

DOT/FAA/PM-83/30

Project Report
ATC-123

 Airborne Intelligent Display (AID)

Phase I Software Description

 A. C. Drumm
W. S. Heath

J. A. Richardson

24 October 1983

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

Prepared for the Federal Aviation Administration,
Washington, D.C. 20591

This document is available to the public through

the National Technical Information Service,
Springfield, VA 22161

This document is disseminated under the sponsorship of the Department
of Transportation in the interest of information exchange. The United
States Government assumes no liability for its contents or use thereof.

CO~NTS

100

2.0

3.0

INTRODUCTION

SYSTEM DESIGN
2.1

2.2

2.3

2.4

Design Objectivee
Design Approach
Display Requirements
Hardware Structure
2.4.1
2.4.2

2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.4.9

tierview
Video M, Video W Controller, and Video
Multiplexer
Audio M and Audio enunciator
FIoppy Disk
Mode Switch
CautiOn/WerningButtOn/Light
Keyboard and TWU Serial Input
S-1OO Slot Utilization
Single Board Computer Characteristics

SOFTWABK GE~W DESCRIPTION
3.1 Overview
3.2 System Software

3.2.1

3.2.2

3.2.3
3.2.4
3.2.5

SysternStartup
3.2.1.1 Initial Program Load
3.2.1.2 Program Initialization
3.2.1.3 InterprocessorStartup Coordination
InterproceeeorCommunication
Tack Scheduler
Message @cue Management
Syetem Diagnoetice
3.2.5.1 Non-Realtime Diagnostic
3.2.5.2 Waltime Diagnostic

3.3 Service Processor Software General Description
3.3.1 Overview
3.3.2 Interrupt Kandlers

3.3.2.1 The Service Processor/User PrOceesOr
Comunicatione Interface

3.3.2.2 fie
3.3.2.3 The
3.3.2.4 The

3.3.3 Taeke
3.3.3.1 The
3.3.3.2 The
3.3.3.3 The
3.3.3.4 The
3.3.3.5 Tbe
3.3.3.6 The
3.3.3.7 The

Timer Interrupt Wandler (ctCino)
~de Switch Interrupt Randier (bswin())
Audio Control Board Interface (audin())

Ueer Proceseