-1
4-2
4-3a
4-3b
5-1
5-2
5-3
5-4
6-1
6-2

LIST OF FIGURES

Improved controller surface traffic display
Runway-entrance lights in operation for an aircraft landing on a runway
Takeoff-hold lights in operation for an aircraft in position for departure with crossing traffic
RSLS Logan demonstration room
RSLS Logan demonstration model board
Radar antenna and view of Logan airport
RSLS system concept
Accident and incident scenario frequencies
The eight most frequent accident and incident scenarios
RSLS status light fIXture
Runway-entrance lights in operation for an aircraft landing on a runway
Takeoff-hold lights in operation for an aircraft in position for departure with crossing traffic
ASDE display enhancements
RSLS Demonstration System architecture overview
Boston Logan airport runway and taxiway map
RSLS Logan demonstration room
RSLS Logan demonstration model board
Radar antenna and view of Logan airport
Radar output shown on modified Raytheon display.
Block diagram ofradar.
Relative positions of the ASDE-3 and ASDE-X radars.
Performance of the ASDE-X versus range and rain rate.
Block diagram ofLARS (Lincoln ASDE Recording System).
Censoring map of Logan airport.
Performance of a vertically polarized radar.
Surveillance processing block diagram
Clutter-rejected radar data after interference is removed.
The effect of the morphological opening process on an image.
Depiction of the process that converts close components into objects.
a) Components surrounded by enclosing wedges in a surface wedge. b.) TIle merging of
components in two adjoining surface wedges into one component
Tracks at Logan airport
Logan ARTS departure auto-acquire and arrival auto-drop boundaries
ADIOS block diagram
ADIOS-SCIP volume filter geometry
ADIOS-MDBM area filter geometry
Sensor fusion block diagram
Region definitions for the geographical feature filters
Fusion geometrical concepts
Fusion and unfusion processes
Safety-logic architecture
Target state machine

XXI

Page
vii
ix
x

xi
xiii
xv

1-2
1-3
1-4
1-6
1-7
1-9

1-10
1-12
1-14
1-15
1-17
2-9

2-11
2-13
2-14
2-15
2-17
2-19
2-21
3-2
3-7
3-8

3-10

3-11
3-15
4-2
4-3
4-4
4-5
5-2

5-11
5-16
5-19
6-2
6-3



Figure
No.

6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12

6-13

6-14

6-15

6-16
7-2-1
7-2-2
7-3-1
7-3-2
7-3-3
7-3-4
7-3-5
7-3-6
7-3-7
7-3-8
7-3-9
7-4-1
7-5-1
7-6-1
7-7-1

7-7-2
7-7-3
7-7-4

7-7-5

7-7-6

LIST OF FIGURES
(continued)

Page
Target-state transition from arrival state to landing state 6-4
Target-state transitions between stopped and taxi states 6-4
Path-prediction trees 6-5
Prediction trees for models of target motion 6-7
Indication of arriving target on approach bar 6-8
Hot zone and REL activation regions for runway-entrance lights 6-10
Examples of logic for runway-entrance lights 6-12
Dlustration of the first condition for takeoff-hold lights to be red 6-16
Runway is unsafe for takeoff, because a target is in the THL activation region 6-17
Runway is safe for takeoff, because B is predicted to exit the THL activation region before A
could reach B if A started to take off 6-17
Runway is safe for takeoff, because the target inside the TIlL activation region satisfies the
conditions for the special DEP case 6-18
Runway is unsafe for takeoff, because the target is predicted to enter the TIIL activation
region 6-19
Runway is unsafe for takeoff, because A and B could be in the intersection window
simultaneously if A started to take off 6-20
Example of ARRlSTP alert 6-21
The context data flow diagram for the RSLS software 7-2
The top-level data flows and functional elements of the RSLS software 7-3
Algorithmic block diagram for X-band surveillance processing 7-6
Parallel process overview 7-7
Wedge boundary objects 7-9
Processing and data flow of each clutter rejection process 7-15
Clutter elimination thresholding 7-17
Architecture of connected component process 7-28
Architecture of merge stage 7-34
Definition of aspect angle 7-37
Transition graph - allowed transitions for tracks are shown 7-39
SCIP interface 7-44
MDBM interface 7-49
Data flow diagram for sensor fusion 7-54
The approach end of a runway and some taxiways that intersect it as it might be found in the
airport surface database 7-67
The overlay of the cell polygons on top of the runway-taxiway structure 7-68
Intersection points and directions of the intersection of each centerline with all polygons 7-68
The "edges" of the directed graph that connect the individual cells; each one will become an
ExitPoint 7-69
Cell with its associated ExitPoints, with connections drawn from one ExitPoint (labeled A) to all
the others 7-70
Polygon defining the activation region 7-73

xxii



Figure
No.

7-10-1
8-1
8-2
8-3
9-1
9-2
9-3
9-4
9-5

LIST OF FIGURES
(continued)

Display components
Display of tracks from the ASDE-X radar
Boeing 737 landing (track 108672)
Analysis of jitter in track 113142
Boston Logan airport runway and taxiway map
Observed light anomalies
Anomaly fraction for false alarms and missed detections in the four configurations
Observed light anomalies, composite
Anomaly fraction, composite

xxiii

Page
7-89

8-2
8-3
8-9
9-8

9-21
9-22
9-23
9-23



Table
No.

2.1
4.1a
4.1b
4.1c
4.1d
4.2a
4.2b
4.2c
4.2d
5.1
5.2
5.3
5.4
6.1
6.2
6.3
7.4.1
7.5.1
7.6.1
7.11.1
7.11.2
8.1
8.2
9.1
9.2
9.3
9.4
9.5

LIST OF TABLES

Characteristics of the Modified Raytheon Harbor Radar Installed at Logan Airport
SCIP Sector Message Data
SCIP Alarm Message Data
SCIP Primary Radar Message Data
SCIP Beacon Radar Message Data
ADIDS-MDBM A-Word Data
ADIDS-MDBM B-Word Data
ADIDS-MDBM C-Word Data
ADIDS-MDBM Data Block Format
TImelRange Parameter Values
Parameter Descriptions and Default Values for Altitude Correction
Parameter list for Geographic Feature Filters
Fusion Track Maintenance Rules
Target States
Prediction Models for Each Target State
Hot-Zone Lengths
SCIP-Receiver Output Message Fields
MDBM-Receiver Output Message Fields
Sensor Fusion Output Message Fields
Master Clock Input Messages
Master Clock Output Messages
Surveillance Performance for the Frrst 20 Aircraft.
Surveillance Performance Based on Runway Takeoff Hold lights.
Performance Measure Relationships
light Anomalies for Configuration 4/9 at Logan
light Anomalies for Configuration 22/27 at Logan
light Anomalies for Configuration 33/27 at Logan
light Anomalies for Configuration 15/9 at Logan

xxv

Page
2-2
4-6
4-6
4-7
4-7
4-8
4-8
4-9
4-9
5-5
5-9

5-13
5-17
6-2
6-6

6-11
7-45
7-50
7-57
7-98
7-98
8-4
8-6
9-3

9-11

9-13
9-17
9-19



1. THE RSLS DEMONSTRAnON SYSTEM ARCIDTECTURE

1.1 INTRODUCTION

The Runway Status Light System (RSLS) Logan Demonstration System was developed by the
Massachusetts Institute of Technology (MIT), Lincoln Laboratory, under an interagency agreement
between the Department of Transportation - Federal Aviation Administration (FAA) and the United
States Air Force (USAF). The RSLS was previously called Airport Surface Traffic Automation with
Runway Status Lights (ASTA-I). The goal of the RSLS Demonstration System is to use automatic
processing of surface primary and approach secondary radar data to drive simulated runway-status lights
(Figure 1-1). This goal has been accomplished.

This document presents a description of the design motivation, methodology, and implementation
for the RSLS Demonstration System, and presents an analysis of the system performance. This system
architecture section provides an overview of the entire system on a functional block scale; detailed
descriptions of the various subsystems are presented in individual sections.

1.2 MOTIVATION

In the past twenty years, there have been at least six fatal and two major non-fatal runway-conflict
accidents in the United States. In a thirteen-month period in 1990 and 1991, runway-conflict accidents
occurred at Atlanta, Detroit, and Los Angeles, which together resulted in the loss of 43 lives. With
domestic air traffic predicted to increase by 3% annually over the next decade, and with little airport
construction envisioned in the near future, it is clear that the airport surface traffic control problem must
be addressed if future runway-conflict accidents are to be prevented

A first step towards addressing surface traffic control is better surveillance. Indeed, the FAA is
presently engaged in the procurement of 33 ASDE-3 (Airport Surface Detection Equipment) radars,
which will provide improved surface surveillance with higher resolution, reduced clutter, and better
performance in rain than the older ASDE-2 radars now in operational use. Significant additional
performance enhancements are also possible using appropriate processing technology.

Better surveillance by itself, however, will not address the whole problem. Controllers typically do
not rely on surface radar in times of good visibility. A surface radar by itself does not offer conflict
identification or prevention information to the controller. Also, the surveillance information is not
directly available to the aircraft pilots and vehicle operators on the airport surface. What is needed is an
automation system that provides aids to the controllers and surface status to the pilots.

Progress towards the design of such automation and the prevention of surface accidents requires an
understanding of the basic nature of the surface traffic problem. The surface traffic problem can be
placed into three increasingly encompassing classes: accidents, high-hazard incidents, and runway
incursions. Accidents, though great in consequence, are relatively few in number, so an analysis of
airport surface accidents benefits greatly by the statistical inclusion of high-hazard incidents. High­
hazard incidents denote those where at least one aircraft was at high speed, and where the minimum

1-1



-­I N

A
S

D
E

-3
o

r
A

S
D

E
-X

"R
u

n
w

ay
S

ta
tu

s
L

ig
h

ts
\

/
T
~
e
o
f
f

H
o

ld
L

Ig
h

ts
, \ \

A
D

S
-M

O
D

E
S

o
r

\
M

O
D

E
S

M
u

lt
ila

te
ra

ti
o

n

\
/

i
F

ig
ur

e
1-

1.
R

SL
S

sy
st

em
co

nc
ep

t.



separation was 50 feet or less. Figure 1-2 shows the frequency of accidents and incidents for various
conflict scenarios, accumulated separately by scenario geometry. The top eight scenario geometries are
depicted in Figure 1-3. It is clear from Figure 1-2 that these top eight conflict scenarios represent more
than 90% of the accidents and incidents. Any surface traffic safety system must address these top
scenarios to be effective.

Runway incursions represent a larger class of events than accidents and high-hazard incidents. A
runway incursion is defined as any occurrence at an airport involving an aircraft, vehicle, person, or
object on the ground that creates a collision hazard or results in loss of separation with an aircraft taking
off, intending to take off, landing or intending to land. Dearly, preventing runway incursions is an
effective way to prevent airport surface accidents, and a good airport surface traffic automation system
must also be effective at reducing runway incursions.

1816141210

8 FATAL ACCIDENTS 0

2 NON-FATAL ACCIDENTS t:;;;;;;;;;;{;:::!

68 INCIDENTS _

86

a) OfT (cr)

b) AID (tc)

c) AID (cr)
d) AIT (cr)

e) DID (tc)

>- f) RI (veh)

ex: g) AlA (tc)
0 h) OfT (ho)
(.::J
W
~ AlA (cr)
< DID (cr)U

DIA (tc)

OfT (tc)

AIT (tc)

AID (ho)

DID (ho)

AlA (ho)

AIT (ho)

0 2 4

NUMBER OF REPORTS

Figure 1-2. Accident and incident scenario/requencies. D=departure. A=arrival. T=taxi. veh=vehicle; cr=crossing. tc=tail-chase.
ho=head-on. Data represent all/atal and US airport major nonfatal accidents in the period 1972-1992. and US airport high­
hazard incidents/rom 1985·1992.

1-3



•
• •

a) DIT (cr)

++
c) AID (cr)

• ©
G± tt I•
e) DID (tc)

0
+-t +-1-1 I

g) AlA (tc)

0
+tl +t I

b) AID (tc)

@.
+-f-

d) AIT (cr)

• ©
La ±+-JI•

h) DIT (ho)

Figure 1-3. The eight mostfrequent accident and incident scenarios. L=lighls address the scenario,
A=controller alerts address the scenario.

1.3 APPROACH

A complete airport surface traffic safety system should include three products that together will
address all of the top eight airport surface conflict scenarios. These three products are runway-status
lights, controller alens, and enhanced controller displays. Runway-status lights will be used to provide
current runway status infonnation to pilots and vehicle operators, to prevent runway incursions before
they happen. Controller alerts will be used to direct controllers' attention to existing conflicts between
aircraft on or near the runways. Because runway-status lights do not address some of the top accident and
incident scenarios, and because controller alerts do not always provide sufficient time for controllers and
pilots to correct a situation once it has developed, only a combination of lights and alerts will address all
the most common scenarios. The FAA has contracted for the development of an operational controller
alerting system, known as the Airport Movement Area Safety System (AMASS). Enhanced ASDE
displays will present symbology to describe aircraft position, size, direction and speed of motion, altitude,
aircraft flight number, and equipment type. In addition to airport surface traffic, aircraft on approach to
runways will also be depicted on the ASDE displays.

The RSLS Demonstration System incorporates only simulated runway-status lights and enhanced
controller displays, and does not include a complete controller alert system. Runway-status lights,
composed of runway-entrance lights and takeoff-hold lights, provide the greatest part of the protection
afforded by the safety system, for several reasons. First, in any time-critical conflict scenario, the most

1-4



effective safety system product is one that is directly accessible by the pilots. That direct access is
allowed by runway-status lights, but not by controller alerts. Second, runway-status lights act to prevent
runway incursions before they happen, whereas controller alerts only occur after a conflict has been
identified. Third, runway-status lights are effective in a greater fraction of the accident and incident
scenarios than are controller alerts. Therefore, for a combination of reasons, including maximizing
system effectiveness in the face of developmental schedule constraints, and reducing the duplication of
research efforts, the RSLS Demonstration System does not include controller alerts except for
demonstration purposes.

1.3.1 RSLS Runway-status Lights

There are two types of RSLS runway-status lights: runway-entrance lights and takeoff-hold lights.
The two types of lights are driven in concert by a single safety logic, and operate together to prevent
runway incursions and accidents. The runway-status lights function fully automatically in response to
real-time surveillance.

The runway-status lights have two states: on (red) and off. The runway-status lights indicate
runway status only; they do not indicate clearance. A green state was specifically avoided to prevent any
false impression of clearance. Clearance is to remain the sole responsibility of the air traffic controller,
and is not to be provided or implied by the runway-status-light system. An amber state was also avoided,
because in the case of runway-entrance lights it could tend to be confused with the amber color of the
International Civil Aviation Organization (ICAO) wigwag taxi-hold (wigwag) lights. We also
avoided using an amber state because, when used in Runway Entrance Lights, it could be confused with
an amber ICAO taxi-hold (wigwag) light. The lights are designed to be as conspicuous as possible while
minimizing the possibility of confusion with other light systems.

Runway-status lights are designed to be generally invisible to pilots of aircraft at high speed. This
design decision was made so that red lights, especially lights that suddenly tum red, will not be shown to
pilots whose aircraft speed precludes them from making sudden maneuvers. Runway-entrance lights are
hooded so as not to be visible to pilots of aircraft on the runway. Runway-entrance lights are not
generally active at runway-runway intersections. Takeoff-hold lights are also hooded, and require that an
aircraft be in position for takeoff to be illuminated. The design of the fixtures and light logic thus
generally prevents pilots of aircraft at high speed from seeing red runway-status lights.

A suggested fixture for the runway-status lights would be the standard fixture used for the ICAO
wigwag lights, with the amber lenses replaced by red, and the lamps upgraded to 75 W bulbs (Figure 1-4).
These fixtures use redundant light bulbs and other electrical components to minimize the impact of single­
component failures on the operation of the system. They are also in current production, allowing off-the­
shelf delivery. The RSLS Demonstration System does not in fact incorporate an actual field lighting
system, but simulates the runway-status lights by the use of a model board and computer-driven displays.

1-5



Based on standard
holding position

light fixture

"Eyebrow" Shields

Side View

Dual Red Lenses

Figure 1-4. RSLS status lighlflXlure.

Runway-entrance lights (RELs) will be located at the taxiway entrances to runways and will be
positioned on either side of the taxiway, near the runway edge and well beyond the hold line (Figure 1-5).
RELs will also be located at runway-runway intersections, though they will not always be implemented or
actuated there. RELs will be illuminated to indicate to aircraft pilots and vehicle operators that the
runway is hot, Le., that it is being used for a high-speed operation (e.g., takeoff or landing), and that the
runway is presently unsafe to enter at that intersection. RELs will be extinguished when the runway is no
longer unsafe to enter at that intersection.

Takeoff-hold lights (THLs) will be located at takeoff-hold positions and positioned on either side of
the runway near the runway edge (Figure 1·6). THLs will indicate to aircraft pilots that the runway is
"dirty," i.e., that it is presently occupied or is about to be occupied, and that the runway is presently unsafe
for departure from that takeoff-hold position. THLs will be extinguished when the runway is clear, or
when the takeoff-hold position is empty.

1-6



T
A

X
IH

O
LD

-P
O

S
IT

IO
N

("
W

IG
-W

A
G

")
LI

G
H

T
S

.... , -...
.J

T
A

K
E

O
F

F
-H

O
LD

LI
G

H
T

S
~
I

R
U

N
W

A
Y

-E
N

T
R

A
N

C
E

LI
G

H
T

S
T

A
T

E
S

:

R
E

D
:

R
U

N
W

A
Y

N
O

T
S

A
F

E
F

O
R

E
N

T
R

Y
(I

.E
.,

"H
O

r'
)

O
F

F
:

O
T

H
E

R
W

IS
E

N
O

T
E

:
W

IG
-W

A
G

LI
G

H
T

S
A

LT
E

R
N

A
T

E
A

M
B

E
R

/O
F

F
T

O
IN

D
IC

A
T

E
H

O
LD

P
O

S
IT

IO
N

FO
R

A
C

T
IV

E
R

U
N

W
A

Y

Fi
gu

re
1-

5.
R

un
w

ay
-e

nt
ra

nc
e

lig
ht

s
in

op
er

at
io

n/
or

an
ai

rc
ra

/tl
an

di
ng

on
a

ru
nw

ay
.



1.3.2 ASDE Display Enhancements

The RSLS system provides several display enhancements to a surface radar or ASDE display. An
ASDE-3 display contains radar video with blanking to reduce visible clutter, and line graphics to depict
runway and taxiway edges and building outlines. RSLS provides iconic depiction of tracked traffic,
symbolic tags for each icon, approach bars for aircraft inside the outer marker, depiction of runway­
status-light state, and special markings for aircraft identified as being in conflict. For demonstration and
debugging purposes, some additional safety logic internal information can also be displayed. The RSLS
Demonstration System supports both monochrome and color ASDE displays.

The RSLS Demonstration System does not include radar video on its display. This was done to
reduce development time and equipment expenses. This omission is not envisioned for a complete RSLS
system.

All tracked traffic that is considered to be reliable is displayed as icons on the ASDE display
(Figure 1-7). The icon represents the position and direction of motion of the track, and, for tracks with
ASDE image information, is drawn with a size proportional to the area of the ASDE image.

Each displayed track has a symbolic tag, connected to the icon with a leader line. The display
software selects the leader line direction to eliminate possible overlapping tags and crossing leader lines.
The tag can be displayed in two formats. The primary format shows aircraft altitude in hundreds of feet,
and track velocity in knots. When available, this format also shows aircraft flight code and equipment
type, the latter alternating with the velocity field. The secondary format is meant primarily for system
debugging, and shows internal track numbers, track surveillance source or sources, altitude in feet,
velocity in knots, and aircraft flight code when available.

Aircraft on approach to runways and inside the outer marker are displayed on approach bars. An
approach bar is a short line segment drawn near the approach end of the runway. It is drawn at a different
scale and represents the approximately five nautical mile distance from the outer marker to the runway
threshold. Aircraft identified as being on approach to a runway are shown as diamonds on the approach
bar. When the aircraft is near enough to the runway to appear on the scale of the ASDE display, it
disappears from the approach bar and appears as a normally displayed target

Runway-status-light state information is also rendered to the enhanced ASDE display. It can be
drawn in two different symbologies. An illuminated Runway Entrance Light (REL) can be represented
by a bar across the intersecting taxiway and THLs as a bar across the runway. Alternatively, RELs and
THLs can be drawn as acute triangles on either side of the taxiway or runway, oriented to depict the
directionality of the actual lights. If the RSLS safety logic identifies targets as being in conflict, this
information can be drawn to the ASDE display. The targets are circled, and remain so until the conflict is
resolved.

Additional RSLS internal information can also be shown on the ASDE display. This information
includes the target state identification (taxi, stopped, arrival, etc.), the range of predicted target positions
produced by the safety logic, and artificial target (sprite) positions and control information.

The ASDE display enhancements also allow the possibility that future tower displays may be in
color. The color displays show the runway, taxiway, and building outlines and approach bars in green,
target icons and tags in yellow, illuminated runway-status lights in red, and conflict alert circles in white.
The use of color in an ASDE display is extremely useful in enhancing its visibility to controllers, and thus
the rate and efficiency of information comprehension by controllers.

1-8



­I \0

T
A

X
IH

O
L

D
-P

O
S

IT
IO

N
("

W
IG

-W
A

G
")

L
IG

H
T

S

T
A

K
E

O
F

F
-H

O
L

D
'-

..
.

L
IG

H
T

S
•

_
I
I

T
A

K
E

O
F

F
-H

O
L

D
L

IG
H

T
S

T
A

T
E

S
:

R
E

D
:

R
U

N
W

A
Y

N
O

T
S

A
F

E
FO

R
T

A
K

E
O

F
F

O
F

F
:

O
T

H
E

R
W

IS
E

N
O

T
E

:
W

IG
-W

A
G

L
IG

H
T

S
A

L
T

E
R

N
A

T
E

A
M

B
E

R
/O

F
F

T
O

IN
D

IC
A

T
E

H
O

L
D

P
O

S
IT

IO
N

F
O

R
A

C
T

IV
E

R
U

N
W

A
Y

F
ig

ur
e

1-
6.

Ta
ke

of
f-h

ol
d

lig
ht

s
in

op
er

at
io

n/
or

an
ai

rc
ra

ft
in

po
si

tio
n/

or
de

pa
rt

ur
e

w
ith

cr
os

si
ng

tr
af

fic
.



IF0234
001122

-001

Figure 1-7. ASDE display enhancements. Arrows indicate position. direction ofmotion. and size ofthe radar tracks.
Circles may be usedfor stationary tracks. Data tags present the track's altitude. velocity. aircraft flight number,
and equipment type. An approach bar depicts an aircraft on approach to a particular runway; its two endpoints represent
the runway threshold and the outer marker.

1.3.3 Controller Alerts

Although the RSLS Demonstration System does not supply a complete controller alerting system, it
does have an architecture that supports such an alerting system. To demonstrate this capability, one type
of alert was included in the system. The conflict that can be detected is between an arriving or landing
aircraft and a stopped target on the arrival runway. When a conflict is detected, the conflicting targets are
circled on the ASDE display, and a synthesized voice alert is generated. The voice alert gives a warning
signal and then the location and type of the conflict. A complete controller alerting system would include
the capability of detecting perhaps a dozen general conflict types.

1.4 RSLS DEMONSTRAnON METHODOLOGY

The main objective of the RSLS Demonstration System is to develop a surface safety system that is
capable of preventing most runway incursions and of identifying impending surface conflicts. This
objective required the development of several significant capabilities:

• An ASDE surface radar to provide radar images with sufficient resolution and scan frequency for
tracking surface traffic.

• A surface radar processing system to process automatically information from the ASDE,
performing clutter rejection, target morphological processing, and scan-to-scan association.

• An interface to the Automated Radar Terminal System (ARTS) computer to provide surveillance
data for aircraft on approach to the runways.

• A sensor fusion process to merge automatically tracks from the ASDE processing system with
tracks from the ARTS computer, and perform multipath rejection.

1-10



• A safety logic system to classify and predict aircraft behavior, identify surface conflicts, and drive
runway-status lights and controller alerts.

• A display system to allow basic evaluation and demonstration of the entire system.

• A performance analysis suite to allow a detailed evaluation of the runway-status-light-system
operation.

An overview of the system architecture is shown in Figure 1-8. The ASDE surface radar analog
signal is digitized and processed in the radar processing system. Its tracks, and those derived from
Airport Surface Radar (ASR) surveillance using the ARTS tap, are passed on to sensor fusion. The output
of sensor fusion is a single set of tracks presenting a coherent view of the surface and approach traffic to
the safety logic. Safety logic identifies aircraft states, predicts future target positions, determines runway­
status-light states, and generates alert commands. The system output is shown on several displays.

Several system requirements resulted in basic engineering design choices. These include the following:

• December 1992 demonstration
• Off-line, non-interfering demonstration
• Real-time response to live traffic
• Minimal system response time
• Minimal hardware design time
• Adequate design flexibility.

The Demonstration System was required to be functional in the December 1992 timeframe. This
schedule precluded the use of the ASDE-3 radar at Logan, because that radar was not expected to be
operational in sufficient time. Thus another surface radar system, a Raytheon Pathfinder X-band marine
radar was installed on the roof of the old control tower building at Logan for use in development and
demonstration of the system. This radar is called the ASDE-X.

The Demonstration System was required to have no operational impact. Thus there are no actual
runway-status lights, there is no RSLS presence in the control tower cab, and RSLS does not interfere
with normal FAA or aircraft operations. All demonstration displays and system control screens are
located in a demonstration room on the 16th floor of the Boston Logan tower, or in other non-interfering
areas. All demonstration equipment operates on a non-interfering basis; a failure in any demonstration
subsystem can not result in operational interference.

The real-time nature of the application mandates sufficient processing throughput to keep up with
peak data loads. For the case of surface radar processing, this requires the use of a fairly powerful
computer. Most of the subsystems operate on separate computer platforms to spread the computation
load and to reduce the system impact of a single-point failure.

1-11



S
ur

fa
ce

R
ad

ar
D

is
pl

ay

C
ol

or
S

ur
fa

ce
D

is
pl

ay

Te
rm

in
al

R
ad

ar
D

is
pl

ay

S
ur

ve
ill

an
ce

Pr
oc

es
si

ng

A
R

TS
lil

A
Te

rm
in

al
R

ad
ar

C
om

pu
te

r

q
X

-b
an

d
S

ur
fa

ce
R

ad
ar

,
[

S
en

so
r

S
af

et
y

~
-
-
-
-
-
r
-
-
-
-
-
-
~

Fu
si

on
r
-
-
-
-
~

Lo
gi

c

6

A
S

R
-9

Te
rm

in
al

R
ad

ar

­I -N

M
od

el
B

oa
rd

Fi
gu

re
1-

8.
R

SL
S

D
em

on
st

ra
tio

n
Sy

st
em

ar
ch

ite
ct

ur
e

ov
er

vi
ew

.



A real-time safety system must take into account that time-critical situations can occur where
processing delays would be intolerable. Several design choices, most notably the order of operation in the
ASDE clutter rejection process, and the design of a dual tap to the ARTS computer, were a result of this
consideration. Because the RSLS Demonstration System development overlapped design and
implementation, it was clear that design changes along the way would be inevitable. This lead to the
requirement that the use of custom hardware would be avoided wherever possible, and as much of the
system functionality would be performed in software using commercial off-the-shelf (COTS) equipment
This proved to be of great benefit throughout the system design, and was made possible by the explosion
in computer system performance in the past few years. In the case of the radar interface and certain
required improvements to the marine radar, however, custom hardware was required.

1.5 RSLS DEMONSTRAnON DESCRIPTION

The RSLS Demonstration System is installed at Boston's Logan Airport (Figure 1-9). The
demonstration room is on the 16th floor of the Logan control tower, in the Massport conference room
(Figure 1-10). This room provides a clear view of most of the airport's runways and taxiways, allowing a
good means to check the operation of the system. This room has several displays showing various aspects
of the system operation. A Raytheon Pathfinder radar display shows a one-bit digitized image of the raw
radar surveillance. Two monochrome high-brightness displays (manufactured by Orwin Associates)
simulate an enhanced ASDE display and a DBRITE display. A third high-brightness display uses backlit
active-matrix liquid crystal color technology to show how a color display could be possible in a high
ambient light environment

An airport model board (Figure 1-11) includes architectural models of the terminal buildings,
depictions of the runways and taxiways, and a variety of actively controlled field lighting systems. The
field lighting systems are simulated using fiber optics, and include the RSLS runway-status lights,
runway-centerline and edge lights, taxiway-edge lights, approach lights, taxi-hold lights, stopbars, and so
on. These systems are driven actively by an integrated lighting control system, which is interfaced to the
rest of the RSLS Demonstration System using an RS-232 interface. Transition from an off-line
demonstration of the runway-status lights using the model board to a real field lighting system can in
principle be performed by unplugging the model board and plugging in the field lighting controller.

A DECfalk digital voice synthesizer system is used to generate audible voice alerts in response to
the alert commands from safety logic. The DECfalk voice quality is probably insufficient for a real
tower alerting system, but it is adequate for a demonstration system.

The Demonstration System also has two control displays located in the demonstration room. These
are the control displays for the surveillance processing computer and for the sensor fusion and safety logic
workstation. The former can also be used to display real-time radar images either before or after clutter
rejection. The latter display functions as an additional color ASDE display, although it is not a high­
brightness display, and is used to generate and control artificial targets.

The other components of the RSLS Demonstration System are located outside the demonstration
room itself. The ASDE radar is located on the roof of the old control tower building, and its associated
electronics are located nearby and on the fifteenth floor of the new tower. The ARTS interface hardware
is located in the ARTS equipment rooms on the sixth and seventh floors of the old control tower building.

1-13



91206

AIRPORT DIAGRAM
BOSTON/GENERAL EDWARD LAWRENCE LOGAN INTL(BOS)

Al·58 (FAA) BOSTON,MASSACHUSETTS

ICAUTION: BE ALERT TO
RUNWAY CROSSING
CLEARANCES. READBACK
OF ALL RUNWAY
HOLDING INSTRUCTIONS
IS REQUIRED.

RADAR REflECTOR

I
I

~",...~~I
/'

ElEV
15

BOSTON, MASSACHUSETTS

LAWRENCE LOGAN INTL (BUS)

7900 X ISO

BOSTON/GENERAL EDWARD

FIRE
AND

o~

.,"
<;:)":J

RWY "R·22l
S2OO, T2oo, ST175, TT"oo, DDT800

RWY "l-22R
S2OO, T200, ST175, TT..oo, DDT800

RWY 15R-33L
S2OO, T200, ST175, TT"oo, DDT800

RWY 9·27
S2OO, T2oo, ST175, TT4oo, DOT8oo

BOSTON TOWER
119.1 257.B
GND CON
121.9
ClNC Del
121.65 257.8
ATIS ARR 135.0

'~ Rwy"R Idg 8850'~ Rwy15R Idg 9201'
~ Rwy 22l Idg 8806'

Rwy 22R Idg 70..5'

JULY 1985
ANNUAL RATE OF CHANGE

O.loW

AIRPORT DIAGRAM

Figure 1-9. Boston Logan airport runway and taxiway map

1-14



F
ig

ur
e

1-
10

.
R

SL
S

L
og

an
de

m
on

st
ra

tio
n

ro
om

.



.....
.

I .....
.

-J

F
ig

ur
e

1-
11

.
R

SL
S

L
og

an
de

m
on

st
ra

ti
on

m
od

el
bo

ar
d.



The computers used to drive the two high-brightness monochrome displays and to receive the information
from the ARTS interface are located on the fifteenth floor of the new tower.

Normal system operation includes a startup procedure that takes about five minutes. Thereafter the
system is completely functional, and normally functions without operator interaction.

1.6 FUTURE IMPROVEMENTS

The performance of the RSLS Demonstration System can be improved by modification of the system
architecture and by modifying the various components of the system. Improvements in the various
system components are discussed in this document in the respective sections. Certain system capabilities
that might improve reliability were considered out of scope for the research system developed here.
These include redundant hardware, automatic built-in test procedures, real-time performance logging, etc.

Other system-level improvements that should be considered for future incorporation into the
Demonstration System center on greater information sharing between the various system components.
For example, the ASDE processing component could better initiate new tracks for arriving aircraft if it
were given information about these aircraft derived from the ARTS interface. Sensor fusion could better
fuse tracks through surveillance gaps if it were given the arrival runway predictions computed by safety
logic.

Another way of improving the performance of the RSLS system is through improved surveillance.
On the system level this would be accomplished by incorporating new surveillance technologies, such as
ADS-Mode S, Mode S multilateration, or multiple ASDEs.

1.7 DOCUMENTATION OVERVIEW

The rest of this document presents detailed descriptions of the various components of the RSLS
Demonstration System and an evaluation of its performance. The purpose of these descriptions is to
present a sufficiently detailed overview of the system to allow a basic understanding of the purpose and
behavior of its various components.

Section 2 covers the X-band radar improvements that were necessary to provide radar images with
sufficient detail and repeatability to allow effective surveillance processing to produce good tracks.

Section 3 discusses the sophisticated clutter rejection, image processing, and scan-to-scan
association techniques used to provide high-quality radar tracks from suboptimal primary radar data.

Section 4 presents the ARTS interface used to provide surveillance on aircraft on approach.

Section 5 discusses the sensor fusion algorithms used to merge surveillance information from two
radar sources and to suppress unreliable tracks.

Section 6 covers the safety logic algorithms, which assign target behavior states, determine present
and predicted target positions, and drive the runway-status lights.

Section 7 outlines the system software architecture, and discusses how the various processing
algorithms were instantiated in operating code.

Section 8 presents an analysis of the system performance in acquiring and tracking targets.

Section 9 presents an analysis of the end-to-end system performance in operating the runway-status
lights.

1-19



2. GROUND SURVEILLANCE RADAR

This chapter describes the equipment that RSLS uses to monitor surface traffic. This equipment
includes a harbor radar that was modified to satisfy the requirements of the safety system, and a recording
system that enables one to digitize, censor, and record radar data. Part of the recording system serves as
the interface to the radar surveillance processing. This recorded data during play back has the same
characteristics as the real-time data, and it enables one to develop and verify detection and tracking
algorithms. The radar modifications and their justification are described in this chapter.

2.1 RADAR EQUIPMENT

The surface detection radar used in this project is a modified Raytheon Pathfinder harbor radar,
which operates at the X-band. The radar center frequency is 9.375 GHz. We refer to this radar as
ASDE-X. The radar is incoherent and relies on short pulses for range resolution. It does not have
monopulse nor Doppler capability, and it relies on a narrow antenna beam to obtain azimuthal resolution.

The transmitter and receiver are located on the top floor and the antenna is located on the roof of the
old control tower building at Logan Airport. A photograph of the antenna in this location is shown in
Figure 2-1. The video signal from the receiver is sent along 450 feet of frequency-compensated cable to
the Raytheon display processor, which is located on the fifteenth floor of the new control tower building.
A picture of the modified Raytheon display is shown in Figure 2-2. Lines representing the edges of
runways are generated by the standard display. This representation can be compared to the runway and
taxiway designations at Logan airport as shown in Figure 1-9.

2.1.1 Radar Characteristics

This radar is typically used in harbors to detect ships, obstructions, and channel markers. While it
is suitable for that task, it is not used for precision measurements. After working with it, we found that
the original radar had deficiencies that would have prevented us from providing surveillance good enough
to operate the safety system so that it did not have an excessive number of false alarms and missed
detections.

Consequently a series of modifications was implemented to make the radar suitable for our
purposes. We increased the scan rate to increase the surveillance rate, we changed the shaft encoder to
make the firing point of the transmitter reproducible from scan to scan, we added range-sensitive
attenuation to increase the useful dynamic range of the receiver, we modified the receiver to reduce
saturation effects, we shortened the transmitted pulse width to increase the range resolution, and we added
test equipment to monitor the radar's st~tus. These changes are described in detail in the next section.

These changes were made to the radar so that it did not compromise the performance of the safety
system. Each of these changes can be incorporated into the design of a new marine radar without
significantly increasing the cost of a standard marine radar. Our experience in working with this radar
gives us confidence to say that a good ground safety system can be built using an inexpensive radar as the
front end. A block diagram of the radar subsystems is given in Figure 2.3. Table 2.1 gives the
configuration of the X-band radar used in the RSLS demonstration.

2-1



TABLE 2.1

Characteristics of the Modified Raytheon Harbor Radar Installed at Logan

Airport

Antenna height above airport 118 feet
surface

Power transmitted 30 kW peak

Power source Magnetron

Frequency 9.375 GHz

Waveform CW rectangular pulse

Pulse width 40 nsec

Scan time 1.7 sec

Pulses/scan 4096

Polarization Electric field horizontal

Horizontal beamwidth to the 0.45° one way
± 3 dB points

Vertical beamwidth to the ± 19° one way
3 dB points

Peak antenna gain 34 dB

First sidelobe level -25 dB down from the main lobe

Far out sidelobes < -40 dB down from the main lobe

Noise figure 20 dB

Sensitivity 17 dB SIN for 3 m2 target at 10,000 feet

There are several significant differences between this radar and the ASDE-3, which is the surface
detection radar that is currently being installed at the larger airports in the United States. The ASDE-3
operates at the higher frequency of 15.5 GHz. This makes it more sensitive to rain; however, it has
frequency diversity and circular polarization to allow the rain clutter to be reduced. The horizontal
beamwidth of the ASDE-3 is 0.25°, which enables it to separate close objects at 12,000 feet. The vertical
beam profile of the ASDE-3 is narrower than our radar and is shaped to give a return that is almost
constant with range. This characteristic also makes the ASDE-3 less sensitive to rain. The ASDE-3 has
four times the number of pulses per scan, which enables more pulse averaging, thereby further decreasing
the effect of rain clutter.

The ASDE-3 at Logan is located on top of the control tower at a height of 275 feet, which makes it
less susceptible to the multipath and shadowing effects that are serious problems with the 118-foot height
of the ASDE-X. These problems are described later. The relative positions of the ASDE-X and ASDE-3
are shown in Figure 2-4.

2-2



2.1.2 Radar Modifications

To work successfully in the RSLS system, several improvements were made to the Raytheon
marine radar. These changes and their rational are as follows:

1) A typical marine-radar antenna has a maximum width of 12 feet. Our system uses an I8-foot
harbor antenna to obtain a narrower beamwidth of 0.45 degrees.

2) The original scan period was 2.8 seconds. To provide more frequent surveillance updates, the scan
rate was increased to once per 1.7 seconds.

3) To eliminate clutter to the greatest extent possible by using a stored high-resolution clutter map, the
pixel areas that are illuminated by the radar in successive scans should be as identical as possible.
To ensure this, the analog resolver, which had jitter in the measurement of azimuth position, was
replaced by an optical shaft encoder with a digital readout. The ACP (Azimuth Change Pulse),
which is used to trigger the transmitter, is derived from this signal. Because of wind loading on the
exposed linear antenna, the Pulse Repetition Interval (PRI) can vary by 5% during a scan, yet the
azimuth position at which the transmitter fires is the same for each scan. The digital encoder also
eliminated azimuthal nonlinearities that initially caused the runways to appear curved.

4) With a digital encoder it is most convenient to make the number of pulses per scan a power of two.
To accomplish this, the PRF (Pulse Repetition Frequency) was changed to about 2,400/sec (exactly
4096/scan).

5) There were several deficiencies in the receiver. With the 70 dB dynamic range of the receiver, it is
impossible to avoid receiver saturation from the specular returns of objects on the airport surface.
The original log-amplifier, which has a slow overload recovery time, saturated before the receiver
sections preceding it, resulting in greatly stretched pulses for large targets. This resulted in
inaccurate estimates of the centroid position. A buffered tap was placed in the Raytheon receiver
before the log amplifier, and a new receiver section added to this tap that corrected this deficiency.
Presently, the receiver saturates before the log amplifier. Even though the log-amplifier did not
saturate, its bandwidth was such that there was still some stretching of targets due to the time it
would take to change levels. A log-amplifier with faster recovery characteristics was procured and
installed. This has greatly reduced pulse stretching, thus reducing errors in measuring the centroid
of objects.

6) An object of a given size produces a much more intense return as it gets closer to the radar. The
original receiver had STC (Sensitivity Time Control) to reduce the return level of closer targets
(hundreds of feet). A new STC was added that gives a nearly constant receiver output for a
constant cross-section target in the area of most interest, which is the range from 1250 to 5000 feet.
This prevents targets of average cross section close to the radar from saturating the receiver,
increases the useful dynamic range, and provides more flexibility in designing the processing
algorithms.

2-3



7) The radar performance deteriorated gradually on two occasions because of the gradual failure of the
rotary joint and the T-R (transmit-receive) tube. It took us time to discover and to diagnose these
problems because of the limited built-in test equipment. Additional test equipment was
incorporated to correct this deficiency. A two-way directional coupler was added in the microwave
section that allows us to determine the match to the antenna, from which signal one can assess the
health of the rotary joint and the antenna. We can also insert test signals in the other directional
coupler port to measure the receiver characteristics to calibrate the system.

8) The display processing unit was moved to the new tower to be closer to the processing equipment
and the FAA radar displays. The Raytheon radar is being used as an interim ASDE while the
ASDE-2 is replaced by an ASDE-3. The increase in distance between the transmitter and the
display processor required the addition of buffer amplifiers and frequency-compensation networks
to preserve the pulse shape.

9) The transmitted pulse length was shortened from 60 to 40 nsec to improve the range resolution to
20 feet, which is the same as that in the ASDE-3.

2.2 RADAR PERFORMANCE

The radar that we are using for airport surface surveillance was designed to detect ships and buoys
on the water. We are mainly using it to detect airplanes on paved surfaces. The radar performance in the
airport environment can be significantly improved over the present system by taking advantage of the
different requirements for these two tasks. This is briefly addressed in the section on possible radar
improvements.

2.2.1 Calculated Performance

A computer program was developed to predict the performance of the radar at various rain rates.
This code calculates the interference level that is a sum of system noise and rain clutter and compares it to
the predicted target return. The rain clutter in a given pixel is determined by calculating the rain clutter of
any rain that is at the range of the pixel. This return is multiplied by the rain attenuation and antenna gain
to that volume. The rain return is the sum of the returns from four combinations of outgoing and
incoming paths: the direct path in both directions, the direct outgoing path and the incoming path that
bounces off the ground, the bounced outgoing path and the direct incoming path, and the bounced
outgoing and incoming paths. Only the direct paths are used to determine the target return since the
ground bounce may be obscured by buildings or other targets in the foreground. For this reason the
calculated signal-to-clutter plus noise ratio is a conservative estimate. On average when the target is in
the clear and the ground is a good reflector, then the ratio is six times higher.

Figure 2-5 shows plots of the signal-to-clutter plus noise ratios of the X-band radar for various rain
rates for a target that has a cross section of 3 square meters. Also plotted on this graph is the performance
of the ASDE-3 system for the same cross section when the rain rate is 16 mm/hr. The ASDE-3 has a
significantly higher signal-to-clutter plus noise ratio than the ASDE-X at longer ranges. For real targets
the difference is not as marked because the cross section of a complicated target is 3 to 6 dB less in
circular polarization than in horizontal polarization. The major cause of the difference in performance is
the circular polarization system of the ASDE-3 radar; the rain return is at the incorrect circular
polarization for the receiver. This reduces the rain return by the 17 dB cancellation ratio of the receiver.

2-4



The signal-to-clutter plus noise ratio is not the only important consideration in evaluating system
performance; one must also determine what ratio is required to detect the target. Because the ASDE-3
has frequency diversity and the beamwidth and scan rate are such that one obtains returns from 12
adjacent PRIs from a point target, adjacent PRIs can be averaged to reduce the noise variance. With no
averaging, one requires for a detection of a single pixel a 21 dB signal-to-clutter plus noise ratio to obtain
a 0.9 probability of detection with a false alarm rate of 10-6. With the averaging across the beam in the
ASDE-3, this ratio only has to be about 8 dB. Because the ASDE-X does not have frequency diversity, it
has an additional 13 dB performance disadvantage in detecting a point target in a single PRI. Fortunately
this is not the way the system is operated. In the system the threshold is set low to achieve a high
probability of detection. However, this incurs a high false detection rate. The subsequent processes of
discarding detections unless they also occur in adjacent PRIs at the same range, discarding targets unless
they are above a certain size, and requiring tracks to be correlated from scan to scan reduces the false
detections. The net result is that the required signal-to-clutter plus noise ratio for comparable detection
statistics on airplanes is just a few dBs more in the ASDE-X than in the ASDE-3.

2.2.2 Disturbances in the Radar Data

In looking at the radar display in Figure 2-2, one is immediately struck by the large amount of
clutter that is present. Since this data was taken in clear weather, this clutter is not due to rain as the
clutter described in the last section. Most of the clutter is due to ground, water, and building returns. The
amplitude of the clutter changes from scan-to-scan and has significant spatial inhomogeneity, thus giving
the appearance of speckle. The radar returns have additional deficiencies, which are as follows:

• Radial streaks that exist for one PRI are caused by other marine radars that are operating on the
same frequency. There can be several of these radial streaks each scan.

• Since the radar is not very high, objects can cast a long shadow that is radially outrange. This
shadowing effect can significantly decrease the return amplitude from an object by either obscuring
the direct return from that object or by shielding one of the ground bounces that comprise the
normal return. This problem is particularly noticeable for planes that are moving in a line on radial
taxiways, runways, and run-up pads. At Logan airport this problem occurs on taxiways Sierra (S)
and Charlie (C), which is directly in front of the radar, and on the run-up pad area on Charlie.
These taxiways are depicted in Figure 1-9.

• Planes that are far from the radar on taxiways such as November (N) can appear to merge because
of the finite azimuthal beamwidth. This is particularly troublesome because planes that are on the
short transversal part near the end of N can move onto the runway in a short time.

• Some planes such as the MD-80 have large returns from the nose and tail areas and very little from
their midsection. These planes appear as two distinct objects, and the surveillance system has to
declare them as a single object in order for the safety system to work correctly.

2-5



• Aside from real vehicles in the movement areas, there are false returns of significant amplitude
caused by multipath. Each of these erroneous returns is caused by a specular reflection off the real
object that is then specularly reflected from a second object back towards the original object. This
signal is then reflected back towards the radar and appears as a target that is radially outbound from
the real object. The low height of the antenna exacerbates the problem. The number of these false
images often exceeds the number of real objects. These false objects can have movement
characteristics similar to real objects. Eliminating these objects is a significant challenge. We have
identified several places where there are buildings at right angles to each other that form a corner
reflector for the radar signals. These cause some of the multipath signals, and they can be
eliminated by calculating the expected position of the multipath return. Unfortunately, a significant
number of these false targets are caused by vehicles in-range of the range of closest surveillance,
and these cannot be eliminated by using a fixed stored file of multipath reflectors. Because specular
reflections are necessary to get a significant multipath return, the objects typically cannot move
much before the multipath amplitude is greatly reduced. This observation is the basis for the most
effective algorithms that are implemented to eliminate multipath.

• The lights and their supports for the approach lighting system on the extended runways have a very
large cross section that can obscure all or part of the return from an airplane.

2.3 DATA RECORDING AND PLAY BACK EQUIPMENT

The radar returns are detected with a receiver that has a logarithmic amplifier to compress the
difference in output voltage between returns of different amplitudes. The receiver output is digitized with
an 8-bit ND converter that samples the signal at 42 MHz. A capability to record this data and to play it
back at real-time rates through the SGI (Silicon Graphics Inc.) multiprocessor has been developed. This
capability facilitates the development of algorithms and their debugging, and allows one to store
interesting scenarios. A block diagram of the recording system, which is called LARS (Lincoln ASDE
Recording System), is given in Figure 2-6.

LARS is controlled by a Sun workstation board by a menu-driven program, which provides an
easily learned interface to control data recording. Operator-selected options are downloaded to the Mizar
7130 computer, which controls the details of the recording process. Most of the digitized data is of no
interest to the ground surveillance system. The transmitter fires 2,400 times a second thus giving an
ambiguous range of about 35 nmi. The major interest is with data that is within 1.5 nmi of the radar;
therefore, a major reduction in the average data rate can be achieved by discarding most data at longer
ranges. An exception is the data from the area several thousand feet along the runway approaches; this
ASDE data allows earlier fusion with the ARTS data. The 42-MHz data rate is reduced by a Lincoln­
Laboratory-built censoring-map board that selects sections of this steady stream of digital data, formats it,
and adds time stamps.

The censoring reduces the data rate by eliminating data from areas of little interest. A censoring
map must be developed for individual airports. The data selected by the censoring map at Logan airport
is shown in Figure 2-7. Data in the black areas around the airport and in the infield areas within the
airport confines are not recorded or processed. The censored data is put into two 32-MByte ping-pong
memories on a VME bus by a Mercury MC3200 processor. When the Mizar 7130 computer on this bus
detects that a buffer is full, it initiates a data transfer to tape using a Ciprico SCSI (Small Computer
System Interface) controller card, which is also located on the VME bus. This scheme is used to reduce
the original 42 MByte/sec data stream at Logan airport to one that is 660 kByte/sec, which is below the

2-6



2.2 MByte/sec recording limit of our SCSI-interfaced Honeywell Very Large Data Store (VLDS) tape
system and the processing capability of our real-time system. This censoring board is the only hardware
in the processing system that is not COTS (Commercial-Off-The-Shelt) equipment.

This censoring board is duplicated in the VME bus of the SGI multiprocessor to allow radar data to
be accessed at real-time rates. This real-time censored data can be handled by the real-time processor,
which is a mUlti-processor. The processing system has the flexibility to access data supplied at real-time
rates either directly from the radar after having the data rate reduced by the process described above or by
playing back data stored on the VLDS tape.

In addition, we have developed a capability to play back data at reduced rates. The data on the
VLDS tape can be transcribed onto Exabyte tapes that can be played back at rates up to 500 Kbytes/sec.
These units are used because the tapes can be played back many times without deteriorating, the units are
inexpensive, and they are easily controlled by the Sun workstations used in software development.

2.4 POSSIBLE RADAR IMPROVEMENTS

The performance of the radar system can be significantly improved by making changes that should
not add significantly to the cost. As pointed out in Section 2.2.1, shadowing is particularly troublesome
on radial runways. If the radar were sited so that it was higher and did not look radially along a runway or
taxiway, then this problem would be reduced. The low height of the antenna also contributes to the

. multipath problem. A higher siting or a location where there are not many objects to reflect the signals
would alleviate this somewhat. An antenna that transmitted one type of linear polarization and received
the other would tend to reject the strongest multipath signals since they tend to come back with the same
linear polarization.

As pointed out above, because of processing that occurs after detection, the radar can work with
about a ten dB signal-to-noise plus clutter ratio and still have good detection statistics. This can be
further improved if PRI averaging could be implemented. This requires that the clutter in adjacent PRIs
be uncorrelated. For rain this can be achieved by frequency diversity and by range staggering.

An even more significant eight dB increase in performance can be achieved by using an antenna
with a different polarization than the horizontal polarization of the present system. The rain clutter is
particularly troublesome because with the small vertical antenna aperture the beam is wide vertically.
Rain clutter comes in from many angles. Since reflections from the ground at significant angles change
the sense of the circular polarization, a circularly polarized system with a large elevation beamwidth
would not have as significant an advantage over the present system as one with a smaller elevation
beamwidth. Vertical polarization has a null in the ground reflection at the Brewster's angle, which
significantly reduces the rain clutter return that is bounced off the ground, however, it does have a
significant return from the clutter in the main beam. The cross section of complicated targets like
airplanes is about 3 dB higher. in vertical polarization than in circular polarization. The net result is that
for these systems the performance of a vertically polarized system and a vertically polarized system are
about equal. Figure 2-8 shows the performance of a vertically polarized system with the same antenna
gains as the present system. The noise figure has been lowered to a level that is achievable with modem
receivers. Note the significant improvement in rain performance over the present system, which is due
mainly to the use of vertical polarization. The improved noise performance only significantly improves
the performance in rain-free weather at long range.

2-7



Ground and rain clutter are not the only spurious returns that affect the detectibility of targets.
Because of the presence of many surfaces on the airplanes and terminal structures that can act as specular
reflectors one finds a great deal of multipath in this environment. A system that transmits vertical
polarization and receives horizontal polarization not only has good rain rejection but it should also
significantly reject multipath returns., For these reasons the use of this system should be further explored.

Decreasing the pulse width to 40 nanoseconds required us to increase the bandwidth of the receiver.
The IF frequency of the receiver is at 45 MHz. We did not change this because of the requirement to be
compatible with the Raytheon display system. Because the desired bandwidth of 25 MHz is a significant
fraction of the IF frequency, it was not possible to obtain a log amplifier with ideal characteristics. A
receiver with a higher IF frequency should be specified.

2-8



N I \0

..

F
ig

ur
e

2-
1.

R
ad

ar
an

te
nn

a
an

d
vi

ew
o

fL
og

an
ai

rp
or

t.



IV , ~

..

X
-B

an
d

R
a

d
a

r
at

L
o

g
an

A
ir

p
o

rt

F
ig

ur
e

2-
2.

R
ad

ar
ou

tp
ut

sh
ow

n
on

m
od

if
ie

d
R

ay
th

eo
n

di
sp

la
y.



T
R

A
N

S
M

IT
T

E
R

T
R

IG
G

E
R

O
P

T
IC

A
L

A
N

T
E

N
N

A
--

E
N

C
O

D
E

R
M

A
G

N
E

T
R

O
N

1
1

8
F

O
O

T
H

IG
H

9.
37

5
G

H
z

R
O

T
A

R
Y

1
8

-F
O

O
T

A
P

E
R

T
U

R
E

40
96

C
IR

C
U

LA
T

O
R

-
JO

IN
T

H
O

R
IZ

O
N

T
A

L
---

.
--

-
~

-
P

U
LS

E
S

/S
C

A
N

P
O

L
A

R
IZ

A
T

IO
N

S
Q

U
A

R
E

P
U

LS
E

1.
7-

S
E

C
S

C
A

N
R

A
T

E
3

0
K

w
P

E
A

K

T
R

A
N

S
M

IT
/

R
E

C
E

IV
E

T
U

B
E

" R
F

R
F

r-
.

r-
.

L
O

G
-A

M
P

--
'"

LI
M

IT
E

R
8

0
D

B
D

Y
N

A
M

IC
R

A
N

G
E

M
IX

E
R

-
S

T
C

tv I ....
-

V
J

F
ig

ur
e

2-
3.

B
lo

ck
di

ag
ra

m
a/

ra
da

r.



tv I

A
S

D
E

-X
h

=
1

1
8

ft
.

A
S

D
E

-3
h

=2
80

ft
.

o.::
.:=

::
.x

F
ig

ur
e

2-
4.

R
el

at
iv

e
po

si
ti

on
s

a
/t

h
e

A
SD

E
-3

a
n

d
A

SD
E

-X
ra

da
rs

.



I I I I I Ilf I I II 1
Target Cross Section 3 sq m
System loss 2.1 dB I I

)~ t"---.
~

Noise Figure 20 dB

~ "'"
Horizontal Polarization

" ,,~
r-- ~

\ 1\ "\
1\ r\1\ f\. "" Rain Rate

\ r\
,

1\ mm/hr
\ \ f\. I\.. I

~ 1\ 1\ ~ " 0

~ ~ ".....
\.

\ r\ ......
i'.. .....'"1\ 1\ r'\. ~ ~,

1\ f' "'" "-
......

\ \ " '"
2 ASDE-3 "- I'...~ ...... ...... 16 mm/hr_ >--

I'..... """

~ 1\ ~ ",I""'"~ 4
, -

'" ~~ , r--....,
~ \ l.I" " ........

....... "'",......
i'..'\ r--...., r--....

\ ~ B

\ ""
1"., ...,

r.......
........ .........

\ ~ 16 ...... r-.....
\

'"
I"'..,

.........

r\ ~
r-.....

t'.... "-

1\ 64

-32 ......
I'-..

........ r-..... I ~
I\. r-....

"1\ r-.... t'.... r--... r......."- to-....

5

o
o 2 3 4 5 6 7 8 9 10 11 12

RANGE (KFt)

30

35

0 25
~
oct
a:
w
en
0 20Z

+
a:
w
~
::> 15
..I
0

0
I-

..I
oct 10
Z

"Cii

Figure 2-5. Performance of the ASDE-X versus range and rain rate.

2-15



tv I

R
A

D
A

R
IN

T
E

R
F

A
C

E
B

O
X

C
E

N
S

O
R

IN
G

M
A

P
B

O
A

R
D

A
Z

IM
U

T
H

C
H

A
N

G
E

32
B

IT
S

/W
O

R
D

P
U

L
S

E
25

2
M

H
Z

1
0

.5
M

W
O

R
D

S
IS

E
C

1
6

K
x1

6
E

C
L

....
F

IF
O

C
L

O
C

K
---

-
,.

S
Y

N
C

--.
.

D
IG

IT
A

L
42

M
H

Z
L

O
G

IC
--

--
-

--
10

---
--

-
--

--
--

--
-..

1
6

K
x1

6
•

8
-B

its
....

.!
"

.....
...

I
~

F
IF

O
B

A
S

E
B

A
N

D
-

C
LO

C
K

.
L

O
G

V
ID

E
O

/
'

FL
A

G
S

O
U

T
P

U
T

S
E

Q
U

E
N

C
E

R

A
Z

IM
U

T
H

Ilo
...

S
T

O
R

E
!
~

M
A

P
;

R
E

F
E

R
E

N
C

E
N

O
S

T
O

R
E

R
A

M
P

U
L

S
E

I
i

l'
I

C
O

N
T

R
O

L
I ! •

.-
--

--
--

--
--

_
_

_
_

.,.
1

M
C

32
00

•
P

O
R

n
P

O
R

T2
M

E
M

O
R

Y
M

C
32

00
M

A
S

T
E

R
S

LA
V

E

32
M

B
Y

T
E

S
P

R
O

C
E

S
S

O
R

S
•

A
N

D
M

A
IN

IN
P

U
T

O
U

T
P

U
T

A
F

O

M
E

M
O

R
Y

A
F

O
(R

A
D

A
R

(M
A

P
S

!
D

A
T

A
)

C
O

N
T

R
O

L)

~
~

~
S

C
S

I
M

E
M

O
R

Y
"

+
M

IZ
A

R
C

O
N

T
R

O
L

L
E

R
32

M
B

Y
T

E
S

*
,.

S
P

A
R

e
-I

E
7

1
3

0
I

~
~

~
~

I
V

M
E

B
U

S

I
I

~
~

~
,

IN
T

E
R

F
A

C
E

I
J

~

W
"

W
H

V
M

E
'\

U
S

"
"

F
ig

ur
e

2-
6.

B
lo

ck
di

ag
ra

m
o

fL
A

R
S

(L
in

co
ll

l
A

S
D

E
R

ec
or

di
ng

Sy
st

em
).



Figure 2-7. Censoring map ofLogan airport.

2-19



9 10 11 124 5 678

RANGE (KFt)
32

Rain Rate-
v I-" r-- mmlhr

Ji r- l"- t--r- I..... '-

~
-- "- "- -- t-.....

t--... f',. r--..... 0

f'. " ~
t'.... t--...t'-..

'" I-....

1/~ '\ ~
...........

""1\ 1\ ~ I"-

"'"
f\ '\ ~

.....
r--.....

1\ ~ I""--

""I\. r-.... t--... 2
\ " I': ........

r--.....,
f\ ~ ~ r-....

l/ i\ ~ '" t'-.. r-.r--...
\ '\ ......... r---.. 4

\ '\ " r--....t'-..i'- r--....

f\ "

"
......
~

r--.. t--

'"
f',.
~

8

\ " '"
I'-.. t'-..

1\ '"
t"-.... t'-..r-.... t-..

1\ ~ 16

1'-""r\. I'-..

~
r-.... t-......

~ 32 t--

'~
........~Target Cross Section 3 sq m

System loss 2.1 db I ....
t" 64

Noise Figure 6 db ""t"--
~Vertical Polarization

.....

I I I I I I I I I
I'-.. t'-.. I'-..t'-.. t-..o

o

35

5

30

0 25
I-
<I:
a:
w
en
~ 20

+
a:
w
t:.
:::) 15
...J
o
o
I-

...J
<I: 10
Z

"en

Figure 2-8. Perfonnance ofa vertically polarized radar.

2-21



3. SURVEILLANCE PROCESSING

In the last chapter the processes of detecting, digitizing, and censoring the ASDE radar data were
described. This censored data is entered into a buffer memory and is read out at a reduced rate into a
multi-processor computer - an eight-processor SGI (Silicon Graphics Inc.) computer. Here, in a
combination of parallel and serial architecture, the surveillance processes of rejecting clutter and
interference, eliminating false objects, and grouping returns from the same object are performed. Also, by
correlating returns from scan to scan, tracks and other object features are calculated and sent to the sensor
fusion. This chapter describes the hardware and algorithms used to accomplish these tasks.

The system operates very well in a real-time environment. Because of time constraints in
developing the system, many of the system parameters have yet to be fully optimized. There are
additional proposed changes that would improve system performance, which are described in Section 3.3.

3.1 OVERVIEW OF THE SURVEILLANCE ALGORITHMS

The most difficult tasks in developing the surveillance system have been generating and refining
suitable algorithms and in implementing them in a real-time system. We have tried to keep the number of
airport-specific parameters to a minimum to make the code easily portable. To move to a new airport
one would have to input the location of certain types of areas. We think that there would be very little
tuning of parameters in-this process. The system has to be tested at airports other than Logan to verify
this.

The tasks of rejecting clutter and establishing tracks are complicated because of the severe clutter
environment found at Logan airport. The object of surveillance processing is to achieve a high
probability of detection while maintaining a low probability of false detection. To do this we take the
somewhat unconventional approach of using a low threshold to detect radar returns. This results in a very
high probability of detection and a high probability of false detection in the initial Clutter-rejection stage.

The false objects are eliminated by a series of processing steps each of which decreases the
probability of a false detection without significantly affecting the probability of a correct detection. The
false-detection rate is reduced by requiring some overlap of the pixels contained within the threshold
crossings between adjacent Pulse Repetition Intervals (PRls), by morphological processing, by using
size criteria, by correlating tracks with those from previous scans, and by using the location of a detection
and its amount of movement.

In this Chapter, the steps for each of the surveillance processes are first listed, and then some details
of their implementation are described. Greater detail is provided in the chapter on system software.
Figure 3-1 shows a block diagram of the processes and the processors assigned to them.

Most radar clutter is removed in the initial clutter rejection processing. Radar interference and
random noise are eliminated in the PRI correlation processing that occurs in the clutter-rejection
processors. Out of this process come threshold crossings; a contiguous group of pixels from several PRIs
within the threshold crossings is referred to as a component. The process of connected components

3-1



LA
R

S
H

ig
h-

S
pe

ed
M

u
lti

p
ro

ce
ss

o
r

(S
G

I) M
er

ge

C
O

R
R

E
LA

T
IO

N
C

E
N

T
R

O
ID

IN
G

M
U

L
T

IP
A

T
H

R
E

JE
C

T
IO

N
T

R
A

C
K

IN
G

R
E

A
C

Q
U

IS
IT

IO
N

T
R

A
C

K
IN

IT
IA

T
IO

N

l
I
I
r
-
-
-
_

O
U

T
P

U
T

M
O

R
P

H
O

L
O

G
IC

A
L

P
R

O
C

E
S

S
IN

G

B
L

O
B

S
T

O
O

B
JE

C
T

S
C

lu
tt

er
R

ej
ec

tio
n

1,
00

0,
00

0
P

ix
el

s
/S

ca
n

4
0

M
S

am
pl

es
/s

ec
8

b
its

r
-
-

40

rS ..e _c
O _'_

57
rSr

-ec

....
C

lu
tt

er

_
.
~

A
-D

..
..

..
C

en
so

rin
g

D
J
s
t
r
l
b
u
t
o
r
l
-
+
-
"
'
~

M
ap

(M
er

cu
ry

)
R

ej
ec

tio
n

V
id

eo

Fi
gu

re
3-

1.
Su

rv
ei

lla
nc

e
pr

oc
es

si
ng

bl
oc

k
di

ag
ra

m
.



identifies regions that belong to the same component. The morphological or shape processing eliminates
small components, cleans up images, and associates components that are part of the same object. Scan-to­
scan correlation associates objects with those present in previous scans. This enables tracks to be updated
and new ones to be generated. These files and other object features are sent to the safety system.

Since both the clutter-rejection and the connected-components modules each use more than one
processor, each of which processes pan of the airpon surface, special care is necessary to merge
components that are close to the processing boundaries. This requires special treatment of the areas that
are close to the surface wedge boundaries.

3.2 PROCESSING SOFrWARE AND EQUIPMENT

It is only because of the rapidly decreasing cost of processing that it was possible to build this
system at reasonable cost with COTS equipment. Even with the fast processor, we have had to implement
some algorithms in an approximate fashion to allow real-time operation. Because of computer advances
since the system was procured, one can now purchase a more capable processor at lower cost, which
would allow better algorithms to be implemented.

The surveillance software is written mainly in the object-oriented language C++, and the
interprocessor communication software is written in both C++ and C. The capability to develop the
software on many platforms and to test it with real data reduced the developmental time. This
environment enabled us to evaluate the performance of the various algorithms and to develop the links
between the software modules.

For surveillance processing we have two SOl multiprocessor chassis each of which can hold two,
four, six, or eight R-3000 processors. Eight processors, which have a maximum processing capability of
286 MIPS, are used for the Logan demonstration; two processors in a chassis and the Indigo workstations
are retained at Lincoln Laboratory for additional software development, debugging, and non real-time
data processing. We have four HP computers, one is at Logan; the other three are at Lincoln Laboratory.
The SOl and HP computers at each of the two locations are linked by Ethernet. The two locations
communicate via a high-speed modem link that can transfer software between computers, thereby
allowing tight configuration control and remote control of the processors.

The Logan-airpon system can be operated to run either in real time or to use recorded data. We
have recorded data when the airpon was in different runway configurations, when there were periods of
light, medium, and heavy traffic, and when it was raining and snowing to assess system performance in
these conditions.

Data is recorded or real-time tests are performed as required. Working with the Raytheon radar has
been complicated because of its use at Logan as a replacement for the ASDE-2 until an ASDE-3 is
installed and working. This use was started in April 1992 and was originally expected to end in October
1992. It appears that this mode will be used until the summer of 1993 due to delays in delivering the
ASDE-3 radar and making it operational. An agreement was worked out between the FAA and Lincoln
Laboratory that allows us to record data from the radar. Neither our data recording nor the operation of
our processing system in real time affects the operation of the Raytheon radar as an ASDE. Any changes

3-3



we want to make to the radar have to be approved by FAA and Raytheon personnel and must be done at
times when the radar is not being used by the controllers. Raytheon has a maintenance contract with the
FAA to perform preventive maintenance and to repair the radar when it fails. After some initial
difficulties, this arrangement has not caused an undue burden on the RSLS program.

To operate in real time, the surveillance code has to run on eight processors, which required careful
attention to interprocessor communications. An existing interprocessor communications protocol, which
had been developed for other projects. was modified to transfer information between the various
processors.

As shown in Figure 3-1 there are three sets of processors to apply the surveillance algorithms to the
radar data. When data is transferred from one set of processors to another set, it must first be converted
from the internal object-oriented fonnat to a serial format. This process. which can be computationally
expensive, is called flattening. When data is received by the succeeding processors. it undergoes an
unflattening operation that puts it back into an object-oriented fonnat.

An existing interprocessor communications package was chosen to control the transfer of data
between processors. It was modified for this application and it comprises a protocol, server-client, and
C++ layers. At run time, the user specifies the channel and ports for data transfer. The package can use
shared memory. Ethernet. files. etc. It efficiently handles all details of the transfer in a real-time
environment. It operates on both the SOl and Sun computer systems. The C++ layer does the flattening
and unflanening operations.

3.3 SURVEILLANCE PROCESSES

The radar data undergoes a series of processes to produce tracks and object features for the safety
system. This section describes these processes

3.3.1 Clutter Rejection

This initial stage of processing rejects most of the clutter in the radar return and forms a binary
image. Figure 2-7 shows the censored raw radar data that is to be processed. The return amplitude for
each pixel is compared to a stored threshold value for that pixel; the value in the binary image is set to
zero if the radar return does not exceed the threshold and to unity if the threshold is exceeded. The
thresholds are set fairly low so that many pixels exceed it.

The algorithmic functions that are perfonned by the clutter-rejection process are as follows:

1) Initialize the values in the clutter map during the initial scans when the system is first turned on.

2) Determine the threshold level for each pixel from the stored clutter values. The threshold is set to
the mean plus some constant times the standard deviation.

3-4



3) Compare the radar data that is returned from a transmitted pulse to these levels and record the radial
position both at which the data first exceeds the threshold and when it drops below the threshold.
These two values constitute a run. The list of the positions of the threshold crossings is called a
run-length table.

4) Examine the runs in adjacent PRIs. If there is not an adjacent run that has some of the same range
values, then discard the run.

5) Pass the remaining threshold crossings in the form of a run-length table to the next processing stage.

6) Update the statistics in the cluner map at the airport positions where a run does not exist.

The motivation and details of the implementation of this cluner-rejection algorithm are now
described. The implementation in this system is different from that of the ASDE-3. The cluner has been
found to vary greatly with position on the airport surface. In the ASDE-3 there are constant threshold
values for different regions of the airport surface, where each region comprises many pixels. If the cluner
is non-uniform in a region, not only does some cluner break through, but also the probability of detection
is reduced in some areas. Since the ASDE-3 was designed, memory and computational costs have
decreased significantly to the point that one can reduce the size of the cluner region that has the same
stored cluner level to a single pixel without incurring a significant cost That has been done in the RSLS
system.

When the system is turned on, the cluner means and mean sum squares are determined by using a
decaying memory filter. The threshold is initially set at the maximum value for non-movement areas and
at a level well above the cluner and noise values on the movement areas but well below the maximum
value. Training of the clutter statistics takes place for those pixels that do not exceed the threshold. The
decaying memory filter has a weight of 1/6 for new information and 5/6 for old information. After 35
scans, which takes about a minute, the cluner statistics have converged to the correct values for areas in
which no objects are present The clutter statistics of those values are updated for a long enough period of
time so that most vehicles have moved from the spot they occupied at the start of the initiation process.
This is done to ensure that correct clutter values are obtained for the runway movement areas and for
regions that may have been shadowed by these objects.

If an object does not move until after the training period, then at the time of movement the clutter
statistics will train to the correct value. It should be noted that if an object stops on the airport surface,
then it will always exceed the threshold. Training is suppressed for areas that are above the threshold;
therefore, the track of an object will not be dropped no matter how long the object remains stationary.

From the stored mean and variance in the clutter map a threshold value is calculated for each pixel.
The threshold value is,

Threshold = Mean + K (j

where (J is the standard deviation, and K is a constant, which is presently set to 5. There are maximum
and minimum values for K (j used in this formula that are stored parameters. The parameters to
determine the threshold value has yet to be fully optimized.

3-5



The incoming data is compared to the threshold value and if it is exceeded. then a run is started.
The run ends when the threshold is no longer exceeded. Only the starting and ending positions of the runs
are stored. Runs are used because they are a compact representation of the data, and more importantly,
because many of the algorithms that operate on the data are very efficiently implemented with this data
representation. The thresholds are set fairly low, which results in a large number of detections per scan.
This low threshold ensures us of a high probability of detecting a real object. The many false objects
detected by this process are eliminated in the subsequent processing.

To operate in real time one must be concerned with load balancing and processing latency. The
processing described above is the same for each pixel and repeats every scan. Four processors are
assigned to clutter rejection. Because of the repeatability, specific parts of the airport are assigned to a
given processor. The data is fed into each processor in a data block of 128 contiguous PRIs. Each of
these blocks corresponds to a surface wedge on the runway surface. Because for part of the scan the
radar looks at areas not associated with the airport surface and approaches, only 22 of these radial surface
wedges are required to perform surveillance for the airport. Each surface wedge is time stamped with the
time the radar illuminated that surface wedge.

The next processing step rejects isolated noise spikes and interference from other radars whose PRI
is typically different from our 415 microseconds PRJ. The azimuthal beamwidth, scan rate, and PRJ are
such that a point object that exceeds the threshold by at least three dB is detected in five contiguous PRIs.
If a run does not have a run from an adjacent PRI on either side that overlaps in range, it is discarded
since it does not have the characteristic of a real object. Figure 3-2 shows an image of the data after this
processing stage. This process is performed here for computational efficiency since the first stage in the
morphological processing would also reject these pixels. The remaining runs are sent to the connected­
components processors.

The clutter means and mean sum squares are updated with data from the most recent scan by using
a decaying memory filter. The time constant to update the clutter values is short and currently is six
scans. For the data examined so far, the time constant is short enough so that when it starts raining the
stored clutter values can rise fast enough to keep the detection statistics almost the same, even with the
raised clutter values.

3.3.2 Connected Components

The runs remaining after interference rejection are passed to the connected-components processors.
The images now have a binary amplitude. Some morphological processing is used in this module since it
is an efficient way to eliminate small objects and to control processor loading. The algorithmic functions
that are performed during the connected-components process are as follows:

1) Read the runs from the clutter-rejection module.
2) Perform the morphological opening operation.
3) Form a chain code of the outline of a component from the clustered adjacent runs.
4) Subtract the runs corresponding to that component from the global set of runs.
5) Repeat the process until all runs are assigned to individual components.
6) Calculate features such as the area and centroid.

3-6



..'

.'.. ...
•

..
...
,. ·•·

Figure 3-2. Radar data after clutter and interference rejection.

Having the data above threshold in the fonn of runs lowers the data transfer requirements between
processors. In addition, there are efficient algorithms available to perfonn morphological operations on
the data.

Small components are eliminated by perfonning an opening. An opening is a morphological
operation composed of an erosion followed by a dilation. An opening on an image is illustrated in Figure
3-3 in which pixels with amplitude unity are shown in black, and pixels with amplitude zero are shown in

3-7



ORIGINAL IMAGE

IMAGE AFTER THE OPENING OPERATION

Figure 3-3. The effect o/the morphological opening process on an image.

white. Each non-boundary pixel is surrounded by eight pixels. In an erosion, any black pixel that touches
a white pixel even at a comer is turned white. This decreases the size of the object, smoothes the contour,
and eliminates small objects. In a one-pixel dilation any white pixel that has an edge or comer in
common with a black pixel is turned black. These operations are not inverses of each other. For instance,
if the component was a two-by-two array of pixels, then the erosion would eliminate the object. The
dilation does not bring it back into existence. Aside from eliminating small components, this operation
smoothes the boundaries of components. Larger objects can be eliminated by doing an opening in which
there are several erosions followed by the same number of dilations.

The number of objects to be processed in a given part of the airport can vary from scan to scan and
with changes in runway use. For this reason fixed parts of the airport cannot be assigned to individual
processors without incurring excessive latency in certain situations. To overcome this problem, a
dynamic load balancing scheme is used. Data from the 22 surface wedges that has been processed by the
clutter-rejection processors is put in a cue. When a connected-component process is free, then the time
stamp is examined. The data in the oldest surface wedge is assigned to that processor.

3-8



The number of runs that needs to be processed for a scan is determined. If this number gets too
high, then the processors can fall behind. To prevent this from occurring, when the number exceeds a
stored value, then the opening operation is changed to one in which two erosions are performed followed
by two dilations. This will eliminate components that are larger than those with a single-pixel opening,
thus reducing the number of components that must be processed.

After this operation, adjacent runs are combined to form a component. In this process, a chain
code, which contains the ordered position of pixels on the periphery of the component, is formed. The
chain code can be used to calculate the perimeter of the component; however, perimeter is not calculated
in the current RSLS implementation.

After a component is extracted from the total set of runs, the runs associated with it are subtracted
from the data in the surface wedge. The process of finding a component is repeated until there is no more
data present. The result of the processes in this section is a table of associated runs corresponding to
individual components whose sizes are more than a certain area.

3.3.3 Components to Objects

Several individual components may be associated with the same object In this stage of processing,
close components are grouped to form an object. In addition, components that are at the surface wedge
boundary are marked for additional processing in the merge processor. The algorithmic functions that are
performed in this process are as follows:

1) Combine close components to fonn objects.
2) Determine the features of the objects.
3) Mark components that are at the surface wedge boundary.
4) Send the objects to the next processing stage.

We want to use a distance criterion to associate components with each other. It is computationally
expensive to calculate the distance between components, and a different method is used to approximate
the desired process.

Each component is surrounded by an enclosing wedge that is padded in distance so that there is at
least a five-meter separation between the enclosing wedge and the component. Enclosing wedges that
overlap are noted. The components in two enclosing wedges that overlap are dilated by a given distance
radially. The same number of pixels are dilated in the azimuth direction. The number of objects in the
overlapping enclosing wedges is now examined. If it is one, then the components are considered to be
part of the same object, and if it is two, they are declared separate objects. If they are part of the same
object, then an enclosing wedge is generated for the new object. This process is performed for each pair
of overlapping wedges. Figure 3-4 shows an example in which three components are identified as parts
of a single object

Next, one determines if the objects are close enough to the surface wedge boundary so that one
must see if objects in the adjacent surface wedge are part of the same object This is done by enclosing
the object in an enclosing wedge with padding. If this enclosing wedge overlaps the surface wedge
boundary, then it is considered to be touching the surface wedge boundary. If none of the components

3-9



THREE COMPONENTS ONE OBJECT

ONE
OBJECT

\--,
/ .. \

I \
I I
\ 'I
\ .. I, /

ONE
CENTROID

Figure 3-4. Depiction of the process that converts close components into objects.

that correspond to an object touch the surface wedge boundary, then the object is put into a table listing
completed objects, and its centroid and area are calculated. The centroid is the center of gravity of the
object. If a component touches a wedge boundary, it is put onto a list of incomplete objects. This
processing is performed for each of the 22 surface wedges. The amount of data at this stage has been
greatly reduced from that in the raw radar image.

3.3.4 Merging

The tables of complete and incomplete objects and the calculated features are passed to the merge
processor. Here the incomplete objects are compared to incomplete objects in adjoining surface wedges,
and they are combined into single objects when appropriate. The algorithmic functions that this process
performs are as follows:

1) Read in the data from the connected components processors

2) Examine incomplete objects that are in adjoining surface wedges whose enclosing wedges overlap.

3) Declare the combined object to be a single object if dilations result in a single object and separate
objects otherwise.

4) Put this combined object in the complete table if the resulting object does not touch a surface wedge
boundary.

3-10



5) Repeat steps 2 and 3 if the combined object touches a surface wedge boundary.

6) Calculate features of the complete objects.

The two lists of complete and incomplete objects from the last processing stage are unflattened. The
distances of incomplete objects are compared to objects in adjoining surface wedges using enclosing
wedges with padding. As before, if the enclosing wedges overlap, then dilations are performed to see if
they should be considered a single object. If they are not, then the same process is performed for other
objects whose enclosing wedges overlap. If the object remains a complete object in all the tests, then it is
put on the list of complete objects. If the components are part of a single object, then it is determined if
this object is close to another surface wedge boundary. If it is not, then it is added to the list of complete
objects. If it is close to a surface wedge boundary, then the above process is repeated again and again
with successive surface wedges until it is declared a complete object. Figure 3-5 shows some data that
straddles a surface wedge boundary and the effect of the merge process on it. The result of this process is
a list of objects, that includes their centroid, area, and enclosing wedge.

b

a

Merging of Components in
Adjacent Surface Wedges

Components In a Surface Wedge
With Enclosing Wedges

Figure 3-5. a) Components surrounded by enclosing wedges in a surface wedge. b) the merging ofcomponents in

two adjoining surface wedges into one component.

3-11



3.3.5 Scan-to-Scan Correlation

In this last stage of surveillance processing, tracks are formed and updated, and this information is
sent to the safety system. The logic is complicated because one needs to achieve both a low probability
that tracks will be dropped on real objects, and a low probability that they will be initiated on false
objects. This is accomplished by projecting tracks from a previous scan to the present scan. A best-fit
correlation based on the distance of the objects near the projected track is made. If a correlation is found,
then the track is updated. If there is no projected track close to a detected object, or if another object is
even closer to the projected track, then a new track is started. Tracks are classified as being of low and
high confidence. Because of the presence of multipath and object fading, a track can be temporarily lost.
Special software has been implemented to reacquire tracks of objects rapidly that we have high
confidence should still be on the movement area. Such a track loss is referred to as a "bad track drop."

Track association and lost-track recovery require additional information about the object. An
aspect graph contains this information, which is unique for each type of object. Currently, it contains the
area of the object as a function of both the range and the angle between a vector from the radar to the
object and the main axis of the object as determined by its velocity vector. This is calculated in real time.
The algorithmic functions the scan-to-scan correlation process performs are as follows:

1) Correlate the centroid position of objects from this scan to the projected positions of tracks from
previous scans. Select the object to correlate with based on a priority list.

2) Initiate tracks on uncorrelated objects.

3) If track is lost on a high-confidence object, then use the rapid reacquisition algorithm to reacquire it.

4) Update the tracks based on the positions of the objects in this scan.

5) For objects in track, pass to the sensor fusion the position, estimated error in the position, area,
object extent about the centroid, time, and confidence that the object is real.

6) For objects in track calculate entries for the aspect graph.

The centroid, velocity, and the area of each object are stored in the tracks. The positions of objects
from previous scans are projected to this scan and compared to the positions of the centroid of objects.
The correlation is first performed for high-confidence tracks, then for "bad track drops," then for low­
confidence tracks, and then for new tracks. If a projection is within a user-set distance of an object in the
present scan, then the same track number is assigned to the new detection. If the present positions of
several objects are within this user-selected distance of the projected track, then the track number is
assigned to the object that is closest to the projected track position. Conversely, if several tracks project
to with the user-selected distance from an object, then the track that is associated with the object is the
one that projects closest to the object. The position, velocity, and the aspect graph of the objects in track
are updated.

To minimize latency in transferring tracks to the sensor fusion, the best-fit match of objects is
accomplished in stages. In doing the correlation, if an object is within the user-set distance when the
correlation is performed, then that information is immediately used to update the track, and it is sent to the

3-12



sensor fusion. If a subsequent object has a smaller difference in position between the projected track, then
the track is corrected based on this new position, and this infonnation is sent to the sensor fusion.

The track number can be transferred to another object if the return from the real object fades and
there are other returns nearby that don't associate with the correct object, or there is a significant error in
projecting the position of the object. The centroid jitter has a value of 1.3 m rrns for objects moving in
straight line. Because the image area of a turning object can rapidly change, the projection error is
sometimes larger in that case. Because the centroid error is so small, the present system has a small
probability of dropping or transferring track.

If an object in the present scan does not correlate with an object from previous scans, then a new
track is initiated. The track has a confidence level associated with it that expresses one's confidence that
the object is indeed a real object and not clutter or multipath. The confidence level is detennined by how
far it has traveled since it was first observed. Presently the confidence level is binary, and its value is zero
for a new track.

Multipath can lead to false track initiation. The most common cause of multipath is a specular
reflection between two objects. Typically, a small relative movement between the objects greatly reduces
the amplitude of the return. We have found that requiring an apparent track to move a certain distance
(presently 200 meters), called the lead-in distance, before declaring it to be a high-confidence track is a
very effective filter to reduce greatly the potential of declaring a high-confidence track on multipath
returns. Before it moves this distance, it is declared a low-confidence track; after it has moved this
distance it is declared a high-confidence track.

This lead-in distance does not significantly affect the ability to have an initial track on an object
when needed since we have a guard zone around most of the surveillance region and secondary
surveillance for aircraft on approach. This zone has a width corresponding to the distance required for a
track to move before it is reported as a high-confidence track. Therefore, most real objects are in high­
confidence track before they enter the required surveillance region. The lead-in algorithm does, however,
have a significant detrimental impact on the display of traffic on the inner taxiway, ramp, and gate areas.

Even though the use of a lead-in does not adversely affect initial track acquisition, it can adversely
affect reacquisition of tracks that are lost for one or several scans. Tracks can be lost because of
shadowing, object breakup, or because the track is associated with a nearby multipath object. In a
majority of cases this multipath object disappears after a scan or two, in which case the track does not
associate with any nearby object. To recover from this situation, a special algorithm has been
implemented. If an object is in high-confidence track and is moving less than 50 m/sec, and was seen in
the movement area in two out of the last three scans, and is not correlated with any object from the
present scan, then a "bad track drop" is declared. When this occurs the following steps are taken to
reacquire the object:

1) The user-set distance over which a correlation is sought is changed to the distance the target at its
last reported velocity would move in 15 scans.

3-13



2) The object within this correlation distance that most closely matches the last cell obselVed of the
object's aspect graph and does not associate with any high-confidence track is chosen as the new
track position.

3) A correlation is sought for 20 scans, after which the track is dropped.

At the ends of several runways there are piers that support the approach lights. The combination of
piers and lights has a high radar cross section and either partially or totally obscure airplanes that pass
over them To reduce the probability of track loss in these areas, the tracking filter is modified so that the
object coasts in the direction of the runway centerline if it is not detected. For some scans this essentially
allows the track to coast through the difficult areas.

All these operations help to reduce the false-detection rate while having a very minor effect on the
probability of detection of real objects. The tracks, containing size and position are passed to the sensor
fusion with a binary estimate of the confidence that the object is real. Figure 3-6 shows the positions of
several objects on the runway surface for a series of radar scans.

3.4 POSSIBLE SURVEILLANCE PROCESSING IMPROVEMENTS

This chapter has described the algorithms as currently implemented in the RSLS system. We have
identified the following additional enhancements to improve performance:

• Many system parameters have not been fully optimized. A suite of analytical and graphical tools
would greatly aid this optimization and allow us to debug more easily any software changes or
additional algorithms.

• Amplitude infonnation is currently not passed to the connected-components process. The clutter­
rejection module passes only binary amplitude information. Amplitude infonnation would help to
eliminate false objects since many multipath objects have amplitudes that are significantly less than
those of airplanes.

• ARTS information including aircraft type is used by sensor fusion and is presently not sent to the
sUlVeillance logic. If available to the sUlVeillance logic, one could use the ARTS tracks and
airplane identification to help prevent the initiation of false tracks and to help prevent the dropping
of real tracks.

• The physical distances corresponding to a pixel are different in range and in azimuth. The distance
extent of an azimuth pixel is a function of range. The performance of the components to object
morphological operation in the connected-components processors would improve if it took that into
account.

• The aspect graph currently only has object area. It would produce a more accurate identification
if it contained perimeter and gray-scale information. Also, the current graph has values uniformly
distributed in angle. A non-unifonn distribution with more values in regions in which the values in the
aspect graph table are rapidly changing would be better.

3-14



RADAR
•

TAXIING

Figure 3-6. Tracks at Logan airport. The square box indicates the last position of the track.

• The aspect graph is currently generated in real time for a object on the airport surface. When the
object is turning, which is the time that track is most likely to be lost, values in the aspect graph at
these angles may not be available. If one knew the aircraft type and had a stored high-resolution
aspect graph for that object, then one would do a better job of maintaining and reestablishing track.

3-15



• We know the position of several fixed objects and often the position of moving objects that
contribute to multipath. Currently, we do not use this information. With known multipath
reflectors one can predict where multipath objects will appear. which would allow them to be
discarded.

• By using the details of the amplitude distribution statistics of clutter and various airplanes. which
are radically different. one could do a better job of association from scan to scan.

• The clutter map is not stored from one session to the next. Doing this would allow one to initialize
the system more rapidly.

3-16



4. ARTS INTERFACE

The RSLS Logan Demonstration System requires data from the Automated Radar Terminal System
(ARTS-IlIA) to provide surveillance information -and aircraft data tags for aircraft on approach. The
purpose of this chapter is to outline the Automated Radar Terminal System (ARTS) interface
requirements, to present the interface design, and to describe the interface hardware implementation.
Details of the software implementation can be found in the system software chapter of this report.

4.1 REQUIREMENTS

The ARTS data required by the Logan Demonstration System include aircraft position (range,
azimuth, altitude) and the information stored in data tags (including aircraft identification or ACID, and
equipment type). Not all the aircraft visible to the ARTS system are important to RSLS; only data from
those aircraft which are on or near the airport surface (including departures, arrivals, and other operations
such as missed approaches, go-arounds, or touch-and-goes) will be required. To minimize the potential
coverage gap or maximize the coverage overlap between the airport surface radar (ASR) terminal area
radar data and X-band surface radar data, the ARTS data should provide information down to the lowest
ranges and altitudes available, without being subjected to any unnecessary surveillance mask. All data
should be provided in a timely fashion; for aircraft on final approach, any unnecessary delay in the
availability of surveillance data is not acceptable.

Further requirements on the ARTS interface were mandated by the development schedule for the
Logan Demonstration System. Because of the short schedule, it was not possible to make any basic
changes to the operational ARTS system at Logan. No ARTS program changes were allowed, no
dedicated input or output ports were available, and no interference with operations could be accepted.
There was insufficient time for any significant hardware development effort. Thus the ARTS interface
was required to be a passive, listen-only interface that could derive all needed data from ports already in
use, and would use commercial off-the-shelf equipment.

There is no single ARTS port or data stream which carries surveillance data which are both timely
and close-in, and are tagged. The surveillance data are made available to the ARTS input-output
processor (lOP) via the serial communications interface processor (SCIP) port from the ASR-9. The
SCW surveillance data do not include data tags; only position, altitude, transponder code, and secondary
information such as validity flags. The SCIP tap provides timely and unmasked surveillance, but does not
provide the needed aircraft data tags.

The flight plan information, which is the source of the ACID and equipment type, is provided
separately to the ARTS lOP via the interfacility communications (IFC) port. The ARTS computer
matches the surveillance information with the flight plan information to produce, after some processing
delay and a range/azimuth filter, track reports which include aircraft identification, position, and velocity.
Estimates of the ARTS processing delay range from 0.7 to 2.4 seconds. The ARTS range/azimuth filter
presently used at Boston is shown in Figure 4-1. The ARTS display data is available in two places: at the
ARTS-MDBM (multiple display buffer memory) interface, or at the MDBM-DEDS (digital electronic
display system) interface. The function of the MDBM is to allow connecting four DEDS to a single
ARTS output port, while reducing the 30 Hz data refresh requirement of the DEDS to a requirement that
the data be updated only when modified. The ARTS-MDBM interface thus offers the simultaneous
advantages of providing access to data going to four DEDS at once and reducing the amount of data that

4-1



must be processed by the ARTS tap. It has the minor disadvantage that the information at this interface
does not represent complete display messages, but only changes to display buffer memory. Thus the IOP­
MDBM interface was chosen as the data source. The ARTS output data available on the IOP-MDBM
port provides the needed aircraft data tags, but is neither timely nor unmasked.

The need for timely and unmasked data, including surveillance and data tags, thus requires a
combination of the SCIP and MDBM data. Both the SCIP-IOP and the IOP-MDBM communications
links are doubly redundant. The ARTS tap must take this redundancy into account. The information
required by the RSLS Logan Demonstration System must be made available in a convenient format

N

If

'.\ 1

'-_-2¥~o;I__...J 1Y2

/
/

I
I

I
I,
I,
\
\
\
\ ,,

....
........... .... .........._-_ ...

Figure 4-1. logan ARTS depanure auto-acquire (solid) and arrival auto-drop (dashed) boundaries.
Magnetic azimuths and ranges in nautical miles (1" =1 nm) are indicated. Approximate runway
positions are shown (dotted).

4-2



4.2 ADIDS DESIGN

The ARTS interface which meets the above requirements is termed the ARTS Data Interface and
Distribution System (ADIDS). Figure 4-2 shows the ADIDS architecture. ADIDS consists of two
independent subsystems, ADIDS-SCIP and ADIDS-MDBM. These two subsystems are electronically
very similar, and use different software to produce the different functionality required at the two ports.
Each listens to the data available on its ARTS data stream, reformats and filters the data as necessary, and
retransmits the data on an external interface. No data recording capability is built into ADIDS.

The SCIP-IOP and IOP-MDBM data paths are 30-bit wide parallel connections. To make the data
easily accessible to a variety of computers, ADIDS reformats the data into an 8-bit wide external format.
To control the amount of data to be reformatted and distributed, area filtering of the data is performed by

~..n In- I I ~r~ 01 Tee connectors (4)

o I 1

-
SRAP -..,.

AS or IOPA lOPS MOSM
SCIP -n

~ OEOS (4)

01 transceivers (4)

PC PC ATRAINs (4) in PCs (2)
with modems (2)

,~ serial or phone to sensor fusion processor ,~

Figure 4-2. ADIDS block diagram. ARTS hardware is shown in normal line thickness,
ADIDS hardware in heavy lines.

4-3



ADIDS. The design of the area filter allows for the possibility of an ASR displaced from the region of
interest. Area filter parameter upload and some program control can be effected via the external interface.

4.2.1 ADIDS-SCIP

A summary of the data available at the SCIP input of the ARTS is shown in Tables 4.1a-d.
Because the surveillance data at this interface are in cylindrical coordinates, the ADIDS-SCIP volume
filter is also expressed in cylindrical coordinates, as shown in Figure 4-3a. The data messages from the
SCIP interface are essentially self-contained, so no particular sophistication is required to perform the
distribution of these data. The ADIDS-SCIP subsystem will work without modification for an ARTS­
IlIA site using an ASR-7 with a sensor receiver and processor (SRAP) interface.

Figure 4-3a. ADII>S-SCIP volume filter geometry. For off-site ASRs, the annular
wedge geometry would be more efficient. For on-site ASRs. its degenerate circular
case would be appropriate.

4.2.2 ADIDS-MDBM

A summary of the data provided by the ADIDS-MDBM subsystem is shown in Tables 4.2a-d. The
messages at the IOP-MDBM interface reflect the use of the MDBM as a display buffer memory. These
messages are display memory update messages, rather than complete surveillance messa~es. Thus
making the display information available in a simple format requires the emulation of the MDBM, to
reconstitute the display memory update information into complete display item messages. This is done in
the ADIDS-MDBM subsystem.

4-4



The MDBM emulation performed by the ADIDS-MDBM subsystem consists of two parts. The
first pan is to maintain the MDBM memory in accordance with the memory update messages received
from the lOP. When the ADIDS-MDBM subsystem is initialized, its emulated memory map will not
properly reflect the state of the MDBM internal memory map. But as memory update messages are
received, more and more of the emulated memory map will contain the correct information, and after a
period of time the entire emulated memory map will be correct. The normal operating procedure of the
ADIDS-MDBM subsystem is to leave it turned on, constantly maintaining its emulated memory map, so
initialization is not normally an issue.

The second part of the MDBM emulation is the interpretation and retransmission of the types of
display data presented in Tables 4.2a-d. Because the positions of the various data types in the MDBM
memory can vary between ARTS sites, and also between ARTS system software revision levels, the
interpretation of the MDBM display data is specific to a particular site and software revision. There are
five parameters used to describe the positions of the various data types which must be modified to account
for this specificity. The surveillance data at this interface are in Cartesian coordinates, so the ADIOS­
MDBM area filter is also expressed in cartesian coordinates, as shown in Figure 4-3b.

Figure 4-3b. ADIDS-MDBM area filter geometry.
The rectangle is not constrained to contain the ASR position.

4.3 HARDWARE IMPLEMENTATION

ADIDS uses ATRAIN (ARTS IIIAffRACS Interface) hardware available from Dimensions
International for its electrical connection to the ARTS system [Ref 1]. This hardware was originally
developed by Dimensions International (DI) to allow the recording of SRAP or SCIP data in
Transponable Radar Analysis Computer System (TRACS) format. The ATRAIN system consists of three
components: a tee device, a signal repeater assembly, and a personal-computer- (PC-) resident parallel
interface board. The ATRAIN system allows sufficient isolation and fault tolerance for use on an
operational ARTS system. The ATRAIN interface is a passive, listen-only device. The ARTS channels
monitored by the ATRAIN interface are not relayed; they continue operation in their normal manner. The
ARTS data undergoes no modification, diminution, augmentation, or delay on either of the monitored

4-5



interfaces. There is no impact on the controller displays or interfaces. Test NCP approval was required
and obtained for installation on the Boston ARTS-IlIA system.

There are two ATRAIN systems for each ADIDS-SCIP and ADIDS-MDBM subsystem. TIlis
allows the monitoring of either of the doubly redundant SCIP-IOP and IOP-MDBM interfaces. In normal
operation, both of the SeIP-IOP interfaces are active at the same time, transmitting identical data, so
either can be monitored. In case one of the SCIP-IOP interfaces becomes inactive, the ADIDS-SCIP
subsystem automatically switches over to the other interface. In normal operation, only one of the IOP­
MDBM interfaces is active at a time, but the chosen interface can switch back and forth aperiodically.
Thus the ADIDS-MDBM subsystem monitors both IOP-MDBM interfaces at all times.

The data received by the ATRAIN boards is reformatted by the two ADIOS PCs and made
available for transmission across an RS-232 interface, or via a v.32bis v.42bis modem and telephone lines
to the RSLS ADIOS data client.

TABLE 4.1A

SCIP Sector Message Data

Datum Bits Range MSB LSB

parity 2 0-3 upper parity lower parity

ID 6 oxon

sector 5 0-31 16 sectors 1 sector

TABLE 4.1B

SCIP Alarm Message Data

Datum Bits Range MSB LSB

parity 2 0-3 upper parity lower parity

ID 6 Ox36

SCIPalarm 1 0-1

4-6



TABLE4.1C

SCIP Primary Radar Message Data

Datum Bits Range MSB LSB

parity 2 0-3 upper parity lower parity

ID 6 OxOA

range 14 0-255.984 nmi 128 nmi 1164 nmi

azimuth 12 0-4095 ACPs 2048 ACPs lACP

RTQCffest 1 0-1

ARTS quality 3 0-7

TABLE 4.1D

SCIP Beacon Radar Message Data

Datum Bits Range MSB LSB

parity 2 0-3 upper parity lower parity

ID 6 Ox16

range 14 0-255.984 nmi 128nmi lI64nmi

azimuth 12 0-4095 ACPs 2048 ACPs lACP

RTQCffest 1 0-1

ARTS quality 3 0-7

Mode 3/A code 12 0-4095

radar reinforce 1 0-1

Mode C altitude 100sign -102300-102300 ft 51200 ft 100 ft

beacon hit count 5 0-31

ring indicator 1 0-1

3x 1 0-1

ident indicator 1 0-1

Mode C validity 2 0-3

Mode 3/A validity 2 0-3

4-7



TABLE 4.2A

ADIDS-MDBM A-Word Data

Datum Bits Range MSB LSB

parily 2 0-3 upper parily lower parity

line type 2 solid, dashed, dolted,
dash-dOl

refresh 1 0-1

display/radar coord 1 0-1

brightness 2 0-3

blink 1 0-1

force 1 0-1

leader direction 2 NINE, ElSE,

S/SW, WINW

mode 2 single symbol,

data block,

tabular data,

vector mode

no process 1 0-1

TABLE 4.2B

ADIDS-MDBM B-Word Data

Datum Bits Range MSB LSB

parity 2 0-3 upper parity lower parity

Y coordinate 100sign -63.94-63.94 nmi 32nmi 1/16 nmi

X coordinate 100sign -63.94-63.94 nmi 32nmi 1/16 nmi

blink indicator 1 0-1

symbol TI code 6/char 0-63

4-8



TABLE 4.2C

ADIDS-MDBM C-Word Data

Datum Bits Range MSB LSB

parity 2 0-3 upper parity lower parity

blink indicator 1 0-1

symbol 1 TI code 6 0--63

symbol 2 TI code 6 0--63

symbol 3 TI code 6 0--63

symbol 4 11 code 6 0--63

symbol 5 11 code 6 0--63

TABLE 4.2D

ADIDS-MDBM Data Block Format

Full Data Block ABCCCC

Altitude (Limited) Data Block ABCC

MSAW Data Block ABCCCCCC

Single Symbol Data Block B

REFERENCES

1. ARTS IIIA/l'RACS Interface System Instruction Book, prepared for the Department of
TransportationlFederal Aviation Administration by Dimensions International under contract
DlFA03-89C-00053.

4-9



5. SENSOR FUSION

5.1 SENSOR FUSION OVERVIEW

For the RSLS Logan Demonstration, surveillance data is derived from both an X-band airport
surface detection equipment (ASDE-X) radar, and the ASR-9/ATCBI (Air Traffic Control Beacon
Interrogation) airport surveillance radar via a dual tap to the automated radar terminal system (ARTS
lllA) computer. The two surveillance radars produce data independently, yet feed into a common safety
and display logic. The surveillance information from these two radars must be processed to form a single
coherent picture of the traffic on and near the airport surface. Forming this single view of airport traffic is
the responsibility of sensor fusion.

The major tasks of sensor fusion include

• Data input from two radars via three channels (ASDE, ARTS-MDBM, and ARTS-SeIP) and from
a target simulator (sprites)

• Coordinate transformation to a common coordinate system

• Time translation to common clock

• Track parameter estimation (velocity, acceleration)

• Altitude pressure correction

• Beacon multipath rejection (SCIP data)

• ASDE multipath rejection

• ASDE-ARTS track fusion and unfusion

• Aircraft data tag transfer

• Unreliable track rejection

• Track coasting

• Artificial target handling

• Data output to safety logic and any other client

The design of sensor fusion had to allow some measure of generality, in particular for the tasks of
track fusion and rejecting unreliable tracks. The tasks are shown schematically in Figure 5-1. Each of the
functional components is discussed in detail below.

5-1



MDBM
datar.a::::g~s---------_....I

Master
clock

Multipath
removal

Parameter
estimation

Fusion

Tag
transfer r------,

Parameter
estimation

Regional
filtering

"""::::"""----1

Regional
filtering

to
safety
logic

Figure 5-1. Sensorfusion block diagram.

5.2 ARTS DEMULTIPATHING

Beacon reports from the ASR-9/ATCBI airport surveillance radar derived via the ADIDS-SCIP tap
are subject to multipath. The tenn "multipath" is used loosely to describe any beacon return which either
contains false position or false squawk code infonnation, and includes real multipath, target splits, and
garbled squawk codes. Because the beacon reports contain target identification in the fonn of a
transponder code, the algorithm for detecting and eliminating the false reports can be made to be quite
effective. Because the ADIDS-MDBM tap is used only to provide aircraft identification (ACID) and not
surveillance per se, and because the ARTS computer itself does some multipath rejection, the ARTS
multipath removal algorithm needs to be applied only to the SCIP data.

5.2.1 ARTS Multipath Removal Algorithm Requirements

The multipath removal algorithm operates in real time. Thus it must not significantly delay targets
which may be genuine. It discards data which can be immediately proven false, and it tries to replace data
which prove later to be false. Finally, even when multipath leaks through for any reason, subsequent real

5-2



targets must not be suppressed; that is. the algorithm has to be able to recover from pathological
conditions.

Multipath removal from the ARTS SCIP data stream is greatly aided by use of the assumption that
all aircraft in the Boston TCA (Tenninal Control Area) are equipped with Mode A transponders.
Furthermore, all aircraft arriving to or departing from Logan airport are required to use a discrete beacon
code. Compliance with these two requirements are assumed in this algorithm. The use of discrete beacon
codes makes scan-to-scan association trivial. It leaves open the possibility, however, that an aircraft with
no transponder, or one with an incorrectly operating or incorrectly set transponder, may become
unnecessarily invisible to ASTA sensor fusion. This limitation will have to be addressed before a fully
reliable ASTA system can be fielded.

The multipath removal algorithm makes use of a few basic features of a multipath return. The first
is that multipath returns are necessarily further away than the true position of the aircraft. (Unfortunately
this true position is in general not known.) Multipath returns often, but not always, coexist in the same
radar scan with true returns. Multipath returns are often far away from the expected position of the
aircraft, which is based on the previous history of that aircraft Multipath is often due to reflections off
fixed objects (like buildings), and appears in areas outside normal aircraft operating areas.

The multipath removal algorithm must accommodate several annoying features of a multipath
return. The first is that a multipath return is not necessarily further way than either the previous or the
next true return. Sometimes several multipath returns over several scans are received while no true
returns are. Sometimes multipath returns appear close to where the true return is or should be.
Sometimes multipath returns appear in areas where aircraft normally operate.

5.2.2 ARTS Multipath Suppression Algorithm Specification

There are six basic components to the ARTS multipath removal algorithm. These components are
designed to work in concert, each correcting deficiencies but not interfering with the correct operation of
the others. Roughly in order of data flow they are: beacon validity requirement, regional suppression,
report time/range checking, track projection, track length enforcement, and pathological recovery. Each
is discussed below in its own section.

5.2.2.1 Beacon validity enforcement
Only SCIP beacon reports are used by sensor fusion. SCIP primary-only reports are ignored. In

addition, the beacon reports are required to have a Mode A validity code of 3 (on a 0-3 scale).
Furthermore, nondiscrete or erroneous beacon codes, such as 1200 or 0, are ignored.

5-3



522.2 Regional suppression
Because certain regions may be relied upon to uniformly contain multipath target reports in great

excess over true reports, these regions are mapped out of the surveillance space of the ASR radar. Any
ARTS target report occurring in a suppressed region are not made available for further processing.

522.3 Report time/range checking
The basic concept behind the report time/range algorithm is simple. If more than one report is

received in one radar scan for a single discrete beacon code, at least one of the reports must be multipath.
As a multipath return cannot be in-range from the true aircraft position, the further of the two reports must
be the multipath, and can be removed. The obvious advantages of this algorithm are that it requires little
knowledge of the target's previous behavior, and that it is computationally quite efficient. The most
important advantage is that it is self-starting, Le. that it can reject multipath given only two hits on a
target

This simple picture must be modified, however, to take into account the effects of aircraft motion,
surveillance error, and missing true reports. (Radar scan time variations are small compared to the time
perturbations induced by these other effects.) When an aircraft is moving, its range from the sensor
becomes a function of time, and the time between hits can differ from the radar scan time. Surveillance
error can make a multipath return appear closer than it should be. When true reports are missing for
whatever reason, the time difference between received true reports is a multiple of the radar scan time, in
addition to any contribution due to aircraft motion. All of these effects could under certain circumstances
induce the simple time/range algorithm to reject true reports while accepting multipath reports.

Thus the modified time/range algorithm is as follows: The time between the present report and the
most recent previous report is compared to the ranges given in Table 5.1. (The previous report must have
passed the whole multipath removal algorithm, otherwise it would have been removed and not stored for
subsequent processing.) If this time difference lies in one of these ranges, then either the present or the
previous hit is multipath. If the difference between the ranges exceeds the range difference threshold
given in Table 5.1, then the nearer report is taken as the true one, and the further report is removed. If the
further report is the later (current) one, then it is merely discarded. If the further report is the earlier
(previous) one, then it must be removed from the track, and its effect on the track's derived parameters be
eliminated. Sensor fusion presently does not cleanly reverse any fusion or unfusion decisions made from
the previous report; that reversal would happen via the normal fusion and unfusion procedure. Then the
nearer and later report can be appended to the track as normal. If the range difference does not exceed the
threshold, then track projection (see below) is used to remove one of the reports.

5-4



TABLES.!

TimelRange Parameter Values

# of Full Scans Time Range (sec) Range Difference
Threshold (nmi)

0 0.0-4.2 0.1

1 5.0-8.7 0.2

2 9.7 -13.1 0.2

3 14.6-17.5 0.2

4 19.5 - 21.8 0.2

5 24.3-26.2 0.2

6 29.2-30.6 0.2

7 34.1-34.9 0.2

8 38.9-39.3 0.2

The Table 5.1 values assume a radar rotation rate of 13 revolutions/minute. Both the entries and the
number of lines in Table 5.1 are subject to change when more multipath data become available. This is
especially true for the last column, where there is at present really insufficient data to make adequate
threshold recommendations. The entries in Table 5.1 are the result of the examination of about four hours
of ARTS CDR (Continuous Data Recording) data from 7 May 1992. The last rows of Table 5.1 may
never be exercised because, depending on the setting of the coast parameters, sensor fusion may have
already dropped the track.

5.2.2.4 Track projection

Projection is only used if the ARTS track has a valid velocity. Track projection is used in two ways
to remove ARTS multipath. First, if and only if the time/range algorithm indicates that either the present
or the previous radar report is multipath, but cannot discern which is the offender, track projection
removes the report which has the larger distance to the track projection. Thus if

(5.l)

is the distance between the reported position and the ARTS track's position projected to the reported time,
then if d""MIII <dp....u- then the previous report should be removed and the present one used, otherwise the
present report should be discarded. It is important that the projection operation used to determine
(X'Y)Pr0j6dM in each case not use either (X'Y)PN"'" or (x,Y),.,.-; it must be a projection based on
information independent of the two target reports being weighed.

5-5



The second way that track projection is used is to always remove reports whose distance to the track
projection exceeds a threshold. That threshold is slightly range dependent, and is given by

(5.2)

Thus if d > d
ARTS

__lIiPQJJt , the present radar report is discarded.

5.2.2.5 Track length enforcement

ARTS tracks are not considered reliable (blessed, in sensor fusion parlance) until NARTS_Wu.

(presently 3) target reports are on the track. Because target reports which correspond to multipath returns
generally do not get put on the track, or are removed from the track after they are put there, the ARTS
track length may be smaller than the number of track reports that were provided by the SCIP data source.
Only blessed tracks are sent on to safety logic for analysis.

5.2.2.6 Pathological recovery

There are conceivable situations where the above multipath removal procedures will lock on to a
multipath track instead of a true one. In this case, all subsequent true target reports could be rejected. A
simple recovery procedure is required to take care of such pathological situations. This pathological
recovery is effected by the coast/drop mechanism already existing in sensor fusion. If an ARTS track gets
no reports which are considered valid for a certain amount of time, then the track gets dropped.
Subsequent reports would initiate a new track, allowing recovery.

5.3 PARAMETER ESTIMATION

5.3.1 Alpha-beta-gamma filter

Target centroids estimated from ASDE and ARTS data must be processed to reduce random noise
and constant biases and to provide accurate estimates of the target positions, velocities, and accelerations.
Sensor fusion uses a fixed-gain, variable time interval filter in Cartesian coordinates, the a - f3 - r filter.

The a - f3 - r filter can be expressed as

A

r = rp + ati.r

&= Vp +f3 fJ.rtfJ.t

a=iip + r fJ.r/fJ.t 2
, (5.3)

where 1, ~ ,and aare the filtered position, velocity, and acceleration estimates, respectively, fJ.t is the
time interval between measurements, fJ.r =r - rp is the residual between the present measurement r and
the predicted position rp ' and r

p
' v

p
• and iip are the predicted position, velocity, and acceleration based

on the filtered estimates from the previous iteration and are given by

5-6



A

ii =iip (5.4)

The temporal behavior of this filter is governed by the parameters a, fJ, and r, which are fixed in
advance according to an optimization scheme. The optimized filter coefficients are produced by training
the filter on a data set representative of the actual data to be used. and using an evaluation function of the
accuracy of simple position projection to produce optimized gains.

The implementation of the a - fJ - r filter must take into account the possibility that, for either the
ASDE or the ARTS data source, corrected updates may occur. These occur for ASDE tracks when a new
target is found that is a better match to the track after a target has already been reponed for that track in
the same scan. Corrected updates occur for ARTS tracks when the multipath removal logic detects that a
target repon previously appended to a track was in fact a false repon, and a new repon is to be insened in
its place. These corrected reports are always one-deep; that is. they never remove more than one previous
report. Thus the a - fJ - r filter implementation retains a one-deep history of its estimates so that
corrected reports can be incorporated properly.

5.3.2 Creep velocity

The RSLS safety logic uses target heading for target state determination, position prediction, and
light transition and alen logic. The normal definition of heading tfJ is

til -1-'I"=tan v, (5.5)

where v is the target velocity and the four-quadrant arctangent has the range (-n,n).

For targets with velocities small or comparable to the velocity uncertainty, however, such an
estimate of the heading is too noisy to be used. The velocity uncenainty is determined by the surveillance
noise and by the coefficients of the a - fJ - r filter used to estimate velocity. There is a tradeoff between
velocity estimate noise and response time to a change in the target velocity. The coefficients used in
sensor fusion were optimized for estimating future position. not for estimating present heading of slowly­
moving targets.

A more useful method of estimating the velocity of slowly-moving targets, the creep velocity, is
defined as follows. Let U=,t) be the latest target repon position and time, and (r,t'td ) be the most recent
previous target repon position which satisfies the condition

(5.6)

where II ~ denotes the Euclidean norm, and dc",cp is a fixed creep distance parameter. Then the creep
velocity vcrccp is given by

5-7



(5.7)

and the creep heading is given in the nonnal way by

(5.8)

A simple implementation would be to keep the target reports in a list or queue, appending new ones
to the end and taking off old ones from the beginning to satisfy Equation 5.6. This can be problematic,
however, for very nearly stationary targets, where Equation 5.6 is satisfied only for a very large number
of target reports (if at all). The simple implementation could then appear as a memory leak for stationary
targets. This problem can be mitigated with only slight loss of accuracy by appending a new target report
(r', t') to the list or queue only if

Ilr' - ;:11 > d".w' (5.9)

where d...w < d,,,.cp is a distance parameter for novelty.

The implementation of the algorithm for creep velocity must also take into account the occurrence
of corrected reports. The algorithm presently used in sensor fusion does this by keeping more target
reports on the creep list than would be required by Equation 5.6. Instead, the oldest target reports
(r",t")are only removed from the creep list when

Ilr" rll > d- crttp_nrrtl)'W·

5.3.3 Altitude correction

(5.10)

Altitude infonnation is maintained by sensor fusion and consists of the altitude above ground level,
reported in feet and accurate to 100s of feet; and an altitude validity bit. The transponder-reported
altitude from the SCIP is modified to do a simple pressure correction to produce an altitude above ground
level, and coasted to allow for dropped Mode C altitudes. This is done as follows:

A time-stamped list of the N."il__...,.,. recent valid transponder-reported pressure altitudes ZpA is
maintained. New SCIP reports have their pressure altitudes added to the list if

(a) the velocity v < vDII-,ro_ and
(b) the pressure altitude ZpA satisfies IZpA - zpAGl.1 < dzpAGl.

Old pressure altitudes are removed from the list when

(a) there are more than Nahil_-...,,,,. altitudes on the list, or
(b) they are older than told-<J1'i'llilc seconds before the present ARTS report.

The pressure altitude for ground level ZpAGl. is computed as the average of the altitudes on the list.
If there are no such altitudes, then ZpAGl. and all altitudes reported to the safety logic are invalid, and any
new pressure altitude automatically passes the tJ.zpAGl. test.

5-8



For SCIP reports with a valid transponder-reported altitude, the pressure-corrected altitude reported
to the safety logic is given by z =zPI. - ZI'AGL if v> v ...._,ro_, and zero otherwise. For SCIP reports with an
invalid transponder-reported altitude, the previously reported altitude is coasted without modification, up
to a maximum of tollilwh-co<ut seconds, with the altitude validity flag set. For reports corresponding to tracks
without valid altitude data for more than ttJItilwh-cotUt seconds, the altitude validity flag is cleared.

A fused track reports its SCIP subtrack's altitude to the safety logic. An ASDE-only track has its
altitude validity flag cleared. On unfusion, the resulting ASDE-only track has its altitude validity cleared,
while the ARTS-only track retains its altitude validity.

The default values for the various parameters are given in Table 5.2.

TABLE 5.2

Parameter Descriptions and Default Values for Altitude Correction

Parameter Description ndault Value

N4llilllde-.wNH Number of on-ground altitudes to keep 100

t old_ollil... Age of oldest on-ground altitude to keep 600 sec

v......ro_ Threshold velocity defining on-ground 40kt

IllI'AGL Pressure altitude outlier limit 500ft

ttJItit"-e<J<ut Altitude coasting time 15 sec

5.4 MDBM-SCIP SUBFUSION

The dual tap to the ARTS provides surveillance with the greater accuracy, coverage, and
promptness from the ADIDS-SCIP tap. and surveillance with aircraft data tags and equipment types from
the ADIDS-MDBM tap. As they both use the same source of surveillance, the ASR-9, fusing these two
data streams can be done with a simple algorithm. This task is called MDBM-SCIP subfusion.

The algorithm presently used for MDBM-SCIP subfusion is a preliminary one chosen for
expediency. For each MDBM target report, if there is a SCIP subtrack with no flight ID information, and
if the latest target report for that SCIP subtrack is close enough to the present MDBM target report, then
the MDBM target report and that SCIP subtrack are matched.

This algorithm is not the correct one to use, and does produce erro~ on occasion. It works most of
the time, but occasionally results in two SCIP subtracks with the same flight ID. Better subfusion
algorithms have been devised, but have not yet been implemented or tested.

5-9



5.5 GEOGRAPHIC FEATURE FILTER

In the design of sensor fusion, it is necessary to have a general-purpose feature-based target filter.
This filter is used in at least three places, one each for the two input data streams to sensor fusion, and one
for the output of sensor fusion. The purpose of the filter is to limit the target reports which can be
involved in sensor fusion or which can be passed on to the safety logic.

The incorporation of a feature filter is motivated by several concerns. One is that there may be
regions of degraded surveillance, where false targets due to multipath or other causes may create
problems for sensor fusion (causing false association or tag swaps) and for safety logic (causing false
alarms). Another concern is that in regions of overlapping ARTS and ASDE coverage, if sensor fusion
fails (due to faulty surveillance), a coherent picture of the traffic can be maintained, and an extra target
report from the unfused data avoided, if the extra target report is filtered out. These concerns require that
the filter be definable over specific geographic regions, and be sensitive in some way to track reliability
and data source. A combination of prefusion ARTS and ASDE and postfusion filters built on this general
capability has been devised which achieves the following goals:

• Elimination of false ASDE tracks
• Part of the elimination of false SCIP tracks
• Definition of allowed coverage areas for the two radars
• Fallback perfonnance in case of track fusion failure
• Elimination of slowly-moving targets in approach areas (boat filter)
• Elimination of overflight traffic
• Elimination of coasted tracks in nonsensical areas

The general requirements of the geographic feature filter are outlined below.

5.5.1 Geographic feature filter requirements

The feature filter is composed logically of three parts: a region definition (where targets have to be
for the filter to do anything), a criterion definition (what nature the targets or tracks have for the filter to
be applied), and a functional definition (what action the filter perfonns if it is applied). A filter may have
zero or more regions, each with its own target criterion, and its own function. A list of the parameters
associated with each feature filter is shown in Table 5.3.

5.5.2 Region definition

A filter is defined over zero or more geographic regions. Each geographic region is determined by
zero or more polygons, and allows disjoint, inside-out, and topologically zeroth- and first-order regions
(see Figure 5-2). A region with zero polygons is considered to contain every point. Each target report is
compared to each region, and if the target report is contained in that region, then the target criterion is
tested to see if the region's function is to be exercised. The target may fall within more than region, and if
the target is not suppressed by the target function of the first region, then the next region is applied. If the
target does not fall within any region, then there is no action of the feature filter on that target. If the filter

5-10



has no geographic regions, then it is considered to apply everywhere. It is up to the filter designer to
make sure that the order of region testing is unimportant.

right-side
out

simple
regions

compound
regions

regions with
holes

Figure 5-2. Region definilionsjor the geographicaljealurefillers.

5.5.3 -Criterion definition

The criterion definition allows one or more compound boolean tests to be applied to any target
which is within the region. A target must pass all of the component boolean tests to satisfy the target
criterion definition for a region. Hence each component boolean test must have a "don't care" parameter
available to disable that test. For convenience, a boolean switch can be used to tum off the region

5-11



entirely; this is most efficiently tested before the geographic test mentioned above. The target/track
features that the tests are able to examine are surveillance source, track length (in radar hits), target area,
track travel distance, target altitude, and track blessedness.

5.5.4 Function definition

There are three sorts of functions which the feature filter may perform: target suppression, track
blessing, and ASDE confidence following. Target suppression is just that: targets which fall a the
geographic region and satisfy its target criterion are not passed on for further processing. In the case of
the feature filters which happen before sensor fusion proper, this means that these target reports will not
be available for sensor fusion or safety logic. In the case of the feature filter which happens after sensor
fusion, this means that these target reports will not be passed on to the safety logic.

Track blessing sets a flag in the track that it is blessed. This flag may be set, but may not become
cleared once set. Blessing is performed independently for ARTS and ASDE subtracks by the feature
filters before track fusion, and also for the fused track by the feature filter after track fusion. Fusing two
subtracks causes the new track to be initialized as unblessed. Unfusing of a track causes the two daughter
tracks to become unblessed. Subtrack blessedness is unchanged by fusion or unfusion. If a track or either
of its subtracks is blessed, then its target reports are passed on by sensor fusion to the safety logic.

ASDE confidence following performs a combination of target suppression and track blessing to
force sensor fusion to use track confidence information passed to it by the Merge task in the ASDE
processing software. This capability is used mostly for debugging purposes.

5.55 Geographic feature filter use

A listing of the available parameters used by a feature filter is given in Table 5.3.

5-12



TABLE 5.3

Parameter List for Geographic Feature Filters

Parameter Values

Enabled/disabled switch enabled or disabled

Region definition latitude-longitude polygon list. inside-out
switch

Allowed lrack surveillance source any combination of ARTS only, ASDE
only, fused track, or coasted

Minimum track length hits, 0 = don't care

Maximum lrack length (useful mostly for hits, infmity = don't care
blessing)

Minimum target area m2, 0 = don't care

Minimum net travel distance m, 0 = don't care

Minimum sum travel distance m, 0 = don't care

Minimum altitude ft, -5000 ft = don't care

Maximum altitude ft, 50000 ft = don't care

Invalid altitude treatment switch FALSE = don't apply, TRUE = apply to

targets with invalid altitudes

Track blessedness FALSE = don't care, TRUE = track must
be blessed

Function selection Suppress/bless/ASDE confidence
following

A key functionality of the geographic feature filter incorporated in sensor fusion is the reduction of

false tracks due to multipath. The initial specification of the geographic feature filter included a technique
to reduce false tracks by requiring tracks in certain regions to have more than a minimum number of radar
hits to be marked for passing on to the ASTA safety logic. (TIlis marking is called blessing the track.)
This specification was augmented as a result of an algorithm proposed by Dan Wyschogrod.

The travel distance criteria are used for lead-in filters. In such a filter, a tracked target is required to
have traveled at least a minimum distance since track creation before it is blessed. This works because
multipath is of two heuristic types: stationary, which would never travel far enough to satisfy this
criterion; and moving, which disappears before it moves very far. This filter works very well indeed.

The travel distance for a track can be calculated in several ways. It can be calculated as the distance
'lie, between the latest position and the initial position, but this errs on the short side for curved or

cornered trajectories. The travel distance can be calculated as the simple sum '._ of the distances

5-13



between successive target reports, but this errs on the long side because the centroids have some noise
component. The estimate r._ would eventually exceed any threshold distance. These simple travel
distances are inadequate by themselves.

The technique due to Dan Wyschogrod is to combine the use of the two simple calculations of the
travel distance. The criterion actually used is the combination (r0«1> dwl ) && (r_ > d._), where the
parameter distances d

M1
and d._ may differ from filter region to filter region. This technique makes all

the errors of the individual calculations of the travel distance, but combines them so that the errors don't
maner. In fact the travel distance filters used so far combine both travel distances and a track length
requirement

5.6 FUSION ALGORITHM REQUIREMENTS

The track fusion algorithm must fuse tracks which correspond to the same aircraft, but not those
which do not. The fusion should use ground position, velocity, and altitude information when available to
perform the fusion. Fused tracks should be checked for correctness of fusion when appropriate. In cases
where the fusion would be ambiguous, any tentative fusion should be reversible.

The target fusion algorithm must be able to handle both surveillance gaps and surveillance overlaps.
Gaps are produced when one sensor is physically incapable of sensing targets in a particular area (blind
spots), or when the surveillance data is processed in such a way as to eliminate target reports in an area
(masks). Surveillance overlaps occur when both sensors can detect a target in a particular area. At
Logan, we must anticipate having both surveillance gaps and surveillance overlaps.

The target fusion algorithm must also be able to handle the temporal non-coperiodic and
asynchronous nature of the two surveillance sources. The ASR-9/ATCBI spins at one revolution every
4.6 seconds, while the modified Raytheon Pathfinder now spins at one revolution every 1.74 seconds.
Each surveillance source also has an incompletely specified and variable internal data delay. The two
clocks from the two surveillance sources are asynchronous. This lack of synchronism in the timestamps
is not constant; the two clocks drift with respect to each other.

To balance the conflicting demands of timely and accurate fusion, the target fusion algorithm must
be able to perform tentative fusion and corrective unfusion. The safety logic requires immediate fusion to
avoid the erroneous identification of two targets simultaneously on final approach, for example, when in
fact the two targets are merely different views of the same aircraft from two surveillance sources (dual
targets). This immediate fusion should be provided on the first radar hit. Such an immediate fusion can
only be decided on position information, and thus is not as reliable as position-velocity fusion. Hence the
initial fusion should be marked as tentative. The tentative fusion would prevent dual targets from coming
to the safety logic, but would not require the display logic to put up the data tag for that target. A
tentative fusion would normally be reinforced by subsequent corroborative surveillance, and would then
be marked as a firm fusion. At present, tentatively and firmly fused tracks are treated identically in sensor
fusion.

The hazard in fusion is that it might be performed incorrectly. Thus fusion must be reversible, and
the impact of erroneous fusion must be minimized. Corrective unfusion would occur when fused tracks

5-14



prove to be independent targets. The unfusion should not produce any counter-intuitive behavior on the
controller displays, nor generate any inappropriate safety system lights or alanns (though in such a case,
an alarm quite likely would be appropriate). An error message should be generated if a finnly-fused track
becomes unfused.

The central target fusion algorithm is composed of a simple track maintenance rules to reduce the
number of tracks considered for fusion; a position- and velocity-dependent fusion criterion to identify
fused target pairs; and a time-synchronization scheme to maintain an accurate estimate of the clock offset
between the two surveillance sources. Each of these three components is discussed in its own section.

5.6.1 Fusion Track Maintenance

Several types of target tracks are maintained to account for the fusion process. Tracks that are not
fused but are suitable for fusion are of two types: ARTS tracks (ATBC) and X-band tracks (XTBC).
Tracks that have been fused recently are called tentatively fused tracks (TC). Tracks that have been fused
a while are called finnly fused tracks (FC). Other tracks are either ARTS unfused tracks (AVC) and X­
band unfused tracks (XVC). Tracks that are to be dropped are called NIL.

Several geometric concepts must be introduced to specify the algorithm. The surveillance maps
specify the areas where targets are allowed to be fused (see Figure 5-3). ASDE surveillance data is
available for targets in region X, whereas ARTS infonnation is available for targets in region A. For
simplicity of algorithm development, generate circles centered at the surveillance origin with the
following properties: Circle L contains the whole ASDE surveillance area, plus a little pad for
surveillance error. Circle F contains at least all the targets which could possibly enter Circle L within
NAcOlUt ASR rotations, assuming larger-than-nonnal airborne aircraft velocities. The corresponding radii
are denoted by RL and RF • (Typically RF - RL is at least a statute mile.) Let Zmu± be the maximum
altitude that an ARTS target may have for fusion to take place, with the ± denoting two parameters
providing hysteresis. Let the range of the target from the surveillance origin be denoted by R, and the
target's ARTS-reported altitude by Z.

5-15



Figure 5-3. Fusion geometrical concepts. ASDE coverage area (hatched), ARTS coverage area (dotted), and
defined circles and radii.

Now the tracks maintenance is performed according to the rules in Table 5.4. The altitude­
dependent tests are made only if valid altitude is available. The fusion criterion defined in the following
section.

5-16



TABLE 5.4

Fusion Track Maintenance Rules

Transition Condition

ARTS tracks

AUC-+ATBC H(R < RF )&&(R < R",niDIII)lll (R < RL)l && (z < ZIDU.)

AUC-+NIL track is dropped

ATBC-+AUC (R> RF ) II (Z > ZIIIU+ )

ATBC-+NIL track is dropped

ASDE tracks

XUC-+XTBC always

XTBC-+TC track satisfies fusion criterion with one ARTS track

XTBC-+NIL track is dropped

unfused track pairs

ATBC+XTBC -+ TC (fusion) track pair uniquely satisfies fusion criterion

fused tracks

TC-+FC track satisfies fusion criterion> NFe times

TC orFC -+ ATBC+XTBC (unfusion) track pair satisfies unfusion criterion

TC orFC -+ ATBC ASDE subtrack is dropped

TC or FC -+ XTBC ARTS subtrack is dropped

5.6.2 Fusion Criterion

Fusion is established by comparing any updated track in the ATBC list with all tracks in the XTBC
list, and also vice versa (any updated track in the XTBC list with all tracks in the ATBC list). Fusion is
checked for all updated track pairs in the TC and FC lists. Fusion is performed on time-synchronized
position information. (Time synchronization is discussed in the following section.) Let (rA , VA) be the
two-dimensional position and velocity of an ARTS target, and ('x, vx) be those of an ASDE target, the
older one projected to the more recent one's time. Then let

(5.11)

be the square of the distance between the two targets, where -r; is a constant. If either surveillance source
does not provide velocity, then the velocity difference defaults to a constant value ,1.vdcfiuJ/. The fusion
criterion is then that ,1.,2 < ,~.,•• where ,~..... depends on whether either subtrack is undergoing high

5-17



acceleration or deceleration. In certain cases, an ASDE-only track may have previously been fused with
an ARTS track, and the ARTS track may drop, causing the track to enter the XTBC list. In this case, this
track would, barring any possible ASDE track swap, retain the ARTS data tags matched to it by the
previous fusion.

Unfusion is possible for fused tracks where surveillance requires it. Unfusion occurs when
Ii.r 2 > j1.r;", where the hysteresis multiplier j1. > 1. Unfusion further requires that surveillance from both
sources be sufficiently recent.

The word "uniquely" in the rule for the transition ATBC+XTBC -> TC has the following
explanation. The latest track report (whether it be ASDE or ARTS) must fuse with one and only one
track from the other surveillance source. (One should note that fusion is not precisely commutative. That
is an unfortunate necessity, due to the extrapolation of the position of only one target in the fused pair.) If
the uniqueness criterion is not satisfied, then no fusion is performed.

One problem with the direct implementation of the above algorithm is that each new target report
for a track on either TBC list requires a fusion check with all targets on the other TBC list. A certain
amount of optimization is obtained by allowing fusion only between old ATBC tracks (those with more
than NAtJId target reports) and new XTBC tracks (those with less than NXold target reports), and vice versa.
This would effectively allow fusion only between ARTS arrivals and new ASDE tracks, and between
ARTS departures and old ASDE tracks. This optimization must allow exceptions in certain cases
discussed in the section for fusion history lists.

5.6.3 Fusion history lists

Normally ARTS and ASDE subtracks may only seek fusion (be on a fuse candidate list) if they are
young, presently defined as having less than NAold or NXtJId hits, respectively. Old subtracks may not fuse
with old subtracks. This produces the correct fusion behavior for both arrivals and departures, and for
discontinuous subtracks. It disallows the fusion of subtracks which should have fused previously.

This procedure ignores the possibility that an unfusion event occurs (due to surveillance error), but
the subtracks stay continuous. As an X-band surveillance error sufficient to cause unfusion would likely
also cause a subtrack drop as well, the more likely cause for this situation would be a surveillance error in
the SCIP subtrack. The result is that the two subtracks are possibly both old, and would then not allowed
to fuse together again. The side effect is that the persistent unfused SCIP subtracks can fuse incorrectly
with false tracks. As we do not want to eliminate the prohibition of old-on-old fusion, a solution in the
form of fusion history lists is implemented.

A fusion history list is maintained individually for each subtrack, both X-band and SCIP, and
contains a list of other subtracks that this subtrack has ever been fused with. When a subtrack is
initialized, its fusion history list is initialized to be empty. When a fusion event occurs, a pointer to each
subtrack's fusion counterpart is appended to the fusion history list. Thus there is a pointer from each
fused subtrack to the other. Unfusion has no effect on the fusion history lists (that would be historical
revisionism). When a subtrack is deleted, references to it are deleted from all other fusion history lists (no

5-18



necrological list entries are allowed). This can be done efficiently because the fusion history list in the
subtrack being dropped points to all the other subtracks that refer to it in their fusion history lists.

In addition to the nonnal procedure of young subtracks checking for fusion, old subtracks with
nonempty fusion history lists are also checked for fusion when they update, but only for fusion with
unfused subtracks in their fusion history lists. This is the only effect of the fusion history lists on fusion
itself.

The fusion history lists associated with each subtrack allow unfusion to be easily reversed if later
warranted, even in the case that both subtracks are old.

5.6.4 Fusion track number assignment

To mesh the treatment of fusion track numbers with the requirements of safety logic, sensor fusion
must assign fusion track numbers carefully. Fusion track numbers are assigned by fusion to be unique
identifiers of tracks which mayor may not be fused, and which mayor may not be sent on to safety logic.

To provide safety logic with the most continuous picture of track behavior, it is important that track
numbers appear as consistent as possible on fusion and unfusion. To this end, sensor fusion uses the
ASDE subtrack blessed flag to determine which fusion number to retain on fusion and which subtrack to
give the old fusion track number on unfusion.

Let S be the ARTS (SCIP) subtrack number, X be the ASDE (X-band) subtrack number, Fs be the
pre-fusion or post-unfusion ARTS-only fusion track number, Fx be the that of the ASDE-only fusion
track, and F be the post-fusion or pre-unfusion fused track number. The fusion and unfusion processes
are depicted in Figure 5-4.

fusion

•
unfusion

F

/\
s X

Figure 5-4. Fusion and unfusion processes.

On fusion, if the ASDE subtrack is blessed, then F = F", otherwise F = F
I

, On unfusion, if the
ASDE subtrack is blessed, then F, =F and F" is a new fusion track number, otherwise F" =F and FI is
a new fusion track number.

5-19



5.65 Fusion Drop and Suppress Messages

Two sorts of end-of-track messages sent to safety logic, drop messages and suppression messages.
Drop messages are to be sent only for those tracks which have been sent to safety logic and are now being
purged from the sensor fusion track store. Suppression messages are to be sent for those tracks which are
no longer to be sent to safety logic and which are not to have any effect on safety logic, but remain in the
sensor fusion track store and may be sent to safety logic again in the future.

The reason two such message types are used is that safety logic purges its track store when it
receives the drop message, and any state history for that track would have been deleted. This affords
suboptimal performance, as track history is used for several of the safety logic algorithms.

Track fusion always results in a drop message. Unfusion may result in a suppression message, if
neither unfused track is to be transmitted to safety logic.

5.6.6 Time Synchronization

Sensor fusion must synchronize the clocks of the two surveillance sources, and use extrapolation to
bring the asynchronous target reports into effective synchrony. Sensor fusion uses simple velocity
extrapolation to do the latter task. Thus to extrapolate an X-band track to check for fusion with an ARTS
target report, one would merely calculate

(5.12)

where tA is the surveillance time from the ARTS target report, tx is that of the latest X-band target report,
and tAX is the time offset between the two sources. No extrapolation for velocity would be required
(constant velocity assumption). This is sufficient for the regions where fusion is important, Le. for targets
on short final and targets right after departure. A similar expression for Equation 5.12 can be written for
extrapolating ARTS tracks, with t XA = -tAX'

To synchronize the clocks of the two surveillance sources, tAX is initialized to the smallest
difference between the arrival times of the first hundred ASDE reports and the system time of the
computer running sensor fusion, plus a constant fudge factor for average ASDE processing delays.
ADIDS-SCIP derives its clock indirectly from the same system time and thus has no effect on the
initialization of tAX' The initialization can be done to within an accuracy of less than a second. After
initialization, the value of tAX is adjusted when proper fusions are being made, to allow for drift. This
adjustment is performed by a simple exponential filter

(5.13)

where tAXo", is the optimal offset determined by the minimization of the fusion error with respect to tAX'

(5.14)

5-20



A similar equation can be written for synchronization update based on the velocity estimated from ARTS
data. The most recently estimated velocity is used. The steady state gain a in the exponential fIlter is a
small number, typically 0.01. In view of the appearance of the velocity magnitude squared in the
denominator of Equation 5.14, the adjustment to tAX are not performed when the velocity drops below a
certain velocity, about 5 knots, used in the target state transition determination.

5.7 TRACK COASTING

Sensor fusion allows two different types of coasting. The ftrst type produces coasted tracks, which
are allowed to be treated differently for the purposes of track fusion. The second type produces
extrapolated target updates, with the tracks fusion characteristics otherwise unmodifted. At present, the
capability to produce coasted tracks is not used in the Logan demo, and will not be discussed here.

Track extrapolation allows target reports to be generated for tracks which have not been reported to
fusion for a while. Three time parameters deftne the characteristics of extrapolation: the time before the
ftrst extrapolation is made, the time between extrapolations, and the time after which no more
extrapolations are made. After this last time, a track is put into the coast state, which presently causes it
to be dropped immediately.

Track extrapolation thus allows tracks to be coasted through surveillance gaps or regions of
degraded surveillance. By setting the time to ftrst extrapolation less than a normal radar scan time, scan
interpolation can be performed. This allows the simulation of a radar with faster scan rates.

5.8 ARTIFICIAL TARGET HANDLING

Sensor fusion allows the injection of artiftcial targets or sprites. These are useful for demonstrating
and testing the RSLS safety logic and displays. Artiftcial tracks are treated exactly as normal tracks, with
the exception that fusion is allowed only between real tracks and real tracks, or between artiftcial tracks
and artiftcial tracks, and never between real tracks and artiftcial tracks.

5.9 POTENTIAL SENSOR FUSION IMPROVEMENTS

Sensor fusion presently only allows tracks from two radar sources to be fused. A real fusion system
should be able to accommodate multiple surveillance sources. There is an immediate need to incorporate
ASR-9 primary radar reports into sensor fusion as well as the beacon reports. The incorporation of
information from further advanced surface surveillance systems, such as the ADS-Mode S, will require a
multisensor fusion capability.

Sensor fusion presently does not attempt to combine position reports from different surveillance
sources to produce more accurate positions. In the present case, with the vast disparity in centroid
accuracy between the ASDE-X and the ASR-9/BI surveillance, little accuracy is to be gained. Future
systems may incorporate radars with more nearly equal accuracies, whereupon such a capability would be
advantageous.

5-21



The timestamps provided by ADIDS-SCW reflect the time of receipt of the surveillance, and not the
time of the surveillance itself. For the most part, the difference between the two can be ignored, but an
occasional beacon report is delayed anomalously before it gets to ADIDS-SCIP, resulting in an incorrect
timestamp. Sensor fusion should be able to correct such anomalous timestamps. This can be done by
synchronizing the normally correct timestamps to a calculated radar rotation model. Timestamps that
don't fit the model would be corrected by using the model prediction instead of the reported time of
receipt.

The MDBM-SCIP subfusion algorithm needs to be upgraded to handle ambiguous subfusion. This
would prevent the occasional incorrectly tagged target that presently occurs.

When a track first becomes blessed, sensor fusion presently merely sends the latest target report for
that track to safety logic. A better approach would be to send a history of the pre-blessed behavior of that
track, so that any track state information can be properly initialized by safety logic.

Longer-term improvements to the entire RSLS system may involve architectural changes. One
such possibility is the integration of sensor fusion with ASDE scan-to-scan association. This would allow
better ASDE track initiation for arrival aircraft, where the expected position, velocity, and other aircraft
features can be derived from ARTS data. It may also help disambiguate tracks that may have been
confused due to merged targets.

Another longer-term improvement would be to use the arriving runway assignment produced by the
surface monitor to aid in coasting arriving aircraft through large surveillance gaps. This would increase
the reliability of fusion for arrivals, and allow the more frequent retention oftag data for arriving aircraft.

5-22



6. SAFETY LOGIC

6.1 OVERVIEW OF THE SAFETY-LOGIC ARCIllTECTURE

The safety-logic algorithms determine when the runway-status lights should be on (red) or off.
They also determine when alerts should be issued, although alerts have been added to the RSLS for
demonstration purposes only to show how a complete safety system would function. Figure 6-1
illustrates the safety-logic architecture. The sensor-fusion-and-tracking algorithms, described in an earlier
chapter, provide track reports to the safety logic. The track reports contain the following information for
each tracked target: 1) track number (both ASDE track number and sensor-fusion track number), 2)
position, 3) velocity, 4) acceleration, 5) extent (a measure of the size of the target), and 6) other data, such
as altitude (when it is available from ARTS data).

The safety-logic algorithms can be divided into four modules, as shown in Figure 6-1: 1) target
state machine, 2) prediction engine, 3) light-control logic, and 4) alert logic. The target state machine
determines the target's "state," for example, whether it is departing, landing, or taxiing. The prediction
engine estimates where the target could be in the future by predicting its path. The details of the
prediction engine are in Section 7.7. The light-control logic determines which runway-status lights
should be red and which should be off, and indicates this to the radar displays and airport model board by
issuing light commands. The alert logic sends alert messages to the radar displays and the audible
alerting system when it has determined that two targets are in conflict and that conflict warrants an alert.
The rest of this chapter will give a high-level description of these modules. A detailed outline of the
safety-logic algorithms can be found in Appendix A

Other inputs to the safety logic are parameters from two databases, as shown in Figure 6-1. The
safety-logic database contains the parameters used directly in the safety-logic modules. Although the
safety logic is airport-independent, it still requires the airport-surface database, which provides specific
information about the airport such as the location of runways and taxiways. Appendix B lists the default
values for the safety-logic parameters referenced in this chapter and in Appendix A Appendix C lists the
runway settings that depend on the particular runway configuration in use at the airport. These settings
are used to override the default values of some of the safety-logic parameters.

6.2 TARGET STATE MACIllNE

6.2.1 Target States

Every target is classified as being in one and only one target state. Table 6.1 is a list of the target
states and the acronyms that appear in the safety logic. The "landing abort" state refers to a go-around, a
missed approach, a touch-and-go, or not landing safely (e.g., going off the end of the runway).

6-1



s

L messages

t

-------------------------------------,
1 1

etc.

1 SAFElY LOGIC 11 L1GHT- 11 ~ CONTROL
....

1 1 light'
SENSOR 1 LOGIC Icommand1 TARGET PREDICTIONFUSION I ....

STATE
.... 1

& I' target' ENGINE path I
TRACKING

track nO.,1 MACHINE state, predic •• •pas., vel.,.
pas., vel. tion ~ ALERT

• ....
accel., I LOGIC I alert'extent, 1

•

SAFElY-LOGIC
DATABASE

AIRPORT-SURFAC
DATABASE

Figure 6-1. Safety-logic architecture.

TABLE 6.1
TARGET STATES

Target-State Acronym Target State

STP stopped

TAX taxi

ARR anival

LDG landing

DEP departure

DBT departure abort

LBT landing abort

UNK unknown intent

6.2.2 Target-State Transitions

The target state machine specifies the transitions from one target state to another, as opposed to
specifying the conditions for being in a target state. Figure 6-2 illustrates the possible transitions between
states. The state "NONE" is a pseudostate that represents "no track," i.e., it is used as a source and sink of
tracks. Although some of the states are not appropriate for ground vehicles (e.g., DEP, ARR, and LOG),
the RSLS surveillance is not adequate to determine whether a target is an aircraft. Thus, a ground vehicle
might be put into an inappropriate state, such as in a transition from TAX to DEP.

6-2



Appendix A contains a detailed description of the state transitions and provides the transition rules.
For example, Figure 6-3 illustrates the transition from ARR to LDG. Namely, the target enters the airport
region, wherein the airport region is defined as a convex polygon around the airport that includes the
entire movement area but does not extend too far beyond the movement area.

There are two advantages to the state-machine approach. First, it avoids the possibility that a target
might "fall between the cracks," that is, end up in a situation for which no target state has been defined.
With a state machine, a target will always have a defined target state. Second, the target state machine
incorporates hysteresis, a technique for avoiding the problem of jumping back and forth between states
due to surveillance errors. Figure 6-4 illustrates a target-state transition that is an example of hysteresis.
Suppose that the parameters v_tax- and v_stp+ are velocities l and that v_tax- < v_stp+. The transition
from STP to TAX occurs when the velocity of a target in the stopped state exceeds v_stp+. However, the
transition from TAX to STP occurs when the velocity drops below v_tax-. By having two different
velocity parameters separated by an amount greater than the expected surveillance error, small
surveillance errors would not cause numerous back-and-forth state transitions.

Figure 6-2. Target state machine.

1 In this chapter, unless otherwise stated, the tenn "velocity" refers to the magnitude of the velocity, i.e.,
speed. Also, v_tax- is the minimum velocity for the TAX state, and v_stp+ is the maximum velocity for
the STP state. Appendix B contains the values of these parameters.

6-3



ARR

ARR to LOG: inside airport region

Airport Region

Figure 6-3. Target-state transition from arrival state (ARR) to landing state (WG).

TAX to STP STPtoTAX

v

Figure 6-4. Target-state transitions between stopped (STP) and taxi (TAX) states.

6-4



6.3 PREDICTION ENGINE

6.3.1 Overview of the Prediction Engine

To control the runway-status lights and generate alerts, the RSLS safety logic requires knowledge
of the predicted positions of all tracked targets. The set of algorithms that detennines where a target
could be in the future is called the "prediction engine." Since the prediction engine takes into account that
targets can make turns at intersections of runways and taxiways, a target can have more than one
predicted path. Rather than come up with a single set of predicted paths, the prediction engine computes
two sets of predicted paths as illustrated in Figure 6-5. One set, shown as dotted lines, assumes the target
will travel as far as reasonable within a given look-ahead time. The other set, shown as a solid line,
assumes the target is attempting to stop (but not a panic stop) within a given look-ahead time. Thus, the
two sets of predicted paths, or "trees," compute reasonable bounds on future target position. In other
words, the RSLS path-prediction algorithm does not answer the question "where will the target be in a
given t seconds?" but rather the question "where could the target be in a given t seconds?"

TAXI HOLD LINE

1

Solid line: deceleration model
Dotted line: acceleration model

Figure 6-5. Path-prediction trees.

To detennine these path-prediction trees, the prediction engine requires prediction models of target
motion. There are two models for each target state. The first one, called the "acceleration model," is used
to detennine the first set of predicted paths (Le., the furthest the target could be). The second one, called
the "deceleration model," is used to detennine the second set of predicted paths (Le., the nearest the target
could be). It should be noted that these models by themselves do not detennine future position, because

6-5



they do not take into account the airport geometry (Le., which paths can be taken) and models of how
targets would turn from one path onto another path at any intersection.

6.3.2 Prediction Models of Target Motion

Table 6.2 describes the prediction models as a function of target state. All predictions start with the
estimates of current target position and velocity from the sensor-fusion and tracking algorithms. In
general, the standard equations of motion for a given look-ahead time are used to predict future position;
for example, the look-ahead time is 60 seconds for targets in the high-speed states DEP, ARR, and LOG.
These predictions use either a nominal acceleration rate (accel_nom) or nominal deceleration rate
(decel_nom), which are functions of target state. These rates could be functions of target type once target
type is reliably known to the safety logic. The question might be asked, "Why not use the estimates of
actual acceleration instead of assumed nominal acceleration and deceleration?" The answer is that
estimates of actual acceleration are relatively noisier, and thus less accurate, than those of velocity. Also,
actual accelerations are not constant; since they vary unpredictably with time, estimates of current
acceleration are not useful for predicting future behavior on the 30-to-60-second time scale.

TABLE 6.2

PREDICTION MODELS FOR EACH TARGET STATE

Target State Acceleration Model Deceleration Model

stopped (STP) NA NA

taxi (fAX) accelerate at acceCnom(tax) up to a specified decelerate at decel_nom(tax)
maximum taxi velocity v_max_tax, and then continue
at that velocity

departure (DEP) accelerate at accel_nom(dep) to a maximum departure decelerate at deceCnom(dep), i.e.,
velocity v_max_dep becomes a departure abort (see below)

landing (LDG) continue at current velocity (i.e., accel_nom(ldg) =0) a) ifbefore threshold, then same as
acceleration model

b) if after threshold, then decelerate
at decel_nom(ldg)

arrival (ARR) continue at current velocity (i.e., acceCnom(arr) =0) a) if before threshold, then same as
acceleration model

b) if after threshold, then decelerate
at decel_nom(ldg), i.e., becomes a
landing

departure abort (DB'D continue at current velocity (i.e., accel_nom(dbt) =0) decelerate at decel_nom(dbt)

landing abort (LB'D continue at current velocity (Le., accel_nom(lbt) =0) NA

unknown (UNK) continue at current velocity (Le., accel_nom(unk) =0) decelerate at deceCnom(unk)

NA = not applicable

6-6



6.3.3 Path-Prediction Algorithms

To predict target paths, the prediction engine first divides the airport surface into a network of
"propagation cells" that completely cover the movement area and do not overlap. For example, a set of
cells are drawn end-to-end along the entire length of a runway. The same is done for taxiways (see
Figures 6-6a and 6-6b for examples of propagation cells). Thus, the cell structure depends on the airport
geometry. The important point to understand about path prediction is that it is done locally within each
cell, then all the cells are stitched together to generate the entire path.

I
~IJ.. I I I I ..J I I""I"" I I I I I

t " IRGET
RTING PROPAGATION

CELLS

TA
STA

POINT

a) acceleration model

J.. I I I I I I.... I I

t " IARGET
ARTING PROPAGATION
OINT CELLS

T
ST

P

b) deceleration model

Figure 6-6. Prediclion lrees for models of largel mOlion.

The procedure to generate the paths is as follows. First, the prediction engine determines in what
cell a new target is located and what the possible exit points are. Second, using the prediction models of
target motion described above, standard Newtonian equations of motion, and a turning model that
assumes a maximum transverse acceleration (described in more detail in Section 7.7), the prediction
engine determines which exit points the target can reach (if any) in the look-ahead time. Third, for each

6-7



exit point the target can reach within the look-ahead time, the prediction engine draws a path to that point
and hands off the target to the next propagation cell, thus creating a local "tree" with side branches as
shown in Figure 6-6a. After each path has been drawn as far as it can go within the look-ahead time, the
final result is a set of two global trees, one for the acceleration model of target motion (as shown in
Figures 6-5 and 6-6a) and one for the deceleration model (as shown in Figures 6-5 and 6-6b). These trees
are the unions of the individual propagation-cell trees.

6.3.4 Approach Logic and Approach Bars

One of the tasks of the prediction engine is to implement the approach logic, which determines
whether an airborne target is on approach to a runway and, if so, which runway. As pan of this logic, the
prediction engine projects an arriving target and determines whether it could land on a particular runway.
To make this determination, the prediction engine uses a turning model that allows for S-curves as well as
straight-in approaches and single-curved approaches.2

Another task of the prediction engine is to calculate distances for approach bars. As mentioned in
Chapter 1, approach bars are ASDE-display enhancements that indicate to the controller the position of
the aircraft on final approach to the airport. As illustrated in Figure 6-7, an approach bar appears on the
ASDE display near the approach end of a runway; its length represents the distance between the outer
marker and the runway threshold. A small diamond moving along the bar represents the actual aircraft on
final approach and indicates its position relative to the outer marker and threshold as determined by the
prediction engine. The RSLS gives the controller the following four display options for the approach
bars: 1) show no approach bars, 2) show approach bars only when a target on approach is involved in an
alert.. 3) show approach bars only when there is a target on approach, and 4) always show approach bars,
even when there is no target on approach.

OUTER MARKER THRESHOLD

~
I •

1
AIRCRAFT ON APPROACH

Figure 6-7. Indication ofarriving target on approach bar.

If it is possible for an aircraft on approach to land on more than one runway (Le., the prediction
engine projects it onto more than one runway). then the aircraft is called an ambiguous target. However,

2 The details of the approach logic are described in Appendix A and in Section 7.7.

6-8



ambiguous targets still appear on only one approach bar and are associated with only one runway for
turning on runway-status lights and issuing alerts. The logic rule for selecting the approach bar is to
indicate the target on the approach bar of the runway with the lowest required transverse acceleration, i.e.,
the runway corresponding to the straightest of the approaches. The logic rule for choosing the runway for
turning on lights and issuing alerts is to assign the target to the runway in use for landings in the current
configuration. For example, at Logan Airport aircraft arriving to runway 33R often follow the n..S
approach to runway 27 and then veer off to 33R. The safety logic at fIrst places the aircraft on the 27
approach bar and then the 33R approach bar. If runway 27 is being used only for departures in the current
configuration, then the safety logic assumes the aircraft will land on 33R and not land on 27. If both
runways 27 and 33R are being used for landings, then a parameter can be set to indicate to the logic which
runway should be assumed to be the landing runway. However, if the wrong runway is selected, the
lights and alerts will not be operating correctly. A better way to handle this problem is to use the part of
the ARTS data that specifIes the aircraft's landing runway. This capability has not yet been implemented.

6.4 LOGIC FOR RUNWAY-ENTRANCE LIGHTS

6.4.1 Overview of the REL Logic

As discussed in Section I, red runway-entrance lights (RELs) at a runway/taxiway or
runway/runway intersection indicate that it is unsafe to enter the runway at that intersection. It is unsafe
because there is a high-speed target (e.g., DEP or LDG) moving along the runway toward that
intersection; controllers call the runway "hot" under these circumstances. As illustrated in Figure 6-8, the
logic for the runway-entrance lights is based on three concepts. The fIrst concept is the target hot zone.
The hot zone is an area ahead of a high-speed target, measured from the front of the target's extent (i.e.,
from the nose), that should be free of other targets; thus, entry into the hot zone by other aircraft, ground
vehicles, or personnel would be unsafe. The second concept is the REL activation region, which is
associated with each set of independently operated RELs. The basic idea behind the logic rule for RELs
is as follows: the lights are red if a hot zone overlaps their associated REL activation region, and off
otherwise. In particular, the lights behind the target are always off. An exception to this rule is when
RELs inside a hot zone are off due to the application of a third concept, called anticipated separation,
which will be described in Section 6.4.3.

In Figure 6-8 the RELs are represented by rectangles at runwayltaxiway intersections (although this
is not the way they are represented on the RSLS displays). At the runway/runway intersection, the
question marks indicate that the logic for runway/runway intersections is still under development (Section
6.4.4 will discuss runway/runway intersections).

6-9



----I

r------, I
I J I

• 1---..

i
PREDICTED DISTANCE
T SECONDS AHEAD OF

TARGET, OR END OF
RUNWAY

i
HOT ZONE:

UNSAFE TO ENTER

• RED RUNWAY-ENTRANCE LIGHTS

D OFF RUNWAY-ENTRANCE LIGHTS

REL ACTIVATION REGION RELs OFF DUE TO
ANTICIPATED SEPARATION

-L---------D c ?

r
1-
I--~--.........;"""""'l:~-..,..........-----....,.--..,...------~~--~-_i_--D ?

Figure 6-8. Hot zone and REL activation regions for runway-entrance lights.

6.4.2 Target Hot Zones

There are two types of hot zones each with a different type of length: 1) t-second zones, whose
length is the distance corresponding to t seconds ahead of the target (e.g., t = 30 seconds), where t is a
function of target state and a particular set of RELs, and 2) whole-runway zones, whose length is the
whole runway ahead of the target. The length of a t-second zone is calculated by the prediction engine
using the target's acceleration model of target motion.

The length of the hot zone depends on the target's state. Table 6.33 shows the hot zones being used
for the target states in the current version of the safety logic. Arrivals (ARR) have a t-second zone, where
t is called carr_reI in the parameter list in Appendix B. Departures (DEP) "own" the whole runway, and
thus have whole-runway zones, unless they are airborne (i.e., altitude is above the parameter altitude
alCdep_rel), in which case their hot-zone lengths are zero. Targets that are DBT or LBT also own the

whole runway, because they are in unusual and potentially dangerous states. Targets that are TAX, STP,
or low-speed UNK. where "low-speed" means velocity less than v_tax+, have zero hot-zone lengths at
this time, because their velocities are so low that it is often safe for other targets to cross the runway ahead
of them. However, UNK targets with velocity greater than v_tax+ have t-second zones.

Landing targets (LOG) are divided into three cases. If they are on approach and have not yet
crossed the threshold, they have t-second zones. Once they cross the threshold, they "own" the whole
runway, and thus have a whole-runway zone until they are "under control," that is, until their velocity has
dropped below some parameter velocity called v_ldg_rollout. When they are under control they are
considered to be in a landing rollout and then have a t-second zone again.

3 See Appendix B for the values of the parameters, e.g., Cld1Lrel.

6-10



TABLE 6.3
HOT-ZONE LENGTHS

Target State Hot-Zone Length Ahead of Target

ARR carr_rei seconds

1) before the runway threshold: Ud&-rel seconds

LDG 2) across the runway threshold but before landing rollout:
whole runway

3) during landing rollout: Ud&-rel seconds

DEP whole runway (if not airborne)

DBT whole runway

LBT whole runway

TAX zero

STP zero

UNK 1) high-speed: cunk_rel seconds

2) low-speed: zero

6.4.3 Lights at Runwayrraxiway Intersections

This section will describe the logic for RELs at runway/taxiway intersections along active and
inactive runways. A runway is active if it is being used primarily for takeoffs and/or landings in the
current airport configuration. A runway is inactive if it is not active but may be used temporarily for
takeoffs and landings at any time.

As mentioned in Section 6.4.1, the safety logic uses the concept of a REL activation region, an area
on the runway at an intersection, as shown in Figure 6-9. Each activation region is associated with a set
of RELs (Le., a set consists of a pair of lights on either side of a taxiway or runway at the entrance to a
runway). No set of RELs can respond to more than one REL activation region, but a single REL
activation region may control more than one set of RELs. The light-controllogic turns on a set of RELs
(Le., sends the command to turn them red) if a target's hot zone overlaps the REI.. activation region
associated with the RELs, except when anticipated separation applies, as will be described below.

There are two ways to determine whether a hot zone overlaps a REI.. activation region, depending
on the type of hot zone. If the target has a Whole-runway zone, then the hot zone overlaps all REI..

activation regions ahead of it. If the target has a t-second zone, the safety logic first considers the REL
activation regions that the target could reach within its look-ahead time. It then compares t to the time it
would take the target to reach those REL activation regions. Expressed mathematically, the hot zone
overlaps a REL activation region if the following is true:

(6-1)

6-11



REL Activation Regions

where emin_enter is the minimum time for the target to enter the REL activation region, as calculated by
the prediction engine using the target's acceleration model, and estate_reI is the parameter from Table 6­
3 with "state" representing the target state (state = arr, ldg, or unk).

Hot zone---,

r--t?~_.i---odJ .~__.lK...~~-+-_...L......L.-+---J"'-..:IiIiiL_

_.~ .=rp;.;__--..;;;p;;;.;;;;........-_- ---.,;p:::.::;__-

a) ARR L___ --~

b) LOG

c) LOG rollout

d) TAX

• RED runway-entrance lights
o OFF runway-entrance lights

Figure 6-9. Examples oflogic for runway-enlrance lighlS.

6-12



There are several ways to tum RELs off. One of the ways uses the concept of anticipated
separation. This tenn refers to the fact that controllers can issue clearances and instructions to aircraft in
anticipation that legal separation between aircraft will exist when required, even though legal separation
does not currently exist [l]. For example, it is not legal for an aircraft to cross a runway in front of a
departure. However, a controller can issue "taxi across" instructions to an aircraft waiting to cross a
runway at a taxiway hold line, even though a departure on that runway has not yet passed the taxiway
intersection, in anticipation that, by the time the waiting aircraft starts across, the departure will be past
the intersection. The delay in crossing is due to the time it would take the waiting aircraft to spool up its
engines before it started across.

To avoid interference with the controllers and to allow for surveillance delays, the light-control
logic uses anticipated separation to tum off the RELs before a target's hot zone has passed through the
REL activation region at approximately the time when a controller would issue the "taxi across"
instruction. Thus, the logic sends the command to tum off a set of RELs if the target that turned the RELs
red is a time cantic_sep_rel seconds from exiting the REL activation region. This condition can be
expressed mathematically as the following:

(6-2)

where cmax_exit is the maximum time for the target to exit the REL activation region, as calculated by
the prediction engine using the target's deceleration model, and cantic_sep_rel reflects the anticipated­
separation time (e.g., 4 seconds, representing the spool-up time of a waiting aircraft). In Figure 6-8 the
first set of RELs inside the hot zone is off due to anticipated separation.

Other ways to tum RELs off, besides anticipated separation, are as follows: 1) the target track is
dropped, 2) the target is a DEP and has altitude greater than a parameter altitude alcdep_rel (if there is a
valid altitude), 3) in the case of t-second zones, the hysteresis threshold is exceeded (Le., cmin3nter ~
cstate_rel + delta_cstate_rel), and 4) in the case of whole-runway zones, the target changed to a state
where the hot zone is no longer a whole-runway zone. If the RELs were turned off due to the second
condition, then they can be turned on again only if the target has transitioned out of the DEP state.

6.4.4 Lights at Runway/Runway Intersections

As mentioned in Section 6.4.1, the safety logic for RELs at runway/runway intersections is handled
differently than at runway/taxiway intersections. At first, one might ask, "Why not use the same logic
rules as for runway/taxiway intersections?" However, there is a difference: at runway/runway
intersections, a target observing red RELs is likely to be traveling at high speed, such as a departure,
arrival, or landing on an intersecting runway. This is particularly true for active runways but would also
be true for inactive runways that are temporarily being used for takeoffs and/or landings. The concern is
that a pilot traveling at high speed might take an unsafe action upon seeing red lights.

Consequently, the decision was made in the RSLS to deactivate the RELs at runway/runway
intersections except for those cases when a runway is consistently being used only as a taxiway in the
current configuration. For example, at Logan Airport in Boston landing aircraft on runway 4R generally
exit onto runway 33R. Since all aircraft on 33R must cross runway 4L to go to the tenninal, and 4L is
usually an active runway whenever 4R is active, the RSLS does activate the RELs facing targets on
33R/15L at the intersection with 4L for those configurations where 4R is active and 33R/15L is always

6-13



inactive.4 As will be discussed in Section 6.7, a topic for further research is to detennine logic rules for
RELs at runway/runway intersections when both runways are active.

6.4.5 Examples of Runway-Entrance Lights

Figures 6-9(a - d) illustrate the operation of the runway-entrance lights through a series of examples
involving an arriving aircraft. The black rectangles at runway/taxiway intersections represent the RELs
that are red; the white rectangles represent RELs that are off. The hot-zone lengths are listed in Table 6­
3.

Figure 6-9(a) shows an aircraft arriving to the runway (ARR state). The dotted rectangle represents
the aircraft's hot zone, which extends ahead carr_reI seconds. For example, if carr_reI is 30 seconds and
the aircraft's velocity is 130 knots along the runway, the target acceleration model for ARR computes the
length of the hot zone to be (carr_reI) * (velocity of the target) = 6630 feet (about 1.1 nautical miles). All
RELs whose activation region overlaps the hot zone are red; none are off due to anticipated separation,
because ARR is too far away from the activation regions to satisfy the anticipated separation condition.
The RELs are off at the last intersection, because their activation region does not overlap the hot zone.

Figure 6-9(b) shows the same aircraft after it has entered the airport region, so that it is now in the
landing state (LOG). Assuming the aircraft is across the threshold and at high-speed, Le.• its velocity is
greater than v_ldLrollout (e.g., 55 knots), the hot zone extends to the end of the runway. The RELs at
the first intersection are off, because the hot zone no longer overlaps the activation region at that
intersection. The RELs at the second intersection are off because of anticipated separation. However, the
RELs at the last intersection are red, because the hot zone overlaps the activation region there, and the
target is too far away from the activation region to satisfy the anticipated separation condition. The
aircraft on the taxiway is waiting behind the hold line and is facing red lights. If a controller accidentally
were to issue instructions for it to cross the runway, the pilot would know that the runway was not safe to
enter and would question the controller before proceeding across.

Figure 6-9(c) shows the aircraft in a landing rollout, Le., it is in the LOG state, but its velocity is
less than v_ldLrollout. The hot zone is now Cldg_rel seconds ahead. The RELs are off at the second
intersection, because the hot zone no longer overlaps the activation region.

Figure 6-9(d) shows the aircraft after it has slowed down to TAX. Its hot-zone length is zero (Le.,
Ctax_rel = 0), so that no RELs are red.

6.5 LOGIC FOR TAKEOFF-HOLD LIGHTS

6.5.1 Overview of the THL Logic

The light-control logic detennines whether takeoff-hold lights (THLs) next to active or inactive
runways should be red or off. Although inactive runways are not generally used for takeoffs, they may be
used for takeoffs at any time, so that the logic for takeoff-hold lights should apply to inactive runways as

4 Appendix C lists the runway/runway intersections where RELs are activated for each configuration.

6-14



well as active runways. Also, THLs are at locations used for intersection takeoffs as well as full-length
takeoffs.

Takeoff-hold lights at a given location are red if two conditions are satisfied: 1) a target is in
position for takeoff or starting its takeoff at this location, and 2) the runway is not safe for takeoff at this
location. The first condition implies that there must be a target in a position to see the THLs in order for
them to be red. This is not true for RELs, which turn red regardless of whether there is a target in a
position to see them. The second condition depends on whether there is another target that could come in
conflict with a departure. This condition is also different from the logic for RELs, in that THLs turn red
based on the actions of two targets, whereas RELs turn red based on the action of a single target These
conditions are described in more detail in the next three sections.

6.5.2 Target In Position for Takeoff or Starting Its Takeoff

As shown in Figure 6-10, the logic to detennine whether a target is in position for takeoff or starting
its takeoff has been divided into two cases. In Case 1, the target is defined to be "in position for takeoff,"
because it satisfies the following conditions: 1) it is in the STP state, 2) its centroid is in a specified area
on the runway, called the arming region (shown in Figure 6-10 as a dotted rectangle), and 3) it was not
previously in the LOG state. The last condition, which is optional and can be set to apply to only certain
runways for each configuration, was added to prevent THLs from turning red when a previously-landed
aircraft temporarily stops in an anning region at a location on the runway used for intersection takeoffs.
Since this aircraft is not likely to take off (because it just landed), a red THL would be a nuisance light.
Also, as shown in Figure 6-10, the THLs are placed ahead of the departure location, and the anning
region extends all the way to the THLs.

In Case 2, the target is "starting its takeoff," i.e., it is in a rolling takeoff or in the early stage of a
takeoff. There are five conditions a target must satisfy to be considered starting its takeoff. First, it could
be in either the TAX or DEP state. Second, as for Case I, its centroid must be in the anning region.
Third, to rule out the situation where the target is crossing the runway, the target must be sufficiently
lined up with the runway, Le., the difference between the target's heading and runway heading must be
within a specified tolerance. Fourth, to rule out the situation where the target is passing through the
anning region at high speed, the target's velocity must be below a given parameter. The fifth condition is
that the target was not previously LOG for the same reasons stated for Case 1 above.

6.5.3 Targets on the Same Runway

As mentioned in Section 6.5.1, the second condition for THLs to be red is that the runway must be
unsafe for takeoff. This condition can be divided into two cases depending on whether there is another
target on the same runway as the target about to take off or there is another target on an intersecting
runway. This section will describe the fonner case; the next section will describe the latter.

In the fonner case, the THL logic rule states that the runway is unsafe for takeoff if there is a target
inside the THL activation region, an area that includes the runway ahead of the lights as well as an
extension on either side of the runway. As in the description of the target hot zone, the THL activation
region is an area ahead of a target in position for takeoff, or starting its takeoff roll, that should be free of
other targets before takeoff commences. The logic rule is illustrated in Figure 6-11, which shows that the
THLs are red, because one target is in position for takeoff and another target is inside the THL activation

6-15



region. If there had been no target in the anning region the THLs would be off, even though the runway
is unsafe for takeoff.

Case 1: Target in Position for Takeoff

1. STP
2. centroid in arming region
3. not previously LOG

Case 2: Target Starting Its Takeoff

1. TAXorOEP
2. centroid in arming region
3. target heading within specified tolerance of runway heading
4. target velocity below specified threshold value
5. not previously LOG

D Takeoff-Hold Lights

Figure 6-10. Illustration o/thefirst condition/or takeoff-hold lights to be red.

There are two exceptions to the logic rule that the runway is unsafe for takeoff if there is a target in
the THL activation region. The first exception states that the runway is safe for takeoff if the target in the
THL activation region is predicted to exit "soon." This is illustrated in Figure 6-12, which shows that the
THLs are off. Exiting "soon" means that target B is predicted to exit the THL activation region before
target A could reach target B if A started to take off. The mathematical expression for this condition is
the following:

6-16

(6-3)



where emax_exit is the maximum time for B to exit the THL activation region, as calculated by the
prediction engine using B's deceleration model, and emin_reach is the minimum time for A to reach B
using the acceleration model for departures (DEP). This rule is motivated by another example of
anticipated separation (see Section 6.4.3), in which it is legal for a controller to clear a stopped aircraft
for takeoff in anticipation that the target on the runway will exit before the aircraft starts its takeoff roll
[I]. Although this rule has been designed, it is not yet implemented in the code.

THL ACTIVATION REGION

• RED TAKEOFF-HOLD LIGHTS

Figure 6-11. Runway is unsafe/or takeoff, because a target is in the THL activation region.

THL ACTIVATION REGION

B

____ .J DI
A L __

o OFF TAKEOFF-HOLD LIGHTS

Figure 6-12. Runway is safe for takeoff, because B is predicted to exit the THL activation
region before A could reach B ifA started to take off (not yet implemented).

The second exception, illustrated in Figure 6-13~ involves what is referred to in the safety logic as
the "special departure (DEP) case;" if a prior departure is far down the runway and is airborne, then the
runway is safe for takeoff even though to the ASDE the departure appears to be in the THL activation

6-17



-----' 0 1L__

THL ACTIVATION REGION

o OFF TAKEOFF-HOLD LIGHTS

Figure 6-13. Runway is safe for takeoff. because the target inside the THL activation region
satisfies the conditions for the special DEP case.

region. This idea is based on controller procedures in which it is legal to have an aircraft take off on a
runway when a previous departure is still over the runway as long as certain conditions are met. These
conditions are as follows: 1) the distances can be determined by suitable landmarks, 2) the distance
between the aircraft is greater than a specified distance that depends on aircraft type, 3) the downstream
aircraft is airborne [1].

The light-control logic cannot check these conditions, because it knows neither aircraft type, nor
whether distances can be determined by landmarks, nor, in some cases, whether an aircraft is airborne
(even though the ARTS data sometimes indicate altitude). Consequently, the light-control logic will
check other conditions that approximate these conditions and still provide a margin of safety. They are as
follows (refer to Figure 6-13): 1) B is DEP, 2) visual flight rules (VFR) are in effect (this information
must be entered manually into the safety logic), 3) B is downstream from A on A's runway, 4) B's
distance from A is greater than a parameter distance, and 5) B's altitude is deemed valid by sensor fusion
and B is airborne, or B's altitude is not valid and B's velocity is greater than a parameter velocity.

Another condition for the runway to be unsafe for takeoff is for a target to be a TAX and be
predicted to enter the THL activation region. This condition is illustrated in Figure 6-14, which shows
that the THLs are red. The prediction engine determines that a target is predicted to enter a region if all
the target's paths based on the deceleration model for TAX enter the THL activation region; in other
words. B will definitely enter the region within the TAX look-ahead time even if it starts to brake. This
condition is not currently implemented in the safety-logic software.

There is an important point that should be noted here regarding how the prediction engine
determines whether there are two targets in potential conflict. Rather than compare all pairs of tracked
targets to determine whether A and B might collide, which would be a huge computational problem that
grows as N2, where N is the number of targets, the prediction engine has A and B each "notify" the

6-18



runway. Then the prediction engine tells the safety logic to compare only A and B, which is a more­
manageable approach than a combinatorial one.5

ARMING REGION

____ .J II
L __

THL ACTIVATION REGION

I RED TAKEOFF-HOLD LIGHTS

Figure 6-14. Runway is unsafe/or takeoff, because the target is predicted to enter
the THL activation region (not yet implemented).

6.5.4 Targets on Intersecting Runways

A runway can also be unsafe for takeoff when there is a potential conflict with a high-speed target
on an intersecting runway. The logic for this case, which is illustrated in Figure 6-15, is based on the
concept of an intersection window, an area at the intersection of two runways. The runway is unsafe for
takeoff if target A, which is in position for takeoff or starting its takeoff, and target B, which is in any
target state except STP and TAX, could be in the intersection window simultaneously if A started to take
off. This logic rule again uses the concept of anticipated separation. Rather than wait for B to cross the
intersection before turning off the THLs, the logic turns off the lights in anticipation that B will be across
the intersection before A could be in conflict with B if A became a departure.

According to the rule described in the previous section, as B crosses A's runway the THLs would
tum red while B is in the THL activation region along A's runway. To prevent this from happening, the
safety logic has a mechanism that keeps track of whether B is on an intersecting runway or along the same
runway as A. If B is on an intersecting runway, the THLs for A will not turn red.

The prediction engine computes the time interval A could be in the intersection window and the
time interval for B. The logic rule then becomes: the runway is unsafe for takeoff if the time intervals of
A and B overlap with a safety margin time added to the time intervals. The prediction engine uses the
acceleration and deceleration models of target motion to compute the time intervals. For target B, the
earliest time to enter the window is calculated using its acceleration model, and the latest time to exit the

5 This is described in more detail in Section 7.7.

6-19



window is calculated using its deceleration model. Target A is usually stopped or moving very slowly, so
its deceleration path is likely to end before the intersection window. Consequently, both its earliest time
to enter the window and latest time to exit the window are calculated using the acceleration model for
departures.6

INTERSECTION WINDOW

ARMING REGION

~---~---,.
________1.

A

• RED TAKEOFF-HOLD LIGHTS

Figure 6-15. Runway is unsafe/or takeoff, because A and B could be in the
intersection window simultaneously ifA started to take off.

As mentioned in Section 6.5.3, the prediction engine does not compare all pairs of targets to
determine which pairs are potentially in conflict, thus avoiding a huge computational burden. The
prediction engine has A and B each "notify" the intersection window and then tells the THL logic to
compare only A and B.

6.6 LOGIC FOR THE ARRISTP AND LDG/STP ALERT

The safety logic currently implements one type of alert, which, as mentioned in Section 6.1, was
added for demonstration purposes. This alert, referred to as the ARR/STP or LDG/STP alert and
illustrated in Figure 6-16, involves one target (target A) stopped on a runway and another target (target B)
on approach to the runway or landing on the runway. More precisely, A is STP, and B is ARR or LOG,
or B is UNK with velocity greater than v_tax+. When an alert has been issued, octagons are drawn
around the conflicting targets, even if one of the targets is displayed on an approach bar, and an alert

6 The mathematical expressions are in Appendix A.

6-20



message is sent to the audible alerting system. For example, the alert message for an arrival to runway
22L is as follows: "Warning. Two-Two-Left Arrival, Traffic on Runway."

®---~_"~';;~h-=-;;';e~;oid-<-;=;e~-------~"""'~-""""I("""''''''''-#--r-..".----~--­
A (ARR)

ALERT ACTIVATION REGION

Figure 6-16. Example 0/ARRISTP alert.

The alert logic is based on the concept of an alert activation region, an area around the runway that
the prediction engine checks to see if there are any targets that may potentially be in conflict with target
B. An alert is issued if two conditions are met: 1) B is "close to" or on the runway, and 2) there is a
target A stopped in the alert activation region. If B is airborne, the first condition for issuing an alert can
be expressed mathematically as

creach_threshold < calert, (6-4)

where creach_threshold is the time it would take for B to reach the runway threshold as calculated by the
prediction engine using B's acceleration model, and calert is a parameter threshold (e.g., 35 seconds). If
B is already past the threshold, creach_threshold is set equal to zero. The reason the logic does not

compare calert to the time for B to reach A is the following: it is important to alert soon enough so that B
has time to execute a go-around. This timing is independent of A's location in the alert activation region,
so that it is better to measure B's time to a fixed point, such as the threshold or missed-approach point.
Since missed-approach points can vary depending on aircraft type, it was decided to use the threshold
instead.

Analogous to the discussion in Sections 6.5.3 and 6.5.4, the prediction engine avoids the N2
computational problem by having A and B "notify" the runway. Thus, the alert logic needs to compare
only the two targets A and B instead of all pairs of targets.

6.7 FUTURE TOPICS FOR DEVELOPMENT

This chapter has presented a high-level description of the algorithms currently implemented for the
RSLS safety logic. However, there is still a lot of work to be done to have a complete safety system.
Some examples of topics that need to be developed in the future are the following:

6-21



1. Logic for stopways: Boston's Logan Airport has long, crossing stopways at the approach ends of
runways 4L and 9. These stopways also intersect with several taxiways. On the model board of
Logan Airport, there are RELs at the intersections of taxiways with these stopways. However, there
currently is no light-control logic to drive the RELs. Also, the stopways are not included in any
activation regions for RELs, THLs. or alerts, so that these stopways are not included in the safety
logic. The logic for them has been designed but not yet implemented.

2. Anticipated separation for takeoff-hold lights: As mentioned in Section 6.5.3, the THL logic
involving anticipated separation for targets on the same runway, in which a target is predicted to
exit the THL activation region or enter the THL activation region, has been designed but not yet
implemented. However, the THL logic involving anticipated separation for targets on intersecting
runways has been implemented.

3. Logic for runway-entrance lights at runway/runway intersections: As mentioned in Section
6.4.4, the logic for controlling the RELs at runway/runway intersections has not yet been
completely resolved. Various logic schemes could be tested with real and simulated data to
determine whether lights at these intersections would interfere with normal operations.

4. Logic using target classification: Knowledge of target type, e.g., aircraft type or whether the
target is a ground vehicle, would greatly improve the safety logic. First, testing of the logic has
shown that a ground vehicle is sometimes determined to be a DEP or LOG; knowledge of target
type would solve this problem. Second. some of the safety-logic parameters should be a function of
target type, e.g., the acceleration and deceleration parameters in the prediction models of target
motion, to make the aircraft modeling more accurate. Third, knowledge of target type would help
prevent having helicopters triggering RELs to tum red when they should be off.

5. Controller interface: A controller interface is needed for the tower supervisor to input information
to the safety logic about current conditions, such as meteorological conditions, surface braking
conditions. and the current runway configuration. The latter information would indicate which
runways are active or inactive, and which areas are closed to any operations.

6. Incorporating controller/pilot intent: The current logic is not aware of controller or pilot intent.
This causes a problem in certain cases, such as sidesteps and land-and-hold-short operations. In the
latter case, the logic does not know when an approaching aircraft has been told by the controller to
hold short of an intersecting runway. It assumes that the aircraft has permission to use the whole
runway for its landing. This may cause some problems. For example, if there is also a target in
position for takeoff on the intersecting runway, then the THLs for that target will tum red, even
though the controller may have cleared the target for takeoff (which is legal). This would cause
interference with controller operations. On the other hand, if the logic assumes the approaching
target will hold short of the intersecting runway, but the target is not intending to hold short, then
the logic does not provide protection between the two targets, Le., the logic's effectiveness has been
reduced. The controller interface just described above would allow the controller to input to the
safety logic whether an aircraft is intending to land and hold short.

6-22



7. Smooth transitions between configurations: Currently, when the airport supervisor changes the
runway configuration, software engineers must stop the RSLS surface-monitor software, input the
new configuration. and then bring up the system again. Even if a controller interface is added to
allow the tower supervisor to specify the current configuration, it would be useful to be able to keep
the system running and to transition smoothly during configuration changes.

8. Other alerts: As mentioned in Section 6.6. only one alert has been implemented. Many other
al~rts that have already been designed could be easily added. such as a head-on alert between a DEP
and a TAX on the same runway (logic rule: alert immediately). Other alerts need to be designed
first and then implemented. such as a tail-chase alert between an ARR to a runway and a TAX
downstream on the same runway.

9. Hot-zone lengths: One future change in the hot-zone lengths for LOG and ARR targets is to
switch to whole-runway zones a fixed time Cthreshold seconds before the runway threshold rather
than waiting for the target to cross the threshold. This would indicate that an aircraft owns the
whole runway a little before it crosses the threshold.

10. ARTS data for landing aircraft: As mentioned in Section 6.3.4, the safety logic needs to know
the intended landing runway for ambiguous approach targets, especially when both runways that a
target can land on are being used for landings in the current configuration. The ARTS data can
provide that information. but use of this information by the safety logic needs to be implemented.

REFERENCES

I. U.S. Department of Transportation. Federal Aviation Administration, "Air Traffic Control," FAA
Handbook 711O.65F with Changes 1-5 (21 September 1989).

6-23



7. RSLS SYSTEM SOFTWARE ARCmTECTURE

7.1 INTRODUCTION

The RSLS system executes primarily on multiple networked workstations that use the UNIX
operating system. The ADIDS system, which uses IBM PC-compatible machines that use the DOS
operating system, and the ASDE data conversion and distribution system, which is based on a Mercury
single board computer, are exceptions. The run-time software consists of approximately 175K lines of
C++ code to implement the radar processing, sensor fusion, safety logic, and displays and an additional
15K lines of C code to implement the ASDE radar interface and ADIDS system. lbis software is
organized into a dozen independently executing processes (tasks) that communicate with each other via
operating system and network resources.

The multi-process approach minimizes complexity and facilitates the use of multiple processors in
areas where more processing horsepower is required. It is based on dividing the major algorithmic tasks
into separate data-driven programs. The programs communicate with each other so that the output of one
program (algorithmic step) becomes the input to the next program. In some cases, the communication is
bi-directional to allow for cases where there is feedback or a query-response structure in the flow of data
through the algorithmic steps. The multi-processing nature of the UNIX operating system directly
supports this approach. The UNIX kernel also provides direct and flexible support for communication
between processes that reside within one computer or within multiple computers connected via a network.

7.2 SYSTEM OVERVIEW

Figure 7-2-1 shows the context data flow diagram for the RSLS system. Figure 7-2-2 shows the
top-level data flows and functional elements of the RSLS software itself. In these data flow diagrams,
boxes with rounded corners represent sources or sinks of data outside the RSLS system. Rectangles
represent functional elements. Ovals indicate primary databases. The arrows reflect the flow of data
between elements.

There are three sources of data flowing into the system: digitized radar video from the X-band
ASDE, beacon replies from the ASR-9-SCIP-to-ARTS-III lOP interface, and display symbology from the
ARTS-III-IOP-to-MDBM interface. The X-band ASDE video is an 8-bit digitization of the log
magnitude of the received return for each of the radar's range-azimuth pixels. The beacon replies from
the ASR-9 indicate each target's range, azimuth, mOde-A-squawk code, mode-C altitude, and various
confidence and validity fields. The data extracted from the IOP-to-MDBM interface includes all text and
symbol data destined for the controller displays attached to the MDBM. For targets, this text and symbol
data includes the target position, the symbol to display at that position, and, for targets with data blocks,
the information to display in the data block and the direction of the data block's leader line.

ASDE processing subtracts clutter from the radar image, identifies targets in the clutter-removed
image, finds the centroid (position) of the targets, and then matches the target to targets in previous scans
to form tracks. Because no single workstation-class processor is capable of handling the high input data

7-1



rate and processing demand, the ASOE processing is implemented as three processes: clutter rejection,
connected components, and merge. These processes execute on an eight-processor Silicon Graphics
workstation. The input data is distributed to multiple instances of the clutter rejection and connected
components processes executing in parallel and the intermediate results are recombined in a final merge
process.

X-Band ASR-9 to ARTS III ARTS lOP to
ASDE SCIP Interface MDBM Interface

ASDE SCIP MDBM MDBM
data data data commands

~ '\l ,7 f

RSLS System

J J II

0 tXwindow
events

Xwindow
light light voice voice drawing
commands states commands synthesizer command~

status
~'\l '\l '\l

ASTA Light Alert Message Voice Surface Traffic Terminal Traffic
Controller Synthesizer Display Display

Figure 7-2-1. The context dataflow diagram for the RSLS Software.

The SCIP interface collects surveillance data from the ASR, applies geometric and message-type
filters, decodes the packed binary format used by the ARTS into standard data types, and adds a time
stamp. Because the location of the ARTS hardware is physically remote from the majority of the RSLS
hardware, the SCIP interface is implemented in two parts. The first part, ADIOS-SCIP, which executes

7-2



ASDE
data

Q

SCIP
data

~7

MDBM
data

~7

MDBM
commands

~

ASDE Processing

ASDE
reports

SCIP Interface

SCIP
reports

....

system
time

MDBM Interface

MDBM
reports

Master Clock K~l----~
time

system control
~7 time commands

Sensor Fusion and K....}-------'I
r-------------1-t> k:L(}1----l------~~

Tracking

track
reports

Surface Monitor K..-1:.J-------1
....

approach
bar messages

Surface
Database

target snapshot

"-------------e<?i~afety Databa~

urface Grap
Databas

alert
messages

light
~7 commands

Light Governor
light
states

Display

Voice Generatorlight
commands

light
states '--..--v-oi-ce---...."i.~-v---'oice

commands synthesizer
17 status

Xwindow
drawing
commands

V

Xwindow
events

Figure 7-2-2. The top-level dataflows andfunctional elements o/the RSLS software.

7-3



on a PC adjacent to the ARTS hardware, extracts the data, applies geometric and message-type filters,
adds a message identifier and time stamp, and transmits the data over a modem. The second part, which
executes on a UNIX workstation, receives the data via a second modem, unpacks it, and makes it
available to the rest of the system.

The MDBM interface listens to data from the ARTS-IOP-to-MDBM link, emulates the updating of
tables performed in the MDBM, extracts target updates, applies geometric and message-type filters,
decodes the packed binary format used by the ARTS into standard data types, parses portions of the data
block for targets with tags, and adds a time stamp. Because the location of the ARTS hardware is
physically remote from the majority of the RSLS hardware, the MDBM interface is implemented in two
parts. The first part, ADIDS-MDBM, which executes on a PC adjacent to the ARTS hardware, extracts
and interprets the data, applies message-type and geometric filters, adds a message identifier and time
stamp, and transmits the data over a modem. The second part, which executes on a UNIX workstation,
receives the data via a second modem, unpacks it, parses portions of the data block for targets with tags to
extract aircraft identity and airframe type, and makes the data available to the rest of the system.

Sensor fusion receives the target data generated by ASDE processing, beacon data from the SCIP
interface, and flight-identity and airframe-type data from the MDBM interface and produces a unified
picture of the aircraft and vehicles that are on or near the airport surface. Sensor fusion's responsibilities
include the following:

• translating all target positions to a common coordinate system

• determining and applying time offsets to synchronize time stamps

• smoothing target positions

• estimating target velocity and acceleration

• de-multipathing the beacon reports

• filtering false targets from the ASDE data

• transferring identity and type information from the MDBM data to the beacon data

• determining which ASDE targets and beacon targets represent the same target and should be
combined into a single track

• coasting tracks through coverage gaps.

The surface monitor uses the output of sensor fusion and several databases to control the operation
of the lights, to generate audible alerts, and to drive the depiction of targets on approach on the displays.
For each target, the surface monitor determines the target's state, calculates the range of possible future
positions within a defined time horizon, assesses whether the state of the lights should change in response
to the target's new state, and determines if an alert should be generated due to possible interactions with
other targets.

The light governor processes light state commands from the surface monitor and uses them to send
commands to the light control system. It forwards light state change messages to the displays when the

7-4



light control system confinns that the light has turned on or off. It uses a database to correlate the light
IDs used by the surface monitor with the light channel numbers used by the light control hardware.

The voice generator fonnats alert commands from the surface monitor into messages suitable for a
voice generation system (Le., DECtalk). In case of temporally overlapping alerts, it queues messages
according to the priority that the surface monitor has assigned to each. It uses a database of message
templates.

The display generates a plan-view of the current situation. It is nOlrnally used show the position
(and other characteristics such as identity, type, heading, radar image size, and alert status) of the tracked
targets, the state of the RSLS lights, and the approach bars for targets on approach to the runways. It can
also show additional infonnation generated by the system such as all targets identified by ASDE
processing (unfiltered), target fusion status generated by sensor fusion, and target states and predicted
paths generated by the surface monitor. It uses a map database to provide visual reference.

The master clock is a time server that provides a common time reference to all processes. In real­
time operation, the master clock is used to provide synchronized time stamps on data recorded by multiple
processes. In data playback mode, the master clock allows the system to run at varying time rates.

7-5



7.3 RADAR PROCESSING

7.3.1 Radar Processing Overview

The algorithmic description of the Radar processing was discussed in an Section 3 of this
document. Figure 7-3-1 shows an algorithmic block diagram. The following stages are included:

1. ASDE-X Data Extraction
2. Outter Rejection
3. Morphological Pre-Processing
4. Connected Components
5. Components to Objects
6. Scan-to-Scan Association.

n=l••

bytesfs)(Kbytesfs)Component
List

(Kbytesfs)

r
--

Digitization - Map -. Clutter MorphologicalRadial-
Digital Applied Censored Rejection

by-Radial Pre-Processing
Data Digital

Run
(40 Data

Reports Filtered
Mbytesfs) (600 Kbytesfs)

(Kbytesfs) Runs

t (Kbytesfs)

Connected - Components -. Scan-te-Scan - Track
Components to Objects Association

--..
Object List

List (1oo's of

Figure 7-3-1. Algorithmic block diagram/or X-Band surveillance processing.

7-6



It is entirely possible to create a version of software that perfonns these operations serially. However, the
advantages for real time of parallelizing several of these operations motivated a rather elaborate scheme
of dividing the functionality between several processes. Figure 7-3-2 provides an overview of the major
processes.

Connected
Components

Connected
Components

Merge &
Connected 1---t~1 Scan-to-Scan

Components Association

Clutter
Rejection

Clutter
Rejection

Clutter
Rejection

Map
&

Distribution

Digitized
Data

Clutter
Rejection

Figure 7-3-2. Parallel process overview.

Initially, the analog radar data is digitized and enters the system at a very high rate (typically 40
Msamples/s). Using custom hardware, only data from the airport surface and approaches are passed on
for subsequent processing. The surviving data is passed to a general-purpose single-board computer that
serves to distribute data to several clutter rejection processes based on airport region. Section 7.3.2,
Radar Interface, describes this stage of processing.

Four clutter rejection processes. running on processors within the SOl multi-processor system, each
cover about a fourth of the airport samples. An individual process always sees the same airport region.
These processes maintain a surface-sample-by-surface-sample history of radar returns for use in a

7-7



dynamic CFAR mechanism that detects target pixels. Rather than reporting each target pixel individually,
they are strung together to form runs that are sent to the connected components processes. Each process
sends out these runs in n-radial packets with n currently being 128. Section 7.3.3, Outter Rejection,
describes details of this mechanism. It should be noted that while the data to the three processes is fed
sequentially, due to processing delays some packets from the end of one processor's region may be
completed and sent after the first packets from the next region. It should also be noted that since the
number of operations per pixel is almost constant, load balancing for this stage can be performed
statically (before run time).

It was found that the number of runs emerging from the cluner rejection processes were sufficient
to require parallelization of the algorithm. This leads to two difficulties. First, while most objects may be
completely contained in the "wedges" sent from clutter rejection, some straddle boundaries. Secondly,
connected components load balancing between processes is completely data dependent.

The first problem is handled as follows (see Figure 7-3-2): connected components is performed on
an entire airport surface wedge. Components are then grouped together into objects (see Section 7.3.4,
Connected Components, below for more detail). Objects are then sorted into two lists. The first consists
of all objects totally contained within the surface wedge. The second list consists of objects that straddle
the surface wedge boundary (see Figure 7-3-3). Packets containing these lists are sent by several
connected components processes to a single merge process whose responsibilities include splicing
together boundary objects.

The second problem (load balancing) is handled by a first-come-first-served scheduling algorithm
for the connected components processes. Each clutter rejection process places its result on its own queue
with a time stamp. All available connected components processes compete for access to the set of cluner
rejection output queues, which is mediated by a semaphore. The "winner" checks all queues for data and
chooses the oldest packet and releases the semaphore. All connected components processes maintain no
history - Le., after processing a packet and sending off the results, no information from it is maintained.
Thus, when a packet is finished, a connected components process is available for processing any other
packet.

As the last stage of radar surveillance processing, the merge/scan-to-scan association process must
collect data from all the connected components processes and produce a view of the whole surface as well
as maintain history on all known tracks. In this single process, a table of wedges already seen in the
current scan is maintained and updated. As a new wedge is received, the targets completely contained
within it are immediately put on a new target list. If any boundary targets exist, the "wedges already seen"
list is checked to see if the appropriate neighbors are present. If the neighbors have the completion of the
partially seen Object, the completed object is placed on the new target list. The new target list is then
matched to the various lists of existing tracks as described in Section 7.3.5, Merge and Scan-to-Scan
Association. Finally, tracks that are updated in the present scan are made available to the next processing
stage, namely sensor fusion.

7-8



Boundary
Objects

Surface
Wedge

Internal
Objects

Figure 7-3-3. Wedge boundary objects.

7-9



7.3.2 Radar Interface

While current general purpose computers are available that are capable of supponing the
surveillance algorithms, the safety system and assorted displays, no commercial hardware exists for the
esoteric task of interfacing to a high-speed imaging radar in real-time. Since designing, simulating,
wirewrapping, debugging, and maintaining custom hardware is expensive and time-consuming, the radar
interface design has to be flexible. It must support the ASDE-X radar, sampling at 40 megabytes/second,
and the ASDE-3 radar, sampling at 42 megabytes/second. It must suppon real-time radar processing, raw
radar data recording, and playback of recorded radar data. Processing and recording the radar data at the
full real-time rate would be prohibitively expensive- and it would mostly process samples of no interest.
where airpon surface traffic cannot possibly travel. Therefore, the radar interface must map in only the
areas of interest and ignore all other areas. To meet all these needs, the radar interface consists of three
modules: the Radar Interface Board (RIB), which does the analog to digital conversion, the Map board,
which filters the data in range and azimuth, and a Mercury 3200 single board computer (MC32oo), which
formats and outputs the resultant data.

The Map board and MC3200 are placed on a VME bus where formatted radar samples are copied
into the VME memory of the system that processes (or records) the data. The RSLS real-time ASDE
surveillance system is configured with the Map and MC3200 boards placed in the VME side of a Silicon
Graphics Incorporated (SGI) UNIX multiprocessor. Another application of the radar interface is in a
VME computer system called the Lincoln ASDE Recording System (LARS), which records the data onto
a high-speed Honeywell Very Large Data Store (VLDS) tape recorder. The LARS can record data and
the real-time SGI system can process the same radar data simultaneously and independently. The
MC3200 in the LARS runs slightly different software than the MC3200 in the SGI.

The data tapes produced by the LARS can be played back in real-time through the SGI-based
surveillance system by directly connecting the MC3200 in the LARS to the MC3200 in the SGI
(bypassing the RIB and Map board). The MC3200 in the LARS runs software that mimics a RIB/Map
board connected to a radar, so the SGI real-time system processes as if it were really connected to a radar.

The imponance of playing back recorded radar data in real-time cannot be exaggerated. System
development and debugging are greatly speeded by processing the same data that deterministically reveals
the same bugs each time. While keeping the number of algorithm parameters as small as possible was a
major design goal, optimizing even a small number of parameters would be extremely difficult without
the ability to assess the effects of parameter changes on the same data. Rare system failures, which would
otherwise be almost impossible to reproduce, can be captured in the tape recordings and played back to
determine the cause.

7.3.2.1 The Radar Interface Board

The RIB has the following three inputs: the radar receiver video-frequency output, the radar's
Azimuth Change Pulses (ACP), and the radar's Azimuth Reference Pulses (ARP).

7-10



The radar receiver's video output is an analog signal where the amplitude represents the received
power for some location on the airport surface. In the case of the ASDE-X, the video is the logarithm of
the received power. The exact location on the surface that corresponds to the video can be detennined by
knowing when the radar transmits a pulse and where the antenna was pointed when the pulse was
transmitted. This is the purpose of the ACP and ARP signals.

An ACP pulse is generated whenever the antenna moves past a series of fixed positions. An ARP is
generated whenever the antenna is pointed directly "North"- actually this is simply a reference direction
and is arbitrarily chosen. After each ACP, the radar transmits a pulse. The number of ACPs since the last
ARP are counted and therefore determine the position of the antenna when the pulse was transmitted. The
time lag since the pulse was fired determines the distance from the radar of each part of the video.

A related concept to ACP/ARP is the Pulse Repetition Interval (PRJ). PRI is technically the time
between radar pulses. There are many radar video samples during each PRJ. So each sample during the
same PRI represents the received power at a different range but at the same azimuth. Therefore, the tenn
PRI is often used to mean the set of samples for a given azimuth that are all generated from a single
transmitted pulse.

The RIB does AID conversion on the incoming video stream using the ACP and ARP pulses for
time association. The output is 40 (or 42) megabytes/second of digitized radar data along with clock and
control bits.

7.3.2.2 The Map Board

The Map board maintains a censor map of each position on the airport surface. Each bit of the map
represents a group of samples whose extent is 4 range gates by 32 azimuths. The azimuth and range gate
(the number of samples since the start of the PRI) of each sample is looked up in the map to detennine if
the sample is to be thrown away or transmitted to the MC3200.

The Map board receives the RIB data and filters it based on range and azimuth as described above.
The samples of each PRI are grouped together, and the Map board's internal independent free-running
clock is used to time-stamp each PRJ. Sixteen PRls are buffered in memory and then transmitted over a
16-bit high-speed parallel cable to the MC3200.

7.3.2.3 The Mercury 3200 Single Board Computer

The MC3200 has two jobs. It controls the Map board; initializing, status monitoring, downloading
the censor map, and receiving the radar infonnation. The MC3200 also groups the radar information into
packets and determines where the data is to be sent for further processing. The software for the MC3200
is written entirely in C.

The MC3200 in the SOl communicates with clutter-rejection processes running on any of the SOl
CPUs. Each clutter-rejection process operates on a fixed region of the airport surface. This is currently
arranged so that, if there are N clutter-rejection processes and M samples/scan, each process will receive

7-11



P=MIN samples/scan. A further convention is that the 1st clutter-rejection process always receives
samples 0 through P-l, the 2nd clutter-rejection process always receives samples P through 2P-l, and so
on. The division is performed so that PRIs are not split between clutter-rejection processes, but the
concept remains the same.

The MC3200 determines which clutter-rejection process is to receive each packet of radar data
based on the azimuth of the data. After inserting a small packet header, the MC3200 performs a VME
block move of the packet into the ring-buffer associated with the appropriate clutter-rejection process.
Each packet of radar data contains the samples (censored by the Map board) for 16 PRIs, the number of
samples, the azimuths of the PRIs, the clock time, and a sequence number incremented with each
transmitted datum.

In addition to the PRI packets, the MC3200 also communicates other information to the clutter­
rejection processes. Since the exact range of the samples cannot be decoded without knowing which
samples have been censored, the censor map is transmitted to each clutter-rejection process during system
initialization. The time of day associated with the clock counter value of zero is also transmitted to each
clutter-rejection process.

After the last PRI packet for the current scan has been sent to any clutter-rejection process, an End
of Scan record is sent. This allows the clutter-rejection process to immediately realize that no further data
is forthcoming for this scan and the remainder of the scan can be spent calculating new clutter statistics
and performing other bookkeeping functions. The clutter-rejection process could monitor the azimuth of
each PRI packet to determine this, but in the unlikely event of an error, the end of scan could not be
determined until data from the next scan arrived.

During playback, when the data source is not a radar but a tape in the LARS, data corruption due to
tape errors is possible because of the very large volume of data. When this occurs, an error record is sent
to each clutter rejection process that would normally receive the corresponding data. Since the software
for the MC3200 in the SOl is identical during playback and real-time processing, the software for error
records is enabled, but never activated during real time.

7-12



7.3.3 Clutter Rejection

The clutter rejection processes have three major goals. The first goal is to eliminate as much
receiver noise, radar returns from unimportant objects, interference from other radars, and weather
interference as possible. The second objective is to detect as many radar returns from aircraft and other
ground vehicles as possible. The third goal is to support the real-time system.

There is some conflict between these goals. Detecting as many targets as possible actually means
allowing a fair number of clutter returns to be declared as target returns. This way the rest of the system,
which has history and target shape infonnation can prune out these false detections without increasing the
overall system False Alarm Rate (FAR) and maintain an extremely high Probability of Detection (Pd).
But the real-time needs of the rest of the system may necessitate reducing the number of target detections
to lower the data rate. A balance must be found. The processing power of CPUs commercially available in
the next few years may make tradeoffs between real-time behavior and algorithm performance
unnecessary, but the current system must take this into consideration.

As the first goal implies, clutter is composed of the radar returns from objects on the airport surface
which are not aircraft and ground vehicles (such as buildings, lights, signs, grass, etc.), received pulses
from other radars, and the backscatter from rain, snow and other adverse weather. This implies that the
only correct output from the clutter rejection algorithm is runs of samples caused by aircraft, ground
vehicles, and multipath. Since multipath does not have the same statistics as the background clutter, it is
not appropriate for the clutter rejection algorithm to reject the multipath. The multipath will be eliminated
in further stages of the system.

733.1 1npUlData
The clutter rejection processes have three input sources; the command line arguments, the

runway/taxiway map (a run-length table), and the MC3200. The command line arguments and the
runway/taxiway map will be discussed in the Initialization section (Section 7.3.3.6.3). The data from the
MC3200 is also discussed in the Radar Interface section (section 7.3.2).

7.3.3.1.1 Ring ButTers

The MC3200 communicates with the SGI processors through a shared memory circular buffer (a
ring buffer). The MC3200 is on the VME bus inside the SGI rack. The ring buffer memory is actually on
the SGI proprietary high-speed bus, but is mapped onto the VME bus by a SGI I/O board. Unfortunately,
there is no way for the MC3200, which is executing a stand-alone kernel, to use Unix System V shared
memory segments and semaphores to communicate to the SGI processors.

The memory size required for the ring buffers is calculated and the Unix kernel is configured to
reserve this memory. A program (called Xmc3200) is executed on the SGI which determines the size of
the reserved memory and downloads the MC3200 program. The operator of the real-time system enters
the number of ring buffers which are to be used. Xmc3200 sends the number, sizes and addresses of the

7-13



ring buffers to the MC3200. Each clutter rejection process is started with an address of a ring buffer as a
command line argument.

Since the ring buffers occupy memory outside the control of the SOl Unix kernel, operating system
services such as semaphores are not supported. Acomplete semaphore package could be implemented
using VME test-and-set instructions. Fortunately, since only one process writes to the ring buffer, and
only one process reads the ring buffer, a rigorous semaphore is not needed for this application. A pair of
pointers is sufficient. One pointer points to the byte past the last record in the ring buffer. The other
pointer points to the first record in the ring buffer. The MC3200 determines if space is available in the
ring buffer for the next record, writes the next record, then updates the last record pointer. The clutter
rejection process determines if there are any records in the ring buffer, reads the record, then updates the
first record pointer. There cannot be any contention since the instructions to update the pointers are
atomic.

7.3.3.1.2 MC3200 Records

The first thing the MC3200 sends each clutter rejection process is the basic constants that each
process needs in order to properly interpret the radar samples. The MC3200 first sends the clutter
rejection process the azimuth numbers of the PRIs which will be sent, the total number of clutter rejection
processes N, and this process's sequence [1 ..N-1].

Next, the MC3200 sends a record which contains the basic radar constants such as the PRF, the
sampling frequency, the scan time, etc. This record also contains the censor map. The censor map
contains a bitmap of the airport surface. Each bit corresponds to a cell of 4 samples in range and 32
samples in azimuth. When the bit is on, the samples in this cell will be included in the radar data, when
the bit is off the corresponding samples will not pass the RIB (see section 7.3.2).

The final initialization record is a clock record. The RIB contains a real-time clock (see section
7.3.2) called the radar clock. When a new ACP is received, the radar clock value is sent, along with the
azimuth number, and record sequence number in the header for each PRJ. The clock record contains the
SOl system clock value which corresponds to the zero radar clock value. This time record is needed in
order to convert the radar clock count into a time and date.

The MC3200 groups 16 PRIs into one PRI packet. Each PRJ packet has it's own header, in addition
to the header the RIB attaches to each PRJ. An error condition is indicated if the radar clock value for the
first PRI in the PRI packet is zero. In the event of an error, the data for the PRI packet is ignored.

When all of the PRI packets for the current scan have been sent to the clutter rejection process, the
MC3200 sends an End of Scan record.

When the system is operating in playback mode, receiving radar data from the LARS instead of the
radar, it is possible (in fact quite likely) that there will be some tape errors during the playback. The
LARS will send an error record containing the number of packets lost The MC3200 sends an error record
to each clutter rejection process which is affected. Then the MC3200 sends empty PRI packets for each

7-14



packet lost. This error record is only possible during playback and cannot be sent during nonnal real-time
operation.

7.3.3.2 Processing Steps
Each clutter rejection process has two phases. First, the target detections are made and transmitted

as soon as possible to reduce the latency. The latency requirements are discussed in more detail in section
7.3.3.4.1. Then, after all the radar samples for this process for the current scan have been thresholded, the
clutter map is updated.

Threshold

Radar Samples

Run-Length
Encode

Figure 7-3-4. Processing and dataflow ofeach clutter rejection process.

It is important that targets that do not move for long periods of time continue to be detected and
tracked. Therefore, the estimation of clutter statistics should not include target samples in the calculation
of the clutter thresholds. The internal feedback loop in Figure 7-3-4 is designed to avoid this. The
thresholds are updated for each sample except for those samples that have been declared as target
samples.

It is easy to see that if the algorithm functions perfectly that only the samples which correspond to
surface clutter will be updated each scan. But, of course, the algorithm cannot be perfect. So how do
errors affect system perfonnance? The algorithm parameters are intentionally set so that there is a very
high Probability of Detection, Pdat the expense of the False Alarm Rate, FAR. In the event of a false
detection, the sample erroneously declared to be a target pixel does not update the clutter statistics. Since

7-15



the false detections are independently distributed over the airport surface each scan, it is extremely
unlikely that a given clutter sample will be declared to be target for several consecutive scans. Therefore,
the clutter statistics will not be significantly affected by false detections.

Another possible event is a missed detection. This occurs when a target sample is erroneously
included in the clutter statistics. Then the sample from the target distribution will be included in the
clutter statistics estimation and bias the clutter thresholds. This frequent occurrence is illustrated in
Figure 7-3-5. When an aircraft moves onto a location, the pulse shape, and antenna horizontal beamwidth
cause the smooth sample value vs. time in Figure 7-3-5. There is an interval where the reflected power
from the target is not significantly above the clutter as to be detectable. In this interval the clutter
thresholds can be seen to be effected.

Knowing the scan rate, the radar characteristics, the algorithm parameters, and the target ReS, it
would be theoretically possible to operate any ground vehicle a "stealth" target which would never be
detected. It could be driven at such a rate so that the clutter statistics rise so high that the target is always
below the threshold. Fortunately, this pathological case is practically impossible. In practice, the
thresholds are raised slightly as the target moves into the area, but well below the peak target values so
that the target is always detectable. This can be seen in Figure 7-3-5.

One lesson to be learned by Figure 7-3-5 is that, in addition to lowering Pd , a large value for K will
increase the effects of missed detections on the clutter statistics. The target sample which is above the
mean will increase the standard deviation, and this error is then multiplied by K to determine the new
threshold.

If samples from radar interference are included in the clutter estimation, it will not significantly
effect the clutter statistics since like random false detections. radar interference will not appear in the
same place consistently enough to significantly bias the clutter statistics. For this to occur, the PRF and
scan rate of the interference source would have to be synchronized with the radar. This is not impossible;
just extremely unlikely.

Earlier versions of the clutter rejection algorithm did not have the internal feedback loop in Figure
7-3-4. Instead, an external feedback loop was used. While the clutter rejection process only performs
point target detections. the rest of the system has spatial and temporal information which makes target
detections from the overall system much more reliable than the point detections from the clutter rejection
processes. This is a much more desirable source for the target pixel feedback used to train the clutter map.

The reason that external feedback was abandoned was not due to algorithm performance issues, but
real-time implementation issues. The external feedback loop was an additional hard real-time constraint
on the system. The target information was required before the clutter statistics could be estimated for the
next scan. The timing of the different modules in the surveillance system would need to be much more
precise to avoid excessive latency. Since the internal feedback mechanism was found to be satisfactory,
external feedback was gladly eliminated.

7-16



Amplitude

200

175

150

125

100

75

50 .

25

o

..
' .. .

.. " e •

.. 0° . .......
. .

140 160 180
Time (scans)

200 220

Figure 7-3-5. Cluller elimination thresholding. The solid line is a plot ofa sample on a runway. The dashed
line is the mean estimator. The dotted line is the threshold. The threshold is constant while samples are above
the threshold. but when the target samples are below the threshold the statistics are effected.

7.33.3 Output Data
The output data from each clutter rejection process can be grouped into two types. initialization

information. and target detections. The initialization records are sent each time a client connects. If a
client disconnects. then reconnects. the initialization records are sent before any target runs are sent.

Radar constants (e.g.• PRF. scan time. sampling frequency) are bundled with the censor map. Since
the censor map bitmap used by the RIB hardware is difficult to manipulate. the bitmap is converted to a
run-length table (RLT). Each run in the censor map RLT consists of the starting sample number and the
ending sample number of the samples whose bits are on in the bitmap.

The time record which contains the time of day which corresponds to the zero of the radar clock is
sent. This record is identical to the record from the MC3200.

7-17



To minimize boundary effects, the target runs from several PRJ packets are grouped together into a
larger wedge. After all the runs from each PRI in the wedge have been collected, the entire wedge is sent.

After all the target detections for the current scan for this process have been sent, and End of Scan
record is sent.

733.4 Real Time Constraints
There are three major considerations for real-time processing; peak processing load, average

processing load and latency. The radar data flows from the MC3200 into the clutter rejection processes in
uneven bursts. At Logan Airport, during the portion of the scan where the radar faces away from the
airport the data is ignored. Even during the portion of the scan when the radar faces the runways the
censor map causes uneven data rates. Some PRJ's will have hundreds of samples which must be
processed, other PRJ's have very few, but since the radar sampling rate is a constant 40 MB/s, the data
rate fluctuates. The solution to this peak data rate problem is simple. Sufficient memory is allocated to
buffer the data so that the peaks and lulls in the data rate are averaged together.

No matter how much buffering is perfonned, however, if the processing is not capable of handling
the average data rate, real-time perfonnance cannot be sustained. The sampling rate of the radar, 40 MB/s
for the X-Band radar, is much too great to process in real-time. The RIB applies a censor map to the data
which reduces the data rate to a much more manageable rate of approximately 600 KB/s. But even this
rate is too great for the clutter rejection software running on one MIPS R3000. To achieve real-time rates
with the current generation processors, the clutter rejection software runs in parallel on several processors.

The total surveillance system must deliver the aircraft tracks in a timely manner to be useful. The
latency of the target tracks is defined as the elapsed time between the time the radar scanned the target to
the time the target reports are transmitted. Even though both the clutter rejection algorithm and the
connected components algorithm operate in parallel processes, each packet of radar data must flows
serially through a clutter rejection process and then into a connected components processes, and then the
merge process.

7.3.3.4.1 Latency

The latency of each clutter rejection process is reduced by a very straightforward ordering of the
algorithm steps. As can be seen in Figure 7-3-4, each clutter rejection process first compares the input
samples to the corresponding clutter threshold in the clutter map and run-length encodes the samples
which are above the threshold. Next process applies the azimuth filter, and these filtered detected runs are
then transmitted to the connected components algorithm. Only after every sample has been transmitted
(for this process) does the process start to train the clutter map.

7-18



7.3.3.4.2 Parallel Processing

There are several schemes which could be used to split the clutter rejection into separate processes.
For maximum flexibility and ease of implementation, a loosely coupled scheme with local memory was
chosen. It is likely that a tightly coupled scheme with only global memory would work quite well and
could possibly take better advantage of the SOl system resources. But a tightly coupled approach would
restrict the hardware that could support the software. This tightly coupled approach will be discussed, but
has not been implemented.

The simplest approach to parallel processing was taken. The airport surface is split into N wedges
(these wedges should not be confused with the wedge definitions in the connected components processes).
Each clutter rejection process is responsible for only the samples in it's wedge. Each process thresholds
and run-length encodes the samples for it's wedge, applies the azimuth filtering, then calculates the clutter
thresholds for the next scan in the remaining time available.

While the current parallel architecture was easy to implement, it is not optimal. In the beginning of
each scan, the first clutter rejection process receives data faster than it can process, yet all the other clutter
rejection processes are idle. The first clutter rejection process will also finish training the cluttermap and
become idle while other clutter reje~tion processes still have work to do for the current scan. Both the
average processing rate and the latency can be improved by taking better advantage of parallel processes.

The architecture of the SOl would also support a tightly coupled approach. The clutter map (the
clutter thresholds and the statistics needed to calculate the thresholds for next scan) for the entire scan
would reside in a global shared memory segment. Each process would have the same basic control
structure; thresholding and run-length encoding, apply the azimuth filtering, transmit the runs, then
calculate new clutter thresholds. But rather than wait for a large portion of the airport samples to be
thresholded. each process would operate on just one packet.

The only critical resource which would have to be protected with a semaphore is the ring buffer
which receives the data from the MC3200. A clutter rejection process would first grab the semaphore
(blocking ifit is unavailable), then copy the PRI packet into local memory, update the ring buffer's pointer
which points to the next packet to be read, then release the semaphore. The azimuth range of the PRI
packet determines the portion of the shared clutter map in shared memory which will be accessed and
modified. This section of the clutter map is unique to this scan, so as long as each clutter rejection process
is operating on the current scan, the clutter map shared memory segment does not need to be protected
with a semaphore.

For airport topologies like Logan Airport where the radar points away from the airport for a large
fraction of the scan, this is probably sufficient because there is a large percentage of a scan where no new
data is available to be processed. If it is possible that there could be contention for the same area of the
clutter map by two processes one process operating on the previous scan, one process operating on the
current scan, then each portion of the clutter map will need to be protected by a semaphore. This presents
two difficulties. Many computer systems may not be able to support this large number of semaphores [the
SOl can] which will further restrict the portability of the software. The second problem is that this scan
overlap implies that there are times when the rate of data processing is less than the required real-time

7-19



rate. If this scan overlap occurs often, then the processing load is greater than the average processing
cababilities and the real-time system cannot be stable.

The previous parallel implementations of the clutter rejection algorithm are both Single Instruction
Multiple Data (SIMD) processes. The code for each process was identical , but the data which each
process received was different. Another tightly coupled parallel implementation of the clutter rejection
could be performed by splitting the clutter rejection algorithm into two different parts. This is called
Multiple Instruction Multiple Data (MIMD) parallelism.

A MIMD approach could be implemented by having one type of process which thresholds the data,
and another type of process which trains the clutter map. The data would flow from the MC3200 into a
shared memory segment to be read by both the threshold and clutter map training processes. Each
threshold process would use the global clutter map scheme previously described. The target runs would
be transmitted into queues for both the connected components processes and the clutter map training
processes. A clutter map training process would grab the oldest packet of target runs from the queue and
lock the appropriate section of the clutter map, and locate the radar samples which correspond to the
target packets. Then the new clutter thresholds would be calculated and the lock on the clutter map
segment released.

7.3.3.5 Target Detection
As previously discussed, clutter rejection is performed in two phases. The first phase performs the

target detection, and the second phase updates the clutter map. As shown in Figure 7-3-4, the target
detection phase is composed of three parts: thresholding, run-length encoding, and azimuth filtering. The
thresholding and run-length encoding are performed together.

7.3.3.5.1 Thresholding and Run-Length Encoding

Each 8-bit sample is compared to the threshold in the clutter map for the corresponding azimuth and
range. The output is this binary decision. Either the sample is above the threshold or it is not Rather than
send a 1 or 0 for each sample, the samples above threshold (the target samples) are run-length encoded. A
run of target samples consists of consecutive target samples and is represented by the sample number of
the first sample in the run, and the sample number immediately following the last sample in the run

There are actually two clutter map thresholds: a Short Term Memory (STM) threshold, and a Long
Term Memory (LTM) threshold. The STM performs the bulk of the clutter rejection while the LTM exists
only for the special case caused by target shadows (see Section 7.3.3.6). Each sample is first compared to
the STM threshold and if it is greater compared to the LTM threshold. Since the vast majority of the
samples are clutter, most samples are tested only to the STM threshold (and fail). Only a relatively small
minority are then compared to the LTM threshold.

Samples are numbered by considering the censor map. The 1st sample in the censor map is sample
0, the second is sample I, and the last sample is sample N. Since it would be too laborious to run through
the censor map to determine each target sample's sample number, a table lookup is used.

7-20



After the censor map is read during initialization, the sample number for the first sample on each
PRI is calculated and stored in a lookup table. The sample number for sample s on PRI p is simply
lookup[p] + S.

The convention for runs used throughout the surveillance system is that the starting sample number
is the sample number of the first sample in the run. The ending sample number is 1 plus the sample
number of the last sample in the run. The length of the run is therefore, end - start. This is an arbitrary
convention used in many image processing systems.

Target runs never overlap PRIs. In other words, if a target run extends to the last sample on PRI n,
and another run starts on the first sample on PRI n+1, the two runs will not be consolidated into one run.

7.3.3.5.2 Azimuth Filtering

The clutter rejection algorithm is a CFAR algorithm. In other words, there is a finite positive
probability that a clutter sample will be above the threshold. To raise the probability of detection, the
number of false detections may be in the order of one in a hundred. This will not raise the overall system
false alarm rate since these random false detections will be spatially isolated and easily removed by
further processing.

But these false detections can cause problems for the clutter map training. When the clutter
statistics are estimated, no samples above the threshold will ever be considered as part of the clutter
distribution. But some of the samples in the clutter distribution will be above the threshold. This would
bias the estimation of the clutter statistics and lower the clutter threshold.

One solution would be to calculate the bias and add it to the threshold. But since these false alarms
add extra load to the rest of the system and will be eliminated anyway, a simple spatial filter is used to
eliminate the salt and pepper false detections before the target runs are transmitted and used for training
the clutter map.

Any target run which is not adjacent to a run in the preceding PRIor the next PRI is eliminated.
Runs on the first or last PRI in a packet are never eliminated. Since the target runs from several PRI
packets are grouped together for transmission, the azimuth filter would have better performance if the
entire wedge was filtered. The current software, however, does not do this. Each packet of 16 PRIs are
filtered separately.

7.3.3.6 Updating the CluJler Map

The clutter map is composed of two parts: a Short Term Memory (STM), and a Long Term
Memory (LTM). The basic workhorse of the clutter rejection algorithm is the STM. The STM holds the
clutter thresholds which rapidly adapt, on the order of several scans, to the current environment.

The only reason for the LTM is to handle shadows. A large target, such as an aircraft, will cast a
shadow. The samples in the shadow of an aircraft will be lower than the clutter threshold and therefore
bias the clutter statistics. When an aircraft stops for longer than the STM time constant, the clutter

7-21



statistics in the shadow may go down to the level of receiver noise. If there was a significant amount of
clutter in the shadowed area, when the aircraft departed the clutter could be above threshold and declared
to be target samples.

All of the clutter estimators are performed with floating point arithmetic. Empirical testing
determined that, with the MIPS R3000 CPUs, there was no significant performance improvement when
integer arithmetic was performed. The additional accuracy with floating point arithmetic was much more
significant.

7.3.3.6.1 Short Term Memory

There are three floating point numbers for each sample in the STM: the STM threshold, the mean
estimate, and the average square value estimate. The STM threshold is equal to the mean plus a constant,
K, times the standard deviation (J.I. + K cr).

7.3.3.6. L1 Estimating the Mean

The mean is estimated with a simple recursive filter: J.l.i =«N -1)J.l.i-1 + x) / N, where J.l.jis the
mean on the ith scan, x is the current sample value, and N is the time window which controls the decay.
The current parameter N is 6.

7.3.3.6.1.2 Estimating the Standard Deviation

The standard deviation, 0', is the square root of the variance. The Markov estimator for the variance
is equivalent to xbarsquare - xsquarebar, where xbarsquare is the square of the mean, and xsquarebar is
the mean of the squared sample values. The mean has already been estimated and can simply be squared.
A recursive estimator for the average square value is used. The estimator has the same form as the mean
estimator: ASVi =«N -1»ASVi_1 + x* x) / N, where ASVi is the average squared value for scan i, x
is the sample value for the current scan, and N is the time window for the estimator. Since the ASV
estimator is noisier than the mean estimator, the value of N should be larger than the mean estimator time
window-- twice as large is a reasonable value.

Rather than calculating the square root of the variance and then multiplying K times the result, a
table lookup is used to combine both calculations. Since the standard deviation estimate is much noisier
than the mean estimate, an upper and lower bound on the standard deviation can be given. This algorithm
parameter is expressed in the product K cr and is also combined into the table lookup.

7.3.3.6.2 Long Term Memory

The LTM is calculated by taking the maximum of the current LTM threshold with the current STM
threshold. Perhaps a better, but more CPU intensive, update rule would be the maximum value of the
current LTM threshold times a decay constant and the current STM threshold. The LTM decay would be
trivial to implement, but is not in the current software.

7-22



The current software has the LTM threshold disabled. This has not been found to adversely affect
the system perfonnance.

7.3.3.6.3 Clutter map Initialization

All the discussions of the clutter rejection algorithm in this section have been about steady state
perfonnance where the clutter map is already assumed to contain the correct statistics and thresholds. But
how is this state achieved?

There are two pans to the clutter map initialization. The first is convergence to the proper values.
The initial clutter map is set so that the STM statistics are very high and the LTM statistics are zero.
Therefore everything is assumed to be clutter. After a few time constants, the STM converges to the
proper clutter estimates and thresholds-- but still assuming that all stationary objects are clutter. When a
target which was stationary during the clutter map convergence period moves, it moves onto an area
which has correct clutter statistics and is then detected. After a few time constants, the area where the
target was stationary converges also.

The LTM is not updated until the STM has converged.

Since targets may be queued up for considerable periods, the time before the entire airpon surface
has converged may be excessive. Therefore a map of the runways and taxiways is loaded during
initialization. After the STM has been initialized, the areas in this map are reset to values higher than
receiver noise (the nonnal RCS of pavement is lower than the receiver noise), but significantly lower than
the peak values for aircraft. This allows the runways and taxiways to converge quickly, while the other
more complex areas converge at a slower rate.

7.3.3.7 Desirable Improvements

7.3.3.7.1 Reconnect to MC3200

The clutter rejection software is very robust and has a very long mean time between failure.
Nevertheless, it is possible that a clutter could crash. It would not be difficult to create a process which
monitors the clutter rejection process and restarts any process which fails. The problem is, the current
MC3200 program only send the initialization infonnation (the censor map, and the time record) once.

It would be a nice feature if a clutter rejection process could signal the MC3200 that it needed
another copy of the initialization records.

7.3.3.7.2 Additional CFAR for rain

The current system performs quite nicely in low to moderate rain. Higher levels of rain, however,
cause some problems. One reason for this could simply be that less sensitive parameters are required.
Parameters for heavy rain have not been explored yet.

7-23



But it is likely that lowering the sensitivity of the clutter rejection software will not lead to good
rain performance. The greatly reduced signal to clutter ratio may lead to low probability of detection with
reduced sensitivity. And local rain gusts may cause large false detections (the area CFAR algorithm used
in the display of the ASDE-3 can also cause this).

Better results might be found by applying both the current time CFAR with an area CFAR. This
could be done without excessive CPU requirements by counting the number of target samples detected in
each wedge. If the number of detections becomes unreasonable, a higher threshold could be used until the
number of detections was reasonable. The threshold offset could gradually be reduced either with time, or
as the scan moves away from that region on the surface (or both). The threshold offset could be perfonned
in a table lookup, requiring no additional processing load beyond the reprocessing of a wedge.

7.3.3.7.3 LTMDecay

As mentioned earlier the LTM delay, while trivial, has not been implemented because the LTM is
currently disabled.

7.3.3.7.4 Additional Feedback

Either in addition to the LTM, or instead of the LTM other feedback mechanisms could be
implemented. Each of the following mechanisms have the desirable feature of not requiring any additional
hard real-time constraint between other parts of the surveillance system and clutter rejection.

7,3.3.7.4.1 Resetting the Clutter map

The output of the surveillance system could be monitored to locate any false detections that clutter
rejection consistently declares. This could be done by noting that a target has been declared out range of
where a large target was stationary, If the target never moves and has all the characteristics of clutter that
was shadowed the location of the false target could be sent to the appropriate clutter rejection process.

The clutter rejection process can reset the STM in that area to high values so that everything in that
area will be declared as clutter. Then a few time constants later, the STM will converge to the correct
clutter values. If the LTM is used, it should be turned off in this area until the STM has converged.

There is no hard real-time constraint since the clutter rejection process does not absolutely have to
reset the STM on the very next scan,

7.3 3,7.4,2 Shadow Detection

It may be possible to detect shadows and not update the clutter statistics there, exactly as clutter
statistics are not updated where targets are detected. This could be done analogously to target detection.
Targets are declared when the sample is greater than J.I. + Ka. Shadows could be declared when the
sample is less than J.I. - Ka.

7-24



73.3.8 CLutter Rejection Parameters

The following section enumerates clutter rejection algoritlun parameters which have been described
elsewhere.

7.3.3.8.1 Wedge Size

While the radar samples are received in packets of 16 PRIs per packet. To limit boundary effects, a
larger packet size is desired for the output target runs. The -wedge N command line argument controls the
number of PRI packets which are processed and sent in one wedge. The current default value for N is 8,
which means that the wedge size is 8 * 16 or 128 PRIs per wedge. N must be an integer.

7.3.3.8.2 Mean Estimator Window

The mean estimator window size is controlled by the -t N command line argument. The argument N
is the integer number of scans to use as the time window. The current default is 6 scans.

7.3.3.8.3 I(

The constant K used to calculate the STM clutter thresholds in the formula threshold = mean + K
sigma is controlled by the -k X command argument. The floating point argument X is used as the
constant. The current default value is 5.

This argument controls the sensitivity of the clutter rejection. This indirectly has strong effects on
the real-time performance of the system since a more sensitive detection will result in a greater data rate.

7.3.3.8.4 Runway/Taxiway Map

The RLT used as the map of the runways and taxiways for clutter map initialization is a compile
time constant. In RejectClutter.C the constant name is runway_map. The current default value is
"runup.img." This will probably be made a command line argument. in the future.

7.3.3.8.5 Runway Initial Clutter Value

The initial STM clutter map value assigned to each sample in the Runwayrraxiway map is a
compile time constant in the file RejectClutter.C The constant name is runway_initial_threshold. The
current default value is 75.

7.3.3.8.6 Ring buffer Address

The address of the memory to map in to the process address space for the ring buffer which receives
data from the MC3200 is controlled by the -buf A command line argument. The argument A is a
hexadecimal number. This argument is required and there is no default value.

7-25



7.3.3.8.7 Ring buffer Size

The number of bytes in the memory segment for the ring buffer which receives data from the
MC3200 is controlled by the -len N command line argument. The argument N is a hexadecimal number.
This argument is required and there is no default value.

7.3.3.8.8 Convergence Delay

The clutter rejection process will threshold and train the clutter map for a number of scans before
the clutter map has converged. During this period initialization messages and End of Scan records will be
sent to all clients which connect, but no target runs will be sent. The number of scans to wait before
sending target runs is controlled by the -wait N command line argument. The integer argument N is the
number of scans to wait. The current default value is 50 scans.

7.3.3.8.9 Sigma Bounds

Since the standard deviation (sigma) estimation is noisier than the mean estimator, it is desirable to
limit the range of sigma. But sigma is not actually calculated, rather the quantity K sigma is returned
from a table lookup to achieve better processor efficiency. For this reason, the K sigma product range is
controlled by the -min_k_sigma XO and -max_k_sigma Xl command line arguments. Both arguments XO
and Xl are floating point numbers. The current default value for XO is 15 and the current default value for
Xl is 35.

7-26



7.3.4 Connected Components

7.3.4.1 Process Architecture
The architecture of the Connected Component process is outlined in Figure 7-3-6. The basic

processing stages are:

1. Unflattening of received data structure and conversion to a Run Length Table.
2. Opening
3. Component Extraction Loop
4. Components to Objects
5. Object Feature Extraction
6. Sorting of Components into "totally internal" and "boundary" categories.
7. Censoring of "totally internal" category based on area
8. Flattening and transmission of "totally internal" and "boundary" lists.

When the list of runs is received from Clutter Rejection, it is in the form in which it was extracted.
For each radial, a list exists of target to background and background to target transitions. No transition is
recorded if a run extends to a region mapped out by the censoring map. In addition, a list of pointers is
maintained to the start of the data for each radial as well as the number of "runs" for each radial.

This structure is converted to the representation used for Connected Components processing and for
the Merge process as well. This representation actually consists of two "sub-representations" which share
a number of characteristics but differ in some respects. In both representations, runs are described
relative to an enclosing "wedge". A region of interest is defined from some start radial to some end radial
and from start range to some end range. We define an origin as the point of minimum azimuth and
minimum range.

In the first representation, every run is defined by two numbers. Each is the number of a point with
the count beginning at the origin. The first point corresponds to the location of the first target point after a
background point and the second point corresponds to the first background point after the last target point
in a run. No information is recorded for the ends of radials so that if a target run extends to the far range
limit and another (unrelated) target run starts at the near range limit of the next azimuth, these runs will be
represented by a single run starting in one radial and ending in the next. This is the representation into
which the data is initially transformed. It is most efficient for operations such as r.l.t. logical operations
(see below). This representation will be refered to subsequently as an integer r.!.t.

In the second representation, every run is defined by four numbers. For the two points defining the
run, the row and column value of the start and end of run are given. In this representation, a point is
always inserted for the end of a radial if a run extends to the far range end and for the start of run if a run
starts at the near range. This representation is most useful for the morphological operations such as
openings and closings and contour tracking where it is important to know the neighbor relation of nearby
runs. This representation will be refered to subsequently as a coordinate r.l.t.

7-27



C
O

M
P

O
N

E
N

T
E

X
TR

A
C

TI
O

N
LO

O
P

R~~J
JJT

01
O

P
E

N
IN

G
~

C
LU

TT
E

R
R

E
JE

C
Tl

O
N

L
.
.
.
.
-
-
-
.
.
.
.
.
.
-

L
.
.
.
-
-
-
-
.
.
.
.
.
-
.

. p
o

C
O

M
P

O
N

E
N

TS
TO

O
B

JE
C

TS

O
B

JE
C

TS
_ --.

O
B

JE
C

T
FE

A
TU

R
E

E
X

TR
A

C
TI

O
N

FE
A

TU
R

E
S

----
-

-..
J

I N 0
0

"C
LE

A
N

"
R

LT
C

O
M

P
O

N
E

N
T

U
S

T

!
!

FE
A

TU
R

E
·

B
A

S
E

D
S

O
R

T

IN
TE

R
N

A
L

O
B

JE
C

TS

B
O

U
N

D
A

R
Y

O
B

JE
C

TS

Fi
gu

re
7-

3-
6.

A
rc

hi
te

ct
ur

e
o

fc
on

ne
ct

ed
co

m
po

ne
nt

pr
oc

es
s.

O
B

JE
C

T
C

E
N

S
O

R
IN

G IN
TE

R
N

A
L

O
B

JE
C

TS
A

B
O

V
E

,I
f

TH
R

E
S

H
O

LD

O
B

JE
C

T
U

S
T

TO
M

E
R

G
E



The two representations are easily convertible. and the conversion operation is relatively
inexpensive computationally. The advantage gained by having a particular operation performed in a more
efficient representation is usually worth the slight expense of a conversion between representations.

After conversion. the received data is in the integer r.l.t form. It is then converted to a coordinate
r.1.t for the opening. The opening consists of an equal number of erosions and dilations. It has been
found that in the presence of increased numbers of small components. typically non-target in nature. the
processing time for Connected Components rises rapidly. By performing multiple erosions and their
corresponding multiple dilations. considerable real-time savings occur at the expense of missing smaller
real objects. Thus a threshold number of runs is used (currently 2(0) below which one erosion followed
by one dilation take place and above which two erosions followed by two dilations takes place.

Further. while an opening on the entire surface run length table would be quite possible. the
Connected Component process has only a single surface wedge available to it at one time. It would be
possible to produce a functionally equivalent r.l.t. if neighboring wedges had overlapping data. However.
for code simplicity, an approximation to a "correct" opening was used at wedge boundaries.
Conceptually. one assumes that both neighboring wedges consist of all target This is a conservative
assumption, leading to the removal of the fewest number of pixels at the boundary. It is achieved in a
computationally efficient manner by adding several runs at the start and end of the wedge that extend
from the minimum to the maximum range. The openings are then performed. and any runs outside the
wedge that remain are removed.

The erosions are implemented as follows: each run is first decremented by one at either end. We
then make a new r.U. with each of the runs in the original r.U. replicated three times - one with the
previous row number. one with the current row number. and one with the subsequent row number. with
all the runs merged into ascending order. Then. a pass is made through the resulting r.l.t using a counter
that increments at every start-of-run and decrements at every end-of-run. A final run is only reported if
the counter goes up to three and as soon as the counter falls below three. it is terminated. A dilation is
similar. with a run beginning whenever the counter goes above zero and ending when it returns to zero
and. of course. lengthening the run rather than shortening. It should be noted that the coordinate r.l.t.
representation of this operation is more efficient since row information is explicit. and even more
important. since it represents all end of radials explicitly.

The main workhorse of the Connected Components process is the component extraction loop. This
loop can be viewed as a recursive process. Its input consists of a "master" r.1.t containing multiple
components. Its output consists of the r.l.t. of the first component in the master r.U. and the rest of the
master minus the one component. This process is repeated until the master r.U. is empty.

Each iteration of the loop is performed as follows: first. the fust run in the master r.1.t. is found
Then. a technique called contour tracking is applied. This consists of walking around the component in a
counter clockwise direction from the first run and recording all 8-connected points visited The resulting
list is referred to as a chain code. The chain code is then converted into an r.1.t.. which is the first output
product. This r.1.t. is then subtracted from the master. Run length table subtraction is one of a class of
Boolean r.1.t. operations that include r.l.t anding. oring. and not. In fact. the subtraction is implemented
using the anding of the master r.l.t. and the not of the component r.U. The operation is performed in the
integer r.1.t format.

The component extraction loop results in a list of components. Note the implicit data reduction
from number of runs to number of "eight-connected items." However. it is unfortunately not true that

7-29



each such component corresponds to a real-world object. TIlis is most frequently because of aircraft
breakup, but can be due to objects being close enough to merge into single eight-connected components.
In an attempt to handle the breakup case, a nearest distance threshold is established, and components that
are closer than the threshold are put together on a single object list. The most accurate method of
performing this check would be a pairwise chain code point-by-point comparison. TIlis is
computationally much too expensive. Therefore, for each component an enclosing wedge is produced
with some padding added. A computationally inexpensive check for pairwise wedge overlap is
performed. If two wedges overlap, the two components involved are dilated. If a single object results,
the components (the before dilation versions) are placed on the same object list. Unfortunately, since the
dilations are not symmetric in range and cross-range, this test suffers from rotational asymmetry.
Computationally inexpensive, better approximations are available, but they have not yet been
implemented because of time considerations.

The previous stage results in a list of objects, each composed of one or more components. Then,
features are calculated for each object. So far, the features implemented include object centroid, area,
enclosing wedge, and perimeter. The perimeter is not currently calculated in the real-time system because
of speed considerations.

The next step involves deciding which objects are totally internal to the surface wedge for the
current packet. The surface wedge is the start azimuth to end azimuth region associated with the current
packet. We associate an enclosing object wedge with each target detected. The object wedge consists of
the first and last azimuths of the wedge as well as the start and end range of the target, plus some padding.
If the object wedge is totally contained within the surface wedge, the object is considered to be totally
internal to the wedge. If some part of the object wedge is outside the surface wedge, the object is
considered to be a boundary object. Using this definition, the objects are then sorted into a list of internal
objects and a list of boundary objects. To decrease the processing load for the subsequent Merge and
scan-to-scan association processing, a small area threshold is imposed, currently 40 square meters.
Objects below this threshold are discarded.

Finally, the lists of internal and boundary Objects, where the internal objects include features, are
serialized for transmission (flattened). As explained above, all pointers are removed, and the various data
fields are placed in a continuous buffer along with sufficient information to reconstruct the various lists.
This buffer is transmitted, along with the time stamp of the wedge, to the Merge process.

7.3.4.2 Output Data Description
The output data, as described above, is a list of internal targets with features and a list of boundary

targets. These have been "flattened" into a buffer for transmission via the server/client mechanism.

7.3.4.3 Databases

The adjustable parameters maintained in the database for this process are minimal. They include
the radar parameters (range bin size, range and azimuth offset, number of radials, etc.). In addition, the
database contains the threshold area and the components to objects association distance.

7-30



7.3.4.4 Significant ProblemslSolutions
The structure of the Connected Process and the techniques used are intended to address a number of

surveillance and real-time issues. A list of the most salient issues (in no partiCUlar order) follows:

1. Achieving a high degree of parallelism
2. Salt and pepper type small objects cause processing time to climb faster than linear and confuse

components to objects
3. Target breakup
4. Handling wedge boundary conditions
5. Extra load on the Merge process from "small" objects
6. Extensible feature set

Given the real-time requirements of this system, which include the ability to apply maximal
processing power both when the overall data load went up and when the data load for a few geometrically
localized packets goes up, a reasonable scheduling algorithm was required. Such an algorithm would also
need to take latency considerations into account. If we allocate processes on a geographical basis (one
process per region) it would potentially lead to a single overloaded process handling many targets while
other processes on other processors were idle. Since the regions of high load cannot be know a priori. we
decided that all processes be geographically independent Thus. they typically could not have information
about neighboring wedges. or history for that matter. since an individual process will have information
from different regions for each of its iterations. Thus, the Connected Components processes have no
memory of the previous wedges processed. Therefore. when processes go to retrieve new wedges. all
processes are equivalent, so anyone of them can be chosen. To reduce latency. the oldest available
wedge is chosen.

The openings were instituted to address problem number 2. Since the time spent in the contour
tracker is proportional to the perimeter of a component, a hefty penalty is extracted for processing small
objects with high perimeter to area ratios. In addition, since the beamwidth corresponds to five cross­
range samples and the pulse corresponds to 2-3 range pixels. anything larger than a point target. provided
that is reasonably bright, is not lost in a single erosion. Finally. the components-to-objects code can be
significantly confused in the presence of a great deal of multi-path clutter.

The problem of object breakup (problem 3) is handled by associating components together into
objects. The assumption that components in close physical proximity are most likely part of the same
object is born out most of the time. In regions such as runup pads and crowded taxiways aircraft can be
so closely spaced that this assumption is broken. This can be a significant problem.

The fourth problem. the one of handling objects at boundaries between wedges. is really an offshoot
of the region-independent Connected Component processing. Since each Connected Component process
has no history. it can have no knowledge of its neighboring wedges. Therefore. the ability to patch
together boundary components must be left for down stream.

The small object filter addresses the fifth problem. Its purpose is merely to reduce the load on the
Merge process. Since the Merge process is not parallelized. this is one means to adjust the load

Finally, an attempt has been made to produce a standard template for object features so that new
features can be easily added and tested without disrupting the remainder of the code.

7-31



7.3.4.5 Suggested Improvements
A number of improvements in the Connected Components system would improve system

performance. Some were known at development time but were not implemented in order to produce a
working system quickly. Others became apparent upon studying system output. These improvements
include the following:

I) Wedges should overlap for improved opening quality
2) R.L.T should be rescaled to have square pixels in components to objects
3) Several binary object features should be added
4) Greyscale data should be passed for use in calculating greyscale features.

As discussed above, the assumption is made in the opening that the neighboring wedges consist of
pure target. When objects on boundaries are reconstructed, this leads to distortions in shape. If surface
wedges overlap by a few radials, the resulting openings will look exactly as if complete data was always
available. This would constitute improvement 1.

Improvement number 2 would better the results of the components-to-objects process. In initial
offline forms of the code, the closest distance between components was calculated from point-by-point
comparison of the points along their chain codes. While highly accurate, this is remarkably inefficient.
This method is approximated by checking if the enclosing wedges with padding from two components
overlap. If they do, a number of dilations are performed on the two components, and the number of
components in the result is checked. The number of dilations depend on a distance parameter. The
number of dilations is the distance parameter divided by the range cell size (this is rounded of course).
The difficulty is that the amount of dilation in the cross-range direction is range dependent. This can be
corrected by rescaling the rJ.t.'s involved so that the pixels are roughly square and then performing the
dilations.

Currently, the perimeter feature has been written and tested but has been removed from the real­
time system for speed. This feature should be added to the real-time system as well as various shape
descriptors, major and minor axis finders, and several other features. These would aid in bad drop
reaquisition (see Merging and Scan-lo-Scan Association) as well as several other goals such as heading
determination. This could be achieved by more code optimization (difficult) or by purchase of faster
hardware.

Finally, if the greyscale values were available for target pixels (those pixels that are above threshold
in Clutter Rejection), features relating to greyscale could be calculated. These include centroids at
different thresholds, peak values, etc. This information would be helpful in multipath rejection and
inclement weather handling.

7-32



7.3.5 Merging and Scan-to-Scan Association

73.5.1 Process Architecture

This executable module actually combines two separate processing stages. These two stages are the
last in the Radar Surveillance sequence and must be performed serially. Rather than incur the overhead of
"flattening" and "unflattening" involved in implementing them as separate processes, it was decided to
have them co-reside in a single process. The first stage involves merging the parts of surface wedge
boundary targets and adding them to a list also containing targets internal to wedges. This list constitutes
the new targets for the current wedge that will be made available for tracking. The next stage is the scan
to scan association, which produces tracks. Each stage will be discussed separately.

7.3.5.1.1 Merge

Figure 7-3-7 outlines the architecture of the Merge stage. The basic processing stages are as follows:

1) Receive and unflatten lists for Connected Components
2) Decide to process or enqueue
3) Register wedge number with wedge list and calculate maximal enclosing wedge
4) Add objects internal to wedge to new target list
5) Attempt to match new boundary components to boundary components currently on unfmished list
6) Perform the Components-to-Objects procedure on targets finished in (V)
7)Calculate features for objects found in VI
8)Add completed objects to new object list.

As described above, each Connected Components process outputs two lists. One contains the
objects totally contained within the surface wedge of the packet and the other contains boundary
components. In addition, the surface wedge as well as the time stamp for the wedge are sent. In step I,
the Merge process chooses the oldest packet from all the Connected Component queues. This packet is
unflattened and made ready for processing. In step II, we determine whether this packet is from the
"current" scan or from the next scan (step III discusses incrementing scan numbers). If the packet is from
the current scan and has not been seen before, processing continues. If it is from the next scan, the packet
is enqueued awaiting completion of the current scan, and the next wedge is retrieved. If it is from the
current scan and has been seen before, an error is declared. Next, the wedge number is entered in the
wedge list (step III). If this wedge completes the current scan, the wedge list is cleared. Further, if this is
the first wedge of a new scan, it is used to project a time boundary for the current scan. By splicing
together all adjacent wedges seen earlier in sequence number and later in sequence number without gaps,
the algorithm calculates a maximal enclosing wedge for the current surface wedge.

7-33



E
W G
E

T
ST

C
O

N
N

E
C

T
E

D
C

O
M

P
O

N
E

N
T

S
....

M
AX

IM
U

M
EN

C
LO

SI
N

G
W

ED
G

E

---
W

E
D

G
E

LI
S

T
....

P
A

C
K

E
T

~
M

A
IN

T
E

N
A

N
C

E
P'

N
U

N
FL

AT
TE

N
ED

TA
R

C
O

N
N

E
C

T
E

D
PA

C
KE

T
YE

S
A

C
C

U
M

U
LA

T
E

U
...

U
N

F
LA

T
T

E
N

~
C

U
R

R
E

N
T

...
IN

TE
R

N
A

L
N

E
W

r--
--+

C
O

M
P

O
N

E
N

T
S

p

P'"
\S

C
A

N
-

..T
A

R
G

E
T

LI
S

T
~I

r
-

N
O

...
O

B
JE

C
T
~

F
E

A
T

U
R

E
BO

U
N

D
AR

Y
BO

U
N

D
AR

Y
P

P
A

S
T

IN
G

C
A

LC
.

,...
O

B
JE

C
T

AT
EN

D
C

O
M

PO
N

EN
TS

U
S

T
O

F
SC

AN

~I
r

C
O

N
N

E
C

T
E

D
E

N
Q

U
E

U
E

C
O

M
P

O
N

E
N

T
S

,....
'
-
-

P
A

C
K

E
T

F
ig

ur
e

7-
3-

7.
A

rc
hi

te
ct

ur
e

o/
m

er
ge

st
ag

e.



The new target list is initially empty for each new wedge. At this point, all objects internal to the
wedge are added to the list. A cumulative unfinished list for all boundary components not yet completed
is kept. Steps V and VI are then calculated together.. First, the Components to Objects procedure is
performed with the unfinished list serving as the object list and the new boundary component list as the
component list. The resulting objects are then sorted as either being within the maximal enclosing wedge
or not. Those that are within the maximal enclosing wedge are removed from the unfinished list. Their
features are calculated. They are then transferred to the new target list.

When a target is cut by a wedge boundary, the above method puts both parts as components into a
single object. This leads to an identical centroid and area, but is inappropriate for features such as
perimeter. The code has been written and tested for determining which components need to be pasted
back together and for performing the pasting operation. Due to real-time load, this capability is inactive.

7.3.5.1.2 Scan-to-Scan Association

In order to explain the basic engine for the Scan to Scan Association, the needed data objects must
be described. As previously mentioned, lists of components form objects. Lists of objects from
subsequent scans form tracks (hence they are lists of lists). A list of tracks that all meet a particular
criterion is referred to as a tracklist. The system currently maintains six tracklists, one of which is a list of
tracks to be terminated in the current scan.

Starting with a list of new objects from the current scan, for each tracklist for which it applies, we
proceed as follows:

1) A "best match under threshold" algorithm is applied to match objects to tracks. When a match takes
place, appropriate track features are calculated.

2) Matched tracks are reported along with certain features to Sensor Fusion
3) Unmatched objects are collected for matching with the next list.

At the end of the scan the following operations are performed:

1) Promote tracks from one list to another
2) Extract certain track features, most notably position projection.

The tracklists are as follows:

1) High-confidence tracks
2) Bad drop tracks
3) Low-confidence tracks seen more than once
4) Single-object tracks from previous scans
5) Single-object tracks from the current scan
6) Dropped tracks.

7-35



Lists 1,3 and 4 use the "best match under threshold" algorithm for matching. The "best match under
threshold" algorithm takes as input a list of new objects from the current scan (some may have been
removed by matching with previous tracklists) and a tracklist. The algorithm proceeds as follows:

1) Take the next object off the list of objects to be matched. Call it O.

2) Set the min distance (M.D.) to infinity and set a pointer to the beginning of the tracklist.

3) Take the next track off the tracklist. Call it T.

4) Find the distance according to the match metric for the tracklist between T and O. If it is above the
threshold, go to 5. Otherwise, compare it to M.D. If it is greater than M.D., go to 5. If it is less,
check if the latest entry in the track is from the current scan. If it is not, make the new distance the
M.D. and save a pointer to this track. If it is, compare the distance of the new object to the distance
of the current matched object. If the new distance is smaller, make it M.D. and save a pointer to it

5) If there are no more tracks, continue. Otherwise, go to 3.

6) If M.D. is still infinity, then put the target on the unmatched list (to be passed to the next track list
and go to 1. If M.D. is less than infinity, check if the best track has an entry from the current scan.
If it does not, insert 0 into the track and report the track immediately. If it does, remove the current
last object and put it on the new object list, and then insert 0 into the track and report it
immediately. Certain features for 0 are also calculated.

7) If there are no more objects, we are finished with the tracklist. Otherwise, go to 1.

In the above algorithm, a track can be reported more than once in a single scan if multiple objects
match it. The last report is the correct one. Also note that the distance metric is the geometric distance
from the projected position to the object position. For most situations, the projection is simply a two­
point projection. However, for two runways, a pier at the end of the runway leads to a high-clutter
situation and a lower-gain filter for position projection is needed. Thus, when a target is lined up with
these runways and is over the pier, the projection is calculated from the average velocity from the last five
sightings.

The features calculated for matched tracks include duration of track in number of scans, integrated
distance of track from first sighting and whether this is over a threshold, whether the latest sighting is on a
map of the "normal" movement area, both two-point and averaged velocity, and the aspect graph for the
track.

As described in the previous section, an aspect graph is a table of aircraft features as a function of
range from and orientation with respect to the radar. Currently, the table has 18 entries at 10 degree
spacing for orientation and a log distance scale with an entry for every doubling in distance. The only
feature currently used is area. The aspect angle is based on the orientation of the velocity vector with
respect to the radial from the radar to the centroid (see Figure 7-3-8). Since the aspect angle calculated
this way is unreliable for very slow moving or stopped aircraft, cells are only populated when the velocity

7-36



is above a low threshold. Also, for efficiency aspect graph entries are only calculated after the aircraft has
passed the leadin criterion.

e (Aspect Angle)

Figure 7-3-8. Definition ofaspect angle.

7.3.5.1.3 Track Lists

The high-confidence track list contains those tracks whose integrated distance is above the
threshold. These tracks are almost never caused by multipath. As described above, objects match this list
using the standard position-projection-based best-fit algorithm. The bad drop list contains tracks that
appear to have been dropped incorrectly. The criterion for this is discussed below in the section on
transitions between lists. Best fit is not used here. and the first object that matches a track is chosen. We

7-37



did this only for ease of implementation and should be corrected. The match criterion between track and
object is more complicated here. The aspect graph of the track in question records the last cell in which
the aircraft was seen. To match the bad drop. a new object must satisfy the following:

1) It is close to the feature values of the last seen aspect graph cell
2) The new object is in the region covered by the surface map.

The next list (list 3) consists of tracks that have at least 2 sightings but have not passed leadin. As
described in the section on algorithms, leadin is an accumulated travel distance threshold that a target
must have traveled to be declared high confidence. It also uses projection-based best fit for matching.
List 4 consists of tracks seen once in previous scans and matches to it also use projection based best fit.
All objects that fail to match any of the other lists initiate their own tracks on list number 5. These lists
are given track numbers that remain with the track for its lifetime.

At the end of each scan, tracks are allowed to transition between lists. The transition graph is
shown in Figure 7-3-9. If a high-confidence track has not been matched this scan, several tests are
performed on its recent values. If the recent average velocity is below a threshold and the last two out of
three hits are on the movement area, it is moved to the bad drop list. If it does not meet these criteria, it is
position coasted for a few scans. Entries in a bad drop list track must "position-project" correctly for
several scans for the bad drop to be promoted to the high-confidence list. Low-confidence tracks in list 3
must pass the leadin criterion to be promoted to the high-confidence list. A second sighting within a large
(-130 m) radius is all that is needed to progress from 4 to 3. List 5 is automatically promoted to list 4.
Tracks that have run out of coasts or have gone beyond the bad-drop reacquisition time limit go onto the
dropped list.

735.2 Output Data Description

The output consists of individual track updates. The data includes the following:

1) Track number
2) Centroid (2-d)
3) Area
4) Confidence (goes from 0 to 1 after passing leadin)
5) New and dropped track indication.

This is sent out for every target whether it has passed leadin or not. Because of best fit, multiple
reports for the same target may occur. With respect to bad drop, while the track is on the bad drop list, no
reports are made.

7-38



N
O

S
IG

H
TI

N
G

M
A

X
IM

A
L

C
O

A
S

TI
N

G

IN
·T

R
A

C
K

H
A

S
N

'T
P

A
S

S
E

D
LE

A
D

-IN
Y

E
T

M
A

X
IM

A
L

C
O

A
S

TI
N

G

IN
·T

R
A

C
K

R
E

A
C

Q
U

IS
IT

IO
N

N
O

S
IG

H
TI

N
G

C
O

A
S

T

B
A

D
-D

R
O

P
D

E
TE

R
M

IN
A

TI
O

N

F
ig

ur
e

7-
3-

9.
Tr

an
si

tio
n

gr
ap

h.
A

llo
w

ed
tr

an
si

tio
ns

/o
r

tr
ac

ks
ar

e
sh

ow
n.



7.3.5.3 Databases

The parameter database for the Merging and the Scan-to-Scan Association is larger than for the
Connected Components process. It includes the following:

1) Area threshold
2) Components-to-Object distance
3) In-track projected position tolerance
4) Search radius for second sighting
5) Number of coasts for various situations
6) Pier fix tolerances
7) Equations and locations of pier
8) Minimum number of scans for high-confidence tracks
9) Minimum accumulated track length for high-confidence tracks
10) Minimum maximum distance from first sighting for high-confidence track
11) A file containing surface map
12) Velocity range for the bad drop mechanism
13) Aspect graph size and limits
14) Number of radials in a packet
15) Radar parameters
16) 1be region in which to search for bad drop reacquisition
17) Timeout for bad drop
18) Fit parameters for features for reacquired targets.

7.3.5.4 Significant Problems/Solutions

The following are the most significant problems addressed in the scan-to-scan association portion of
the algorithm:

1) Multipath targets
2) Inappropriate drops
3) Quick reacquisition of high confidence targets if dropped
4) Capture of "important" targets by lower confidence tracks
5) Providing surveillance over the piers (high-clutter region)

We identify the multipath targets primarily through the leadin criterion. This consists primarily of a
threshold for the distance moved. However, the target must also have moved more than a minimum
"max" distance from its initial sighting to prevent stationary objects with a small amount of dither from
passing leadin.

Drops that take place on the movement area, that take place below departure velocities, and involve
high-confidence targets are deemed to be inappropriate drops. This criterion quite accurately detects
inappropriate drops. Once these drops are detected, it is important to reacquire them quickly (before
forcing them to pass leadin again). This is accomplished by using the aspect graph to match features to

the dropped target In the initial stages of development, various features were analyzed for scan-to-scan
consistency within a track. It was found that major discontinuities were found for even simple features
such as area in regions where targets turned, and enormous longer-term variations were found as well.

7-40



The reason for this is straightforward. Provided that an aircraft is constrained to the roughly two­
dimensional surface of the airport, its return, neglecting ground bounce effects and shadowing, is
dependent only on its heading and range. It was found that targets at about the same range and heading
had very similar features, with the standard deviation being typically under 10%. Using the features from
the last cell of the aspect graph in which the target was seen seems to match the dropped target in many
situations. Some exceptions include shadowing and a target that has turned significantly since the latest
sightings.

It was also found that allowing all tracks to compete on an equal basis for new targets led to
frequent "theft" of important in-track targets by new, low-confidence tracks. Oearly, this is so for first
sightings since the association radius for these targets is quite large; but it was also found that if bad
drops had "first crack" at the targets, some unmatched bad drops would latch on to subsequent aircraft.
To minimize this, reliable tracks are matched first and only those targets that are not taken are made
available to bad drops.

Finally, a low-gain filter is used for the piers to compensate for the degraded surveillance, using the
assumption that targets fly straight over the piers.

7.3.5.5 Suggested Improvements
The areas for improvement include the following:

1) The concept of scan boundaries is rather artificial. It fits in well with the Logan geometry where
surveillance is provided for only about 180 degrees of the airport However, it is unclear where to
put the cut for an airport with the radar in the middle of the runway configuration. In addition,
since processing for wedges from subsequent scans is suspended until the current scan is completed,
it leads to sub-optimal use of the processor.

2) While the algorithm exists for splicing parts of aircraft cut by boundaries back together again for
such features as perimeter, they must be sped up to be consistently real-time (faster hardware would
do the trick as well).

3) ARTS information is fused with ASDE data downstream in the sensor fusion process. If ARTS
information were provided directly to the ASDE processing, it could assist in such things as initial
acquisition based on feature matching for a known aircraft type.

4) The aspect graph used currently for reacquisition is a dynamic aspect graph, Le., it is calculated on
the fiy for a given aircraft. If an aircraft is lost in a turn, the last-cell-seen aspect graph information
will not be a good fit to the features of the turned aircraft. A library of aspect graphs for different
aircraft would do much better in this respect With ARTS, the correct aspect graph could be
immediately accessed for arrivals. For departures, a fit to a sufficient number of cells could be used
to match an aircraft to a library aspect graph.

5) The aspect graph boundaries are currently arbitrary, based on even heading divisions and even log
range divisions. The boundaries of cells should be adaptive, depending on such things as the
obscuration and illumination of scatterers.

6) Currently, the first bad drop list entry that is "close enough" to a new target is matched to it. For
isolated bad drops this is fine, but in crowded environments like the runup pad, best fit should be
implemented.

7-41



7) For more accurate fits, multiple features should be implemented for each cell of the aspect graph.
Perimeter is available but its calculation takes too long for the current processors. Eventually,
greyscale features should be used as well.

8) For the second sighting of an aircraft, since velocity information is not yet available, a large match
radius is used. The number used is based on the maximum distance an object can move in a single
scan. While this is a conservative assumption, it leads to many matches within the radius for which
only the best fit is used. However, in certain areas of the surface, a much smaller radius should be
used corresponding to lower maximum velocities.

9) While most multipath is a result of aircraft-to-aircraft (or ground vehicle) reflections, some involve
reflections off of fixed targets like buildings. Mapping these multipath sources would allow us to
quickly eliminate them.

7-42



7.4 SCIP INTERFACE

7.4.1 Subsystem Architecture

As was mentioned in the System Overview, the SCIP interface consists of two parts, which are
shown in Figure 7-4-1. The first part, ADIDS-SCIP, executes on an IBM PC-compatible computer and
extracts the information flowing across the ASR-9-SCIP-to-ARTS-IOP interface and sends it out to a
serial interface or modem. The second part, SCW-receiver, executes on a UNIX workstation and receives
the SCW information and makes it available to other processes on the same machine or connected via a
network.

ADIDS-SCIP has two execution threads. The first thread is interrupt driven. It pulls the data in
from the ARTS interface hardware, checks parity and framing, applies the geometric and message-type
filters, and for messages that pass the filter, it adds a 32-bit header and sends the message to the serial
interface. The second thread receives the commands from the serial interface, detects loss of incoming
data to allow automatic SCIP port switching, and updates the local display of message statistics.

ADIDS-SCIP receives the following four message types from the ARTS: beacon target messages,
radar only target messages, sector messages, and alarm messages (which include a heartbeat message
delivered once per scan). The format of these messages is discussed in Section 4.2.1. The messages can
be filtered based on the following:

• message type (all messages)
• min/max range (beacon and radar only messages)
• start/end azimuth (beacon and radar only messages)
• min/max altitude (beacon messages).

The output message format is identical to the input except that a 32-bit header is added and the
parity bits (bits 30 and 31) of the data are cleared. The header has the following format:

• bits 30 and 31 set (output framing marker)

• bit 29 set if input from SCIP port B, otherwise cleared

• bits 22-28 are a 7-bit ASCII message type code -- 'B' for beacon, 'R' for radar only, 's' for sector,
and 'A' for alarm

• bits 0-21 are a 22-bit integer time-stamp representing the number of DOS clock ticks since midnight
(approximately 18.2 ticks per second).

The client of ADIDS-SCIP can issue commands to perform the following:

• set minimum or maximum range or altitude

• set the start and end azimuth

• set the time-stamp clock

• set which of the four message types should be sent or suppressed

7-43



• request which SCIP port to listen to

• tum on data transmission (password protected)

• stop data transmission (also occurs automatically when the connection is via a modem and the Data
Carrier Detect (DCD) signal is lost).

SCIP

r-------- £~~---------------------------I
'\7 ADIDS-SCIP

I
Check Parity

I I

Port Selection
Iand Framing Logic

'-~

SCIP port
data requests

\7 filter

I
Apply Filters I~ parameters I Process

Iand Format I'" I Commands
~

SCIP client
messages commands

r--------------------------------------,
SCIP Receiver

I
Receive

Messages I

message
words

I Establish Connection I
I and Configure Server

~

I
Process Header I
and First Word

time and
first word '\7

I Process Beacon \
'---...1':>1"1 Messages

---------------~---------- ------
SCIP system
reports time

,'7

Figure 7-4-1. SCIP interface.

7-44



The SCIP-receiver receives messages from ADIDS-SCIP via a modem connection, reformats the
data, and acts as a server to make the data available to other processes. SCIP-receiver has four primary
functional elements as shown in Figure 7-4-1. The first element interacts with the modem to establish the
connection to ADIDS-SCIP and sends a sequence of client commands to initialize the ADIDS-SCIP
filtering parameters and the time-stamp clock. The second element performs framing and reads the first
two 32-bit words of a message (the header word and the first word of data). Framing is based on the two
marker bits of each word (bits 30 and 31), a valid message type, and any required set or cleared bits in the
first word of ARTS data (second word of message). The second element also checks that the time-stamp
is within 1.5 seconds of the master-clock time and sends ADIDS-SCIP a time command if it is not. The
third element processes beacon messages. It reads the remaining two 32-bit words and, for messages with
valid mode-A codes, it unpacks the range, azimuth, mode-A code, and altitude fields into standard
floating point and integer representations and performs unit conversions. It then passes the re-formatted
data on to the interprocess communication software for transmission. The fourth element is responsible
for the actual reading of the data from the modem. It is designed to detect the loss of the modem Data
Carrier Detect signal or the loss of incoming data. When the loss of the modem Data Carrier Detect
signal is detected, the first element is invoked to re-establish connection and re-send the client commands
(including the transmit command). When the loss of data is detected, the sequence of client commands is
re-sent to command ADIDS-SCIP to transmit. In both cases, the complete sequence of commands is sent
in case ADIDS-SCIP has been re-started.

7.4.2 Output Data Description

Table 7.4.1 shows the SCIP-receiver output message fields.

TABLE 7.4.1

SCIP-Receiver Output Message Fields

Field

mode-A code

range

azimuth

altitude

altitude valid flag

time

Comments

only targets with highest mode-A code confidence are passed on

meters (floating point), resolution is 1/64 nmi

radians (floating point), resolution is 1/4096 of a circle, 0 azimuth is magnetic
north

feet (floating point), resolution is 100 feet

boolean, 0 => false, non-zero => true

seconds (floating point), based on the master-clock

7-45



Range and azimuth are relative to the radar with zero azimuth typically aligned with Magnetic
North. These messages are only sent when a beacon message is received and the message's mode-A code
confidence is high.

7.4.3 Significant Problems/Solutions

Considerable development was required to make the processes of establishing the modem
connection and of starting the data transmission robust. When trying to establish the modem connection,
for example, the connection sequence (Le., hang up, dial, wait for Data Carrier Detected signal) is
repeated for many times before giving up. The ADIDS-receiver can re-establish the data flow after most
connection or command transmission failures as long as ADIDS-SCIP is operating.

7.4.4 Suggested Improvements

Much of the difficulty involved in getting this subsystem to function reliably centered around
details of the modem connection. In a more permanent installation, a dedicated and more robust network
connection or improved modem handling software in both processes would be advisable.

The SCIP-receiver currently does not verify that all the client commands were received correctly
(and ADIDS-SCIP provides no mechanism to suppon such verification) other than to check the incoming
time stamps and to detect the failure of a start-transmission command. On the other hand, in a more
permanent installation, this flexibility may not be required.

7-46



7.5 MDBM INTERFACE

7.5.1 Subsystem Architecture

The MDBM interface is structurally very similar to the SCIP interface. It consists of two parts,
which are shown in Figure 7-4-2. The First part, ADIDS-MDBM, executes on an IBM PC-compatible
computer and extracts the information flowing across the ARTS-IOP-to-MDBM interface and sends it out
to a serial interface or modem. The second part, MDBM-receiver, executes on a UNIX workstation to
receive the information and make it available to other processes on the same machine or connected via a
network.

ADIDS-MDBM has two execution threads. The first thread is interrupt driven. It pulls the data in
from the ARTS interface hardware and places it in a ring buffer. Command words and data words are
received from the hardware separately, but are placed into the same internal buffer with an extra marker
word included to flag IOP-MDBM command words. This marker word is used to find the first command
word when performing input data framing. The second thread is a continuous loop. It extracts the data
from the ring buffer, and checks parity and framing. Because the data flowing from the lOP to the
MDBM only represents MDBM memory updates, the main thread must emulate the internal memory of
the MDBM and the MDBM memory-update process. After a section of emulated memory has been
updated, the main thread applies the geometric and message-type filters to each updated message, and for
messages that pass the filter, it adds a 32-bit header and sends the message to the serial interface.
Between each memory update sequence, the main thread handles the receipt of commands from the serial
interface and updates the local display of message statistics. The serial interface is also checked
whenever the input ring buffer is empty because there is often a delay between the arrival of command
words and the data words.

ADIDS-MDBM processes the following four message types from the lOP: full data block, altitude
(limited) data block, MSAW data block, and single symbol data block. The format of these messages is
discussed in Section 4.2.2. The messages can be filtered based on the following:

• message type
• DBM number (all unsuppressed messages)
• DBM number (full and MSAW data block, regardless of suppression)
• min/max X coordinate
• min/max Y coordinate.

The output message format is shown in Tables 4.2a-d except that a 32-bit header is added and the
parity bits (bits 30 and 31) of the data are cleared. The header has the following format:

• bits 30 and 31 set (output framing marker)

• bit 29 set if input from MDBM port B, otherwise cleared

• bits 26-28 are an 8-bit integer representing the DBM number

• bits 22-25 are the low order 4-bits of an ASCII message type code -- 'F for Full, 'A' for altitude, 'M'
for MSAW, and'S' for single symbol

7-47



• bits 0-21 are a 22-bit integer time-stamp representing the number of DOS clock ticks since midnight
(approximately 18.2 ticks per second).

The client of ADIDS-MDBM can issue commands to perfonn the following:

• set minimum or maximum X or Y coordinate

• set which of the four message types should be sent or suppressed

• set the time-stamp clock

• rum on data transmission (password protected)

• stop data transmission (also occurs automatically when the connection is via a modem and the Data
Carrier Detect COCO) signal is lost).

The MDBM-receiver receives messages from ADIDS-MDBM via a modem connection, refonnats
the data, and acts as a server to make the data available to other processes. MDBM-receive has four
primary functional elements as shown in Figure 7-4-2. The first element interacts with the modem to
establish the connection to ADIDS-MDBM and sends a sequence of client commands to initialize the
ADIDS-MDBM filtering parameters and the time-stamp clock. The second element perfonns framing
and reads the first two 32-bit words of a message (the header word and the first word of data). Framing is
based on the two marker bits of each word (bits 30 and 31), a valid message type, and six required set bits
in the first word of full, MSAW, and altitude data blocks. The second element also checks that the time­
stamp is within 1.5 seconds of the master-clock time and sends ADIDS-MDBM a time command if it is
not The next element processes each message. For altitude, full, or MSAW data block messages, it reads
in the remaining B word and C words and decodes the characters in the C words to fonn 1,2, or 3 strings
respectively that represent the 1 to 3 lines of text in a DEDS data tag. These strings are parsed to extract a
heavy weight indicator and, for full and MSAW data blocks, flight id and aircraft type. Since the aircraft
type field is shared with controller-entered scratch pad infonnation, the aircraft type is checked for
validity against a database of valid types. The coordinates in the B words are converted from their l's
complement representation to floating point and from 1/16 nmi to meters and the symbol TI code is
converted to an ASCII character. The process message element then passes the re-fonnatted data on to
the interprocess communication software for transmission. The fourth element is responsible for the
actual reading of the data from the modem. It is designed to detect the loss of the modem Data Carrier
Detect signal or the loss of incoming data. When the loss of the modem Data Carrier Detect signal is
detected, the first element is invoked to re-establish connection and re-send the client commands
(including the transmit command). When the loss of data is detected, the sequence of client commands is
re-sent to command ADIDS-MDBM to transmit. In both cases, the complete sequence of commands is
sent in case ADIDS-MDBM has been re-started.

7.5.2 Output Data Description

Table 7.5.1 shows the MDBM-receiver output message fields.

7-48



MDBM
data

MDBM
commands

Ring Buffer

r-------- ---------------------------------
ADIDS-MDBM

r--------.:ll.....--- MDBM
data

MDBM
commands
and data

Emulated MDBM
Memo~ Kr----~

changed
records

Establish Connection
and Configure Server

Valid Airframe
Type Codes

filter
parametersApply Filters and

Format Updated
Records

MDBM------------------------- cTient-------
messages commands

r-------- ----------------------------- ----------
MDBM Receiver

time and
first word Interpret Message

and Format

----------------------~~~~-----------~~em-----

Figure 7-5-1. MDBM interface.

7-49



Field

X and Y position

flight id

flight id valid

aircraft type

aircraft type valid

heavy weight class

heavy weight valid

control position

ctl. pos. valid

dbmnumber

tag direction

tag line 0

tag line 1

tag line 2

time

TABLE 7.5.1
MDBM-Receiver Output Message Fields

Comments

meters (floating point), resolution is 1/16 nmi, Y axis is aligned with
magnetic north (SCIP 0 azimuth)

UAL1234, NI23AB, etc.

boolean, 0 => false. non-zero => true

B727, DC9, etc.

boolean, 0 => false, non-zero => true

boolean, 0 => false, non-zero => true

boolean. 0 => false, non-zero => true

letter designating the control position for the target

boolean, 0 => false, non-zero => true

0-7, which dbm is showing this information

NE, SE, SW, NW

string for MSAW/CA line of ARTS data tag

string for identification line of ARTS data tag

string for altitude and speed/type/scratch pad line of ARTS data tag

seconds (floating point), based on the master-dock

Most of the fields in the message have associated validity flags because not all message types
provide each piece of information and because some pieces of information time-share the same position in
an ARTS data tag.

7.5.3 Databases

The MDBM-receiver uses a database of valid aircraft type codes to assure that all aircraft types
parsed from the data block information are valid. This database is an ASCII file containing all the
(currently 597) valid codes that are separated from each other by spaces, tabs, and/or carriage returns.

7.5.4 Significant Problems/Solutions

A fair degree of effort was required to understand the operation of the MDBM and to develop a
proper emulation of the MDBM memory updating process. Also, since the MDBM interface has the

7-50



same modem-connection architecture as the SeIP interface. the comments in Section 7.4.3 apply here as
well.

7.5.5 Suggested Improvements

Much of the difficulty involved in getting this subsystem to function reliably centered around
details of the modem connection. In a more permanent installation, a dedicated and more robust network
connection or improved modem handling software in both processes would be advisable.

The MDBM-receiver currently does not verify that all the client commands were received correctly
(and ADIDS-MDBM provides no mechanism to support such verification) other than to check the
incoming time stamps and to detect the failure of a start-transmission command On the other hand, in a
more permanent installation, this flexibility may not be required.

7-51



7.6 SENSOR FUSION

7.6.1 Introduction

Sensor fusion is responsible for accepting surveillance data from the ADIDS ARTS tap and ASDE
processing, and for producing a single fused surveillance data stream.

Sensor fusion is an event-driven executable that has four real-time input streams: ASDE, ARTS­
SCIP, ARTS-MDBM, and timer events. Sensor fusion translates all target positions to a common
coordinate system, detennines and applies time offsets to synchronize time stamps, smoothes target
positions, estimates target velocity and acceleration, de-multipaths the ARTS-SCIP beacon reports, filters
false targets from the ASDE data, transfers identity and type infonnation from the ARTS-MDBM data to
the ARTS-SCIP beacon data, detennines which ASDE targets and ARTS-SCIP beacon targets represent
the same target and should be combined into a single track, and coasts tracks through coverage gaps.

The output of sensor fusion is a single data stream that contains fusion track reports of reliable
tracks. Sensor fusion also has a basic capability to write selected internal infonnation to a- file for
debugging purposes.

7.6.2 Process Architecture

Sensor fusion represents surveillance input events as SCIP_TargetReports, MDBM_TargetReports,
and ASDE_TargetReports. each a class derived from a common base class TargetReport. The various
TargetReport derived classes have member functions responsible for initialization, input, output, and
hashing.

Sensor fusion represents surveillance subtracks using two classes, ARTS_Track and ASDE_Track,
derived from the common base class SubTrack. The base class methods are responsible for implementing
the alpha-beta-gamma filter, perfonning current position estimates, and maintaining a copy of the most
recent TargetReport. The derived classes implement the sensor-specific functionality corresponding to
updating SubTracks with TargetReports. perfonning the time offset, maintaining the sealevel correction
for ARTS altitude, eliminating ARTS multipath, and loading and perfonning sensor-specific target filters.

No MDBM_Track class exists. This is because MDBM data represent the same surveillance
infonnation as SCIP data. The MDBM_TargetReport handler perfonns the MDBM-SCIP subtrack
subfusion directly, without maintaining any MDBM subtrack independent of the ARTS_Track. All
pertinent infonnation from the MDBM_TargetReports is maintained by the ARTS_Track on subfusion.
Because consecutive MDBM_TargetReports corresponding to the same ARTS_Track may contain
different types of valid data, only the valid data from each MDBM_TargetReport is updated into the
ARTS_Track. In this manner, after only a few successful subfusions, an ARTS_Track will contain all the
useful infonnation and will correctly reflect any changed infonnation available from the MDBM.

Sensor fusion maintains tracks using the Track class. Tracks are responsible for fusing and
unfusing SubTracks, estimating surveillance clock offsets, coasting, loading and perfonning fused track
filtering, and generating TrackReports for transmission to client processes.

TrackReports are of three basic types. distinguished by the flags set in the message: nonnal track
report messages. track suspend messages, and track drop messages. Nonnal track report messages are
sent for all Track surveillance updates that pass the fused track filter. Suspend messages are sent for
Tracks that are no longer to be sent to clients, but that are still maintained by sensor fusion. Drop

7-52



messages are sent for Tracks that have been reported, but are no longer being maintained by sensor
fusion. The normal clients of sensor fusion are the surface monitor and ASDE display processes.

7.6.3 Process Data Flow

Figure 7-6-1 shows the process data flow for sensor fusion. Sensor fusion is event driven. It is a
client of ASDE surveillance processing, the ARTS-SCIP tap, the ARTS-MDBM tap, and the master
clock. On initialization, sensor fusion reads an airport database, creates an output channel to which it will
write TrackReports, connects to the master clock, and then reads the configuration files as specified in its
command line. These specify which sources of surveillance sensor fusion should connect to. The Event
corresponding to each channel is registered with the EventDispatcher along with the function for handling
that event. A periodically occurring event is also registered to trigger the coasting function. Each type of
TargetReport has its own report handler. The target report and clock event handlers together control the
processing flow once the process is done initializing.

A SCIP or ASDE surveillance input event, represented by a TargetReport, causes sensor fusion to
check the appropriate SubTrack store for a SubTrack with the same ID. If no such SubTrack exists, then
a new one is created. The SubTrack is then updated using the new surveillance information. An MDBM
surveillance input event causes sensor fusion to check the SCIP SubTrack store for a match. If such a
SubTrack exists, then it is updated using the new surveillance information. If no such SubTrack exists, no
action is performed for this MDBM_TargetReport.

The updating process for ASDE_TargetReports is as follows. The first 100 ASDE reports received
by sensor fusion are used to estimate the timestamp offset between ASDE and ARTS surveillance. All
reports are used to perfollTl an overall latency estimate that is used in coasting. If the ASDE report is a
rereport (a second report on the same track for a particular scan), the previous erroneous report is
removed from the SubTrack and its effects on estimated parameters of that SubTrack are undone. The
new report is compared with the SubTrack's projected position. If the projection error exceeds a
threshold, the report is added to a list of reports deferred for a short time to wait to see if a better match
will occur. This list of deferred reports is checked every time a new report is received to determine if the
report has been deferred sufficiently long to warrant its use or if it has been outmoded by subsequent
reports for the same SubTrack. Once an ASDE TargetReport has passed the deferral test, it is used to
update the SubTrack's position, velocity, and acceleration estimates using an alpha-beta-gamma fllter, a
copy of the TargetReport is appended to the SubTrack, the creep velocity is estimated if the projection
error is small, the prefusion ASDE Filter is applied, and the SubTrack's Track is told to update itself.

The updating process for ARTS_TargetReports is similar to that for ASDE TargetReports, with
some exceptions. No initial timestamp offset estimate is performed. Before any SubTrack maintenance is
performed, the special ARTS multipath rejection logic is invoked to determine if either of the present or
the previous report to this ARTS_Track is multipath and should be rejected. The altitude list maintenance
is performed to produce an ground level pressure altitude correction estimate. No list of deferred reports
is maintained, although this could be added easily. A prefusion ARTS Filter is used.

7-53



ASDE SCIP MDBM
reports reports reports

ecelve,
Receive and Receive and

Time Offset, &
Translate Translate

ranslate ASDE
SCIP Data MDBM Data

Data I

ASDE SCIP MDBM
reports reports reports

Reject Multipath,
Smooth,

Smooth, ARTSApply ASDE
Apply ARTS SubfusionubTrack Filter

SubTrack Filter

ASDE SubTracks

time offset

~--"---~ ARTS SubTracks\---------~

Tracks

Perform
Generate kl------'''----------t..>I Time-Based

rack Update Track Maim

master time

tracks

Apply Output tracks
Filter

Generate
Track
Report

track
reports

tracks

tracks

Apply
Coasting

Filter

Set
Origin

Surface
Database

Figure 7-6-1. Dataflow diagram/or sensor fusion.

7-54



The updating process for MDBM_TargetReports results in updating ARTS_Tracks when
appropriate. The MDBM_TargetReport is used to update the first found ARTS_Track whose flight 10 or
position matches that of the MDBM_TargetReport. The updating results in copying the appropriate new
information from the MDBM_TargetReport into the ARTS_Track. No fusion consequences are possible
and no TrackReport is generated.

When a Track is told to update itself based on a surveillance update, it performs track status
maintenance. If it is a fused track, it verifies that the two SubTracks still should be fused together. If
fusion is no longer appropriate, the ASDE and ARTS SubTracks are separated into two Tracks. and the
resulting two unfused Tracks are allowed to check for fusion with any other appropriate Tracks. If the
original Track is not a fused track, it looks for an appropriate fusion candidate Track. If an unambiguous
fusion partner is found, the two Tracks are fused, and the surveillance time offset is reestimated. The
fusion is required to be unambiguous in both directions. After all Track maintenance is performed. the
Track copies the appropriate data from each of its SubTracks and invokes the postfusion Track Filter. If
the Track passes the Filter. a TrackRepon is generated for transmission to any client process.

Coast events from the master clock cause sensor fusion to review all Tracks for currency. Those
that are to be dropped are deleted. Those that are stale but not suppressed are coasted to the current time
minus the appropriate surveillance source's estimated latency. If the Track passes a coasting Filter. a
TrackReport is generated. otherwise the Track is suppressed and a suspend message is generated if
appropriate.

7.6.4 Sensor Fusion Databases

Sensor fusion reads several databases to derive the parameters needed for its various functions.
Sensor fusion reads three radar databases. one for each of the ASDE, SCIP, and MDBM surveillance
inputs. These databases include a source indicator. a real/simulated indicator, the radar location, and
range and azimuth correction factors. The ASDE and SCIP databases also include the alpha-beta-gamma
filter gains. latency estimate gain, stale time. number of reports to save. and the number of reports before
acceleration is valid. The ARTS database also includes the altitude coast time, the ARTS multipath
rejection distance parameters. and the minimum airspeed for nonzero altitude. The ASDE database also
includes the poor-match filter gains. the poor-match distance criterion, the drop time, and the creep
distance parameters.

Sensor fusion reads a database containing parameters that affect the fusion process. These
parameters include the ASDE surveillance radius. the padded ASDE surveillance radius, the ARTS
altitude fusion limits. the firm fusion count, the fusion radius. the fusion radius velocity weight factor, the
fusion radius default velocity error, ASDE and ARTS old track hit counts, the time between
extrapolations, the surveillance offset time gain, the minimum velocity and maximum acceleration to
update the surveillance offset time, the fusion radius multipliers. and the time limit on fusion verification.

Sensor fusion also reads a database containing the specification of its various Filters. Each Filter
has a keyword indicating which Filter is being specified followed by a list of filter Regions with their
appropriate parameters. The Filters are described in more detail in the following section.

7.6.5 Significant Problems and Solutions

One of the significant capabilities provided by the sensor fusion software is a flexible and generic
area-dependent feature-based filter. Sensor fusion presently uses fllters in four places: once for each of
the two input surveillance datastreams, once for the fused datastream before output, and once for coasted

7-55



tracks before output. The coasted track filter is actually implemented as two separate Filters: an ARTS
drop reprieve filter and a track extrapolation filter. Filters are represented using the Filter class, which
includes member functions that allow application of the filter to the different types of SubTracks and
Tracks, and a RegionList to specify the areas, features, and actions of the filter. The RegionList allows
each Filter to operate over a number of Regions, each defined by a polygon with zero or more excluded
polygons. Each Region tests a number of features of the SubTrack or Track. The features presently
tested include allowed surveillance source (ARTS, ASDE, fused), track length, target area, net travel
distance, sum travel distance, speed, track confidence, altitude, and stale time. If the features match and if
the current position lies within the Region's defined area, then an action is applied to the SubTrack or
Track. The actions presently defined include blessing and suppressing. The architecture allows the
addition of additional features and actions as the need may arise. Filter specifications are read from an
ASCII file at runtime. Thus much of the behavior of sensor fusion is determined by easily changed
parameter files that specify the Filters.

7.6.6 Output Data Description

The output of sensor fusion is represented by the TrackReport class. The TrackReport output
message fields are outlined in Tables 7.6.1 a-b.

7-56



I Field

I initial track bit

I track drop bit

I track suspend bit

I, surveillance source

I track swap bit

I heavy indicator

I simulated bit

I track ID

I ASDE track ID

I measurement time

I target reliability

I track length

I coast length

I position

I velocity

I velocity validity

I creep velocity

I

creep velocity
validity

I acceleration

I acceleration validity

I position uncertainty

I velocity uncertainty

I

acceleration
uncertainty

TABLE 7.6.1A

Sensor Fusion Output Message Fields (Part a)

Comments

bit, 1 => new track, 0 => not a new track

bit, 1 => track being dropped from sensor fusion store, 0 => not being dropped

bit, 1 => track not being dropped, but should no longer be used, 0 => otherwise

2 bits, ASDE, ARTS, or COAST

bit, 1 => track may have swapped, 0 => otherwise

bit, 1 => track report is from a heavy aircraft, 0 => otherwise

bit, 1 => track report is simulated data, 0 => track is real data

unsigned long, sensor fusion-assigned unique track identifier

unsigned long, ASDE track number as assigned by ASDE processing

double, seconds, time of position measurement for this track report

float, chance that this target is really there, not used, always zero

short, number of times this Track has been seen

short, number of times in a row this Track has been coasted by sensor fusion

two doubles, meters north and east of an airport reference point, always valid

two doubles, meters/sec north and east

boolean, 0 => velocity is invalid, 1 => velocity is valid

two doubles, meters/sec north and east, low-gain velocity estimate for slow tracks

boolean, 1 => creep velocity is likely to be a better estimate than the velocity, 0 =>
otherwise

two doubles, meters/sec"2 north and east

boolean, 0 => acceleration is invalid, 1 => acceleration is valid

two doubles, meters north and east, as reported by ASDE processing, not used

two doubles, meters/sec north and east, not used

two doubles, meters/sec"2 north and east, not used

7-57



Field

track status

target extent

target centroid

heading

extent uncertainty

heading uncertainty

altitude

altitude validity

mode A code

ground speed

aircraft ID

aircraft type

control position

TABLE 7.6.1B

Sensor Fusion Output Message Fields (Part b)

Comments

short, ARTS, ASDE, firmly fused, tentatively fused, or coasted

four shorts, meters ahead, behind, left, and right from the centroid

two doubles, meters north and east of an airport reference point, as reported by
ASDE processing

float, target heading radians clockwise from north, as reported by ASDE, not used

four shorts, meters ahead, behind, left, and right, not implemented, 0

float, radians, as reported by ASDE, not used

short, feet above ground level

boolean, 0 => altitude is invalid, I => altitude is valid

short, mode A squawk code reported by transponder, 0-4095

short, meters/sec, as reported by ARTS, if known, else 0

string, 0-7 ASCII characters, as reported by ARTS, ifknown, else null

string, 0-4 ASCII characters, as reported by ARTS, if known, else null

ASCII character, as reported by ARTS, if known, else null

7.6.7 Suggested Improvements

Sensor fusion needs to have its subtrack code expanded and its track fusion code regularized to

accept more and different kinds of sensors. These additional sensors may eventually include multiple
ASDEs, ADS-Mode S, and the ASR-9 primary radar. This will likely require some additional

capabilities, most notably an n-way clock offset equalization algorithm, SubTrack scan-to-scan

association algorithms using Track and SubTrack information from multiple surveillance sources, correct

treatment of corotating sensors, additional SubTrack multipath removal techniques, and more flexible
modeling of surveillance coverage areas.

7-58



7.7 THE SURFACE MONITOR MODULE

7.7.0 Introduction

This section describes the surface monitor, which is responsible for implementing the rules
described earlier in the Safety Logic chapter. First, the surface monitor products will be described. These
include status light commands, alert message. diagnostic aids, and approach messages. Next, the
architecture will be detailed. As an object-oriented, event-driven system, the surface monitor does not
easily lend itself to a classical description of sequential data transformation; to get a sense of the system
the important relationships between high-level objects must be understood. The architecture description
will begin with a very general outline of what happens when a target report is received from Sensor
Fusion. After this context has been supplied, the high-level objects will be presented and described in
some detail. Design decisions will be explained as necessary.

The two databases that give the surface monitor a large measure of site independence and
configurability will then be described. The first one, the Surface database, will be briefly described while
the second one, the Safety database, will be taken in greater detail since its specific function is to allow
surface monitor configuration. The mechanisms for configuration-dependent parameter specification will
be explained here.

At this point the current implementation will have been described in moderate detail. A discussion
of the design goals will then be presented. The purpose of this discussion is twofold: First, it
demonstrates how and to what degree the architecture supports those goals. Second, it will be useful for
anyone considering implementing such a system to compare their goals to these. It may be that some of
the goals here would not be applicable in a different context, and in such cases a different approach may
be warranted.

Finally, a list of problems will be given. These include numerous small issues that have not been
implemented due to time constraints. as well as some more fundamental design-level problems that
Lincoln Laboratory feels should be addressed when building a subsequent version.

7.7.1 Surface Monitor Products

The surface monitor runs in a distributed client-server environment. and has roles as both a client
and a server. This section will briefly describe its client role, and will then focus on detailing the services
it provides other system processes.

The surface monitor is a client of the sensor fusion process, which is the source of all received
target data. Sensor fusion is essentially responsible for presenting seamless coverage of targets tracked by
a variety of sensors. It merges the multiple data streams and performs parameter estimation, providing
such target attributes as position, velocity, acceleration, heading, altitude, etc. The product of the sensor
fusion module is a track report (encapsulated in an object called TrackReport). which contains all
received and derived parameters for a target and represents a single sampling event in that target's history.
For a full description of the track repon see the Sensor Fusion chapter of this document.

7-59



The four separate servers operated by the surface monitor are used to drive displays, models, and
audible devices. The clients of these servers include the ASDE display process, the Alert Monitor
process, and the Light Governor process. Any combination of clients (including multiple instances of
them) may be present when the surface monitor runs.

The simplest service is the status light service. This contains messages that indicate what state a
given light on the airport surface should be in, and includes both Runway Entrance Lights and
TakeoftHold Lights. The contents of the message are simply a light ID (as read from the safety logic
database) and the current state of the light (ON or OFF).

The alert message service contains more information and is slightly more complex. It includes a
runway name, an alert ID, up to two target IDs, a priority level, a time, and an operation field. The

runway name is self-explanatory. The alert ID is obtained from the safety database and maps to a
predetermined text message (e.g., "Warning: arrival conflict. Traffic stopped on runway"). The ID is
simply a means of sending smaller messages over the network. The target IDs represent the target(s)
involved in the alert. The priority level is not currently used by anyone, but could be used with a device
that supported pre-emptive processing. The idea behind this is that a message warning of a relatively
benign situation could be interrupted by a message signalling a need for immediate attention. The time is
used to define the order the alerts were issued in, and the operation field indicates whether the alert is
being added (a new alert) or removed (the situation was resolved).

The approach message service consists of messages about targets determined to be on approach to
runways. This is used by the display program to maintain the approach bar, a display enhancement that

displays the position of a target on approach relative to the outer marker and the runway threshold. The
approach message contains the runway name, the target ID, the position of the target, a drop target
indication, the runway status, and the distance of the target from the threshold. The runway name and
target ID are as in the alert message. The target position is a point in meters north and east of the airport
reference point. The drop indication, when set, indicates that the target is no longer considered as being
"on approaCh." The runway status is one of the following: Primary, Secondary, or Unambiguous. This is
determined by the surface monitor when it attempts to figure out which runway the target is approaching
(this is not always obvious). If the target could be on approach to more than one runway it "ranks" the
possible approaches and labels the most likely as the "Primary" approach. Thus, Primary refers to an
ambiguous projection onto the most likely runway. Secondary refers to an ambiguous projection onto a
runway other than the primary runway, and Unambiguous refers to a projection where only a single
runway is involved. The distance from the runway threshold is measured along the target path. For
targets on approach, this could be a straight line, a curve with a single are, or an S-curve. This
determination is done by the surface monitor, which provides the length so the client can accurately
display a distance from the threshold.

The final service provided by the surface monitor contains a target "snapShOt." This was developed
as a diagnostic tool and has proven to be very valuable in understanding and demonstrating the surface
monitor operation. A target snapshot contains a summary of the surface monitor's prediction of target
behavior. As will be described in detail below, the surface monitor estimates target state and performs

7-60



prediction of where the target will be some t seconds into the future. Actually two predictions are made:
one in response to the question "Where could the target be?" (the maximum possible path), and the other
in response to "Where must the target be?" (the minimum possible path). The target snapshot contains the
target state (e.g., STP, TAX, DEP, etc.) and two-"trees" denoting the minimum and maximum possible
paths. These are used by the display process to graphically depict what the surface monitor is doing.

7.7.2 Architecture Overview

The surface monitor is an object-oriented application. It consists of a main program and some 60
native classes, totaling approximately 28000 lines of C++ code. The application currently runs on Apollo,
lIP, and Sun platfonns; to date porting it has simply required compiling it on the target machine.

The surface monitor accepts target reports from the Sensor Fusion module and produces status light
commands, alert messages, and approach bar messages. This is accomplished by the interaction of the
software Objects, which are abstractions of real-world objects and concepts. Examples of software objects
are TakeoftHoldLight, Runway, and AlertMessage: In this document the generic real-world object will
be lower case, while the software construct will be capitalized. For example, a reference to a target will
mean some aircraft or vehicle operating on the airport surface, while a reference to a Target will mean the
software construct and its associated state variables and methods. An effort has been made to name the
objects meaningfully; often the abstraction they represent is obvious from the name.

In this section a brief, high-level description of the events that occur when a Track Report is
received from the Sensor Fusion module is given. Up to a point these events are ordered and the
invocation of certain functions is predictable. After this the events that occur do so as a result of the
target's predicted behavior, and it is no longer possible to list them "in order of occurrence." Certain of
the objects used by the surface monitor are named here with little or no explanation. A detailed
description of each one will be presented in the next section.

The surface monitor maintains a table of Target objects, each one corresponding to a unique target
track as determined by the Sensor Fusion module. Each time a Track Report is received, the Target is
updated with the Track Report (if no Target exists for that Track ill a new one is created).

The Target first locates itself on the airport surface, determining in which PropagationCell(s) it
resides. (As will be explained, the airport movement area and approach areas are blanketed with a grid of
irregUlar polygons, each of which marks the boundaries of a PropagationCell. As part of its setup
procedure, the surface monitor determines the connectivity of these cells by building a directed graph.)
The locating is perfonned with the help of a CellLocator object, which contains rules about how the
search of PropagationCells should be ordered.

After a target has located itself, it determines its current TargetState using a state machine
embedded in the Target object. (A TargetState is one of eight specific operational conditions that any
Target must be in: STP, TAX, DEP, etc. Refer to the Safety Logic chapter and appendix for a detailed
description of the state transition rules.) Before entering the state machine, however, it must determine if
any state transition thresholds will be locally overridden by a high-level object with an interest in the
target. For example, the default speed value that must be exceeded for transition from TAX to DEP is 50

7-61



kts. 1bis prevents many hi-speed vehicles from being declared "departures" allover the airport. On
active runways, however, where departures are expected, the value is reset to 37 kts. This threshold is
thus overridden by the active runway. (A priority scheme is assigned to all high-level objects that might
seek to override thresholds, since at some points on the surface two or three contending objects will each
attempt to do so.) The mechanism by which this is accomplished will be described below. The state
machine is then invoked and the target TargetState is determined.

Using its new TargetState, the Target then loads a set of performance parameters that will be used
in predicting its behavior. These TargetState-dependent values include acceleration and deceleration,
velocity thresholds, and lookahead time to determine the prediction time horizon.

The Target then inserts itself into the PropagationCell in which it is located. This causes the
PropagationCell to initiate the prediction process, which proceeds in a breadth-first manner through the
directed graph of cells until the edge of the graph is reached or the prediction lookahead time is exceeded.
Briefly, (the prediction process is described in detail below) each PropagationCell participating in the
prediction process locally stores information concerning the Target's path through itself. It also asks the
Target to add it to the list of cells that the Target is predicted to traverse (the TargetPath). When the
prediction process is complete, control is returned to the Target object

The Target then requests that each PropagationCell contained in its TargetPath notify any high-level
client objects about the new prediction information. 1bis notification could take the form of a "removal"
message (Le., the Target is no longer predicted through this cell and the cell is being removed from the
TargetPath) or an "update" (indicates new or potentially altered prediction information is contained in the
cell). There is a simple reason for waiting until prediction is complete to perform notification, rather than
cell by cell as it progresses: a high-level object might be notified many times (by many different cells) of
the target's presence. By waiting until prediction is finished, the entire TargetPath is placed at the
disposal of the object, which can then perform its task on the first instance of notification and disregard
any further notifications arising from that particular prediction.

The notification process is what causes the safety logic rules to be invoked, and the Target,
TargetPath, and PropagationCells contain the information used by the rules. Currently, the following
high-level objects register with the PropagationCells that they overlap for notification: Runways,
TakeoftHoldLights (TIll..s), RunwayEntranceUghts (RELs), and ArrivalAlerts.

The Runway object has special status among notification client objects in that it must be notified
before any others. 1bis is because the remaining objects may need to query the Runway about the status
of the Target relative to that runway. For example, a THL may want to know if a Target "satisfies REL
conditions" for a particular runway. 1bis is a temporal dependency that is not well documented - the
Runways are guaranteed to be created and registered before any other objects because of the order in
which the objects are initialized.

Each high-level "notifee" invokes its own set of logic rules. For example, a REL notified of a
Target prediction will check if the target is along the runway it is monitoring. It will also use the
TargetPath to compute when the Target is predicted to enter and exit its area of interest (its
"ActivationArea"). Based on these and other checks, it decides what its state should be and sets itself

7-62



appropriately. It then ignores subsequent notification events generated by that Target for that Track
Report. Similar action is perfonned by the THLs, ArrlvalAlerts, and Runways.

The high-level objects themselves are not completely independent of each other. For example,
Runways may unconditionally set the state of a REL to "ON" when certain conditions are met (Le., the
Whole Runway Switch is on - see Safety Logic chapter). To handle these interdependencies some objects
will register with each other. In fact, it is usually true that objects overlapping runways will register with
the Runway as well as the PropagationCells from which notification is desired. There is another reason
for this: Runways provide a convenient and natural way to set airport-configuration dependent parameter
values. For example, under VFR conditions some constraints may be relaxed on active runways. Setting
these parameters "for the entire runway" is easier and more intuitive than doing so for each individual
object.

7.7.3 Surface Monitor Objects

7.73.1 High-Level Objects
There are approximately 60 classes of objects defined and used by the surface monitor. Perhaps

another 100 or so "utility" classes are present as well, making a complete class diagram an unwieldy
document to decipher. Fortunately, to gain an adequate understanding of how the surface monitor
operates less than a dozen of these classes need be examined in any detail. Most of these classes have
been mentioned in the above operational summary; a full list appears here. Each of these classes will be
described in some detail in this section. The high-level object classes used by the surface monitor are as
follows:

RunwayEntranceLight TakeoffHoldLight Runway

Target PropagationCell SurfaceGraph

ExitPoint CellLocator ArrivalAlert

The collection of objects that perfonns target path prediction and notification is sometimes referred
to as the Prediction Engine. This collection includes PropagationCells, ExitPoints, the CellLocator, and
the SurfaceGraph. The Prediction Engine generates the events that cause the higher-level objects to
invoke the safety logic. Additionally, these "clients" of the Prediction Engine can query the
PropagationCells to obtain further infonnation about the target's predicted path should they require it

7-63



7.7.3.2 Target
The Target class is an abstraction of targets seen in the airport surface environment. One Target object is
maintained for each unique track monitored by the Sensor Fusion module. A Target is created upon
receipt of a new Track Report and subsequent Track Reports are used to update the Target.

The Target interacts with many other objects and exports a variety of methods to give client objects
access to its internal state and to modify that state. Each Target object maintains a list of internal
attributes that define its state. This list includes the following:

1. All estimated parametric values supplied by Sensor Fusion (e.g. acceleration, velocity, position,
altitude, valid altitude flag, valid velocity flag, etc.)

2. A number of attributes describing its location, including a list of PropagationCells, whether it is
unambiguously located (Targets may occupy more than one approach zone PropagationCell
simultaneously), whether it is inside !he airport region, whether it is "along" a runway, and others.
These are derived and sometimes set by external objects via exported Target methods.

3. A number of attributes pertaining to TargetState, including current and previous TargetState,
whether it has landed, whether it is dropped or suspended, its initial acquired TargetState, and a list
of MarkTags maintained as a convenience for client objects. These tags are used when a client
desires to "mark" the particular target for any reason, and remain set until the TargetState transitions
from its current value. For an example of this see the TakeoftHoldLight object description. One
simple but important state variable is the Target iteration stamp. This is an integer that is initially
set to 0 and incremented on receipt of each subsequent Track Report. Client objects use this stamp
to determine if the prediction they are being notified of is a new one or one that has already been
processed.

4. A list of PropagationCells that form the Target's current predicted path.

5. A TargetPath object containing PathSamplePoints defining the Targets current predicted path. This
is only created from item 4 if a TargetSnapShot is requested. A PathSamplePoint is a tuple
containing <position, velocity, acceleration, timestamp> information, and a TargetSnapShot is a list
of segments defining the target's path, currently exported to the display module to observe the
dynamic performance of the system.

6. An optional TargetTrace object. A TargetTrace is a packed summary of the Target's internal state
that is recorded to a disk file on each update. If recording is enabled, the most recent TargetTrace is
retained to help build the next one.· The TargetTrace records differences in Target state from one
update to the next, so the current one is always retained.

7-64



7. A TransitionValueBlock, which contains and manages the state transition values for each Target.
These are initially loaded from the Safety database. There are currently 13 state transition threshold
values specified by the Safety Logic. The TransitionValueBlock manages each of these as a 2-item
stack, where a stack entry consists of a transition value and a transition priority. Initially the stack
is loaded with the default value and priority. Any client object wishing to override a transition
value must present a higher priority than the current value. If this happens, and the current value is
the default value, then the default is pushed onto the stack and the new value/priority pair becomes
the current value. If more than one client object attempts to override the value, the one with the
higher priority wins and the loser is discarded. If more than one client with equal priorities attempt
to write the same value, the first one wins. (Note that this implicitly favors the Runway object
since, as in notification, it will always be the first one solicited.) The stack for each value is reset at
entry to the state machine on each update, just before override solicitation. Currently Runways and
TakeoffHoldLights will sometimes attempt to override transition values.

The transition override is initiated as follows: when a high-level object that might want to override
a transition value is created, it registers for transition override consideration with each
PropagationCell intersecting the area it is interested in. When a Target requests overrides from a
PropagationCell, the cell in turn passes the request off to each object that has registered with it.
Note that not every registered object will attempt to override the value each time it is asked.
Consider a PropagationCelllying on a runway. In this case it will have at least two client objects
registered for transition override - one runway in each direction. When a Target travelling along a
runway solicits overrides, it will be ignored by the runway going in the opposite direction. Only the
runway it is travelling along will respond with an override attempt if it has one.

8. A PerformanceValueBlock containing one entry per TargetState. Each entry contains values for
acceleration, deceleration, velocity threshold, and prediction lookahead time. The Target loads the
appropriate values after computing its state and before requesting insertion from a PropagationCell.
The PropagationCells access these values via exported methods in the Target class.

9. A CellLocator object used to generate a list of PropagationCells in which the Target is located.
Although currently cells on the surface of the airport may not overlap, approach area cells may
overlap each other and ground cells. The CellLocator contains logic to optimize the search for
occupied PropagationCells.

The Target is primarily responsible for locating itself, computing its TargetState, maintaining its
path list, and making relevant state information available to requesting client objects. Additionally, it
maintains a "marking" service for client objects. The marking service allows an external object to place a
state-dependent tag on the target, which is guaranteed to be cleared when the target transitions out of its
current state. This service is used by RunwayEntranceLights, TakeoffHoldLights, Runways, and
ArrivalAlerts for various reasons. It is a client itself of the CellLocator.

The target state machine is part of the Target object. This is a finite state machine that implements
the state transitions described in the Safety Logic chapter. Hysteresis is accomplished by applying
different state transition rules to enter and exit a state. The transition thresholds and transition rules will
not be described here. The state machine includes a simple cycle check (based on a transition count), and

7-65



if a cycle is detected the state does not change. It is believed that cycles have been prevented by transition
threshold checks, but this has not been formally shown. This is problematical because several client
objects will override transition thresholds. The dependencies between transition thresholds are
documented in the Safety Logic chapter (see also Appendix A), and these dependencies are enforced
whenever appropriate. For example, if a client lowers the threshold governing transition from STP to
TAX (vstop+) the threshold from TAX to STP will be forced to a value less than this. These constraints
are automatically enforced in the TransitionValueBlock class, which manages the transition threshold
values for the Target.

7.7.3.3 SurfaceGraph
The RSLS safety logic relies on an interconnected network of autonomous PropagationCells to

perform target projeclion. In addition to projection, these cells are responsible for retaining local
information about the projeclion, coordinating slale transition threshold overrides, and generating the
events that result in status light operations. The network of cells is organized into a directed graph
covering the airport movement area and the approach areas. The edges of the graph are represented by
ExitPoints.

This section will describe three high-level objects that are closely interrelated: the SurfaceGraph,
the PropagationCells, and the ExitPoints. First, a description of surface graph creation will be given,
including the roles of the PropagationCells and ExitPoints. This will be followed by a discussion of how
a target projection is propagated through the graph. Next the internal structure of the cells will be
examined and the role of this structure in target projection will be explained. Finally the dynamic
behavior of the cell, including target projection initiation and event generation, will be described. A
simplified version of a runway area will be used for an example.

7.7.3.3.1 SurfaceGraph

The directed graph of propagation cells is constructed by first creating each cell that will form a
node of the graph. This is done by overlaying cell boundary definitions in the form of polygons on top of
a graph of the runway and taxiway centerlines. The runway and taxiway definitions reside in the airport
surface database, and the cell polygons in the safety logic database. Figures 7-7-1 through 7-7-4 show
this process.

Figure 7-7-1 depicts the approach end of a runway and some taxiways that intersect it as it might be
found in the airport surface database. Figure 7-7-2 shows the overlay of the cell polygons on top of this
structure. The intersection points and directions of the intersection of each centerline with all polygons
are found (Figure 7-7-3). These points form the "edges" of the directed graph that connect the individual
cells (Figure 7-7-4); each one will become an ExitPoint. Note that each surface cell is connected to its
neighbors by two edges (one in each direction), while the cell representing the approach area is connected
only by a single edge. An approach area is simply a PropagationCell covering the area that a target will
pass through while on approach to a runway. The direction of an edge determines the flow of target

7-66



projection, so this indicates that target projections can travel in either direction on the surface, but targets
can only be projected out of an approach cell. Note also that the surface cells do not overlap. While the
surface cells are not allowed to overlap, approach-area cells may overlap surface cells and each other.
Both the target location algorithm (which is closely coupled to the surface graph) and the target
projection mechanism take this into account, and this is why a target may be considered "on approach" to
more than one runway simultaneously.

Figure 7-7-1. The approach end ofa runway and some taxiways that intersect it as it might be found in the airport

surface database.

7-67



-'-"",..---
~- -, ~~~---r---I ...J----,----,----,..

~--------- I I I 1
I

___ L I ~---------~ ~----~ L
1-- -~ 1-- -I 1-- -I ''''--..., ...
1 1 ) L.-----I 1 --.
l l ...... A( I I :
I 1 ...;-~ \ 1 1 I
1-- _{.--(...... \ ...... __ ....L ....L I, \ ... /"
I ~ ......
I \ ............ ;-
I /"
I r--
~_ _J
1 I
1 I
I I
I 1
I 1
1 I
1 I_...J

Figure 7-7-2. The overlay of the cell polygons on lOp of the runway-taxiway structure.

-~---- ...... .., --__ __J y ,---.---,----.--
T 1 ~-------- I

~~ ~ ... ~
-----1--t-f--------~_t-i---t• -,..._-- ..._

I 1 ~ ~---, lr 1 -~
I I ...~ --1--- ~ 1
I 1 ~ ... " ~ ~ ~I I
~_t_-L.-(.- ~--.L--_L---I
I ~ ... ",;-
I \ ...... "
1 ...... >'
I , ('

I-r-i
I I
I I
I I
I I
I .1 I
L_~_I

Figure 7-7-3. Intersection points and directions of the intersection ofeach centerline with all polygons.

7-68



Propagation Cells

Figure 7-7-4. The "edges" ofthe directed graph that connect the individual cells: each one will become an
ExitPoint.

Each PropagationCell (node) in the graph is completely independent of its neighbors. They share
no infonnation, and the only knowledge any cell possesses about any neighbor is that it exists. Target
projection can be initiated by any node in the graph.

When the projection starts, the cell creates a "token" containing target perfonnance data derived
from the state-based perfonnance model. The cell then detennines which of its neighbors the target could
reach, and for each of these reachable neighbors it makes a copy of the target token, updates it to reflect
state changes incurred during propagation through itself, and hands it off to the neighbor. Cells receiving
a target token repeat this process and pass on tokens to their neighbors. This continues until propagation
is no longer possible, which typically occurs when either the propagation lookahead time is exceeded or
the edge of the graph is reached. The propagation is done in a straightforward breadth-first manner, and
no attempt is currently made to order the propagation successor nodes according to earliest handoff time.

7.7.3.3.2 PropagationCells and ExitPoints

To see how each cell perfonns propagation it is necessary to examine the internal cell structure.
Recall from Figure 7-7-3 that, for each cell, a list of (intersection point, direction) pairs was computed
based on the runway and taxiway centerline intersections with the cell boundary. These pairs are referred
to as ExitPoints. Figure 7-7-5 shows a cell with its associated ExitPoints. For each of its ExitPoints, the
cell computes and stores a path to every other ExitPoint. If possible, the path is a straight line. Ifnot, the
path is an arc of largest possible radius (subject to some constraints, such as staying within the cell and

7-69



not getting too close to any vertex). Figure 7-7-5 also depicts the cell with connections drawn from one
ExitPoint (labeled A) to all the others.

A

A

Figure 7-7-5. Cell with its associated ExitPoints. with connections drawnfrom one ExitPoint (labeled A) to all the

others.

These pre-computed paths are used by the cell to propagate targets (actually target tokens) through
themselves and on to neighboring cells. When a cell receives a token for propagation, that token will be
associated with one of the cell's ExitPoints (Le., it will enter the cell through that ExitPoint). The cell then
propagates the token along each of the paths from that ExitPoint to its other ExitPoints. For each of the
paths that the token would exit (i.e., propagation is not finished) the associated neighboring cell is loaded

7-70



into a queue. The cell stops processing when it has propagated along all of its paths, and the propagation
process stops when the queue of cells is empty.

Propagation along individual paths is straightforward; the token contains values to be used for start
time, lookahead time remaining, velocity. acceleration, and various other target performance
characteristics. The initial velocity value contained in the token is the target's current estimated velocity.
The other values (lookahead time, acceleration, deceleration, etc.) are taken from the target state-based
performance model described earlier. These later values are taken from safety logic database. As
propagation proceeds and new copies of the token are generated, token values are updated accordingly by
each propagation cell for each path it projects along. These are used to compute how far along the path
the target would move, and if the target would reach the ExitPoint, the token is updated to be passed to
the neighboring cell.

For straight-line paths the computation is basic Newtonian mechanics. For curved paths the target
is first checked to determine if it is going too fast to make the tum, based on the target's allowable
transverse acceleration (a target parameter in the safety logic database). For a target to negotiate the tum,
it must satisfy the constraint:

max speed <= sqrt( transverse_accel * arc_radius)

If the target is travelling too fast, its remaining propagation time is checked to see if it has time to
slow down enough to make the turn (it must have a deceleration specified in its performance model). If it
can slow down, its speed is set to "max speed" and its lookahead time is docked by the amount of time it
would take to slow down. If the target could not slow down, the path is rejected as a candidate for
propagation. The target is projected "around" the curve at a constant velocity and is otherwise handled
exactly like its straight-line counterpart.

There are two important loose ends to clear up. First, how does the propagation process start?
Since the target cannot be expected to start from an ExitPoint, there must be a way to initiate the process
from some arbitrary position within the cell. Second, approach-area cells, because they cover much
greater area, must have path models that allow for greater freedom of movement than can be provided by
a straight-line and a single-arc curve.

The solution for propagation initiation turns out to be very simple. When told to begin propagation,
the cell treats the target position and heading as an ExitPoint and constructs paths to all other ExitPoints.
It then creates a new target token and propagates exactly as if it had received the target token from one of
its neighbors.

Since an approach-area cell will never receive a token from a neighboring cell (recall that
propagation is not allowed into these cells), it will always be a site for propagation initiation. In addition
to straight-line and single-arc curves, the approach area cell also allows S-eurve paths from arbitrary
positions within itself to its ExitPoint. The S-curve is constructed by constraining the first curve to be

tangent to the target position with a radius equal to the minimum turning radius. This again is dependent

7-71



on the maximum allowable transverse acceleration (airborne and surface transverse acceleration are
independently specified in the target model), and so the radius is given by:

min_radius = I speed**2 I transverse_accel I

The second curve of the S-eurve is constrained to be tangent to the ExitPoint and the first curve.
The second curve is computed and if its radius is at least that of the minimum turning curve, then the
curve is valid and can be used for propagation. The rest of the details are similar to those of the surface
cells.

The propagation cell maintains a record of each target path that encounters it. It keeps a sequence
of path "sample points" that contain projected position, velocity, acceleration and timestamp information
for both the minimum and maximum path projections. A small summary is additionally kept tracking the
targets earliest and latest arrival and exit projections for each cell. Note that this information is not
gathered centrally anyWhere; it remains distributed over the surface graph in the individual cells.

If a higher-level logic client (e.g., a runway-status light) requests it, the summary information kept
in each cell will be gathered into a single data structure and presented to the logic. An example of this is
the target "snapshot" service described in the "Surface Monitor Products" section. The resulting display
shows two trees, rooted at the target position and spreading out over the movement area along taxiways
and runways. One tree represents those paths and distances that the target could take in the prediction
time using the acceleration model subject to the constraints imposed by the performance model for that
target's state. The second tree is made up of paths and distances the target must travel in the prediction
time using the braking model; one of the paths from the root to a leaf must be traversed by the target in
that time (again, according to the target's initial state and its performance model). The higher-level logic
has been designed to pose its questions in terms of these paths (where and how far could it travel and
where and how far must it travel) rather than in terms of where will it be.

7.7.3.3.3 Client Notification and Event Generation

A major responsibility of the PropagationCells is to notify selected client objects whenever a target
path is created, updated, or destroyed. These clients are typically the runways, takeoff-hold lights, and
runway-status lights. Recall in Figure 7-7-1 that the cell boundaries were overlaid on the airport surface
map to form the surface graph. The clients "register" with PropagationCells in a similar manner. Areas
of interest to clients are described as polygons in the safety database. These polygons are overlaid on top
of the surface graph, and the client registers with each cell whose boundary falls under the area of the
polygon.

An example of such a client might be a runway-status light. Using a polygon, it defines to the
surface graph which area it is interested in (Le., it wants to know about any targets in or projected to be in
the specified area). Figure 7-7-6 shows a polygon defining the "activation region" of a runway status
light, and the shaded "extracted" cells indicate which cells the light will register with to be kept apprised
of projection events.

7-72



Activation
Region

I

I
I
I
I
I

~-
I
I
I
I
I
I

Propagation Cells
Registered With

Figure 7-7-6. Polygon defining the "activation region" ofa runway status light. with the shaded "extracted" cells

indicating which cells the light will register with to be kept apprised ofprojection events.

Whenever a projected target path is updated within a cell it "notifies" all of its clients of this event
and provides them information regarding the target. In this manner the clients get information about all
targets in or projected to be in their area of interest. They also have access to the local information kept
by the cells they have registered with so they are able to derive accurate local information about the
projection for their own means.

7.7.3.3.4 Summary of Target Projection

The projection scheme can be summarized as follows: a target is determined to be in a particular
PropagationCell, which creates paths from that position to its existing ExitPoints and propagates it to
them if possible. The tokens are then delivered to each neighboring cell, which in turn propagate them
further. Finally, each cell whose internal state has changed as result of the propagation notifies any
clients that have registered with it, causing higher-level light or alen logic to be invoked then.

7.7.3.5 RunwayEntranceLight (REL)

The RunwayEntranceLight (REL) is an abstraction of a runway-entrance light. To the surface
monitor, RELs are specified in the safety database by a polygon that defines the area to be monitored.
and a parameter block specifying settings for various safety logic options. (This polygon is known as the

7-73



REL ActivationArea.) The portion of the runway defined by the intersection of the polygon with the
centerline will be monitored by the light. Note that there is no description of where the light is located
physically, or even how many lights there are for a single activation area; although this infonnation is
contained in the safety database, it is of no concern to the surface monitor. Also stored in the database are
the runways that the REL monitors, and its default suppressed state. The suppressed state indicates
whether the light will actually be used. For example, in most configurations RELs at runway-runway

intersections are suppressed. Occasionally this may be overridden when, in certain configurations, a
runway facing a light will routinely be used as a taxiway.

.Each REL monitors a portion of physical pavement belonging to two runways (one in each
direction, such as 4R and 22L at Logan Airport). When the REL is created, it searches the SurfaceGraph
for all PropagationCells that it overlaps. It registers for notification with each one, and registers itself with
each Runway it is monitoring.

Operationally, each REL maintains two lists of ActivatingTargets. Ifeither of the lists is non-empty
the light puts itself in the "ON" state; it is off only if both lists are empty. The first list manages targets
whose projected paths pierce the REL ActivationArea. Whenever a target's path is predicted to intersect a
PropagationCell with which an REL has registered, the REL is notified by the cell. The REL then
computes the times at which the path is predicted to enter and exit its ActivationArea (if any). Using
these "earliest entry" and "latest departure" times it applies the appropriate rules for that Target's
TargetState. An ActivationTarget is added or removed from the first list at this point as the outcome of
the tests dictates.

The contents of the second list are managed by the Runway object (this is one reason the REL
registers with the Runway). In some cases the Runway will determine that the REL should be activated
even though a predicted target path doesn't come near the REL's ActivationArea, for example when the
"whole-runway switch" is set and a high-speed operation is in progress. The Runway will instruct the
REL to add the Target to its activation list using a method exported by the REL; similarly the Runway
must remove the Target when it no longer feels the light should be activated.

Whenever an operation is performed on either of the REL's activation lists the light state is updated.
Note that more than one notification may result from a single target path prediction if a REL registers
with multiple PropagationCells along a runway. Each time the REL encounters a new Target iteration, it
sets a "CurrentProcessedTarget" internal variable to that Target. The first such notification invokes the
logic. Subsequent notifications are ignored. This scheme is used by all notification clients to reduce
processing overhead.

The REL uses the Target marking service to tag targets to be ignored when they exceed an altitude
threshold (only if this option is enabled). This allows the REL to check quickly if the notifying Target is
a candidate for activation. Note that altitude is ignored after the condition is met once - since it is volatile
and not always available, this represents a severe form of hysteresis. A Target that is marked must

transition out of the DEP state before it again becomes a candidate for activation. Like the Target, the
REL has trace recording and cross-reference recording options available.

7-74



7.7.3.6 TakeojfHo/dLighl (THL)

Like the REL, the TakeoffHoldLight (THL) class is an abstraction of the takeoff-hold lights on the
airport runways. Since the THL state is driven by two-target interactions, it is slightly more complex than
the REL. Each THL is defined in the safety-logic-parameter database as a parameter block similar to the
one for the REL, and two polygons. The polygons are used to define two regions monitored by the THL,
the ActivationArea and the ArmingArea. Two lists are maintained by the THL - one for each area. The
light is in the "ON" state only if both lists are non-empty.

The ArmingArea class monitors the region in which targets are expected to hold in position for
takeoff. It registers with all PropagationCells that it overlaps, and upon notification of Target activity in
these cells it applies logic to determine if the Target belongs on the arming list.

The ActivationArea class manages the activation list in a similar fashion. It defines an area that
must be clear of Targets (or must be anticipated to be clear of Targets), and registers with all
PropagationCells overlapping this area. Whenever notification is received, it uses its rules to determine if
the Target should be placed on the activation list.

The ActivationArea uses special logic for crossing runways, since high-speed crossing targets on
runways demand special logic for assumed separation. When the ActivationArea is created, it checks the
surface database to find all intersecting runways. For each runway it creates a XrwyMonitor (crossing
runway monitor) object whose responsibility it is to decide if high-speed crossing targets belong on the
activation list. This logic is described in the Safety Logic outline, and is invoked by using a feature of the
notification mechanism that allows objects registering for notification to supply a local object that will
also be delivered with that notification. Effectively, this means that when the ActivationArea registers for
notification with the PropagationCells that also overlap crossing runways, it supplies the XrwyMonitor as
such a local object. Whenever the ActivationArea receives notification from these PropagationCells, the
XrwyMonitor is returned as well. In this manner the ActivationArea knows when to invoke the "crossing
runway" logic - it does not do so for all notifications.

THLs also make use of the "marking" service provided by the Target class, which was described
earlier. This is used in VFR conditions to cause a Target to remain off the activation list when certain
conditions are met. Basically, when this option is in use (VFR), and the Target is reported in the DEP
state and has reached a certain altitude, it will no longer be considered an activating target (Le., the THL
will be turned off if this was the only target currently on the activation list). Since altitude coverage is
undependable and volatile, this condition might be met and not met on subsequent update iterations. The
marking service provides a quick and efficient way to deal with this. The THL "marks" the Target with
its own identifier. On subsequent iterations, it checks to see if it has previously marked the Target - if it
has then the Target is ignored. The "mark" is guaranteed to be cleared by the Target when it changes
state. Thus. after the target has been marked, as long as it remains in the DEP state it will not activate the
light. Should it transition to DABT or UNK the mark would be cleared, and on that iteration the THL
logic would again be invoked to determine if it should be considered an activating target.

The THL also registers for transition-threshold-override consideration if this option is enabled in
the database or one of the configuration-dependent overlay files. When this is in effect, it will normally
compete with the Runway to override the threshold values that govern the TAX to DEP transition. The

7-75



default "priority" associated with the THL override has a value of 2, which gives it precedence over the
Runway priority (which is 1). The intuitive reasoning behind this scheme is that 1) setting high threshold
values in general will inhibit false declarations of departures at various points on the airport surface, 2) on
active runways, this value is lowered since it is reasonable to find departures there and the active runways
are likely to be clear of incidental traffic, and 3) in arming regions on active runways departures are
especially likely to occur, so we would like the transition to be particularly sensitive in these regions.

The THL also registers with the Runway it is monitoring. It does this primarily to allow the
Runway to set any configuration-dependent default parameters that are present.

7.7.3.7 ArrivaLAlerl
The ArrivalAlert class is intended to manage all types of alerts involving Targets in the arrival,

landing, and landing-abort states. Currently, the only alert implemented is for a target stopped on a
runway when another target is arriving or landing. Additionally, all alerts are two-target alerts. There are
no alerts defined for groups of three or more targets.

The ArrivalAlert is defined by an activation region that is monitored for stopped targets, a
parameter block containing thresholds and options, and a runway designation indicating which runway
the ArrivalAlert services. The ArrivalAlert registers with each PropagationCell overlapping its activation
region, and with the PropagationCell covering the approach zone of the monitored runway. It also
registers with the Runway object, but this is only to allow the Runway to set runtime options such as
whether to issue an alert if the arriving target is projected onto more than one runway (Le., it is
ambiguously projected). The ambiguous projection option allows alerts to be suppressed if the target on
approach is projected onto more than one runway (Le., it occupies and is projectable in more than one
approach PropagationCell).

The ArrivalAlert maintains two lists of targets: one contains targets in the arrival, landing, or
landing-abort state. The second list contains all other monitored targets, which is defined as any target
that is interacting with the activation region and satisfies some state-dependent monitoring criteria. For
example, since the current implementation only supports monitoring targets in the stopped state, the
current criteria are as follows: I) the target must be in the activation region, 2) the target must be stopped.
All other targets in the activation region are ignored (as far as this list goes - they will still be contained in
the first list if they are somewhere in the landing process).

A list of current Alerts is maintained to allow the ArrivalAlert to determine which alerts it has
issued messages for, and to know when the alert condition no longer exists. When for one reason or
another the alert condition is resolved, the ArrivalAlert sends a message to the AlertGovemor process and
removes the alert from the active alert list.

Two mutually exclusive algorithms are currently supported - the "threshold" model and the "target"
model. The threshold model seeks to issue an alert when an arrival target is within some t-second range
of crossing the runway threshold and there is some stopped target in the activation area. In this model. it
does not matter where in the activation region the monitored target is, only that it is inside and stopped.

7-76



The same lists of "arrival" targets and monitored targets are maintained, and the "time-to-threshold"
computation is updated for each arrival target whenever a TrackReport is received. The ArrivalAlert
queries the Runway when it is created to get the displaced threshold distance. if any (this can be
configuration dependent).

The "target" model algorithm causes alerts to be issued if the separation in time between an arrival
target and a monitored target descends below some threshold. In this model, for example, it would be
possible for a target to be stopped at the far end of a runway and no alert would be issued. As opposed to
the threshold model, the target model maintains separations between individual pairs of arrival targets and
monitored targets. The t-second thresholds are position dependent, and are specified as part of the
ArrivalAlert data block in the safety logic database. This allows specification of a variable threshold
profile to fit operational needs. For example, it may be desirable to have a long threshold at intersections
where takeoffs are typically performed. and a shorter one at intersections where crossings predominate.
When an update is received for a monitored target in this model, its new threshold time is determined and
stored with the target. When an arrival target update is received, the ArrivalAlert computes its estimated
separation (in time) between it and each monitored target. For each monitored target, an alert is issued if
the estimated separation is less than the threshold.

Both algorithms take into account the possibility that targets on approach often have curved paths.
For this reason, the ArrivalAlert queries the approach PropagationCell directly to get the target's estimated
time to the cell boundary. This automatically uses whatever path the cell generated when it performed the
target traversal computation; as described above this could be a straight line. a single arc, or an S-curve.
From the approach cell boundary to the target on the runway a straight-line path is assumed and a
constant velocity prediction model is used.

7.73.8 Runway
Like the status lights and alerts, the Runway is a client of the Prediction Engine. It differs from

other clients, however, in that it has clients of its own. The RELs, THLs, and ArrivalAlerts all query the
Runway for status information regarding targets as part of their logic. The need to service these requests
puts the Runway in a position somewhere between the Prediction Engine and the client objects in the
surface monitor architecture.

Since high-speed operations on the airport surface normally are associated with runways, it is
natural that the Runway object plays a central role in coordinating information dispensed to other objects.
Status lights, alerts, and approach bars have an intuitive relation with runways. Indeed, when discussing
individual lights, alerts, or even operations, it is natural to describe them in the context of "what runway is
involved." These relationships are reflected in the many responsibilities and associations that the Runway
maintains.

The Runway's activities can be partitioned into three loose areas: its role in the setup and
initialization of the surface monitor, its dynamic interaction with Targets it is notified of. and its dynamic
interaction with other client objects.

7-77



Since the Runway is naturally associated with sets of client objects, it is intuitive that some
operational parameters be set using the Runway as opposed to individually setting them for client objects.
Examples of these include the VFR switch (controlling whether Visual Right Rules are in effect), the
ambiguous projection switch (controlling whether status lights will be activated for approach targets
projected onto more than one runway). The Runway maintains knowledge of the following high-level
objects:

1) A list of RELs
2) A list of THLs
3) A list of PropagationCells
4) The PropagationCell representing the approach area
5) An ArrivalAlert servicing that runway.

The Runway maintains a target record for each Target it monitors. This record contains derived
information describing the state of the target relative to the runway. For example, whether the target is on
approach to the runway, how far the target is from the runway threshold, whether the target is currently
activating any status lights, and the direction of the target relative to the runway (along, opposite,
crossing) are all included in this record. This record is updated when the Runway receives notification
from a PropagationCell about a target path, and is used to answer subsequent queries from other client
objects.

Prior to any prediction and notification, Runways interact with Targets through the state-transition­
override process. Runways may override thresholds governing transitions from taxi to departure and from
landing to landing abort. The taxi to departure threshold is constant for the runway and can be set in the
safety logic database. For the landing abort threshold, the runway maintains a landing velocity profile
from which it selects a position-dependent value.

At this point (transition threshold override) a circular dependency in the safety logic is addressed.
When notified of target activity, the Runway determines whether a Target is travelling "along" it (see the
Safety Logic Appendix for the exact definition of "along"). This information is used by other prediction
engine clients, who will query the runway to find the targets "Runway status." A problem arises because
certain state transitions are effected by whether a target is "along" a runway, and state determination is
performed before any prediction and notification (hence, Runway "along" determination). To get around
this, the Runway will advise the Target if it is "along" the Runway at the same time it is anempting to set
state transition parameters, not waiting until prediction is performed.

Runways are also the source of ApproachMessages. the contents of which were described in the
section on Surface Monitor Products. The approach message logic is invoked whenever a target
notification is received from the approach PropagationCell and the target satisfies the approach bar
conditions as described in the Safety Logic Outline (see Appendix).

Runways interact with RELs in a direct way. The surface monitor supports a "whole runway
switch" option that, when invoked. allows all the RELs along a runway to be illuminated for departing
targets and arriving targets once the target crosses the threshold. This is done regardless of the target's
predicted path, and is strictly a procedural rule. This rule is in effect until the target reaches a "landing

7-78



rollout" state (another state computed and maintained locally by the Runway - the Target has no such state
in its own state machine), at which point the RELs are again controlled strictly by the Target's predicted
path.

The whole runway switch logic makes use of the REL feature that allows an external object to
unconditionally add a target to one of its activation lists. (Recall that the REL maintains two lists - one
that it controls and one controlled externally that it monitors.) When notification is received about a
target in a landing or arrival state, the Runway determines which RELs along it should be illuminated by
the whole runway switch rules. For each such REL, the target is added to that REL's external activation
list. This may result in duplicate entries for that particular REL and target, but that makes no difference to
the REL. When the target is determined to be under control, the target is removed from all RELs who
currently maintain it on their external list, leaving only those RELs continuing to maintain it on their
internal list by virtue of its predicted path.

Under VFR conditions, the whole runway switch can also be deactivated when a departing target
attains a certain altiNde. To support this the Runway makes use of the Target marking service described
earlier.

The RELs, THLs, and ArrivalAlerts are all clients of the Runway; they are all interested in whether
a given target "satisfies the REL conditions" for that runway. These conditions are defined in the Safety
Logic chapter and appendix. and are used by these objects to help determine if the target qualifies to be on
an activation list or not.

7.7.4 Surface Monitor Databases

7.7.4.1 Overview

As part of its initialization procedure. the surface monitor uses information from two airport­
specific databases: the ailport surface database and the safety-logic-parameter database. The airport
surface database essentially contains a graph of the runway and taxiway centerlines and details their
interconnections. The safety-logic-parameter database is used to define and configure the software
constructs used by the RSLS surface monitor (the safety logic process). The contents of these two
databases are used to construct the directed graph that is used for target propagation and event generation
and to create and initialize the higher-level objects such as Runway Status Lights and Takeoff-Hold
Lights.

7.7.4.2 The Airport Surface Database

The Airport Surface database contains the positions of the centerlines of runways and taxiways, and
the airport origin. All coordinates are given in latitude/longitude. The connectivity of these constructs is
also represented in the database, so segments and points common to more than one runway or taxiway are
represented in one place.

7-79



The application interface to the surface database allows client programs to load the database and
access runways and taxiways either by name or by iteration. A special application, used for both the
surface database and the safety logic database, is the surface editor. This is a graphical editor that allows
fast and easy (click and drag) manipulation of the contents of both databases (among others).
Unfortunately. this application currently does not run in the X Windows environment and must be run on
an Apollo platform.

7.7.4.3 The Safety Logic Parameter Database

For each type of safety logic object (e.g., Runway). default values for each of its parameters are
explicitly specified in the database. These represent "reasonable" choices for the values in the absence of
any airport-specific requirements.

A default parameter-specification block exists for most types of high-level surface monitor objects.
These include Target. Runway, REL, THL. and ArrivalAlert. Note that there is no such block for the
PropagationCell or any olher component of lhe SurfaceGraph.

The definitions of the safety logic objects typically are composed of two parts. The first part is a
spatial component, for example the polygons representing the arming region and activation region for a
given takeoff-hold light. The second part is a list of parameters whose value for that particular object
differs from lhe default value.

As an example, consider the "alarm-angle" associated with the arming region of a takeoff-hold
light. This parameter defines the angular tolerance relative to the runway heading that a target in the
arming region must satisfy to arm the light. The default value of this parameter is 65 degrees, so a target
must be heading within +/- 65 degrees of the runway heading to be considered as an "arming" target. Due
to the geometry of the airport surface, almost every takeoff-hold light defined for Logan overrides this
value. At some places (e.g.• departure ends of runways with no crossing taxiways) the angle can be
considerably widened. At other places (e.g., some intersection-takeoff arming regions) the angle is
narrowed so as not to turn on lights due to heading noise reported from crossing targets.

This combination of default values and object-specific overrides provides the mechanism for
"customizing" the safety logic for a particular airport. The default values are selected for general
reasonableness and the overrides are only used for specific objects (usually in those cases where airport
geometry requires it). Such a parameter set would now be customized for an airport, but not for any
particular operational configuration. This is still inadequate for our purposes, since no single set of values
can be used for all configurations and operational conditions for a given airport.

To achieve configuration-specific customization, additional parameter-override files called
Configuration Overlays are used. A Configuration Overlay file contains parameter values that are used to
override either object-specific parameter values or default parameter values (or both), as desired for a
particular set of operational conditions. For example, configuration overlays are defined for each of the
commonly run configurations at Logan.

7-80



As an example, consider one of the state machine parameters that is used to detennine when a target
has transitioned from taxi to departure. This value is nominally set at 50 kts to avoid declaring fast­
moving surface vehicles as departures. Using configuration overlays, this value is overridden on active
runways to 35 kts.

7.7.5 Design Goals: Problems and Solutions

Several different and sometimes opposing requirements drove the evolution of the surface monitor
architecture. Certain problems were anticipated and designed for; others came as surprises and required
more effort to circumvent.

The primary initial requirements were these:

1. The architecture should be flexible in the way it responds to requirements changes. The surface
monitor needed to be used as a means of testing different ideas, not implementing already well­
tested algorithms. The architecture needed to be able to respond quickly and easily to such
changes.

2. The architecture should be site-independent. Site independence was important for a number of
reasons. First, site-independent algorithms, if they worked, would be much more applicable, hence
valuable, than a scheme that was custom designed for one particular airport. Practically, it would
be virtually impossible to support any system that does not have a high degree of site independence
built into it.

2a. The site independence should be automated where possible. While this requirement was not so
important in the context of our demonstration system, it is extremely important to anyone
considering building and fielding a production version of this system. Simply put, wherever
possible system attributes should be derived from the geometry of the site and not specified by
independent parameters. Where parameters need to be specified, they should have some intuitive
relation to real-world objects (e.g., a speed threshold for a particular state). The importance of this
is obvious to anyone who has ever tried to validate a system - too many independent parameters
render such validation efforts intractable.

3. The architecture should be extensible. It was anticipated that new features would be incorporated
into the requirements, and the architecture should be able to accommodate these without revision.
Examples of anticipated extensions are as follows: I) individual target perfonnance models, when
exact target type becomes known, and 2) full alert logic in addition to lights.

In addition to these requirements. the following problems were anticipated:

1. Target comparison (for 2 target connicts especially) is inherently a problem of O(N2) complexity
(Le., the computational load increases proportionally to the square of the number oftargets present).
A natural way around this needed to be devised.

2. The parameters would need to be changed from operational configuration to configuration. It was
not desirable to maintain separate databases for each configuration.

7-81



The adoption of the Prediction Engine approach, in particular the PropagationCell aspect of the
Prediction Engine, fundamentally addressed several requirements and problems.

Initially this model was created to solve the 0(n**2) problem. Consider a target on approach to a
runway. How does one determine which lights should invoke logic to check their activation status? How
does one detennine which targets need to be checked for potential conflict. Equally important, which
targets may safely be ignored?

One solution to this type of question is: let each client object concern itself only with the set of
targets that could possibly affect it. Since each client object defines itself in terms of an extent on the
airport surface. it would be interested only in those targets in or predicted to be in its extent. By
registering with the PropagationCells contained in the extent, the object is notified only when there is a
change affecting a target that may interact with it. For example, a TakeoffHoldLight monitors a specific
area of the airport surface for two-target conflicts. When a target enters or is predicted to enter the
activation region of the TakeoffHoldLight. the object is notified and it already knows the exact set of
targets that must be examined to determine if a potential conflict exists (these are taken from the set of
targets that have previously notified the light). No other targets are even considered, and if another target
is updated and is not predicted to intersect the light's activation region, the light is never even notified.

The prediction engine provided additional design benefits as well. First, issues of target prediction
were separated from the safety logic rules. Once a viable model of target prediction was settled on, the
logic could (and did) go through many iterations and not impact the prediction part of the system. Also,
the computation of target path prediction is made much easier since it is based only on local physical rules
and not at all on airport context.

The PropagationCell connectivity and the internal structure of the cells are directly derivable from
the airport geometry and the airport map - no human direction is necessary once the cells are drawn. The
cell boundaries themselves do not need to be precise. This practically enforces a large degree of site
independence, since it is not possible to tailor an algorithm for a particular geometric anomaly without
generalizing it to work in the context of an arbitrary PropagationCell.

The PropagationCells also provide an easy way to facilitate communication between other high­
level objects. This was used to solve the problem of specifying location-dependent parameters in a way
that was natural and intuitive. It did not make sense to allow the cells themselves to override global
default parameter values directly since as abstract constructs the cells do not correspond to any real-world
entity. Instead, the cells provide the mechanism for connecting groups of client objects that do interact
but have no other reason to be aware of each other. As an example, consider the target-state-transition
threshold values again. The Target object does not need to know whom to solicit the override values
from. Originally. the ~unway was the only object that overrode these values. When the decision was
made to allow the TakeoffHoldLight to also override some values (some in direct competition with the
Runway), no change at all was necessary in the Target object. The new overriding client (the THL)
simply had to add its request to be solicited to the cell. When the Target goes to solicit local values, it
simply asks the cell if it has anyone on its list.

7-82



Extensibility is further enhanced by the generic nature of the client-object notification structure. A
general callback architecture is implemented with a Notifier class, a base class that exports a well-defined
interface to the notification mechanism. A macro provides a "template" that allows client objects to easily
create type-specific class "notifiers," essentially a single object containing the callback entries for the
particular client object. The callbacks actually contain the "safety logic" that is gennane to the specific
high-level object. The process of registering for notification with a PropagationCell consists of providing
the cell with an instance of the notifier, which the cell places into a list of Notifier objects. Notification is
then simply the invocation of virtual callback functions for each object in the list.

Two separate Notifier classes are maintained. The first supports notification for events caused by
target path propagation, and the second supports the state-transition-threshold override function. The
mechanics of Notifier creation and invocation is the same for each; they differ only in the interface they
export. The Notifier classes make the addition of new client objects (and the functionality they represent)
a relatively painless process.

7.7.6 Suggested Improvements

There are several ways in which the current surface monitor could be improved, ranging from
minor feature enhancements to some major structural modifications. Some of these items were known
from the beginning of the project and were simply not implemented due to time constraints, others were
conceived as solutions that were too complicated to justify major reworking of existing code given the
point in the project at which they were discovered.

In addition to enhancements, many parts of the code are cluttered with obsolete algorithms and data
structures. A policy of "never delete anything" was adopted after some early approaches were discarded
and deleted, only to be resurrected and recoded. In addition to clutter, this resulted in a lot of unneeded
redundancy regarding stored infonnation. Removing these redundancies alone would contribute
markedly to readability.

The emphasis throughout was on correctness of the algorithm. While it was necessary for the code
to run without frequently failing, no -effort was given to issues of fault tolerance and recoverability. It has
been analyzed for memory leakage and general correctness, but no fonnal approach to robustness was
taken.

Likewise, no serious attention was paid to efficiency. While efficiency regarding the O(N2)
problem was a major consideration, attention to details such as memory allocation were ignored. For
example, the surface monitor could significantly reduce overhead if its classes supported overloaded new
and delete operators. These could remove and return memory from and to an already allocated pool,
eliminating the need to perfonn many small allocations that are done during path prediction. In a similar
manner, more efficient search logic could be implemented in the CellLocator. Currently the CellLocator
searches PropagationCells in the order of previously predicted target path. This seems to work fine
except on the initial hit, where a linear search is perfonned. One of the original design plans was to
perfonn a quadtree search, but since surface monitor perfonnance was never a bottleneck other tasks took
higher priority.

7-83



The surface monitor as it is implemented is not a real-time system. The change to a time-interrupt­
based system is recommended and could be accomplished without affecting the basic architecture in any
major way. This change would allow finer accuracy in predictions as well, since a feedback loop could
be implemented wherein the surface monitor requests that Sensor Fusion increase the sampling rate for
targets of interest (Le., on active runways).

Moving to a time-based system would also allow removal of one of the remaining blind spots of the
current logic: if a target is dropped and not removed from some client's activation list, it will remain on
the list indefinitely. (This is. of course, a logic bug and should never happen, but it has infrequently
occurred when a PropagationCell coverage gap existed inside some activation region.) Setting limits on
the length of time an object may exist without update is an easy solution to this problem.

If necessary I the prediction engine could be parallelized. The critical sections of code (those
modifying the internal data structures) are isolated, and the parallelization could be extended to all the
objects. This would be something that could be looked into in the event of a rewrite.

The design goals and the developmental emphasis caused the coupling between classes to be higher
than would be necessary for a production system. A version of the surface monitor that is intended to be
fielded and maintained in a production would greatly benefit from a simplification and rewrite. The basic
architecture and class definitions are viable and extensible. From a software engineering standpoint, the
implementation should be redone to emphasize validity, robusmess, efficiency, and maintainability.

7-84



7.8 THE LIGHT GOVERNOR

7.8.1 Introduction

The Light Governor controls and monitors the light states of the physical light system. In the
Logan Demo, this means controlling and monitoring the lights on the Model Board.

Messages containing desired light states are received from the surface monitor and the keyboard.
The Light Governor validates the messages, transmits an appropriate command to the Model Board, and
then retransmits messages containing updated light states to any clients connected to it. These typically
include the ASOE display clients, and may include the surface monitor in the future.

Note that the clients of the Light Governor display the light states as they physically are; if a
command should for some reason not be executed by the Model Board, the ASOE display clients'
representation will be consistent with the Model Board, even though this may be an "incorrect" state.

7.8.2 The Logan Demo Model Board

The Model Board is a 1: 1800 scale model construction of Boston's Logan Airport. The model
features operational runway and taxiway centerline lights, wig-wag lights, and RSLS runway-status lights.
An API (Applications Programming Interface) for the Light Controller on the Model Board defines
commands to read, set, clear, and toggle the state of individual channels. The API also supports defIDing
groups of channels, which can then be set, cleared, and toggled with single commands.

Lights on the Model Board that indicate runway status at the same physical intersection are
logically indistinguishable, having the same channel number assigned to them. Thus, when the surface
monitor issues a message to change the state of a certain light, all lights with that channel will be set to
the desired state. Additionally, it is possible to establish a logical group of channels and assign to the
group its own channel number. This allows a large number of lights (for example, a block of runway­
status lights on a runway) to be controlled with a single command.

7.8.3 Process Architecture

7.8.3.1 Internal Structure
The Light Governor is responsible for converting light IDs (defined in the safety logic database) it

receives from the surface monitor to physical channel numbers on the model board. This mapping
removes the surface monitor from any consideration of the physical implementation of a lighting system ­
in principle lights could be installed on the field and only the Light Governor would need to be modified.
A Light Governor database file is used to store the channel/light 10 definitions, as well as any channel
group definitions.

Internally, a ModelBoardLight object is used to represent each channel. Each of these objects
contains the light 10, the corresponding channel, and the current light state. Obviously, some channels

7-85



will have no corresponding light ID (e.g.• any light that is not a RSLS runway-status light). so for these a
dummy light ID is used.

ModelBoardGroup objects are used to represent defined groups of channels. This structure is
effectively a list of ModelBoardLight objects along with methods to apply single group commands to
each ModelBoardLight in the list.

At initialization a set of ModelBoardLight objects is created. one for each entry in the Light
Governor database file. These objects contain the state variable that is modified and served by the Light
Governor, and they are accessed by two hash tables created for this purpose. The first hash table is used
for accessing the ModelBoardLights when surface monitor messages are received, and the hash key is the
light ID string. The second hash table is used for accessing ModelBoardLights when individual channel
commands are received from the keyboard; the channel number is the hash key for this string.

A third hash table is created to allow access to any groups that may have been defined.

7.8.3.2 Executing Surface Monitor Commands

When the Light Governor receives a light message from the surface monitor. it first validates the
Light ID. It then checks the desired light against the current state maintained in the appropriate
ModelBoardLight object. If they differ. it sends the appropriate light command to the Model Board
channel referenced by the ModelBoardLight. Should this attempt fail. it will be tried again (a timeout
mechanism is employed). If after two tries it is unable to execute the command. a fail status is returned
and the ModelBoardLight state remains unchanged. If the command succeeds, the ModelBoardLight
state is updated and a light message containing the new light state is sent to clients of the Light Governor.

7.8.3.3 Executing Keyboard Commands

If a keyboard command is received. the Light Governor first validates it as a channel command or a
group command. If a channel command is received. the processing steps are the same as for a surface
monitor command. with two exceptions: first. the ModelBoardLight is accessed via the channel number
hash table. not the light ID hash table. Second, if the light ID of the ModelBoardLight object is the
dummy ID. no update is sent to clients after the Model Board command has been executed.

Groups of channels can also exist. either established from initial configuration files or from
keyboard commands. When a command to create a group is received. the Light Governor first ensures
that all the channels defined in the group have been created. If a command to change the state of a group
is received. a group "update" command is issued that will send a single command to the model board. but
will update each ModelBoardLight object individually. The appropriate individual light messages are
sent to clients in this case. since the definition of a group exists only within the Light Governor and the
Model Board.

7-86



7.9 THE VOICE GENERATOR

7.9.1 Introduction

The Voice Generator manages the processing of audible alert messages. Alert conditions as defined
in the safety database contain a priority and a message ID. The Voice Generator converts the message ID
to a text string and sends this to a device that broadcasts it (in the Logan Demo, this is a DECfalk DTlOO
device).

Since it generally takes longer to audibilize a message than to receive one, a queue of alert
messages may build up. These are processed in order of their priority. If the broadcast device supported
preemption, and an alert of high priority was received while the device was broadcasting a message of
relatively low priority, the low priority broadcast could be interrupted and re-queued for broadcast

7.9.2 Process Architecture

A Voice Generator database is used to perform the mapping of message ID to text string. This
allows the text accompanying an alert condition to be modified without affecting the safety logic in any
way. Runway names (if they are present) are contained in the body of the alert message and not in the
text string. A hash table keyed on the message ID is used to access the text strings.

The Voice Generator is a client of the surface monitor. It listens for alert messages and processes
them as they arrive. It maintains a queue of alert messages ordered by alert priority.

When an alert message arrives, it is examined to determine if it is an ADD operation or a DELETE
operation. If it is a DELETE operation (i.e., the situation has somehow been resolved), then the alert is
removed from the queue if it has not yet been broadcast. Otherwise nothing is done.

If an ADD operation is requested, the Voice Generator validates the message by looking up the
message in the hash table. The runway name, if present, is encoded as part of the message text. The
message is then added to the priority queue. As long as the queue is non-empty messages will be sent to
the DECfalk as it becomes ready to receive them (it cannot receive messages when it is broadcasting
one).

7-87



7.10 RSLS DISPLAY

7.10.1 Process Architecture

Both of the RSLS displays (DBRITE-like and ASDE-like) are generated by run-time configurations
of the same executable. The display software uses InterViews! as its graphics environment and is
designed to directly support sub-windowing of the main display window. The software generates a plan
view representation of any combination of the following items:

a map (line drawing) with up to five togleable overlays

data tags similar to those on a DBRITE display based on data from the MDBM interface

target icons and tags based on track data from sensor fusion

approach bars showing the distance from the threshold of landing aircraft on a compressed scale
based on data from !.he surface monitor.

highlighting of targets (target icons or approach bar) deemed to be in an alert situation by the
surface monitor

the state of the runway status lights

icons for targets detected by the ASDE processing

target snapshots showing the target state and projected paths based on data from the projection
engine portion of the surface monitor

the arcs and segments of the surface monitor's surface graph.

The display supports zoom, pan, and rotation independently in the main window and each subwindow and
provides an interface to the master clock to facilitate the control of time during playback. There is also a
pseudo-pilot interface to a simulated-target generator (a description of which is beyond the scope of this
document).

InterViews is an object-oriented C++ encapsulation of Xwindows that was created at Stanford
University. It completely isolates the application software from the Xlib library, and in principle
would allow using the display software in a non-Xwindows environment by solely rewriting a
relatively small portion of the InterViews code. In fact, InterViews currently includes a special version
of the Canvas that supports generating PostScript printer output.

7-88



Origin Glyph

MDBM tag

~ I

reports Dbrite description ....... Tag
Disp ...... Glyph

1
track target target
reoorts "- Track information ..... Trock informatiQll Drawable

..... Receiver ..... Glyph .... Target 1--.,

Viewt;.
alert Frame

messages Glyph
alert I.;::"
messages ... Alert

transfor-..... Receiver canvas
mation size

alert matrix

~'7 messages occupying
approach ~h A h target drawing

~
bar messages .... Approach

bar message~ ~ information..... Approach commands ....
..... Bar .... ...... Ba" ....

Receiver Glyph Canvas

ASDE ASDE
reports ...... ASDE reports .... ASDE

,~
.... Receiver .... Glyph Glyphs

Xwindow
light drawing input
states .... Light

light position position commands events.... and light statQS Light andsta~ Drawable
Status ..... Glyph ..... Light

I~

..... Receiver r-t> Window
Safety

....

Database
target snapshot snapshot Xwindow
messages ..... Snapshot segments ..... Snapshot events

..... Receiver ..... Glyph Xwindow\J

r::J-
events

Surface
Gmph arcs and Wood

Surface Surface
Database ...... Gmph segments ""'" Graph l>... ......

L~ Xwindow
Disp Glyph color drawing

system time and values commands
time ..... Master time-rate ..... Clock..... ..... Color colo to allClock Control

Map ..... Glyphs....... Interface <J- . Glyph"" time ume-mte
control commands

Figure 7-10-1. Display components.

7-89



The primary display software components are shown in Figure 7-10-1. These components fall into
two classes, infrastructure components and data reception and rendering components. The infrastructure
components provide the basic backbone of the display. They include the following:

World -- the InterViews encapsulation of the Xwindows connection to a display server

Window -- the InterViews encapsulation of an Xwindows window

Canvas -- a sub-component of a Window that serves as the InterViews interface to the Xwindows
drawing operations

Color Map -- the module that encapsulates the strategy for allocating and sharing graphics bit­
planes amongst the various displayed items

ViewFrameGlyph -- the module that controls the transformation matrix of the Canvas to control
zoom, pan. and rotation and maintains the list of glyphs shown in the window.

These infrastructure components work together to establish a connection to the Xwindow server, create
the main window and sub-windows, define and allocate colors and the color map, receive keyboard and
pointer events from the Xwindow server, and deliver the events to the appropriate event handlers. The
remaining components in Figure 7-10-1 are responsible for receiving and displaying specific types of
information. Typically, they are in receiver and glyph pairs. A single instance of each receiver
component accepts the incoming data via a callback from the dispatcher and distributes it to one or more
glyph instances. There is a glyph instance for each window in which the data is displayed. An additional
component that is not shown in Figure 7-10-1, the dispatcher, controls the flow of processing by
monitoring the incoming data streams (including the one from the Xwindow server) and making function
callbacks to data stream handlers when data is available. This callback mechanism facilitates the addition
of new display components since the display components register with the dispatcher, and thus the only
portion of the software that knows of the existence of all the display components is the command-line
parser.

7.10.1.1 Infrastructure components
The InterViews World module encapsulates the Xwindows notion of a connection to a display

server. It stores the information about the display required in many Xlib calls and serves as a repository
for server and application resources such as fonts, colors, and brushes. It also maintains a list of Windows
and is responsible for distributing events such as user input, window exposure, or window re-sizing that
are received from the display server to the appropriate Window.

The InterViews Window module is an encapsulation of the Xwindows window. It serves two
primary functions. First, it maintains a Canvas (described below) which is used to receive drawing
instructions and a Glyph that performs the drawing operations on the Canvas. Second, the Window
receives events from the display server. Exposure and re-size events cause the Window to tell its Glyph
to redraw itself on the Window's Canvas. For user input events, the Window consults a list of registered
Listeners to determine if the event is of interest. and if it is of interest, the Window passes the event to the
Listener's associated Handler. Typically, Glyphs that accept user input act as both Listeners and
Handlers.

7-90



The Canvas is an InterViews module that provides a generic interface to the Xlib drawing
commands. This allows the application code to be more easily ported to a non-Xwindows environment.
The Canvas maintains a transformation matrix that is used to perform the scaling, rotation, and translation
of points from 'world' coordinates to screen pixel coordinates. The Canvas also encapsulates and
efficiently maintains the Xwindows graphics context. This allows the application to specify colors. fonts.
brushes, etc.• in each drawing function call instead of directly maintaining the Xwindows-specific
graphics context that in tum aids portability and application code clarity.

The ColorMap module interacts with the World module to provide a centralized implementation for
the bit-plane utilization strategy. The RSLS display software is currently targeted to displays that support
8 bits per pixel (8-bitplane) color that are used to index into a color map of 256 entries that convert the 8
bits into red, green. and blue intensities. To facilitate independent drawing and erasing of data from
multiple sources, certain bits are reserved for specific purposes. such as drawing target icons, tags. and
alerts that have high priority and should thus act as overlays to the remaining displayed items. The
unreserved bitplanes are used for the remainder of the displayed data. The ColorMap sets the red. green,
and blue (RGB) intensity values for each of the 256 display color map entries in a manner that achieves
the overlay effect (Le., all 128 entries that correspond to having the target-icon bit set have the RGB
intensities corresponding to the target-icon color).

The ViewFrameGlyph serves two purposes. First it is responsible for setting the transformation
matrix in its Window's Canvas based on user requests of center coordinates. range, and rotation. To
support this role. it acts as a Listener and a Handler to receive and handle certain user keystrokes.
Second, it is the main Glyph seen by a Window and maintains a list of all the Glyphs displayed in that
window. When the Window calls for a redraw, the ViewFrameGlyph sets the Canvas's transformation
matrix for the window, clears the window, and then tells each Glyph in its list to redraw.

7.10.1.2 Airport map display

The Map module reads and maintains one or more static databases of multiply segmented lines that
produce line drawings. The database consists of a list of labeled points whose coordinates are given as
latitude and longitude. Sequences of the points are then referenced by label to specify multi-segmented
lines. The Map contains a primary database and multiple overlay databases. Each Window's
ViewFrameGlyph uses a MapGlyph to render the contents of the Map. The primary database in the Map
is always rendered. while the overlay databases can be turned on and off by the user. The MapGlyph
plays the roles of a Listener and a Handler lO receive the overlay toggling keystrokes. The Map (primary
and selected overlays) is drawn on command from the containing ViewFrameGlyph. Overlays are drawn
immediately when toggled on by user input to the MapGlyph. Since an overlay can not be erased without
potentially damaging other information on the screen, the MapGlyph forces its Window to perform a
redraw when an overlay is turned off.

7.l0.1.3 Data tag display
The TagGlyph serves as a centralized agent for rendering data tags in a Window. It keeps track of

the location of each tag and attempts to avoid tag overlaps using an algorithm that gives a high priority to
not obscuring targets and seeks to minimize the degree of orientation change for a particular target's tag

7-91



from update to update. The TagGlyph can display up to three lines of ten characters each in addition to a
single character at the target position and a leader line. When creating or updating a tag. the caller
specifies the tag color and preferred orientation (if any) in addition to the tag contents. For each tag
rendered, the TagGlyph retains sufficient information to erase the tag during an update or to redraw the
tag during a Window redraw. The TagGlyph module also provides a function that allows a client to get
the handle of the TagGlyph associated with a particular ViewFrameGlyph. This function will create a
TagGlyph and associate it with the ViewFrameGlyph if none exists already.

7.10.1.4 DBRITE-/ike display
DbriteReceiver creates an approximate copy of the image that would appear on the DBRITE

display that currently exists in the Logan tower. It receives data from the MDBM interface and displays
the data blocks that are being presented on the Final Vector controller's DEDS console. The data from the
MDBM interface contains all the information required to render full tag, partial tag, and single symbol
targets. Because the MDBM interface does not provide track numbers (or track drops), DbriteReceiver
must determine when new data represents an update of a prior report and when a report has aged
sufficiently that further updates are unlikely. To associate new reports with prior reports, DbriteReceiver
maintains two tables of target information. The first table contains targets for which the MDBM interface
has extracted an aircraft identification. The targets in this table can be reliably updated based on the
aircraft identification contained in subsequent reports. The second table contains targets without discrete
identification. DbriteReceiver uses a distance criterion to determine if new data represents an update to a
target in this table. DbriteReceiver also uses the dispatcher to trigger periodic checks for stale data. The
actual rendering of data tags for the DbriteReceiver is performed by the TagGlyph, which allows
DbriteReceiver's tags to be shown in a non-overlapping fashion with the tags for sensor fusion's tracks
when simultaneously viewing both sources of data. DbriteReceiver uses a small database file that
specifies the data used to translate target positions into world coordinates, which DBM to use as a data
source, and how long to wait before declaring a target to be stale. In a typical DBRITE-like configuration
of the RSLS display, only the MapGlyph, DbriteReceiver, TagGlyph, and infrastructure components are
active in a given Window.

7.10.1.5 Sensor fusion track display

The RSLS display renders track data from sensor fusion using the interplay of four components:
TrackReceiver, TrackGlyph, DrawableTarget, and TagGlyph. TrackReceiver is responsible for
establishing the inter-process communication connection with sensor fusion and receiving the track
reports. It also accepts track alert status information from the AlertReceiver. It creates a TrackGlyph for
each ViewFrameGlyph in which track data is to be displayed and maintains a list of TrackGlyphs to
enable the broadcasting of each track report and track alert status to the TrackGlyphs. Each TrackGlyph
maintains the state of several track-rendering options (tracks on, tags on, tag format, peak or current size,
heading indication for stopped targets) and a table of DrawableTargets. The TrackGlyph acts as both a
Listener and a Handler to accept user keystrokes that modify these options. The DrawableTarget contains
the relevant information about each track and implements the drawing operations required to render a
track according to the TrackGlyphs option settings. When the tags option is on for its TrackGlyph, the

7-92



DrawableTarget formats the text lines for the tag and uses the TagGlyph to render it. The
DrawableTarget will also draw the alert symbology if the track is involved in an alert.

7.10.1.6 Approach bar display

The compressed scale depiction of targets on approach to the runways is accomplished using three
components: ApproachBarReceiver, ApproachBarGlyph, and ApproachBar. These three components
have similar characteristics to TrackReceiver, TrackGlyph, and DrawableTarget respectively.
ApproachBarReceiver is responsible for establishing the inter-process communication connection with
surface monitor and for receiving the approach bar messages. It also accepts track alert status information
from the AlertReceiver. It creates an ApproachBarGlyph for each ViewFrameGlyph in which approach
bar data is to be displayed and maintains a list of ApproachBarGlyphs to enable the broadcasting of each
approach bar message and alert status to the ApproachBarGlyphs. ApproachBarGlyphs create and
maintain a table of ApproachBars. One Approach bar is created for each runway and is initially
positioned near the runway threshold based on data from the surface database. Each ApproachBar
renders itself and the symbols for tracks appearing on it. It keeps track of its displayed position in 'airport
coordinates,' how far from the threshold of the associated runway each occupying track is determined to
be by the surface monitor, the actual position of each track, and whether each track is involved in an alert.
Tracks are only depicted on the ApproachBar when their position is outside the limits of the
ViewFrameGlyph and thus would not have a visible track icon. The ApproachBar renders itself in one of
three modes: always visible, visible only when occupied by a track, or visible only when occupied by a
track involved in an alert. The current mode in effect is stored by the ApproachBarGlyph and can thus be
set independently in each window. The RSLS display does not currently show data tags for tracks
indicated on the approach bars. but provisions have been made to support them.

7.10.1.7 Runway status light display

Three components comprise the software module that depicts the state of the runway status lights in
each window. The LightStatusReceiver establishes the connection to the light governor process from
which it receives light status messages. The LightStatusReceiver maintains a list of LightGlyphs to which
it distributes initialization data for each light and light state updates. Each LightGlyph is responsible for
rendering the state of the lights in a given window. The LightGlyph maintains a table of DrawableLights.
The DrawableLights render themselves on the LightGlyph's associated Canvas according to their state: on
or off. There are actually two forms of DrawableLights, BarDrawableLights and DirDrawableLights,
which differ in how they render themselves on the display. BarDrawableLights, which are meant to
represent what would be used for an operational display, appear as a solid line across the taxiway at the
runway edge (for runway entrance lights) or across the departure end of the runway (for takeoff hold
lights) when in the on state and are invisible when in the off state. DirDrawableLights, which give a
clearer depiction of the light location and viewable direction for demonstrations, appear as narrow
triangles 'shining' down each side of the taxiway or down the center of the runway when in the on state.
DirDrawableLights appear as a much smaller triangle when in the off state to serve as a reminder of the
position of the lights. The safety database is used to determine the endpoints that correspond to a given
light for each BarDrawableLight. The DirDrawableLight uses the same endpoints as the apexes of the

7-93



two triangles drawn for runway entrance lights. It uses the taxiway and runway centerline data from the
surface database to place the axis of symmetry of the triangle parallel to the taxiway that the light serves
with the triangle fanning out away from the runway. For a takeoff hold light. the apex is placed where the
segment formed by the two endpoints intersects the associated runway centerline. and the triangle fans out
towards the departure end of the runway. Both types of DrawableLight can also show the polygons
specified in the safety database as the light's activation region and. for takeoff hold lights. arming region.
The LightGlyph serves as both a Listener and a Handler to accept keyboard input that allows the user to
toggle the rendering of these polygons in each window.

7.10.1.8 Alert display

The AlertReceiver establishes a connection to the surface monitor to receive messages indicating
when alerts arise and when they disappear. For each track identified in the alert message. the
AlertReceiver increments or decrements an alert count as appropriate. When the count changes from zero
to one or from one to zero. it notifies the TrackReceiver and ApproachBarReceiver that the indicated
track is or is not in an alert state so that the track and approach bar rendering subsystems can draw or
erase the alert symbology. On the receipt of a new track. the TrackReceiver and ApproachBarReceiver
query the AlertReceiver for !he track's alert status in case an alert message was received by the display
before the first message for the track.

7.10.1.9 Unfillered ASDE largel display

The RSLS display can show the direct output from ASDE processing in addition to the tracks from
sensor fusion. This feature is primarily used for evaluating the performance of the scan-to-scan
association in ASDE processing and the behavior of sensor fusion's fusion and filtering. The
ASDE_Receiver establishes the connection to the merge process of the ASDE processing subsystem,
receives the target reports. and after translating the target position from ASDE processing coordinates to
system coordinates. passes the data on to each ASDE_Glyph. The ASDE_Glyphs draw a filled circle for
each target at the reported position and with an area equal to the reported target area. The targets are
drawn in one of two colors depending on whether the target is reported to be low or high confidence. The
ASDE_Glyph can also indicate the last three digits of the targets ASDE track number above the filled
circle. The ASDE_Glyph stores the relevant information for each target for redrawing or erasing during
the next update. The ASDE_Glyph serves as a Listener and a Handler to accept keyboard input to toggle
the display of ASDE targets and target numbers in each Window.

7.10.1.10 Snapshol display

As an aid to analyzing the performance of its projection engine. the surface monitor produces a
target snapshot each time a target is updated. The target snapshot indicates the assumed state of the target
and a set of segments that represent the results of the acceleration and deceleration projections. These
snapshots are received by the SnapshotReceiver. which forwards them to each element in the list of
SnapshotGlyphs that it maintains. The SnapshotGlyphs render the snapshot information in each window
as it is updated for each target and store the current snapshot for each target for redrawing or erasing as

7-94



part of the next update. The SnapshotGlyphs also serve as Listeners and Handlers to accept keyboard
input to toggle the display of snapshots in each Window.

7.10.1.11 Surface graph display

When the surface monitor constructs its surface graph, it can generate a data file that indicates the
arcs and segments along which targets will be projected. The SurfaceGraphDisp can read this data from
the file. It maintains a list of SurfaceGraphGlyphs. Each SurfaceGraphGlyph can draw the arcs and
segments stored by the SurfaceGraphDisp on a Canvas. The SurfaceGraphGlyph serves as a Listener and
a Handler to accept keyboard input to toggle the display of the surface graph in each Window.

7.10.1.12 Master clock control

When the RSLS system is being operated in playback mode, the RSLS display can be used as an
interface to the master clock to control the time rate of the playback. The MasterClockInterface
establishes the connection with the master clock. It maintains a list of ClockControlGlyphs from which it
receives time-rate-control keyboard inputs and to which it passes time and time rate updates. The
ClockControlGlyphs serve as Listeners and Handlers to receive keyboard inputs to double, halve, or
freeze the time rate or to set it to unity. Whenever the time rate changes, the ClockControlGlyph that is
associated with the primary Window displays messages to the operator to indicate the current time rate.
When the time rate is frozen, the current time is also indicated. These messages are removed after ten
seconds to avoid unnecessary display clutter.

7.10.2 Significant Problems and Solutions

The primary requirements and design objective for the RSLS display are the following:

• use Xwindows to allow generating displays on a large variety of hardware with Xwindows support
including high contrast ratio and resolution grayscale monitors and a high contrast ratio color
backlit liquid crystal display attached to a portable IBM-compatible PC

• provide an infrastructure to allow software for rendering new data to be quickly added to the
display to give analysts new views of RSLS's operation

• support multiple views of the same information in the form of a primary window with sub-windows

• guarantee that certain high-priority information such as track icons and alert indicators can not be
completely obscured by lower-priority information.

• provide acceptable real-time performance, for instance, allow new data to be promptly rendered on
the display without redrawing the entire window.

The architecture of the RSLS display software, especially the extensive and flexible core infrastructure,
meets these needs to a large extent. Not including the InterViews package and various project-wide
library modules, the RSLS display consists of only about 13,000 lines of code. Furthermore, many
modules are structurally similar, which has expedited their creation and debugging.

7-95



7.10.3 Suggested Improvements

The current user interface for changing display settings and options is based on single keystroke
(holkey) commands. While this interface is very efficient for users who are familiar with the hot-key
assignments, a graphical user interface would provide a friendlier alternate interface. Also, the current
interface does not support changing the number, size, or position of sub-windows once the display has
been initialized.

7-96



7.11 MASTER CLOCK

7.11.1 Process Architecture

The master clock is a time server that provides time synchronization for multiple processes. The
master clock and its clients generate the 'current-time' using three pieces of information: an operating
system base-time, the 'current-time' corresponding to the base-time, and the rate of time passage (time­
rate). This approach allows the master clock and its clients to maintain synchronous time at not only a
real-time rate, but also at fast and slow-time rates.

The master clock process is event driven. The two types of events are the connection of new clients
or messages from existing clients. Clients can connect as either local clients or remote clients. Local
clients must be executing on the same machine as the master clock and use a protocol that allows exact
time synchronization based on the common system clock. Remote clients can execute on any machine on
the network, but they achieve less precise synchronization since they cannot rely on system clock
synchronization. Initially, all client processes connect as remote clients. When the master clock detects a
new remote client connection, it sends the client a message indicating the name of the machine on which
the master clock is executing. If the machine name matches the client's machine name, the client will
close the remote connection and re-connect as a local client. When the master clock detects a new local
client connection, it sends the local client time synchronization data.

When the master clock is not running in real-time mode, it listens for time or time-rate change
messages from its clients. When such a message is received, the master clock sends time synchronization
data to the local clients and sends an update required message to the remote clients. The master clock
also listens for and responds to update request messages from remote clients. Remote clients generate
update request messages when they determine that they can not connect as local clients and when they
receive an update required message.

7.11.2 Input and Output Data Description

Table 7.11.1 shows the master clock input messages. Local clients generate the LOCAL_SET
message to change the time and/or time-rate. Remote clients generate the UPDATE_REQUEST,
SET_TIME, SET_FACfOR, and SE"CTIME_AND_FACfOR messages.

7-97



TABLE 7.11.1

Master Clock Input Messages

Type Additional Fields

LOCAL_SET base-time, corresponding-time, time-rate

UPDATE_REQUEST none

SET_TIME current-time

SET]ACTOR time-rate

SET_TIME_AND_FACTOR current-time, time-rate

Table 7.11.2 shows the master clock output messages. Master clock sends a
SERVER_HOSTNAME message to each remote client when the client connects. The LOCAL_UPDATE
message is sent to local clients when they first connect or when the current-time or time-rate changes.
UPDATE_DATA messages are sent to remote clients as a signal to them that an update is required and to
individual remote clients in response to an UPDATE_REQUEST message.

TABLE 7.11.2

Master Clock Output Messages

Type Additional Fields

SERVER_HOSTNAME machine name as an ASCII text string

LOCAL_UPDATE base-time, corresponding-time, time-rate

UPDATE_DATA current-time, time-rate

7.11.3 Suggested Improvements

The mechanism for synchronizing clients on remote machines is not as robust or accurate as it
could be. A better scheme would use multiple messages to avoid the potential error induced by the
delayed delivery of a single message. More accuracy could be achieved by measuring round-trip message
times and compensating for the estimated message latency.

7-98

"



8. PERFORMANCE OF THE ASDE-X SURVEILLANCE SUBSYSTEM

During the RSLS system demonstrations at Logan Airport beginning in October 1992, a number of
design refinements were made to improve performance. In August 1993 an evaluation was undertaken to
assess the performance of the system as of that time. This chapter summarizes the results of the
performance assessment of the ASDE-X surveillance system by itself. The next chapter addresses the
whole system including safety functions together with surveillance.

Ideally the ASDE-X radar surveillance system would produce one target report per scan for each
aircraft within the region of interest, with the track number of each aircraft remaining constant as the
aircraft moves over its complete path. The same would be true for ground vehicles. Also there would be
no false tracks. Thus the many runway lights and other bright spots in the radar images, including
multipath effects, would be suppressed so that they do not form tracks. Furthermore this would continue
to be true when it rains or snows.

A practical system cannot achieve this ideal, but instead has a surveillance reliability not equal to
100 percent and a false track rate not equal to zero. We have conducted an analysis of data from the
demonstration equipment at Logan airport to quantitatively determine these surveillance performance
figures and to assess surveillance accuracy.

8.1 EXAMPLES OF SURVEILLANCE QUALITY

Before presenting statistical measures of performance, we begin with some specific data in order to

present concrete ideas as to the types of imperfections that can occur. We begin by selecting a data-set
arbitrarily, the only criterion being that it should be a busy period on a clear weather day. The subject
data was recorded on 12 August 1993, beginning at a busy time in the afternoon, at 4:20 PM. At that
time, aircraft were landing on runways 4R and 4L, and taking off from runways 4R, 4L, and 9. While this
radar data was being recorded, a log was kept of the aircraft types.

The data analysis began by displaying the surveillance tracks, limiting attention to "established
tracks." These are the tracks that are declared to be high-confidence tracks by the surveillance processing.
Whereas the system also includes lower confidence tracks, only established tracks are used in the safety
subsystem to activate runway status lights.

Although surveillance in the demonstration equipment at Logan airport is provided by both the
ASDE radar and the ASR-ATCRBS radar, this section focuses on just ASDE. Thus the analysis here is
applied to data originating only from the ASDE radar.

Each track displayed consists of target reports, which occur nominally once per scan. Looking at
the display of tracks, we clearly recognize the well defined tracks of aircraft landing and taking off. For
example, Figure 8-1 shows the superposition of the first 20 scans. To the analyst, this display evolves as
a function of time, from which it is evident that the track on runway 9 is moving upward in the picture,
and the tracks on runways 4R and 4L are moving toward the left. Velocities are indicated by the spacings
between target reports. Thus it is evident that the aircraft on runway 9 is taking off, the aircraft on
runway 4R is landing, and the aircraft on runway 4L is taking off. Also an aircraft has taxied out to

runway 9 to begin a takeoff, with another aircraft behind it, and other aircraft are taxiing, some outward to

8-1



takeoff and some inward toward the terminal buildings. In this display, each target report is plotted as a
circle whose area indicates the area of the reported radar target

Figure 8-1. Display oftracks from the ASDE-X radar.

The written log indicates that the runway 9 takeoff was a Boeing 727, the runway 4R landing was a
Boeing 737, and the runway 4L takeoff was a smaller commuter aircraft with twin propeller engines.

The track numbers can readily be determined by a display option in which track number appears
next to the current target report It becomes clear, for example, that the aircraft landing on runway 4R has
track number 108672. Knowing this, we can then display this track by itself, which is shown in Figure
8-2. Seeing the whole track indicates that after landing, the aircraft turned off the runway onto taxiway R,
then crossed runway 4L, then followed taxiway N, crossing runways 33R and 33L, until reaching the
terminal buildings. The aircraft remained in track during this motion, with a fixed track number. The
surveillance performance for this aircraft is seen to be quite good, which is typical.

8-2



8.2 SURVEILLANCE RELIABILITY

To obtain a quantitative estimate of surveillance reliability, we have examined a number of tracks in
this manner. Beginning with a plot of all established tracks, we identify track numbers for landing and
taking-off aircraft. and then display these tracks one-by-one to determine any surveillance gaps. A
computer program is also used to check whether a target report is generated on every scan.

In determining surveillance reliability, it is necessary to define the "region of interest" Experience
in studying this data indicates that surveillance is less reliable near the terminal buildings. This is to be
expected because some terminal buildings obstruct the radar view, and because the multipath environment
tends to be more severe near the terminal buildings. On the other hand, in a runway status light
application, surveillance is mainly required on the runways and nearby. For these reasons, we have
dermed the surveillance region of interest for this analysis to begin between the outer taxiway and runway
4L, as illustrated in Figure 8-2.

r-II-------J /:::=====:

REGION OF
INTEREST

Figure 8-2. Boeing 737 landing (track 108672).

The region of interest must also be defined with respect to landing aircraft that appear in
surveillance before they reach the runway. Similarly, taking off aircraft climb to an altitude above the
coverage of the radar antenna. Because this analysis focuses on ASDE surveillance, we have limited it to
surveillance on the surface. Thus for a landing aircraft, the region of interest in this analysis begins at the
runway threshold. For an aircraft taking off, the aircraft is considered to be within the region of interest
until the point at which the track disappears, provided that the path remains within the horizontal
boundaries of the runway.

8-3



TABLE8.!

Surveillance Performance for the First 20 Aircraft

Time (EDT) aircraft operation RW track no. scans misses swap? coasts

4 20 40 B727 takeoff 9 103306 169 0 0

4 20 45 twin prop takeoff 4L 107744 33 0 0

4 21 30 twin prop landing 4L 109299 20 0 0

4 21 30 twin prop takeoff 9 107417 109 10 0

4 22 19 B727 landing 4R 110026 162 0 0

4 22 35 twin prop takeoff 4L 109892 36 13 0

4 22 40 not logged takeoff 9 106282 86 0 0

4 23 15 twin prop landing 4L 110570 33 0 0

4 23 15 B727 takeoff 4R 108078 122 0 0

4 24 20 Cessna 421 landing 4R 111293 130 0 1

4 24 20 twin prop landing 4L 111600 38 0 0

4 24 13 Shorts 360 takeoff 9 107887 90 0 0

4 25 22 twin prop landing 4R 112307 89 0 0

4 25 40 B737 takeoff 9 106736 94 0 0

4 26 15 Shorts 360 takeoff 4L 109994 37 0 trk swap 2

4 26 24 DC9 landing 4R 113142 99 1 0

4 26 50 twin prop landing 4L 113239 47 0 0

4 27 0 twin prop takeoff 9 109083 105 0 trkswap 2

4 27 30 B737 landing 4R 113803 165 0 0

4 28 23 twin prop takeoff 9 109549 110 0 trk swap 5

Totals: 1771

Fraction:

Reliability (%):

24

0.0135

98.645

10

0.0057

99.428

This analysis procedure was applied to the first 20 aircraft that landed or took-off in this set of
recorded data. The results are summarized in Table 8.1. During this period, the average rate of landings
and takeoffs was 2.5 operations per minute, which is quite busy. The results indicate that most of the
aircraft were tracked regularly and completely while they moved through the surveillance region.

Track Flaws. The individual surveillance flaws seen in Table 8.1 can be described more
specifically as follows. An aircraft taking off from runway 9 (track 107417) experienced a track drop
shortly before entering the runway. Subsequently, after a gap of 10 scans, a new track was established for

8-4



this aircraft. A similar condition occurred for track 109892, which was a takeoff from runway 4L. For an
aircraft landing on runway 4R (track 113142), the track was late in becoming established by one scan.
Also a track swap among three aircraft occurred when these aircraft were in close proximity in the
vicinity of the runway 4L threshold. This period was analyzed in detail in an attempt to assign tracking
misses. Although all three aircraft had changes in track number, and all three tracks had coasts, there
were consistently 3 tracks corresponding to the 3 aircraft. We have adopted the following assignment of
flaws: no drops in surveillance, three cases of track number change, and coasts in all three tracks as
shown in the table.

Coasts. In addition to the flaws at the tracking level, some coasts occurred, which means that a
target report was not issued in a particular scan but the track was still active. There was one other coast in
addition to the coasts associated with the track swap. It was a small aircraft, a Cessna 421, landing on
runway 4R. Its radar image was quite small and it disappeared for one scan. This is a relatively minor
flaw, because the aircraft was being reported regularly before and after the I-scan coast, and always with
the same track number. Thus there was not much uncertainty as to the location of the aircraft at any time.

Percenta~es. The results in Table 8-1 can be combined to estimate the surveillance reliability. For
each aircraft analyzed, the time it entered the region of interest and the time it exited were determined.
The difference was the total exposure-that is, the number of scans in which surveillance was assessed.
Altogether the total is 1771 aircraft-scans. The subset of this number in which the surveillance system did
not generate a track was also counted, and these flaws total 24 aircraft-scans. Thus the overall
surveillance reliability was 98.6 percent at the track level. This is an estimate of the system's probability
of having an aircraft in track: P(aircraft in track) =98.6 percent.

Coasts can also be expressed as a percentage. For an aircraft that is in track but may experience
coasts, we define the update reliability as the percentage of all track-scans in which a target report was
generated. The result for this set of data is: P(report) =99.4 percent.

In summary, the surveillance analysis described above was formulated under the following
conditions. Only surveillance data from the ASDE radar was us~d, limiting attention to established
tracks. The targets of interest were aircraft that either landed or took-off, and they were assessed for the
whole time the aircraft was within the region of interest, whether on a taxiway or a runway. The resulting
reliabilities for generating a track and generating a report are as follows:

P(aircraft in track) = 98.6 percent

P(report) =99.4 percent

An alternative view of surveillance reliability is provided from an analysis of the full system,
including runway status lights together with radar surveillance. In such an analysis the surveillance is
only assessed in situations where a runway status light would normally have been turned on by the
presence of aircraft. For this purpose, the analysis of the full system, which is described in the section
that follows, has been adapted to provide results that assess surveillance.

Specifically, we have studied the performance of takeoff-hold lights, limiting attention to situations
in which a light would normally be turned on, but was not because of the absence of a surveillance track
on an aircraft. Table 8.2 gives the results of this analysis applied to four data sets, each about 1 hour in

8-5



duration. 'This is a large quantity of data including many different aircraft and many situations. The
overall result is that the radar surveillance successfully supported the takeoff-hold lights 96.6 percent of
the time.

TABLE 8.2

Surveillance Perfonnance Based on Runway Takeoff Hold Lights

date start conditions runway opportunities misses (sec)
time (sec)

3/11 14:50 VMC 27 315 7

33UG 146 28

33L 51 0

3/13 9:45 snow 9 390 0

3/31 19:15 VMC 4L 320 0

9 261 5

4/21 17:30 VMC 22L 491 0

22R 433 44

22RlnL 79 0

Totals: 2486 84

Ratio: 0.034

Reliability (%) 96.6

'This result can be compared to the surveillance-only result given above, provided we take account
of the fact that two aircraft must both be in track for a given takeoff-hold light to be illuminated. If the
probability of successful surveillance of one aircraft is denoted PI, then, according to the most
straightforward model, the probability of successfully having two given aircraft in track is P2 =P1 2.

Thus having measured P2 =0.966, we can calculate PI =0.983. TIlis result from analysis of the full
system is in good agreement with the surveillance-only result given above.

In summary, the reliability of the radar surveillance included in the demonstration equipment at
Logan airport has been assessed and found to be high although not perfect. The reliability for having a
given aircraft in track at a given time is about 98 to 99 percent.

Finally, it should be mentioned that as these results were obtained, the specific flaws in surveillance
that were observed suggested to the analysts some ideas for further refining the design and improving
performance. More specifically, most of the observed flaws in surveillance reliability were associated
with the multipath rejection algorithms. These algorithms generally achieve a low false track rate at the
expense of some decrease in surveillance reliability. More sophisticated multipath rejection logic is now
envisioned that promises to further increase surveillance reliability while also reducing the false track rate
(described in Section 3.4).

8-6



8.3 FALSE TRACK RATE

Experience with the demonstration equipment at Logan Airport indicates that false tracks
occasionally occur, primarily as a result of multipath (mechanism described in Chapter 3). On the other
hand, the multipath elimination functions that are now included in the system are effective in making the
false track rate among established tracks quite low. We have undertaken an analysis to quantitatively
determine the rate of false tracks.

lbis analysis begins with the same set of data discussed in Section 8.2, which was recorded on
12 August 1993 during a busy period in the afternoon in clear weather. Having identified the track
numbers for aircraft that are landing or taking off, we can eliminate their tracks and observe what other
tracks were generated. These other tracks are then examined in a display of the form shown in Figure 8-1.
The results show some tracks on runways and taxiways, which may be either vehicles or false tracks. To
determine whether or not they are vehicles, these tracks were displayed individually.

Specifically, working with the 12 August data beginning at 4:20 PM, a total of 86 aircraft tracks
were deleted during a 33 minute period. The display of the remaining established tracks showed that they
included a number of vehicles moving around the perimeter road and other vehicles in the vicinity of the
terminal buildings. Targets that are probably aircraft on the inner and outer taxiways but outside the
region of interest also appear. lbis is reasonable because no attempt was made to delete aircraft unless
they landed or took off during the time period studied. Targets that are probably boats in the harbor also
appear. Umiting attention to the runways and taxiways within the region of interest, we only see two
tracks (after the deletion of the known aircraft tracks). Examination of these in detail indicates that they
are both false tracks.

The first false track appeared on runway 4R, near the intersection with Taxiway P. It was an
established track briefly, including one target report, after which it coasted and was dropped. Looking at
the low-confidence track that preceded the established track, we recognize a false track pattern that has
been seen before. An aircraft was taking off from runway 4L, and was in-track. The false target appeared
at the same azimuth as the aircraft target, except slightly to the rear, which is consistent with the
phenomenon of reflection from the tail of the aircraft. We believe that this is a type of false target in
which the radar signal reflects first from the tail of the aircraft, then reflects from Terminal B or a parked
aircraft back to the first aircraft, and then reflects back to the radar. The result is that the false target
appears at the same azimuth as the tail of the aircraft, but at a longer range as a consequence of the longer
path.

The other false track appeared on runway 4R near the intersection with taxiway R. The duration of
the false track included 4 target reports, after which it coasted and was dropped. lbis track also occurred
consistently out-range from an aircraft that was in-track. The aircraft had landed on runway 4R and was
beginning to turn onto taxiway R when the false track appeared. We believe that the mechanism causing
this false track was a reflection from the aircraft to a nearby object such as the glide-slope antenna that is
mounted there, then back to the aircraft, and then back to the radar.

The results of the false track analysis can be summarized as follows. In a period of 33 minutes, or
1130 scans. the number of false established tracks within the region of interest was 2. Both were of short
duration, much shorter than the tracks of aircraft. The false track rate is about 4 per hour. Given that the
total length of runways and taxiways examined in this analysis is about 21 KM, the false track rate can be

8-7



expressed as 0.17 per hour per Km. This form of the rate may be more useful to projecting performance
to different airports.

8.4 SURVEILLANCE ACCURACY

To assess the accuracy of the ASDE-X radar surveillance subsystem, we have analyzed the reported
centroid positions with respect to the smoothness of the track and consistency with the probable motion of
the aircraft (see also Appendix D).

Time periods when aircraft are taxiing, and experiencing low values of acceleration, provide good
opportunities for analyzing surveillance accuracy. For example, the left-hand plot in Figure 8-3 shows
track 113142, which is me landing of a DC9 on runway 4R. After decelerating, the aircraft turns onto
taxiway Y, and then onto runway 33R for taxiing to the terminal buildings. One way to look at the jitter
in the reported centroids is to form the predicted position for each new scan based on the two preceding
reports and then to compare the new position report with the prediction. The prediction is given by

xp3 =2 x2 - Xl

where time index 3 represents the new scan and 1 and 2 are the preceding scans. This formula gives one
of the two coordinates of the target report. The other coordinate has the same form. The comparison
between the prediction and the new measurement is given by the residual

residual =x3 - xp3

Figure 8-3 shows the resulting residuals for this track, for both the x and y coordinates (here taken to be

the east and north coordinates of the target reports). We see that the residuals exhibit jitter that is both
positive and negative. The average value of the residuals is approximately zero, except when the aircraft
was decelerating strongly. Thus if we limit attention to the regions when the aircraft was not accelerating
or decelerating strongly, we can assess surveillance jitter from the magnitude of these residuals,
specifically the root-mean-square (rms) value. From the plots in Figure 8-3 it can be seen that the strong
decelerating of landing ends about scan 6660, and thereafter the aircraft taxis at approximately constant
speed over taxiway P and runway 33R. During this period, the ems value of residuals is calculated to be:
2.3 meters for the east coordinate and 2.6 meters for the north coordinate.

The ems value of the residuals is computed separately for the x and y coordinates. The rms value of
residuals (denoted or) can be used to infer the amount of jitter in the radar centroids (rms value denoted
OJ, by using the following relationship, which is derived in Appendix D.

0c= Or/..[6

8-8

•



T
ra

ck
11

31
42

67
00

67
00

66
80

66
80

66
60

66
60

I
no

rt
h-

re
sl

d.
.

ea
st

-r
es

ld
.

a
-.

•
C

•
Q

::
Ic

•
•
•

c
-
e
.
~

.
g

.
.
.

•
!

tI
•

~
c
-

It
-w

a
1
!
I
.
~
D

a
a
•
•
~
.
e
a

p
e

C
Q

ii1
Ja

Ci
~

-e
.!

,
••

r:J
P

C
I

d
•

.p
e

a
a

e c
•

.
.
c

tI
C

•
C

tI
tI

C
•

...
tI

20
T

IM
E

(s
ca

n
n

u
m

b
e

r)

·2
0 66

40

·
1
0
0
0
;
o
-
-
-
-
r
-
-
-
-
+
-
-
-
-
~
-
-
-
+
_
-
-
-
r
_
-
-
_
_
_
_
4

66
40

- E
no

rt
h

- z 0 j:
a

en 0 A
. -

10
E - 0 ~ c
( :::»

0
0 en w a::

·1
0

10
00

E
A

S
T

(m
)

~
, l I .- : • • e • • • • e • • •

10
00

-2
00

0
a

- E
a

- ::I
:

t- a:: 0 z

0
0 I \0

-1
00

0

T
IM

E
(s

ca
n

n
u

m
b

e
r)

F
ig

ur
e

8-
3.

A
na

ly
si

s
of

ji
tt

er
in

tr
ac

k
11

31
42

.



This is based on the concept of the effective noise level of the surveillance system. We define the
effective noise level of the surveillance system to be the level of a white noise (a model in which
centroid jitter is independent from scan to scan) that would produce the same value of O'r' nus
definition is appropriate for ASDE surveillance in applications in which scan-to-scan trends are used for
determining velocities of aircraft.

Given the O'r values from above, the resulting effective jitter levels are

O'c = 0.9 meters, east
1.1 meters, north

It is interesting to see that the jitter in target centroid positions is so small. It is much smaller than the
dimensions of an aircraft, and is even smaller than the resolution of the radar (which for this track is
about 6 meters in range by 12 meters in cross range). This small level of jitter is beneficial because it
will allow a determination of aircraft velocities and possibly accelerations with a useful level of
accuracy.

This example is typical of results see for other aircraft, as can be seen in quantitative results for other
aircraft tracks presented below. Results of this analysis appear to be not significantly dependent of the
type or size of the aircraft.

Effects of Acceleration. Even when an aircraft is taxiing, it is accelerating somewhat. and these
accelerations contribute to O'r' This is undesirable in the assessment of centroid jitter, so we would like
to limit attention to periods of low acceleration. Analysis in Appendix D· indicates that when
acceleration is non-zero it affects O'r according to the relationship:

rms(residuals) = ~6 O'c2 + a2

where acceleration, a, is given in units of distance per scan squared. IfO'c is approximately 1 meter, as in
the above example, then to keep the acceleration contribution less than 10 percent of the total,
accelerations should be less than 1.3 meters per scan squared. That is, the analysis should be limited to
time periods when the acceleration is smaller than this.

The ASDE-Xjitter analysis applies these principles as follows: select a track for analysis and
determine the time periods in which accelerations were not more than 1.3 meters per scan squared. For
track 113142, this occurred during scans 6662 to 6682. The ems value of the residuals is then calculated
over this period. From these values, the jitter in centroids is calculated. The results are

residuals,

centroid jitter

O'r = 1.8 m, east
2.6 m, north

C1c = 0.73 m, east
1.1 m, north

This analysis has been applied to other aircraft tracks in this data set, yielding the following
results:

8-10



track 110026 Boeing 727 after landing on 4R <lc= 2.0 m, east
1.2 m, north

track 113803 Boeing 737 after landing on 4R <lc= 1.0 m, east
1.3 m, north

track 111293 Cessna 421 after landing on 4R <lc= 0.8 m, east
0.5 m, north

Altogether these results indicate that surveillance tracks from the ASDE-X radar have relatively
low jitter. Rms values of jitter in the centroids are in the range 0.5 to 2 m rIDS. lbis is quite small
relative to the dimensions of the aircraft, and is smaller than the radar resolution. In addition to reporting
the location of the aircraft, the tracks are sufficiently smooth that the aircraft velocities can be
determined to a useful level of accuracy.

Finally it should be added that in addition to jitter in the centroids, a bias may also be expected to
some degree. Such biases would result from, among other things, the fact that the radar illuminates the
aircraft from one side, and receives returns primarily from the parts of the aircraft on that side. The bias
would vary with time and with type of aircraft. We see from surveillance displays. as in Figure 8-1, that
the biases are not large relative to the width of a runway and to the ordering among aircraft on a
particular way. Other than that qualitative observation, the assessment given here addresses only jitter,
because of its relevance in the use of the data for estimating aircraft velocity and acceleration.

8-11



9. PERFORMANCE OF THE RUNWAY STATUS LIGHT SYSTEM

9.1 INTRODUCTION

TIlis performance assessment of the Runway Status Light System (RSLS) at Logan Airport is a
quantitative evaluation intended to describe the system's performance in a way that is useful to those most
directly concerned, that is, pilots, tower controllers, and surface-vehicle operators. They would want to
know if the lights - were they installed - would improve safety and situational awareness, and if they
would interfere with the normal flow of traffic.

The safety logic algorithms that control the lights are intended to prevent critical conflicts on the
runways. They do this (in a complete system with lights on the airfield) primarily by preventing runway
incursions. The algorithms do not, however, aim to enforce rules, nor do they detect rule infractions per
se. An attempt has been made, in the design of the algorithms, to avoid reliance on knowledge of normal
operations in predicting the evolution of scenarios, so as not to compromise the effectiveness of the safety
logic in the kinds of abnormal situations that sometimes lead to incidents and accidents.

The assessment reflects the performance of the RSLS in its current form. Additional development
remains to be done, so the results presented here should not be interpreted as an indication of the system's
ultimate performance and capabilities. They can, however, be viewed as a lower-bound performance
estimate.

The fast-paced development of the RSLS demanded strict prioritization of the work, and some
software tasks had to be deferred. One of the specific items that has yet to be implemented is the safety­
logic algorithm to handle land-and-hold-short operations. The surveillance, tracking, sensor fusion, and
safety logic software is not in final form, and the parameters and other adjustable entities represent best
initial estimates, to be further tuned on the basis of operational experience. Such a tuning effort is required
to realize the system's full potential. Finally, the system as it currently exists has certain hardware
limitations. These are likely to be eliminated in an operational system, resulting in better surveillance.

The current embodiment of the RSLS, with no presence either in the tower cab or on the field,
makes possible an intuitive, qualitative assessment of the system's effectiveness and transparency: one
indication of a well-tuned, effective, and transparent safety system is a traffic display where the traffic
flows .asJ! the pilots and surface-vehicle operators could see and were responding to the lights. It is clear
from extensive observation of the interplay between the lights and live traffic on the RSLS display that
the system already works quite well by this criterion, with very few anomalies.

The observed anomalous events will be discussed and interpreted from the limited perspective of
the safety logic and the operation of the runway status lights. No attempt will be made to interpret the
events in operational terms, as the complexity of airport operations makes this impossible without full
knowledge of the circumstances.

9.2 PURPOSE AND SCOPE

The main purpose of this performance assessment is to provide preliminary quantitative data on the
system's end-to-end performance. The performance of the RSLS is evaluated in terms of four performance
measures, designed to gauge the system's ability to enhance safety while remaining transparent to normal
operations. These measures are Missed Detections, False Alarms, Instances of Interference, and Light
Infringements. The first and last address the system's effectiveness, the other two its transparency. The

9-1



first three are collectively referred to as light anomalies. All four will be defined and discussed in the next
section.

Many other performance measures can be defined for the RSLS, some related to the safety logic,
others to tracking and sensor fusion, surveillance, and surveillance processing. These will not be
considered explicitly in this assessment, since they are not of direct concern to the end user. In those
instances where flaws in surveillance, processing, tracking, prediction algorithms, etc., do manifest
themselves as observed light anomalies, they will be identified and described as appropriate. But, in
general, a complete evaluation of the performance of the individual functional system elements is
considered to be a part of the description of the respective elements and therefore is not attempted here.

Human factors are beyond the scope of the present assessment. Clearly, human-factors concerns are
very important in a system such as the RSLS, but they can only be addressed in connection with a more
mature system that interacts as intended with the users. Several system features, such as airfield lights,
tower-cab displays, and controller interfaces, that can be expected to figure prominently in a human­
factors study, are not yet implemented.

9.3 PERFORMANCE MEASURES

The four performance measures are defined below. The definitions involve the concept of a "light
threshold." This is a location or line near the light, beyond which the light state would not be clearly
discernible from the cockpit, and which therefore should not be crossed when moving towards an
illuminated light.

9.3.1 Definitions

Missed Detection: A missed detection is a failure of a runway status light to illuminate as it should,
as judged from the intent of the safety logic and the state of traffic on the airport and in the
immediate airspace.

False Alarm: A false alarm is a status-light illumination that does not reflect the real state of traffic
on the airport and in the immediate airspace.

Interference: Interference occurs when a status light is on, in accordance with the safety logic rules
and the state of traffic on the airport and in the immediate airspace, while an apparently safe
operation is underway that leads to light threshold crossing within a specified time.

Light Infringement: A light infringement results when an aircraft or surface vehicle advances
beyond the light threshold while the light is illuminated in accordance with the intent of the safety
logic and the state of traffic on the airport and in the immediate airspace, and it appears unsafe to do

so.

9.3.2 Discussion

The performance measures address the system's effectiveness and transparency. They can also in
general be related to either the surveillance and tracking function or the safety logic function. Table 9.1
illustrates these relationships.

9-2



TABLE 9.1

Performance Measure Relationships

Effectiveness Transparency

Surv. & Tracking Missed Detection FalseAlann

Safety Logic Light Infringement Interference

Table 9.1 is intended to serve as a conceptual aid that classifies the performance measures in a
general, overall sense. An overly rigid interpretation should, however, be avoided. The surveillance and
operational environment of a major airport is very complex and cannot easily be reduced to ultimate
simplicity. Still, if it is understood that borderline cases and the occasional crossover may be encountered,
the table places the measures in a useful perspective. For example, the primary safety logic performance
measures are interference and light infringements, although the safety logic could also be responsible for
an occasional missed detection. Low interference is a requirement for a transparent system, while the
ultimate proof of the safety logic's effectiveness is its proper operation in a potentially unsafe situation, as
demonstrated by a light infringement.

The performance measures will be discussed briefly and illustrated with the aid of examples.
Further discussion will be deferred to Section 9.5, where these issues will come up again in connection
with the data analysis. The narrative will for simplicity refer to aircraft but the arguments apply equally to
surface vehicles, where appropriate.

A missed detection may be defined in a narrow or broad sense. The narrow definition applies to a
failure to detect a developing conflict situation: this requires both that the light was off when it should
have been on, .wK1 that a conflict developed. Since runway conflicts are exceedingly rare events, we do
not expect to see evidence of this type of missed detection in the limited amount of traffic used for this
assessment. The broad definition is a missed detection of a potential conflict situation; this merely
requires that the light was off when it should have been on, and that the traffic picture was such that this

failure could have permitted a conflict to develop. The broad definition is used here. There is an even
broader definition of a missed detection, namely, that the light was off when it should have been on,
regardless of any potential for conflict TIlis type of missed detection is only associated with the runway­
entrance lights (RELs). It will be discussed below under the designation Type 2 REL missed detection.

A missed detection of a condition that should have activated a takeoff-hold light (THL) could be
caused by either a track drop of an aircraft in or about to enter the light's arming region, or drop of a target
in or about to enter the activation region, or a failure to track or project crossing high-speed traffic
properly. It could also in principle, but very rarely in practice, be due to multiple causes. An untracked
aircraft holding in position in an arming region is one of the more likely causes of missed detections,
since such a situation may persist for a while and possibly give rise to several missed detections.

A missed detection of a condition that should have activated a runway-entrance light could be
caused by a track drop of an aircraft engaged in high-speed operations, such as arrival, landing, landing
rollout, or takeoff. Such a drop may give rise to a light outage ranging in duration from very brief to tens
of seconds. Only the longer outages could possibly have a direct safety impact, since crews and aircraft
could not respond to very brief outages. Another cause of missed detections is ambiguity with regard to
the landing runway: approaches are flown at Logan that sometimes make it difficult for the safety logic to
automatically determine the landing runway from surveillance alone. The logic may be late in making the

9-3



determination, with the result that the runway-entrance lights near the approach end of the landing runway
illuminate later than desired.

Runway entrance lights illuminate whenever activated, regardless of whether anybody is in a
position to see them. This is unlike the takeoff-hold lights, which must be armed as well as activated
before they illuminate. The armer is generally in a position to see the illuminated takeoff-hold light, since
the arming region is defined specifically to include the holding positions of aircraft positioned for takeoff.
With the runway-entrance lights it is necessary to make a distinction between observed and unobserved
illuminations. The observed illuminations are called Type 1, the unobserved Type 2. This assessment
counts only Type 1 anomalies. This is consistent with the focus of the assessment, which is on the
interaction between the lights and pilots or surface-vehicle operators.

Most missed detections are due to surveillance processing or tracking difficulties or prediction
ambiguities that require knowledge of controller, pilot or operator intent. In specific airport regions,
missed detections can be traced to surveillance limitations such as shadowing by buildings or minimum­
range settings in the terminal radar receiver that are not fundamental in nature. It is of course also possible
that a missed detection might arise from a failure of the safety logic algorithms or software to accurately
reflect the intent of the safety logic. Such problems are rare; they will if necessary be discussed in Section
9.5.

A false alarm is an illumination of a status light that does not reflect real traffic. A false illumination
of a takeoff-hold light might come about due to a false activation track and a real arming track, or a false
arming track and a false or real activation track. The alarm caused by false activation is called a Type 1
false alarm, an alarm caused by false arming is called a Type 2 false alarm. They differ in that the crew in
the arming region is in a position to observe a Type 1 false alarm, whereas there is generally no one
around to observe a Type 2 false alarm (or, if there is someone nearby, the observer is likely to be less
concerned). The Type 1 false alarm is therefore the more significant and the only type to be considered in
this assessment. The definition of a Type I false alarm makes no distinction on the basis of the activity or
identity of the arming region occupant It could, for example, be an aircraft holding in position or crossing
the runway slowly, or it could be a maintenance vehicle in an arming region on an inactive runway.

Note that if lights, were installed on the airport surface, a Type 1 false alarm might actually cause
interference by interrupting or delaying a departure or by prompting a pilot to request verification of a
clearance. We nevertheless make the distinction between Type 1 false alarm and interference, since it is
an important one for the purposes of this assessment.

A false REL illumination could be caused by a false high-speed track on approach or on the
runway, due to multipath or misassociation. A surface vehicle traveling at high speed on the runway
might also activate the runway-entrance lights, but this would not constitute a false alarm, since the traffic
was real; likewise with a helicopter approaching the helipad but erroneously identified as a circling
approach to 4L. Such instances mayor may not be classified as interference, depending on the
circumstances. Only observed false REt illuminations will be counted, reflecting the point of view that
instances where a runway-entrance light illuminates an empty scene are of no consequence to the system's
end users. By analogy with the takeoff-hold lights, an observed false REt illumination will be called a
Type 1 false alarm and an unobserved one a Type 2 false alarm.

Interference, according to the definition, is caused by real traffic. It comes about mostly when the
safety logic does not take full account of the operational realities of the airport environment, or where the
safety logic is handicapped by its lack of knowledge of pilot and controller intent. An example is a
runway crossing in front of aircraft on landing rollout The safety logic's state machine currently does not

9-4

•



have a landing-rollout state, and this causes the runway-entrance lights to illuminate too far ahead of the
aircraft, with the result that the lights interfere with safe crossing operations further down the runway.
Another potential interference situation arises when an aircraft uses a runway to taxi to another runway
for departure. If this aircraft enters an arming region at taxi speed when the runway ahead is, or is
predicted to be, occupied, the takeoff-hold light will turn on even though the taxiing crew has no intention
of taking off. Whether this would be interpreted as interference in an operational situation is unclear at
this point.

Interference by a runway-entrance light may be due to misprojection of airborne traffic, leading the
safety logic to conclude that a landing is imminent on a given runway when it in fact is not. But
occasionally the runway-entrance light is on due to an approach that develops into a late sidestep to
another runway. This is not classified as interference, since the projection was correct up to the moment
the sidestep was initiated.

A Li2ht InfriD2emeot differs from interference mainly in that the light infringement results in an
apparently unsafe situation. It is difficult to determine from the recorded surveillance data if safety was in
fact compromised, since no record was made of tower channel exchanges during the data collection. nor
were video recordings made. This makes it impossible to offer a definitive assessment of apparently
unsafe traffic situations. No light infringement was seen in the data. This was not unexpected, since such
events are exceedingly rare. A search for light infringements was nevertheless part of this assessment,
since such an event would provide direct proof of the potential contribution of the RSLS to runway safety.

9.3.3 Normalization

To be meaningful, the anomaly counts must be presented in a way that takes the traffic volume into
account, such as, for instance, false alarms per hundred operations. This normalization scheme is simple
and easy to understand, since it in effect gives a measure of the number of anomalies to be expected in a
given amount of time (at Logan, 100 operations correspond to about an hour of traffic under average
conditions).

Suggesting that there is a simple relationship between anomalies per hundred operations and
anomalies per hour amounts to a statement about linearity. It is probably not true that the average number
of anomalies per operation is completely insensitive to the density of the traffic in the underlying data.
Since the assessment looks for observed anomalies, the events counted call for one light activator and one
observer, that is, they imply interaction between two agents and thus a potential density dependence. (The
same is, appropriately, true for the problem the RSLS is designed to address, namely, runway incursions.)
If such quadratic effects are present, they were not discernible in the data used for this assessment,
perhaps in part because of the limited size of the data sample, but also because the data were intentionally
collected under traffic conditions that were representative of typical Logan traffic conditions, which
means that more data were collected in average conditions than under extremely low and extremely high
traffic loads.

Since an assumption of linearity appears to be warranted in the context of this assessment, the
results will be presented in Section 9.5 in terms of anomalies per hundred operations. But such a
normalization fails to distinguish between long and short anomaly events, counting all with equal weight.
It therefore gives no clue to another important performance indicator, viz., the fraction of time that crews
operating on the airport surface might expect to be confronted with a light anomaly. This is called the
anomaly fraction. The results will also be presented in terms of the anomaly fraction, so as to take account
of the duration of the anomalies.

9-5



Whether presented in terms of anomalies per hundred operations or in terms of the anomaly
fraction, the assessment results imply a survey of the entire airport. That is, "five anomalies per hundred
operations" means that five anomalies are, on the average, observed by the "pilot population" on the
airport in the course of one hundred operations. One hundred operations represent approximately one hour
under average traffic conditions at Logan. Thus, we may say that five anomalies are experienced, airport­
~ in the course of one average hour. An individual crew can also expect to encounter five anomalies
in the course of one hundred operations but, in general, considerably less than five anomalies in one hour
of cumulative taxi time. Likewise, if the anomaly fraction is 1%, this means that the pilot population will,
on the average, see anomalies totaling (or an anomaly lasting) 36 seconds in the span of an hour. An
individual crew will be less affected.

9.4 DATA COLLECTION

The RSLS was in active development through February 1993, and it was necessary to defer data
collection for the performance assessment until the radar processing and tracking software stabilized
sufficiently that the assessment could be viewed as a valid point-in-time description. The data were
gathered in a brief but concentrated data collection effort during March and April of 1993; reflecting
predominantly late-winter and spring conditions. In spite of the short period available for data recording,
all major operational configurations and most common weather and traffic conditions were successfully
captured. Altogether, more than 5000 operations were recorded. A smaller but well-balanced subset of
approximately 800 operations is used for this assessment.

9.4.1 Logan Airport Operational Configurations

Logan Airport is usually operated in one of four major operational configurations, the choice
dictated primarily by wind conditions, but also by ceiling and visibility. Other, more restrictive,
configurations are employed in special circumstances, notably during snow removal and runway
maintenance operations. The major configurations are described briefly below, with reference to the
airport map of Figure 1-9, repeated here as Figure 9-1 for convenience. Deviations from the usage
indicated may occur upon pilot request and at the discretion of the local controller.

4/9 Confi~ration; Arrivals to Runway 4R, departures from Runway 9, arrivals and departures
to/from Runway 4L, occasional departures from Runways 4R and 15R. This configuration is used
when the wind is from the NE or E, as is commonly the case during the winter and spring months.
or during deteriorating weather conditions.

22a7 Confi2uration' Arrivals to Runways 22L and 27, departures from Runway 22R, occasional
departures from Runway 22L, occasional arrivals to Runway 22R. This is generally a summer
configuration, used when the wind is from the SW.

33a7 Confi2uration: Arrivals to Runways 33L, 27, and 33R, departures from Runway 27. Non-jet
departures from Runway 33L at Taxiway G and occasional full-length jet departures from Runway
33L. This is generally a winter configuration, used when the wind is from the NW.

15/9 Confi2uration: Arrivals to Runways 15R and 15L, departures from Runway 9, occasional
departures from Runway 15R. This configuration, used in SE airflow, is seen less often than the
other three.

Over a period of one year, one can expect to encounter each of the first three configurations
approximately 30% of the time, the fourth approximately 10% of the time.

9-6



•

9.4.2 Data

The data samples, or blocks, used for this assessment are listed below by time of day, regardless of
date and configuration. Thirty percent were recorded in IMC and 70% in VMC. There are approximately
three hours each of the 4/9 and 22/27 configurations and two hours each of the other two. The data are
thus slightly overweighted in the 15/9 configuration, at the expense of the 33/27 configuration. when
compared to the annual statistics. Most hours of the operational day are represented, but early morning
and late evening and a period around noon are missing. All in all, the data represent a brief but well­
balanced glimpse of operations at Logan Airport.

Data Block Time Interval Config. ·IMC? Net Time Operations
(local time) (minutes)

9 7:48-8:44 419 yes 56 70

10 9:03-10:02 2'lJ27 56 87

7 9:44-11:00 15/9 yes 70 55

2 10:33-11:36 33/27 60 94

4 13:12-14:12 15/9 52 63

5 14:50-16:10 33/27 80 99

1 15:59-17:14 4/9 yes 75 91

3 17:34-18:34 2'lJ27 60 103

6 19:15-20:20 419 58 91

8 19:51-20:47 2'lJ27 54 75

These data blocks capture weather conditions ranging from sunny and calm to foggy, to rainy and
windy, to the early part of the historic blizzard of March 13, 1993. The traffic intensity ranges from
moderate to heavy, approaching 110 operations per hour during parts of Data Block 3.

The discrepancy between net block time and the total block interval is due to tape errors in the
recorded raw ASDE-X data, which made an occasional short segment of the recorded data unusable for
the analysis.

The data collection sessions did not include tower channel voice recording, nor were video
recordings made of the airport traffic, but notes were made as time allowed when events of potential
interest to the safety logic were observed. Although sufficient information was collected to permit a
thorough assessment of the technical performance of the runway status lights, the lack of a complete
record of the operations precludes definitive interpretation of the recorded events from an operational
point of view.

9-7



91206

AIRPORT DIAGRAM

56
BOSTON/GENERAL EDWARD LAWRENCE LOGAN INTl(BOS)

Al·58 (FAA) BOSTON.MASSACHUSETTS

CAUTION: BE ALERT TO
RUNWAY CROSSING
CLEARANCES. READBACK
OF ALL RUNWAY
HOLDING INSTRUCTIONS
IS REQUIRED.

RADAR REFLECTOR

.~)
~~~\~.I

~
/

ELEV
15

Rwy 4R Idg 8850'
Rwy15R Idg 9201'
Rwy 22L Idg 8806'
Rwy 22R Idg 7045'

FIRE

JULY 1985
ANNUAL RATE OF CHANGE

O.l°W

BOSTON TOWER
119.1 257.8
GNDCON
121.9
CLNC DEL
121.65 257.8
ATIS ARR 135.0

l...
~

AIRPORT DIAGRAM BOSTON. MASSACHUSETTS

BOSTON/GENERAL EDWARD LAWRENCE LOGAN INTl (/30S/

Figure 9-1. Boston Logan airport runway and taxiway map.

9-8



9.S DATA ANALYSIS

The 10 data blocks of Section 9.4 were analyzed to identify all light anomalies that satisfied a
prescribed set of inclusion criteria. These criteria, or counting rules, are described in Section 9.5.1. 1bis is
followed by the assessment results, presented for each configuration individually in Sections 9.5.2
through 9.5.5. These sections, besides identifying the anomalies, also discuss the apparent causes and
possible fixes. The descriptions of causes serve to illustrate the complexity of the airport surveillance
environment and the variety of challenges presented to the RSLS by the physical and operational
environment at Logan airport. The descriptions also serve to identify areas of high payoff in future
development efforts.

To simplify the presentation, the narrative will generally be presented as if the lights were actually
installed on the field. That is, the discussions refer to lights illuminating "in front of aircraft," "causing
interference," etc. It must be kept in mind, however, that there are currently no runway status lights at
Logan. Neither field nor tower operations at Logan are in any way affected by the RSLS in its present
form.

9.5.1 Counting Rules

The counting conventions are consistent with the assessment's objective, which is to characterize
the system from the user's perspective. That means answering questions about how the RSLS will affect
pilots during ground operations. The main task of the assessment is to find answers to the following two
questions:

I) How many light anomalies will be observed in an average hour of operations at Logan, by
any and all crews operating on the surface?

2) What is the likelihood that, at any given moment, some crew will experience a missed
detection or a false alarm?

Answering these, questions requires not only an assessment of the operation of the lights
themselves, but also an evaluation of the probability that an anomaly will be seen. The second piece of
infonnation can only be obtained by observing the interplay between the lights and the traffic. It can not
be detennined by assessing the functional elements (radar processing and tracking, sensor fusion, or
safety logic) of the RSLS in isolation.

'This is not to say that evaluating the individual functional elements is inappropriate; on the
contrary, these more fundamental modes of evaluation are at least as important as the evaluation
presented here, if the goal is a thorough understanding of the performance of the RSLS. But they cannot
provide the "bottom-line" answer, and for that reason they properly belong with the individual functional
elements of the system, and not in an end-to-end analysis such as the present one.

In keeping with the intent to evaluate the system from the user's perspective, the assessment counts
only Type I false alarms and missed detections, that is, anomalies that would have been observable from
the cockpit 'This is a straight-forward concept for the takeoff-hold lights: it simply requires that an aircraft
is positioned in the light's arming region. Although in principle not much more complicated for the
runway-entrance lights, the definition is slightly more inVOlved, since there is no well defined region in
which to look for an observer. The assessment identifies observed REL false alarms and missed
detections by the following three criteria: to be counted as a Type 1 (obserVed) REL missed detection or
false alarm, an aircraft 1) must be within a certain distance of the light during the anomaly, 2) it must be

9-9



first in line, and 3) it must eventually enter the runway at that location. The first two criteria address the
question of whether the pilot is likely to be looking at the light, the second whether he is likely to be
concerned with it. These criteria may suggest that the identification of Type 1 REL anomalies is a
difficult process, fraught with uncertainty, but as a practical matter, the flow of taxi traffic is such that
little ambiguity arises.

A long anomaly will tend to be more of a concern than a short one. A short anomaly, such as a one­
scan light outage, may of course be a cause for concern for the pilot - if it is noticed - depending on the
circumstances. But this is mainly a human factors question and thus outside the scope of this assessment.
In terms of direct consequences, clearly neither crew nor aircraft can respond to such a short outage. The
assessment recognizes this fact by treating one-and-two scan false alarms and missed detections
differently from the longer ones. All false alarms and missed detections are of course undesirable and
should be eliminated as much as possible in future development efforts.

Instances of interference are, by definition, all observed. According to the definition in Section 9.3.
interference requires actual or imminent crossing of the light threshold while the light is on. All instances
of interference are counted. with no distinction attempted on the basis of duration. except for a qUalitative
judgment about severity.

When surface vehicles cause light anomalies that affect aircraft, they are counted as any other. REL
anomalies that affect surface vehicles are also counted. But the operation of takeoff-hold lights that are
armed by, for instance, service vehicles parked on an inactive runway is not assessed. The affected
takeoff-hold light sometimes illuminates due to normal airport traffic. but such illuminations are
considered inconsequential since a takeoff by the surface vehicle is out of the question.

9.5.2 The 419 Configuration

Data Blocks 1.6. and 9 were recorded in the 4/9 configuration. Data Block 6 in VMC. the other two
in IMC. The net duration was 189 minutes. There were 115 arrivals and 137 departures. for an average
traffic load of 80 operations per hour. Table 9.2 summarizes the three data blocks individually as well as
the combined results for this configuration.

Generally. in the 4/9 configuration. most departures are from Runways 9 and 4L. with arrivals to
Runway 4R and. conditions permitting. 4L. It is a challenging configuration for the RSLS. for several
reasons. First, most of the arrivals land on Runway 4R and must cross Runway 4L inbound on their way
to the gate. Likewise. many of the departures on Runway 9 taxi out via Taxiway S, crossing Runway 4L
outbound at the approach end. Careful tuning of the safety logic is required to avoid interference.
especially in heavy traffic under VMC. Second. Taxiway S can become very congested. both in the
vicinity of Runway 4Land between Runways 4L and 9. This, along with the radial orientation of the
taxiway with respect to the radar. leads to a challenging surveillance environment. in that shadowing
effects add to the difficulties of separating and tracking the closely spaced aircraft. Third. there is
sometimes a profusion of multipath returns along the first half of Runway 4L and the first quarter of
Runway 9. especially near the 4US and 9/S intersections. 1l1is increases the probability of track drop by
misassociation with multipath. in areas already made challenging by the orientation of the taxiway and
traffic congestion. Despite these difficulties, Table 9.2 indicates very good performance. especially in
Data Blocks 6 and 9.

9-10



TABLE 9.2

Light Anomalies for Configuration 4/9 at Logan

Data Conditions Duration Arrivals Departures Op&'hr
Light Anomalies

Block (min) MD· FA I

6 0 0
1 IMC 75 39 52 73 f---- --_.fo---

0 0 3
1 0 0

6 VMC 58 46 45 94 1---- --_...---
I 0 1
1 1 0

9 IMC 56 30 40 75 ---- --- ---
0 0 0

Totals or 8 1 0
- 189 115 137 80 ---- --- ---Averages 1 0 4

TIIL

REL

TIIL

REL

TIIL

REL

TIIL

REL

• Nine missed detections and four false alarms of one or two scan duration are not included in the table.

9.5.2.1 Takeoff-hold Light Performance

There were 86 departures from Runway 9, 41 from Runway 4L, four from Runway 4R, five from
Runway 15R, and one from Runway 33L. All were full-length departures, except for one that was made
from Runway 4R at Taxiway S.

There were two false alarms and 10 missed detections in Data Block 1, one false alarm and one
missed detection in Data Block 6, and two false alarms and three missed detections in Data Block 9.
There was no interference.

False Alarms

The five false alarms were all brief: three of one-scan duration and one each of two and three-scan
duration. All were caused by false (multipath) targets appearing briefly on Runways 4L and 4R in front of
aircraft positioned for departure. The one-and-two-scan false alarms are judged too brief to have
operational impact and are therefore excluded from Table 9.2. The longest of the five false alarms is
included, since, at three scans (five seconds), it would more likely have been a cause of concern for the
crew. The multipath rejection algorithms are still being refined, and it is expected that the number of false
tracks caused by multipath will be reduced by more sophisticated multipath filters than those currently in
use. This will reduce the incidence of false alarms caused by multipath.

Missed Detections

All but one of the fourteen missed detections occurred on Runway 9, the remaining one on 4L. Nine
(all brief, lasting between one and three scans) were caused by difficulties in tracking arrivals to Runway
4R (which intersects Runway 9) over the approach-light pier that extends into the water off the approach
end of Runway 4R. This pier represents a difficult high-clutter surveillance environment where further
improvements are needed in both surveillance and tracking algorithms. Compounding the difficulties is

9-11



the fact that ASR returns from aircraft within approximately 0.8 nm of the ASR are usually suppressed
and therefore not available to the RSLS. This surveillance limitation is not fundamental and could be
eliminated in a future system at Logan. It is, however, a feature of the current system, and it necessitates
coasting ARTS targets in the surveillance gap -- in particular, those on approach to Runway 4R - through
the gap. Sometimes the position error accumulated during this coast period is sufficiently large to
preclude proper fusion with the ASDE return once inside the region of ASDE coverage. The result is an
occasional (usually brief) track drop and TIlL deactivation.

The remaining five missed detections, lasting between four and 32 scans, were, unlike the nine just
described, due to TIlL disarming, caused by track drop while holding in position on the runway. Four
occurred on Runway 9 and one on Runway 4L. In at least two cases (including the 32-scan outage) the
problem appears to have been misassociation with multipath. Such misassociations present a difficult
surveillance and tracking problem and a high-priority item in future development work. A recovery
feature may be added to the tracking software that will recognize when such a misassociation has
occurred and attempt to re-establish the broken track.

The six one-and-two-scan outages are too brief for crews and aircraft to respond to them and are
therefore excluded from Table 9.2. The eight longer outages are included, even though, at three scans, it
can be argued that the three shortest of them were also too short for the crew and aircraft to respond and
move past the takeoff-hold light before it was reactivated (assuming, of course, that they were erroneously
cleared or started to take off without clearance).

It is not possible to evaluate the performance of the takeoff-hold light for the five departures from
the Runway 15R full-length departure location, due to inadequate radar surveillance: the location of the

X-band radar on the roof of the old tower building places it just barely high enough to see over Terminal
E. The result is that even large aircraft enter the runway very soon after emerging from the radar shadow
and thus are not in track until after they begin their takeoff roll. The resulting missed detections are not
counted since they are an unavoidable consequence of the suboptimal positioning of the radar.

9.5.2.2 Runway-entrance Light Performance

There were 95 arrivals to Runway 4R and 20 to Runway 4L, in addition to the above-mentioned
departure activity. There were four missed detections and four instances of interference. There was no
false alarm.

Interference

Three of the four instances of interference occurred in Data Block 1. They were all associated with
a surface vehicle doing a sweep of Runway 22R. It entered the runway at Taxiway N while the runway­
entrance lights were still on due to a 4L departure. This aircraft was at a safe altitude and the runway­
entrance lights would ordinarily have been off. There was not yet an altitude report for this aircraft,
however, (perhaps because the crew had not turned the transponder on yet) so the safety logic had not
declared the aircraft safely airborne.

After crossing the lights, the vehicle proceeded down the runway, reaching a speed and acceleration
sufficient to be declared a departure and illuminating the runway-entrance lights. Two aircraft crossed
against the lights, a safe distance in front of the vehicle. Further tuning of the state transition thresholds in
the safety logic will reduce the chances that a speeding surface vehicle is misidentified as a departing

9-12



aircraft, but such misidentifications probably cannot be eliminated altogether, without some way to
positively identify vehicles that are likely to be engaged in high-speed operations on the runways.

The fourth instance of interference occurred in Data Block 6. It involved a 4L departure and an
inbound crossing at Taxiway N. In this case the airborne aircraft did report its altitude, but the altitude
threshold used by the safety logic to deactivate the runway-entrance lights was set too high, causing the
lights to turn off late. The interference was mild.

Missed Detections

Two of the missed detections occurred in Data Block 6 at the intersection of Taxiway S and
Runway 4L. They were brief, lasting one and three scans. Both were associated with curved approaches to
4L: the tracking filter applied in sensor fusion to the ARTS returns caused the track to deviate to the
outside of the tum, resulting, ultimately, in a failure to project the arrival onto the runway. 1bis occurred
just before the ASDE had the aircraft in track, hence the short duration of the outages. An adjustment to
the filter gains and/or the ASDE coverage map will alleviate this problem. The other two missed
detections, one each in Data Blocks 1 and 9 and both lasting two scans, were caused by late declarations
of departures on Runway 4L, resulting in delayed activation of the runway-entrance light at the
intersection with Taxiway C. As discussed above, only the one missed detection longer than two scans is
included in the anomaly count of Table 9.2.

9.5.3 The 22127 Configuration

Data Blocks 3, 8, and 10 were recorded in the 22(27 configuration, all in VMC. Net duration was
170 minutes. There were 119 arrivals and 146 departures, for an average traffic load of 94 operations per
hour. Table 9.3 summarizes the three data blocks individually as well as the combined results for this
configuration.

TABLE 9.3

Light Anomalies for Configuration 22127 at Logan

Data
Conditions

Duration Arrivals Departures Opslhr
Light Anomalies

Block (min) MD· FA I I

I

5 0 0
3 VMC 60 47 56 103 ~--- --- ~---

0 0 0
1 0 1

8 VMC 54 39 36 83 1---- --- ---
0 0 1
1 1 0

10 VMC 56 33 54 93 1-_-- --_.~---
0 0 0

Totals or

I

7 1 1
- 170 119 146 94 ---- --- ---Averages 0 0 1

TIlL

REL

TIlL

REL

TIlL

REL

TIlL

REL

• Two missed detections and seven false alanns of one or two scan duration are not included in the table.

9-13



Generally, in the 22/27 configuration, most departures are from the full-length position of Runways
22R and 22L, with arrivals to Runways 27 and 22L. As with the 4/9 configuration, it is a challenging
configuration for the RSLS. Most of the arrivals land on Runways 27 and 22L and must cross the primary
departure Runway, 22R, on their way to the gate. The majority cross at Taxiways E and S. Careful tuning
of the safety logic is required to avoid interference at these busy crossing points. Table 9.3 indicates very
little interference and, except for a number of missed detections in Data Block 3, excellent performance
overall.

The potential of the RSLS to protect against runway incursions without causing interference can be

seen clearly in Data Block 3: there were 44 departures from Runway 22R in a span of 60 minutes, while
34 arrivals crossed inbound at Taxiways E and S. Between them, these 34 crews saw a total of 57 REL
illuminations. None experienced interference.

9.5.3.1 Takeoff-hold Light Performance

There were 128 departures from Runway 22R and 16 departures from Runway 22L, as well as two
departures from Runway 15R in Data Block 8.

The takeoff-hold lights performed well, especially in Blocks 8 and 10, less so in Data Block 3.
There was one instance of interference in Data Block 8. There were six false alarms, three in Data Block

3, one in Data Block 8, and two in Data Block 10, all but one of short duration. There were seven missed
detections, lasting from three to 37 scans, five in Data Block 3 and one each in Data Blocks 8 and 10.

Interference

The one case of interference occurred on Runway 22R and was caused by strong headwind: the
previous departure was climbing out steeply, at a ground speed of 68kts and an altitude of 600 ft over
Taxiway Q. The safety logic misclassified this aircraft as a departure abort and did not deactivate the
takeoff-hold light as it would ordinarily have done - under VFR conditions - when a safe separation was
achieved. Modification of the safety logic's state-transition rules is expected to reduce the likelihood of
such misclassifications.

In addition to the one case of interference in Data Block 8, there were three instances of TlD...
interference on Runway 22L in Data Block 3, caused by land-and-hold-short operations on Runway 27.
The safety logic currently has no provision for handling this condition, so these instances of interference
will not be counted. Future additions to the safety logic will include a special algorithm to be invoked
when land-and-hold-short operations are in effect, to shorten the duration of TIlL activation on the
intersecting departure runway and thus eliminate the interference with departure operations. This

algorithm will include information on the type or category of the arriving aircraft as well as provision for
controller input, so as not to reduce the effectiveness of the takeoff-hold light when the landing aircraft is
not expected to hold short.

False Alarms

Of the six false alarms, four were due to multipath appearing on Runway 22R while an aircraft was
in position for departure. Three of these were brief (one and two scans), as is usually the case when
multipath is involved, but one, in Data Block 10, lasted 10 scans. The multipath rejection algorithms are
still being refined, and it is expected that the number of false tracks caused by multipath will be reduced

9-14



by more sophisticated multipath filters than those currently in use. 1bis will reduce the incidence of false
alarms caused by multipath.

Another false alarm was due to a false high-speed track that appeared over the water, presumably
caused by radar returns from the choppy sea. It was misidentified as approaching traffic and projected to
Runway 4L, illuminating the takeoff-hold light for two scans in front of an aircraft holding in position at
the opposite end of the runway. Modifications to the safety logic may be implemented that would delay
slightly the projection of certain suspicious tracks that appear over the water with no ASR counterpart
1bis should eliminate such wave-action effects with minimal reduction in system effectiveness.

The last false alarm was caused by a fusion failure during departure roll, which resulted in a one­
scan false illumination of the takeoff-hold light in front of the next departure, which was holding in
position. The five one-and-two-scan false alarms are judged too brief to have operational impact and are
therefore excluded from Table 9.3. Only the lO-scan false alarm is included.

Missed Detections

The seven missed detections, lasting between three and 37 scans, were all long enough to be
included in the anomaly count in Table 9.3. The longest was a 37-scan outage in Data Block 8 that
resulted when an aircraft in position for departure on Runway 22R suffered a track drop and thus
disarmed the takeoff-hold light. During this time the aircraft that had been ahead of it in the departure
queue was returning to the gate, taxiing down the runway. 1bis resulted in a rather long missed detection.
There were three other missed detections caused by track drops while in position on Runway 22R; they
lasted three, six, and eight scans. The problem of occasional track drops in the vicinity of the intersection
of Runway 22R and Taxiway N is under study. It may in part be related to deficiencies in one of the
track-drop recovery features. Correcting this problem has high priority.

Two other missed detections, in Data Blocks 3 and 10, occurred when small aircraft suffered track
drops while waiting to cross Runway 22R at Taxiway E. They crossed while not in track, thus failing to
activate the Runway 22R takeoff-hold lights and causing missed detections of eight and three scan
duration. Failed reacquisition was the cause in both cases; the bad-drop reacquisition algorithm will be
improved.

The last missed detection, of estimated duration II scans, occurred in Data Block 3: an arrival to
Runway 27 failed to activate the takeoff-hold light on the intersecting Runway 22L as early as it should
have. The problem has been traced to the safety logic software and a fix has been identified

It is not possible to evaluate takeoff-hold-light performance for the two departures from the
Runway 15R full-length departure location due to surveillance limitations, as mentioned in Section 5.2.1.
The resulting missed detections are not counted since they are an unavoidable consequence of the
suboptimal positioning of the radar.

9.5.3.2 Runway-entrance Light Performance

There were 67 arrivals to Runway 27, 50 to Runway 22L, and two to Runway 22R, in addition to
the above-mentioned departure activity. The runway-entrance lights gave rise to one instance of
interference in Data Block 8, and there were two brief false alarms and one brief missed detection in Data
Block 3. No REL anomaly was seen in Data Block 10.

9-15



Interference

The one case of interference occurred at the intersection of Runway 22R and Taxiway S: an aircraft
was on landing rollout on Runway 22R and still moving fast enough to activate the runway-entrance
lights at Taxiway S when a prior arrival crossed inbound. There was no danger in this situation. Planned
enhancements to the safety logic include the addition of a landing-rollout state, which would have the
effect of reducing the likelihood of interference in such situations. Additional tuning of the REL
activation time for the landing state would be an alternative, but less fundamental, solution.

False Alarms

The two false alarms, lasting one and two scans, occurred at Taxiways E and S on Runway 22R.
They were caused by false tracks due to wave action in the harbor channel, as described above in
connection with the takeoff-hold lights.

Missed Detection

The one-scan missed detection occurred at the intersection of Runway 27 and Taxiway C. It was
caused by a brief velocity error suffered by an arrival to Runway 27, which caused the runway-entrance
light at 27/C to go out momentarily. This missed detection as well as the two false alanns are judged too
brief to have operational impact and are therefore excluded from Table 9.3.

9.5.4 The 33/27 Configuration

Data Blocks 2 and 5 were recorded in the 33/27 configuration, both in VMC. Net duration was 140
minutes. There were 113 arrivals and 80 departures, for an average traffic load of 83 operations per hour.
Table 9.4 summarizes the two data blocks individually as well as the combined results for this
configuration.

Generally, in the 33/27 configuration, most departures are from the full-length position of Runway
27 and from Runway 33L at Taxiway G, with most arrivals to Runways 33L and 27. Data Block 2
provides a good example of 33/27 operations: a significant number of arrival and departure operations
were conducted on both of the intersecting runways 27 and 33L, in addition to a small number of arrivals
to Runway 33R. The traffic was heavy, reaching 100 operations per hour at its peak. Many of the runway
status light channels were very active, demonstrating their potential contribution to safety under
conditions of heavy and complex traffic. For instance, there were 16 departures from Runway 33L at
Taxiway G. Thirteen of these saw a total of 24 REL illuminations and 11 saw illuminated takeoff-hold
lights. Nine of the departures saw both kinds of lights illuminated between the time they stopped on
Taxiway G short of Runway 33L and the time they departed. Only one departure out of the 16 took off
without light involvement Yet. there was only one case of mild interference.

9.5.4.1 Takeoff-lwld Light Performance

There were 37 full-length departures from Runway 27 and two departures from 27 at C. as well as
eight full-length departures from Runway 33L and 33 departures from 33L at G. The takeoff-hold lights
performed very well. There was one instance of interference in Data Block 2 and four instances of missed
detections in Data Block 5.

9-16



TABLE 9.4

Light Anomalies for Configuration 33/27 at Logan

Data Conditions Duration
Arrivals Departures Ops/hr

Light Anomalies
Block (min) MD* FA I

0 0 1
2 VMC 60 57 37 94 f---- --- ---

0 0 5
3 0 0

5 VMC 80 56 43 74 1-_-- --- ---
0 1 1

Totals or 3 0 1
- 140 113 80 83 ---- --- ---

Averages 0 1 6

TIIL

REL

TIIL

REL

TIIL

REL

* One missed detection of one scan duration is not included in the table.

Interference

The one case of interference occurred on Runway 33L at G, when the takeoff-hold light failed to

anticipate that a prior arrival was vacating the runway. An extension to the safety logic's anticipation
features is planned, to permit earlier deactivation of the takeoff-hold light in similar situations and reduce
the likelihood of such interference.

Missed Detections

Of the four missed detections, one was a 4-scan outage of the takeoff-hold light at the full-length
departure position on Runway 27 and one was a one-scan outage. Both were caused by difficulties in
tracking arrivals to the intersecting Runway 33L over the approach-light pier that extends into the water
off the approach end of Runway 33L. This pier represents a difficult high-clutter surveillance
environment where further improvements are needed in both surveillance and tracking algorithms.

The one-scan outage is far too brief for crews and aircraft to respond to it and is therefore excluded
from the missed-detection count in Table 9.4. The longer of the two outages is included even though, at
four scans (7 seconds), it can be argued that it was also too short for the crew and aircraft to respond and
move past the takeoff-hold light before it was reactivated (assuming, of course, that they were erroneously
cleared or started to take off without clearance).

The remaining two missed detections, lasting six and 10 scans, respectively, occurred on Runway
33L at G. They were both caused by track drops suffered by traffic crossing Runway 33L at Taxiway N:
two aircraft that had previously landed on Runway 33R were apparently misassociated with multipath
returns as they waited to cross Runway 33L and subsequently crossed while not in track. These aircraft,
temporarily invisible to the safety logic, failed to activate the takeoff-hold light lights which therefore did
not illuminate as they should have in front of aircraft holding in position on Runway 33L at G. Planned
enhancements to the scan-to-scan association algorithms include a misassociation recovery feature that
would lessen the negative impact of such misassociations.

9-17



9.5.4.2 Runway-entrance Light Perfor1TUlnce
There were 16 arrivals to Runway 27, 16 to 33R, and 81 to 33L, in addition to the above-mentioned

departure activity. The heavy activity on Runway 33L resulted in extremely active runway-entrance lights
on this runway, especially beyond the Taxiway F turnoff, where the channels were activated not only by
the arrivals but also by intersection departures from Taxiway G in addition to those from the full-length
position. There were at least 57 REL activations along this segment of 33L in Data Block 2 and 65 in
Data Block 5 -- that is, almost one per minute on the average.

There were five instances of interference in Data Block 2 and one in Data Block 5, as well as one
false alarm in Data Block 5.

Interference

The case of interference seen in Data Block 5 occurred when an aircraft that had landed on Runway
33R was crossing Runway 33L at Taxiway N. An aircraft on landing rollout on Runway 33L was still
moving fast enough to activate the runway-entrance lights at Taxiway N, causing interference with the
crossing aircraft. There was no danger in this situation and the interference was mild. Planned
improvements to the safety logic include the addition of a landing-rollout state, which would have the
effect of reducing the likelihood of interference in such situations. Additional tuning of the REL
activation time for the landing state would be an alternative, but less fundamental, solution.

Of the five cases ofREL interference seen in Data Block 2, two were of the type just described. The
other three were on Runway 27, caused by misprojections of 33R arrivals to Runway 27. These
misprojections were brief and the interference mild. It may prove difficult to eliminate this kind of
interference completely, since 33R arrivals often appear lined up with Runway 27 until quite late in the
approach. The approach logic for the 33/27 configuration will undergo additional tuning, however, to
reduce the frequency of such misprojections. Provisions for controller input will also be considered.

False Alarms

The one false alarm occurred on Runway 4L at Taxiway S: one of only two arrivals to Runway 27
in Data Block 5 was taxiing in on Taxiway X when the Runway 4L runway-entrance lights illuminated
erroneously for 8 scans. The reason was an erroneously coasted track in the vicinity of the GA ramp that
was misidentified as an arrival to 4L. Modifications to the tracker's coast feature are expected to reduce
the likelihood of such false alarms.

9.5.5 The 15/9 Configuration

Data Blocks 4 and 7 were recorded in the 15/9 configuration, the first in VMC, the second in IMC.
Net duration was 122 minutes. There were 61 arrivals and 57 departures, for an average traffic load of 58
operations per hour. Data Block 7 was recorded during the major blizzard of March 13, 1993. The storm
intensified during the recording period, the visibility deteriorating to about one mile and the wind
increasing to 15 kts. As would be expected, radar surveillance was not significantly affected by the snow,
but the 15-kt ESE wind caused considerable wave action in the harbor channel adjacent to the airport and
this did produce a number of short-lived high-speed false tracks over the water. These false tracks did not
have a significant effect on the system, which performed very well overall. Table 9.5 summarizes the two
data blocks individually as well as the combined results for this configuration. Note that the pilots
operating on the airport during Block 7, in increasingly severe blizzard conditions, would have found the
runway-status lights performing flawlessly -- they would have experienced no missed detection, no false
alarm, and no interference.

9-18



TABLE 9.5

Light Anomalies for Configuration 15/9 at Logan

Data
Conditions Duration Anivals Departures Opslhr

Light Anomalies
Block (min) MD FA I

1 0 0
4 VMC 52 27 36 73 ---- ---- ---

0 0 2
0 0 0

7 IMC 70 34 21 47 ---- --- ---
0 0 0

Totals or 1 0 0
- 122 61 57 58 ---- --- ---Averages 0 0 2

THL

REL

THL

REL

THL
REL

In the 15/9 configuration, Runway 9 is the primary departure runway, with additional departures
from Runway 15R. Runways 15R and 15L are used for arrivals. When conditions and aircraft category
permit, aircraft landing on Runway 15R are issued clearances to land on 15R and to hold short of the
Runway 9 intersection; under these conditions takeoff clearances may be issued for Runway 9 while the
landing aircraft on Runway 15R is still roIling out. 1bis was the case in Data Block 4. The safety logic
does not yet include a land-and-hold-short algorithm, so some interference resulted, as discussed below.

9.5.5.1 Takeoff-hold Light Performance

There were 49 departures from Runway 9 and eight from Runway 15R. The takeoff-hold light on
Runway 9 performed well. There was one 4-scan missed detection in Data Block 4, when an aircraft
moved into position on Runway 9 while not in track (thus failing to ann the takeoff-hold light), while the
previous departure was still on its takeoffroll. There was no anomaly in Data Block 7.

It is not possible to evaluate the performance of the takeoff-hold light at the Runway 15R full­
length departure location due to inadequate radar surveillance, as mentioned in Section 9.5.2.1. The
resulting missed detections are not counted since they are an unavoidable consequence of the suboptimal
positioning of the radar.

In addition to the one missed detection in Data Block 4, there were six instances of TIIL
interference on Runway 9, caused by land-and-hold-short operations on Runway 15R. As mentioned in
Section 9.5.3.1, the safety logic currently has no provision for handling this condition, so these instances
of interference will not be counted.

9.5.5.2 Runway-entrance Light Performance

There were 57 arrivals to Runway 15R and four to Runway 15L, in addition to the above-mentioned
departure activity. There were only two instances of interference, both in Data Block 4 and both due to
the same cause: a surface vehicle was moving along Runway 22R, with sufficient speed and acceleration
to be declared a departure, thus illuminating the runway-entrance lights along the runway. Two aircraft
crossed 22R against the lights, one inbound on Taxiway C, the other outbound on Taxiway S. There was

9-19



no danger in these crossings. Tuning of the safety logic's state transition criteria may lessen the likelihood
that surface vehicles activate the runway-entrance lights, but such misactivations probably cannot be
eliminated altogether, without some way to positively identify vehicles that are likely to be engaged in
high-speed operations on the runways.

There was no observed REL anomaly in Data Block 7, but false high-speed tracks caused by radar
returns from the choppy seas appeared over the water and on seven occasions were misidentified as
approaching traffic and projected to Runways 4L, 4R, or 9, illuminating runway-entrance lights briefly.
Most of these anomalies lasted only one or two scans, none gave rise to an observed false alarm.
Modifications to the safety logic may be implemented that would delay slightly the projection of certain
suspicious tracks that appear over the water with no ASR counterpart. This should eliminate most of these
wave-action effects with minimal reduction in system effectiveness.

9.5.6 Synthesis

The observed light anomalies are shown in Figure 9-2 for the four operational configurations at
Logan. The anomaly counts are taken from Tables 9.2 through 9.5 and are presented as anomalies per 100
operations. As in the tables, missed detections and false alarms of one-and-two scan duration are
excluded. 100 operations correspond to very nearly one hour of Logan traffic (the 1993 average traffic
load at Logan is 98 operations per hour). It is apparent that most of the takeoff-hOld-light anomalies are
missed detections and most of the runway-entrance-light anomalies are interference. This appears to be
true regardless of the configuration.

Figure 9-3 shows the anomaly fraction for false alarms and missed detections in the four
configurations. The anomaly fractions were arrived at by summing up the durations (measured in scans)
of all observed anomalies of these two types in a configuration and dividing the sum by the total number
of scans in the data blocks for that configuration. The quantity presented is thus the probability that, on
any given scan, an anomaly is affecting someone on the airport surface. The black and gray bars
correspond to the data presented in Tables 9.2 through 9.5 and Figure 9-2; the white extensions represent
the aggregate durations of the short anomalies excluded from the tables and Figure 9-2. Multiplication of
the ordinate by 2000 gives the aggregate duration (in scans) of observed light anomalies in an hour (one
hour contains very nearly 2000 scans of the ASDE-X radar).

The four graphs of Figure 9-2 can be combined with weights of 0.3, 0.3,0.3, and (for the 15/9
configuration) 0.1 to give a prediction of the long-term average performance of the RSLS. These weights
correspond to the approximate historical frequency of the configurations. The same can be done for
Figure 9-3. The results are shown in Figures 9-4 and 9-5. It is clear that the RSLS performs quite well
considering its status as a technology-demonstration system: Figure 9-4 indicates that, averaged over the
long term, there is better than a 97% chance that a cockpit crew will not encounter a missed detection of
more than two-scan duration during the time they are taxiing in after landing or taxiing out for departure,
better than a 99% chance that they will not encounter a false alarm of more than two-scan duration, and
about a 98% chance that they will not experience even a mild case of interference. Many of the missed
detections and false alarms are of short duration. This means that, when measured in terms of time (as in
Figure 9-5) rather than events (as in Figure 9-4), the performance of the RSLS appears even better. For
instance, Figure 9-5 shows that only about 1% of the time will~ cockpit crew be confronted with a
status light in the wrong state. A specific crew will be less affected.

It should be understood that none of the anomalies seen in this assessment represents a direct safety
hazard. This is because one of the fundamental design constraints of the safety logic was that it should not

9-20



cause a dangerous situation. The most immediate effect of the anomalies is a brief and localized
suspension of the protection that the RSLS nonnally provides.

3.5
ell

§ 3..=
r:8- 2.5

8 2­"""8. 1.5
ell
Q)

~ 1
e
o
~ 0.5

o

3.5
ell

§ 3
.~
8. 2.5
o
8 2-
~0. 1.5

~
~ 1
§
~ 0.5

o

Configuration: 4/9

• THL

III REL

MD FA I
Type of Light Anomaly

Configuration: 33/27

.THL
IIJ REL

MD FA I
Type of Light Anomaly

3.5

§ 3
..=
r:8- 2.5

8 2­
"""8. 1.5
ell
Q)

~ 1
e
o
~ 0.5

o

3.5
ell

§ 3....
e
8. 2.5
o
8 2-
~
0. 1.5
~
~ 1
§
~ 0.5

o

Configuration: 22/27

.THL

.REL

MD FA I
Type of Light Anomaly

Configuration: 15/9

.THL
IJREL

MD FA I
Type of Light Anomaly

Figure 9-2. Observed light anonullies.

9-21



o

c:
.g 0.01

~
>.
'a

j 0.005

.THL

.REL

Configuration: 22/27
0.015

o

c:
.g 0.01
~u:
>.
'ae
~ 0.005

Configuration: 4/9
O.oI5 ,.-----------,

.THL
• REL

MD FA
Type ofLight Anomaly

MD FA
Type of Light Anomaly

0.015

§
'.:1 0.01

M
Uo4

~e
~ 0.005

o

Configuration: 33/27

.THL
• REL

MD FA
Type of Light Anomaly

Configuration: 15/9
O.oI5 ,.-----------,

.THL

.REL
c:
.g 0.01

~
~e
~ 0.005

o
MD FA

Type of Light Anomaly

Figure 9-3. Anomalyfraction for false alarms and missed detections in the four configurations.

9-22



3

Configurations 4/9, 22/27, 33127, & 15/9

II TIll..
CI) 2.5

II RELc:
0

'.0e
8- 2
0
8- 1.5....
8-
~
:a 1 .
8
0

~ 0.5

0

MD FA
Type of Light Anomaly

I

0.01

Figure 9.4. Observed light anomalies, composite.

Configurations 419, 22127,33127, & 15/9

0.008

c:
0

'.0 0.006~
~
>.ca
8 0.0040

~

0.002

o

II TIlL

II REL

MD FA

Type of Light Anomaly

Figure 9-5. Anomaly fraction, composite.

9-23



Improvements

The RSLS performs well in its present state. But it can and should be made much better.
Improvement efforts should be focused mainly on TIlL missed detections and REL interference. The
fixes should, as far as possible, be generic. That is, custom-tailoring to a specific event should be avoided,
in favor of general applicability. Similarly,location-specific fixes should be avoided. unless this is clearly
appropriate. Adherence to these guidelines will ensure that the lessons learned in the present assessment
have maximum leverage.

Most TIll. missed detections are due to one of the following three causes:

• Track drop while holding in position on the runway. This disarms the takeoff-hold light and
prevents it from turning on. The resulting missed detections are sometimes of long duration (10
events averaged 12 scans each). The major trouble spots are the approach ends of Runways 9 and
22R; there are also track drops on Runway 4L at Taxiway S. These track drops appear to be mainly
due to misassociations with multipath returns or deficiencies in the track-drop recovery algorithm.

• Track drop while taxiing across a runway. This results in failure to activate the takeoff-hold light,
so that it does not turn on as it should if armed. The missed detections tend to be of moderate
duration (four events averaged 7 scans each). The major trouble spots seem to be the intersections
of Runway 4U22R with Taxiways S and E and the intersection of Runway 33U15R with Taxiway
N. These are locations that are rich in multipath returns.

• Track drops while on final approach to a runway that intersects the currently active departure
runway. This sometimes deactivates or prevents activation of an armed takeoff-hold light on the
intersecting runway, causing it to turn off or, at times, come on late. The resulting missed detections
are usually brief and probably of little direct operational consequence (11 events averaged 2 scans
each). The major trouble spots are Runways 4R and 33L. Both are runways with approach-light
piers, which present a difficult high-clutter surveillance environment.

THL false alarms are generally caused by multipath on the runway; they are usually of short
duration (of nine such events, one lasted 10 scans. the other eight averaged 1.5 scans each).

Both THL missed detections and false alarms mainly reflect shortcomings in surveillance
processing and tracking. and. to a lesser extent. sensor fusion. lligh-leverage improvements would center
on clutter rejection, scan-to-scan association. and multipath rejection, as well as the track-drop recovery
features. But the fixes should involve the safety logic as well, since a more robust safety logic will be less
sensitive to surveillance and tracking imperfections.

Most REL interference is due to one of the following three causes:

• An aircraft rolling out after landing turns on the runway-entrance lights too far ahead and causes
interference with crossing traffic.

• An accelerating, high-speed surface vehicle on the runway is mistaken for an aircraft on takeoff
roll, thus activating the runway-entrance lights and causing interference with crossing traffic.

• Arrival traffic is projected to the wrong runway, causing erroneous REL activation. This occurs
mostly on Runway 27, in the 33/27 configuration. It is a result of the approaches sometimes flown
by aircraft landing on Runway 33R, which makes it difficult to determine the intended landing
runway from surveillance alone.

9-24



The observed cases of interference were all due to the safety logic. The majority can be corrected
either with parameter tuning or with algorithmic modifications.

9.6 SUMMARY AND CONCLUSIONS
,

The purpose of this performance assessment has been to provide preliminary quantitative data on
the end-to-end performance of the RSLS, as it would be experienced by the system's users.

The assessment is based on approximately 10 hours of live Logan traffic data, recorded during
March and April of 1993, comprising more than 800 operations. The data provide a brief but well­
balanced glimpse of operations at Logan. Most hours of the operational day are represented, as are all
major operational configurations and a variety of weather conditions.

The RSLS is a technology demonstration system. As such, it performs very well: a cockpit crew
could expect to encounter a runway status light in an incorrect state only once in 18 operations. Half of
these events would be brief, lasting less than 4 seconds. Interference would be experienced only once in
50 operations. Much of the interference would be mild. Overall, it is expected that the observed anomalies
would have a negligible effect on airport capacity.

Although the RSLS performs well in its present state of development, it can be made better. An
order-of-magnitude improvement in the system's end-to-end performance is a realistic goal that can be
achieved by subjecting all functional elements to further algorithmic development and tuning. Such an
effort would reduce the average number of anomalies experienced by pilots to approximately 10 per day.
We believe that this level of performance is necessary to ensure success in an operational evaluation.
High-payoff improvements and enhancements to the RSLS are outlined below.

None of the anomalies identified in this assessment, whether classified as missed detection, false
alarm, or interference, would have presented a direct safety hazard. TIlls is a consequence of one of the
fundamental design constraints of the safety logic, which is that it should not cause a dangerous situation.
The direct effect of a missed detection, for example, is a brief and localized suspension of the protection
that the RSLS normally provides.

Improvements

Efforts to improve the perfonnance of the RSLS should be focused mainly on missed detections
that affect the takeoff-hold lights and on interference caused by the runway-entrance lights. Missed
detections are mostly due to surveillance processing and tracking difficulties, interference mostly to the
safety-logic. Much of the interference can be eliminated with simple tuning, some of the interference calls
for algorithmic enhancements. Additional instances of interference occur in situations that are currently
not covered by the safety logic: time constraints during the development process necessitated strict
prioritization of the development work, and some critical algorithms have yet to be implemented. The
high-payoff tasks that remain include:

• Improvements in surveillance processing and scan-to-scan association, especially in regions that are
rich in multipath. This will reduce THL missed detections.

• Improvements in multipath rejection. This will reduce the number of false alarms.

9-25



• More robust track initiation and tracking on approach to Runways 4R and 33L. Both are runways
with approach-light piers. which present a difficult high-clutter surveillance environment. More
robust sensor fusion and safety logic projection algorithms will also help.

• Addition of a landing-rollout state in the safety logic.

• Addition of a land-and-hold-short algorithm in the safety logic.

• Tuning of the safety logic by adjusting parameters and regional boundaries to match the airport's
operational patterns.

In addition to these improvements to the RSLS. there is a need for comprehensive, validated software for
performing automatic perfonnance assessment of the system. A general, flexible, and efficient assessment
capability is required to evaluate and quantify the effects of both algorithmic changes and tuning. Such an
assessment capability is also needed to perform the final assessment that must be carried out prior to
installing status lights on the airport surface for operational evaluation.

9-26



APPENDIX A
DETAILED OUTLINE OF THE SAFETY-LOGIC ALGORITHMS

Note: The symbol "&&" means logical IIand." The symbol "11" means logical "or."

A.I TARGET-STATE MACIllNE

A.I.I

Target states:

STP

TAX

ARR
LDG
DEP

DBT
LBT

UNK

Pseudostates:

NONE

ANY

A.I.2

Definition of target states

Meanin~ (not definition)

stopped

taxi

arrival

landing

departure

departure abort

landing abort: go-around after entering airport region, touch-&-go after entering airport
region, missed approach after entering airport region, or not landing safely (e.g., going off
the end of the runway)

unknown intent

none, i.e., no track. This is used as a source and sink of tracks.

Any state.

Transition parameters

v_x- minimum speed to remain in state x

v_x+ maximum speed to remain in state x

Definition: A propagation cell is a polygon around a portion of a runway or taxiway used for projection
and notification.

Note: Parameters are defined for the target unless they are overridden by a propagation cell or a runway.
For example: 1) v_tax+ for arming regions at full-length-takeoff locations may be smaller than at
intersection-takeoff locations; 2) v_ldg- may be larger on high-speed taxiways than at regular
taxiways; 3) closed areas may have their own sets ofparameters.

The following inequalities must boe satisfied:

0< v_tax- < v_stp+ < v_tax+ < v_Idg+_initial

v_tax- < v_Idg-

v_tax- < v_dbt- < v_dep- < v_tax+

A-I



v_tax- < v_Ibt- < v_tax+

v_unk_arr > v_arr_unk

a_dep> 0

a_dbt< 0

a_Idg <0

The following is the algoritIun for automatically adjusting parameters to maintain inequalities when one
parameter is changed:

Case 1: Let p be the parameter that's decreased Let p_Iarge be the largest parameter that is > P but
should be < p. Set p_Iarge = (1. - delta-param)p. Repeat until inequality is satisfied.

Case 2: Let p be the parameter that's increased. Let p_small be the smallest parameter that is < P
but should be > p. Set p_small = (l. + delta-param)p. Repeat until inequality is satisfied

For example: suppose the required inequality is: a < b < c < d < e < f.

Case 1: Suppose e is decreased so that e < c < d. Set d = .9Se, and set c = .9Sd

Case 2: Suppose b is increased so that c < d < b. Set c = l.OSb, and set d = 1.0Sc.

A.l.3 Target-direction determination

Note: OPP is defined only for active runways, high-speed taxiways associated with those active
runways, and other taxiways whose direction is defined for some other reason. Thus, OPP gets
redefined with each configuration change. For runways, OPP is defmed with respect to a given
runway.

Al.3.l Target-direction states

~

NRM

OPP

CRS

Meaninc (not definition)

normal direction on a given runway or taxiway

opposite direction on a given runway or taxiway

crossing on a given runway or taxiway

Al.3.2 Target-direction-state determination

Note: The angle theta is measured from the normal direction of the surface segment to the current
heading estimate of the target (Le.• 0 ~ theta ~ 180 degrees).

Note: New targets are initially in the CRS state. Also, the default values assume the following
symmetry:

CRS

CRS

NRM

NRM

OPP

CRS

,theta < theta_nrm - theta_hysCdirec

theta> 180 - theta_nrm + theta_hysCdirec

theta> theta_nrm + theta_hysCdirec

A-2



opp CRS theta < 180 - theta_nrm - theta_hysUlirec

The angles have a default value that is the same for all runways and taxiways but can be overridden
for a specified propagation cell.

A.1.4 Definition of "inboundloutboundlmidbound"

1. The airport region is a convex polygon around the airport that includes the entire movement area
This polygon should not extend too far beyond the movement area.

2. The angle theta is the difference between the current heading estimate of the target and the heading
of a line drawn from the target through the center of the circle circumscribing the airport region
(Le., 0 ~ theta ~ 180 degrees).

3. If the target is outside the circumscribing circle, the angle phi is determined by the following two
rays: 1) a line drawn from the target through the center of the circle circumscribing the airport
region, and 2) a line drawn from the target tangent to the circle circumscribing the airport region. If
the target is inside the circumscribing circle but outside the airport region, then phi is set equal to
90 degrees.

4. A target is in the airport approach zone (AAZ) if it satisfies the following conditions: outside
airport region

The parameters are:

d_inout (some miles)

hysCinout (the hysteresis fraction of phi; a constant)

The possible target states are nobound, inbound, midbound, and outbound.

If the target satisfies the following conditions, then state = nobound: !(valid velocity) II outside AAZ.

Else, the following state-machine transitions are defined, always using the target's present heading
(direction of its velocity vector):

nobound

midbound

midbound

inbound

outbound

midbound

inbound

outbound

midbound

midbound

valid velocity && inside AAZ

theta < phi

theta> 180 - phi

theta> phi + (hysCinout)phi

theta < 180 - phi - (hysCinout)phi

A.loS Other definitions

1.5.1 "approach area" for a runway: a polygon (e.g., trapezoid) out from the runway threshold. (Note:
These polygons are functions of location.)

A-3



'/

1.5.2 "a target is on approach to a particular runway:" [(centroid of target is in the approach area of the
runway && target has a feasible path projected across the runway's threshold) II (centroid of
target is in a surface propagation cell between the physical end of the runway and a displaced
threshold && target is moving in the NRM direction relative to the runway)] && [ARR II LOG II
LBT II (UNK && valid velocity && v>v_tax+ && inbound)]

1.5.3 "target has a feasible path projected across the runway's threshold:" there is a path from the target
to the runway's threshold whose required transverse acceleration is less than the target's
maximum achievable transverse acceleration (Le., the target can make the turn onto the runway).

1.5.4 "a target is unambiguous:" target is on approach to only one runway

1.5.5 "a target is ambiguous:" target is on approach to more than one runway

1.5.6 "primary runway for an ambiguous target" the runway with the lowest required transverse
acceleration (Le., the "straightest" of the approaches)

1.5.7 "a target is along a runway:" centroid of target is in a surface propagation cell && not on
approach && target is moving in the NRM direction relative to the runway

1.5.8 "a target satisfies the target-runway-alignment conditions for a runway:" target is along the
runway II {target is on approach to the runway && [target is unambiguous II (target is ambiguous
&& ambiUroLswiteh =ON for this runway)]}

(Note: IfambiUroLswitch = ON, then an ambiguous target can trigger lights and alerts.)

1.5.9 "a target satisfies the approach-bar conditions for a runway" (Le., is shown on the approach bar):
target is on approach to the runway && [target is unambiguous II (target is ambiguous && this
runway is the primary runway)]}

A.l.6 Target-state transitions

Note: Where velocity and acceleration are needed, assume they are valid.

NONE
ANY

UNK

ANY

UNK

S1P
LOG

LBT
ARR

LBT
ARR

TAX

UNK

NONE
ARR

STP

TAX

TAX

TAX

TAX

UNK

UNK

LOG

OEP

new track

dropped track

inbound && V> v_unk_arr

inside airport region && v<v_tax-

inside airport region && v~v_tax-&& v~v_tax+ (this preferentially puts
unknown targets with known velocity in the taxi state)

v>v_stp+

v<v_Idg-

inside airport region && v<v_Ibt-

v<v_arr- II midbound II outbound

outside airport region && not outbound

target is inside airport region

v>v_tax+ && a>a_dep>O

A-4



DEP

DBT

LDG

UNK

UNK

DEP

DBT

TAX

LBT

LDG

DEP

UNK

inside airport region && {[max(v), over all v while target in DEP state] ­
v} > delta_v_dbt

v<v_dbt-

exits airport region II v>v_ldg+(x), where x is location inside airport
region

(Note: The function v_ldg+(x) is defined as follows: there is a default
value for v_ldg+(x), depending on location. Location-dependence is
implemented by the state machine. The highest-priority object sets the
value of v_ldg+. For a target on a runway, let x be its distance from the
end of the runway. Let D be the length of the runway. Then for 0 ~ x ~

d_Idg+_initial, v_ldg+(x) = sqrt [(v_ldg+_fmal)1\2 + 2 • decel_ldg+· x],
and for d_ldg+_initial ~ x ~ D, v_Idg+(x) = v_Idg+_initial, where
v_ldg+_final is the minimum velocity at the end of the runway,
v_ldg+_initial is the maximum velocity across the threshold, deceCldg+
is a nominal deceleration, and d_ldg+_initial is the estimated distance
from the threshold at which touchdown takes place. As opposed to the
other parameters, d_Idg+_initial is not an input but is computed as the
following: d_ldg+_initial = [(v_ldg+_initial)J\2 - (v_ldg+_final)1\2] 1(2.
decel_ldg+).)

inside airport region && (along a runway II on approach to a runway)
&& v>v_tax+ && a<a_Idg<O

(Note: This transition could misclassify a DBT as a LDG, because prior
state is not known. Also, the first condition is added to be conservative.)

inside airport region && along a runway && [(v>v_tax+ &&
a>a_dep>O) II v>v_ldg+(x)]

(Note: This transition could misclassify a LBT as a DEP, because prior
state is not known. Also, the first condition is added to be conservative.)

outside the airport region && not outbound

A.2 RUNWAY-STATUS LIGHTS

Note: Logic in bold type is not currently implemented.

A.2.1 Runway-entrance lights

High-level logic rule:

At entrances to active and inactive runways (not closed runways or closed portions of runways)
and to the stopways at the approach ends of runways 4L and 9, the runway-entrance lights are
RED if the runway is not safe to enter at this intersection and Off otherwise.

Note: The REL activation region is an area on the runway at the intersection.

A-5



Note: Currently, runway-entrance lights at the intersections of two runways (called "runway-
"intersection lights") are, in general, suppressed; however, there may be exceptions specified for a

given configuration. We may eventually have logic for runway-intersection lights that is different
from the logic for lights at runway/taxiway intersections; for example, they may be deactivated
only when both runways are active, the logic may depend on target speed, or they may show
directionality of the target triggering them by turning red on only one side of the entrance to the
runway.

Note: whole_rwy_switch(state,runway) = whole-runway switch parameter, and is a function of the
target state and the runway. Ifwhole_rwy_switch =ON, then the lights turn red all the way down
the runway ahead of the target.

Note: In the prediction engine, if the target's extent is outside the REL activation region, CDlin_enter is
measured from the FRONT of the target's extent to the nearest end of the REL activation region.
If the target's extent is inside the REL activation region, CDlin_enter(acCreg) is set equal to zero.

Lower-level logic rules:

2.1.1 "the runway is not safe to enter at this intersection:" there is a target that satisfies the target­
runway-alignment conditions for this runway (see 1.5.8) && the target's hot zone overlaps the
REL activation region of the RELs at this intersection

2.1.2 rules for ENlERING the condition "the target's hot zone overlaps the REL activation region of
the RELs at this intersection:"

(Note: The parameter CDlin_enter is the Dlinimum time for the target to enter the REL activation
region, measured from the front of the target's extent.)

2.1.2.1 TAX II SlP II (LOG && v$v_ldLrollout) II (UNK && valid velocity && v>v_tax+):
CDlin_enter < cstate_reI, where "state" = tax, stp, ldg, unk

(Note: lbis is called the t-second rule.)

(Note: In future, could use whole_rwy_switch for UNK when it's between Cthresh
sec. from threshold up to the time its velocity is < v_ldLrollout.)

(Note: Need to add hysteresis for v_ldLrollout. )

2.1.2.2 OBT: (CDlin_enter < Cdbcrel) II whole_rwy_switch = ON

2.1.2.3 (LOG && v>v_IdLrollout) II LBT: (CDlin_enter < Cstate_rel) II [whole_rwy_switeh
= ON && (target is across the runway threshold II target is Cthrshld seconds from
the runway threshold)], where "state" =Idg, Ibt

(Note: Need to add hysteresis for v_ldLrollout. )

2.1.2.4 ARR: (Cmin_enter < cstate_rel) II (whole_rwy_switch = ON && target is t_thrshid
seconds from the runway threshold), where "state" =arr, unk

2.1.2.5 OEP: [(cmin_enter < Cdep_rel) II whole_rwy_switch = ON] && the target is not
tagged as the special altitude case

2.1.2.6 !(UNK && valid velocity && v>v_tax+) II NONE: no hot zone

2.1.3 special altitude case:

2.1.3.1 rule to tag target as special altitude case: valid altitude && alt> alCdep_rel

A-6



2.1.3.2 rule to clear target as special altitude case: target is no longer DEP (Le., target changes
state) (Note: TIlls condition precludes need for hysteresis.)

2.1.4 rules for LEAVING the condition "the target's hot zone overlaps the REL activation region of the
RELs at this intersection:" (Note: The parameter emax_exit is the maximum time for the target
to exit the REL activation region, measured from the back of the target's extent. The condition
"emax_exit < eantic_sep_rel" is for anticipated separation.)

2.1.4.1 if the condition was originally entered because of the t-second rule: (emax_exit <
eantic_sep_rel) II [target's extent is outside the REL activation region && (emin_enter
~ estate_reI + delta_estate_rel), where "state" = state when lights were triggered] /I
target is dropped /I (target is DEP && is tagged as the special altitude case) (Note:
The second condition is hysteresis.)

2.1.4.2 if the condition was originally entered because whole_rwy_switch = ON: (target
changed to a state where the whole_rwy_switch condition does not apply) II
(emax_exit < eantic_sep_rel) /I target is dropped /I (target is DEP && is tagged as the
special altitude case)

A.2.2 Takeoff-hold lights

High-level logic rule:

For active or inactive runways (not closed runways), the takeoff-hold lights are RED if there is a
target [call it target A] that is (in position for takeoff II starting its takeoff) at this location && the
runway is NOT safe for takeoff at this location, and are OFF otherwise.

Definitions:

1. arming region: a polygon that defines the area where a target is declared in position for
takeoff or starting its takeoff

2. THL activation region: a polygon that defines an area used for determining whether the
runway is safe for takeoff (e.g., the area downstream from the lights to the end of the runway)
(Note: Currently, the stopways at the approach end of runways 4L and 9 will not be included in
the THL activation region.)

3. straight-line path: the projected path along the runway that the target is on

4. intersection window: a polygon at a runway/runway intersection.

Comment: Suppose there is another target (call it B) whose propagation cell path includes at least one
propagation cell in the takeoff-hold-lights' THL activation region. lIDs propagation cell
notifies the takeoff-hold lights about B. Essentially, the runway is "not safe for takeoff' if
A might collide with B if A started to take off. More specifically, the runway is "not safe
for takeoff' if B is in the THL activation region and not leaving "soon," or B is a high­
speed target on an intersecting runway and is predicted to enter the THL activation region
at an intersection before A can take off and pass that intersection, or B is a taxiing target
predicted to enter the THL activation region.

A-7



2.2.1.a "A is in position for takeoff at this location:" A is S1P && centroid of A is in the arming
region && [prev_Id!Lswitch = OFF II (prev_Id!Lswitch = ON && A was not previously LDG)]
(Note: The previous-landing switch can be specified on a light-by-light basis for each
configuration.) .

2.2.1.b "A is starting its takeoff at this location:"

1. rules for entering this condition: (A is TAX II DEP) && centroid of A has just entered the
arming region && the difference between its heading and the heading of the runway is less than
or equal to the angle theta_pos_hold && v ~ v_pos_hold && [prev_ldg_switch = OFF II
(prev_Id~switch = ON && A was not previously LDG)] (Note: lbe previous-landing switch
can be specified on a light-by-light basis for each configuration.)

2. rule for leaving this condition: centroid of A leaves the arming region

(Note: For arming regions at intersection-takeoff locations, it might be desirable to have
v_pos_hold smaller than at full-length-takeoff locations, so that aircraft taxiing down the
runway do not trigger the lights unnecessarily. Choosing this parameter is an example of the
tradeoff between effectiveness and nuisance.)

Note: In what follows below, "window" refers to the intersection window.

Note: Assume A would start to take off according to the DEP acceleration model.

Note: lbe statements that B is in, or not in, a region means that B's centroid is in, or not in, a region.

2.2.2 "runway is not safe for takeoff at this location:" B satisfies the following conditions (depending
on its target state)

2.2.2.1 B is S1P II [UNK && !(valid velocity && v>v_tax+)]: B is not in the arming region
&& B is in the TIlL activation region

2.2.2.2 B is TAX: B is not in the arming region && [(B is in the TIlL activation region && if
A started to take off, A could reach B before B definitely will exit the THL
activation region) II (B is not in the THL activation region && B definitely will
enter the THL activation region)]

2.2.2.3 B is [LDG II ARR II LBT II (UNK && valid velocity && v>v_tax+)]: B is not in the
arming region && {[B satisfies the target-runway-alignment conditions for A's
opposite runway && (B is on approach to A's opposite runway II B is in the THL
activation region)] II (B is along A's runway && B is in the THL activation region) II
[(B satisfies the target-runway-alignment conditions for an intersecting runway II the
stopways at the approach ends of runways 4L and 9) && A and B could be in the
intersection window simultaneously if A started to take off]}

2.2.2.4 B is DBT: B is not in the arming region && {(B is along A's opposite runway && B is
in the TIlL activation region) II (B is along A's runway && B is in the THL activation
region) II [(B is along an intersecting runway II the stopways at the approach ends of
runways 4L and 9) && A and B could be in the intersection window simultaneously if
A started to take off] }

2.2.2.5 B is DEP: (same as 2.2.2.4) && B is not tagged as the special DEP case

A-8



Note: If B is [DEP II LDG II DBT II LBT II (UNK && valid velocity && v>v_tax+)] on a TAXIWAY
and also in the TIll.. activation region, the lights will be OFF. This is okay for now, because B
has enough velocity so that it will definitely leave the TIll.. activation region before A could enter
the window.

2.2.3 "A could enter the window before B definitely will exit the window:"

1. rule for entering this condition: B's straight-line deceleration path exits the TIn.. activation
region && cmax_exicB ~ Cmin3nter_A - csfty_mrLarrvl, where Cmin_enter_A is measured
along A's acceleration path from the front of its extent, and Cmax_exiCB is measured along B's
deceleration path from the back of its extent

2. rule for leaving this condition: Cmax_exiCB < Cmin_enter_A - Csfty_mrlLarrvl ­
delta_Carrvl (Note: This condition is hysteresis.)

2.2.4 "A and B could be in the intersection window simultaneously if A started to take off:" B could
enter the window before A could exit the window && A could enter the window before B
definitely will exit the window

2.2.5 "B could enter the window before A could exit the window:"

1. rule for entering this condition: Cmin_enter_B ~ Cmin3xiCA + Csfty_mr!Lclear, where
Cmin3xiCA is measured along A's acceleration path from the back of its extent, and
Cmin_entecB is measured along B's acceleration path from the front of its extent

2. rule for leaving this condition: Cmin_enter_B > Cmin_exiCA + Csfty_mrlLciear +
delta_Cclear (Note: This condition is hysteresis.)

2.2.6 "if A started to take otT, A could reach B before B definitely will exit the THL activation
region:" Cmin_reach_A < cmax_exiCB + cantic_sep_thl, where cmin_reach_A is measured
along the DEP acceleration path from the front of A's extent to B's centroid, and cmax_exicB is
measured along B's deceleration path from the front of its extent to the edge of the takeoff-hold­
light TIn.. activation region

2.2.7 "B definitely will enter the THL activation region:" all B's deceleration paths enter the TIn..
activation region

2.2.8 special DEP case:

2.2.8.1 the rule to tag B as the special DEP case: B is DEP && vfr_switch =ON && B is
along A's runway && B's distance from the front of A's arming region> d_dep_thl feet
&& [(valid altitude && B's altitude> alCdep_thl) II B's velocity> v_dep_thl]

(Note: Altitude is not always available, e.g., when the target is an X-band target and,
thus, is not fused.)

2.2.8.2 the rule to clear B as the special DEP case: B is no longer DEP (Le., B changes its
state) (Note: This condition means that B stays tagged as the special DEP case when it
leaves the runway, and thus is no longer along the runway, but is still in the TIn..
activation region. Thus, the TIll.. will not momentarily flicker on.)

2.2.9 Calculation ofCmin_enter_A:

Let d_max be the distance A travels up to a maximum velocity v_max_dep, assuming
acceleration accel_nom_dep.

Then d_max = (v_max_dep)**2! (2 * accel_nom_dep).

A-9



Let d_arrive_wndw be the distance to the window from a distance d_fronCarming from the front
of the arming region.

If d_arrive_wndw ~ d_max, then Cmin_eoter_A =sqrt[(2 • d_arrive_wndw) / acceCnom_dep].

Otherwise, Cmio_entecA = (v_max_dep / acceCnom_dep) + [(d_arrive_wndw - d_max) /
v_max_dep].

2.2.10 Calculation of t_mio3xiCA: same as Cmin3ntecA, except replace d_arrive_wndw with
d_clear_wndw, the distance to clear the window.

A.3 DOUBLE-TARGET ALERTS (BETWEEN TARGETS A AND B)

Note: Logic in bold type is not currently implemented.

Note: In the case of multiple alerts. there is the capability for a priority scheme for determining which
audible message is sent fIrst However, all octagons will be shown.

A.3.1 Head-on (same runway)

3.1.1 [ARR II LDG II (UNK && valid velocity && v>v_tax+)]/STP:

Note: The parameters Cstp_alert and delta_cstp_alert are functions of the runway and a parameter
called d_thresh. The parameter d_thresh is B's distance from the threshold of A's runway. For a
given runway, the functions cstp_alert and delta_cstp_alert are step functions.

Option 1 (default):

a) rules for initiating the alert:

A is [ARR II LDG II (UNK && valid velocity && v>v_tax+)] && A satisfies the target-runway­
alignment conditions for a runway && B is STP && B's centroid is in the ARR-alert activation
region for A's runway && B is downstream from A && [A's centroid is S cstp_alert seconds
from the runway threshold II (B is between the approach end of the runway and the displaced
threshold && A's centroid is ~ Cstp_a1ert seconds from the approach end of the runway))

b) rules for ending the alert:

A is ![ARR II LDG II (UNK && valid velocity && v>v_tax+)] II B is !STP II B's centroid exits the
ARR-alert activation region II (A II B) is dropped II B is not downstream from A II A's centroid is >
cstp_alert + delta_cstp_alert from the runway threshold (Note: The last condition is
hysteresis.)

Option 2: same as Option 1, except replace "from the runway threshold" with "from B's centroid"

A-IO



APPENDIXB

SAFETY-LOGIC PARAMETERS REFERENCED IN CHAPTER 6 AND
APPENDIX A

Parameter Description Default Value

v_unk_aIT velocity threshold for UNK to ARR transition 70kts

v_arr- velocity threshold for ARR to UNK transition 38kts

v_tax- lower velocity threshold for TAX 5kts

v_tax+ upper velocity threshold for TAX 50 kts (override is 37
kts for departure

runways: see
Appendix C)

v_stp+ upper velocity threshold for STP 6kts

v_Idg- lower velocity threshold for LOG 34kts

a_dep aceel. threshold for TAX to DEP transition .15 g

a_dbt (not currently used) aceel. threshold for DEP to DBT transition -.1 g

a_Idg aceel. threshold for UNK to LOG transition a.....dbt= -.1 g

v_dep- (not currently lower velocity threshold for DEP 35 kts
used)

v_dbt- lower velocity threshold for DBT currently is v_ldg-

v_dbt+(notcurrently upper velocity threshold for DBT NY!
used)

delta_v_dbt maximum velocity decrease for DEP->DBT 22kts

v_Ibt- lower velocity threshold for LBT currently is v_Idg-

v_Idg+_initial maximum velocity at threshold for LDG (for LDG to LBT 180kts
transition)

v_Idg+Jmal minimum velocity at end of rwy for LOG (for LOG to LBT 35 kts
transition)

v_ldg+_approach maximum velocity in approach area for LDG (for LDG to NY! (could be 170
LBT transition) kts)

delta~aram parameter adjustment to maintain inequalities of state- .05
transition parameters

Chorizon_dep look-ahead time for departure 60 sec

t_horizon_arr look-ahead time for arrival 60 sec

chorizon_ldg look-ahead time for landing 60 sec

Chorizon_dbt look-ahead time for departure abort 60 sec

B-t



Chorizon_lbt look-ahead time for landing abort 60 sec

Chorizon_unk look-ahead time for unknown 30 sec

Chorizon_tax look-ahead time for taxi 15 sec

Chorizon_stp look-ahead time for stopped osec

acceCnom_tax nominal acceleration for TAX model .12g

v_max_tax maximum TAX speed 35kts

deceCnom_tax nominal deceleration for TAX model -.25g

accel_nom_dep nominal acceleration for DEP model .25 g

v_max_dep maximum DEP speed 180kts

decel_nom_dep nominal deceleration for DEP model -.3 g

decel_nom_dbt nominal deceleration for DBT model -.3 g

decel_nom_ldg nominal deceleration for LOO model -.3 g

decel_nom_unk nominal deceleration for UNK. model -.3 g

tbeta_nrm angle threshold for NRM 15 deg

tbeta_hyst_direc hysteresis angle for directionality on runway 5deg

d_inout distance threshold of airport approach zone 6600m

hysUnout hysteresis fraction of phi for inboundlmidbound and .1
midboundloutbound

cstp_rel time projected ahead for STP to turn REL on osec

Ctax_rel time projected ahead for TAX to turn REL on osec

carr_reI time projected ahead for ARR to turn REL on 36 sec (25 at 4L & S)

Ud8-rel time projected ahead for LOO to turn REL on 36 sec

cdep_rel time projected ahead for DEP to turn REL on 36 sec

cdbcrel time projected ahead for DBT to tum REI.. on 36 sec

Ubcrel time projected ahead for LBT to turn REL on 36 sec

cunk_rel time projected ahead for UNK. to tum REI.. on 36 sec

alcdep_rel maximum altitude for DEP to tum REL on 250ft

delta_cstp_rel delta time added to time projected ahead for STP to turn osec
RELoff

delta_Ctax_rel delta time added to time projected ahead for TAX to turn osec
RELoff

delta_care_reI delta time added to time projected ahead for ARR to turn 6 sec
RELoff

delta_Ud8-rel delta time added to time projected ahead for LOO to turn 2 sec
RELoff

B-2



•

delta_Cdep_rel delta time added to time projected ahead for DEP to tum 2 sec
RELoff

delta_Cdbcrel delta time added to time projected ahead for DBT to tum 2 sec
RELoff

delta_Ubcrel delta time added to time projected ahead for LBT to tum 2 sec
RELoff

delta_cunk_rel delta time added to time projected ahead for UNK to tum 2 sec
RELoff

cantic_sep_rel anticipated separation time to tum off RELs 4.5 sec

v_ld~rollout velocity at which LDG becomes a landing rollout 55 kts

Cthrshld time from rwy threshold that LDG can use whole-runway NYI
switch

whole_rwy_switch whole-runway-switch parameter: ON means certain target 1 (ON)
states activate all the REL along the runway ahead of the
target. regardless of the predicted times

ambi8--P£OLswitch ambiguous-projection switch to be used for targets on o(OFF) (override is
approach; if OFF, then an ambiguous target cannot trigger ON for certain
lights or alerts runways: see

Appendix C)

delta_d+ incremental distance for determining far edge of intersection 100m
window

delta_d- incremental distance for determining near edge of 100m
intersection window

theta...,pos_hold angle threshold to determine in position for takeoff 65 deg

v-POs_hold velocity threshold to determine in position for takeoff 35 kts

d_dep_thl distance threshold between targets for special DEP case 2500ft

v_dep_thl velocity threshold for downstream target for special DEP 75 kts
case

alcdep_thl altitude threshold for downstream target for special DEP 100ft
case

cmin_exicA minimum time for A to exit path-overlap window depends on window

csfty_mr~clear safety margin time for clearing intersection window 5 sec

delta_Cclear extra safety margin time for clearing intersection window - NYI
for hysteresis

Cmin_enter_A minimum time for A to enter path-overlap window depends on window

csfty_mr~arrvl safety margin time for arrival to intersection window 5 sec

delta_carrvl extra safety margin time for arrival to intersection window - NYI
for hysteresis

vfcswitch VFR switch: ON means the procedures for VFR are in o(OFF)
effect

B-3



prev_ld~switch "previously-landed" switch: ON means that a target in an 1 (ON)
arming region cannot trigger TIll. if it was previously in the
LDGstate

Utp_alert threshold activation time for ARRlSTP alert 35 sec

delta_cstp_alert hysteresis time for ARRlSTP alert 4 sec

B-4

•

•



•

APPENDIXC

CONFIGURATION-DEPENDENT RUNWAY SETTINGS FOR OVERRIDING
THE SAFETY-LOGIC PARAMETERS

Configuration at Boston Logan Airport

4.91 27·22 33-27 33-27_b 15-9

RELs2 that can be activated facing facing 15R133L facing 4R122L
at runway/runway 15U33R@ @4L122R; @ 15R133L
intersections (default is to 4L122R none none
have RELs always off at

facing 15R133L

runway/runway
@4RI22L

intersections)

Runway whose REL
activation region triggers

4L122R 4L122R 15R133L 15R133L 15R133LRELs at Tango taxiway
(which is at the intersection
of two runways)

Runway whose REL
activation region triggers

4R122L 4R122L 15R133L 15R133L 15R133LRELs at Juliette taxiway
(which is at the intersection
of two runways)

Runways where v_tax+ is 4L, 4R, 9, 15R 22L,22R 27,33L 27,33L 9,15R
overridden, i.e., runways
used for departures

Runway where 27 (instead of
ambig...,proLswitch is 4L (instead of 27 (instead of none

33R) [except
9 (instead of

overridden, i.e., where 9) 33R) when ARTS 4L)
lights and alerts are scratchpad says
triggered for ambiguous "33R": not yet
approaches implemented]

There is another configuration called 4-9_dv, which is a variation of the 4-9 configuration for daytime
and when VFR conditions are in effect. The only difference between the two configurations is that for
4-9_dv, there is no displaced threshold for runway 4R.

2 REL = runway-entrance light

C-l



APPENDIX D. ANALYSIS OF SURVEILLANCE JIITER

The analysis in this appendix provides more details in support of the analysis of surveillance
accuracy given in Section 8.1.4.

Effective Noise Level. Consider a white-noise model, in which surveillance errors are independent
from scan to scan, and have a constant standard deviation. In the following discussion the term "noise" is
used for the jitter in reported target position. Let

Xm =Xt+ nx
Ym = Yt+ ny

where

Xm= measured value of x
Xt= true value of x
nx =measurement inaccuracy or noise

and the corresponding definitions apply to y. In this model the noises nx and ny are independent of each
other and independent from scan to scan. Let O'c =standard deviation of nx' Then because

residual =x3 -2 x2 + Xl

it follows that the standard deviation of the residuals is

Therefore if O'r is determined from measurements, O'c can be determined from this formula. This applies
to the white noise model. It can be applied to the radar data if we speak of an effective noise level. That
is, we define the effective noise level of the surveillance system to be the level of a white noise that would
produce the same O'r.

Accelerations. The above analysis applies when acceleration is zero. To determine the amount of
accelerations that can be neglected relative to the noise effect. calculate the effect of a pure acceleration
on O'r' Model the aircraft motion as quadratic:

where a = acceleration in units of distance per scan squared, t = time in scans, and to is the time when the
acceleration begins. A similar equation applies to y. When this model is substituted in the formula for
the residual, the result gives the component of the residual contributed by acceleration:

residual =a (in units of distance per scan squared)

Note that the residual is independent of Xo and to'

D-l



Noise Plus Accelerations. In the more general case, when accelerations and jitter are present
together, the residual is a random variable having non-zero mean. Its rms value is

rIDS(residual) = " mean2 + variance

D-2



•

•

APPENDIX E. LIST OF ACRONYMS

AAZ - Airport Approach Zone

ACID - Aircraft Identification

ACP - Azimuth Change Pulse

ADIDS - ARTS Data Interface and Distribution System

ADS - Automatic Dependent Surveillance

AMASS - Airpot Movement Area Saftey System

API - Applications Programming Interface

ARP - Azimuth Reference Pulses

ARR - Arrival

ARTS - Automated Radar Terminal System

ASCII - American Standard Code for Information Interchange

ASDE - Airport Surface Detection Equipment

ASR - Airport Surface Radar

ATCBI - Air Traffic Control Beacon Interrogation

ASTA - Airport Surface Traffic Automation

ASV - Average Square Value

ATCRBS -

ATBC - ARTS Tracks

ATRAIN - ARTS IIIAffRACS Interface

AVC - ARTS Vnfused Tracks

BI (Section 5.9)

CA-

CDR - Continuous Data Recording

CFAR - Constant False Alarm Rate

COTS - Commercial Off The Shelf

CPU - Central Processing Unit

CRS - Crossing (on a given runway or taxiway)

CW - Continuous Wave

D-BRITE - Digital Bright Radar Indicator Tower Equipment

DABT- (TED)

DBM - Display Buffer Memory

DBT - Departure Abort

DCD - Data Carrier Detect

DEC - Digital Equipment Corporation

E-I



DEDS - Digital Electronic Display System

DEP - Departure

DOS - Disk Operating System

FJSE - East/South East

EDT - EasternDaylight Time

FAA - Federal Aviation Administration

FAR - False Alarm Rate

FC - Fused Tracks

GA - General Aviation

GHz - Giga Hertz

lIP - Hewlett Packard

ICAO - International Civil Aviation Organization

IF - Inter-Facility

IFC - Interfacility CODUnunications

ILS - Instrument Landing System

IMC - Instrument Meteorological Conditions

lOP - Input/Output Processor

LARS - Lincoln ASDE Recording System

LBT - Landing Abort

LDG - Landing

LSB - Least Significant Bit

LTM - Long Term Memory

MDBM - Multple Display Buffer Memory

MHz - Mega Hertz

MIMD - Multiple Instruction Multiple Data

MIPS - Millions of Instructions Per Second

MSAW - Minimum Safe Altitude Warning

MSB - Most Significant Bit

NA - Not Applicable

NCP - NAS Change Proposal

NIL - Tracks that are to be dropped

NINE - NorthlNorth East

NRM - Normal Direction (on a given runway or taxiway)

NYI - Not Yet Implemented

OPP - Opposite Direction (on a given runway or taxiway)

PC - Personal Computer

E-2

•

•



•

•

PRF - Pulse Repetition Frequency

PRI - Pulse Repetition Interval

RCS - Radar Cross-Section

REL - Runway Entrance Light

RIB - Radar Interface Board

RLT - Run-Length Table

RS-232 -

RSLS - Runway Status Lighting System

RTQCfTest - Real Time Quality Controlffest

RW - (Table 8.1)

SCIP - Serial Communications Interface Processor

SCSI - Small Computer System Interface

SGI - Silicon Graphics Incorporated

SIMD - Single Instruction Multiple Data

SRAP - Sensor Receiver and Processor

S/SW - South/South West

STC - Sensitivity TIme Control

STM - Short Term Memory

STP - Stopped

TAX - Taxiing

TBC - (Section 5.6.2)

TC - Fused Tracks

TCA - Terminal Control Area

TIll... - Takeoff-Hold Light

TI - Texas Instruments

TRACS - Transportable Radar Analysis Computer System

UNK - Unknown Intent

USAF - United States Air Force

VFR - Visual Right Rules

VLDS - Very Large Data Store

VMC - Visual Meteorological Conditions

VME-

WINW - WestINorth West

XTBC - X-band Tracks

XUC - X-band Unfused Tracks

E-3




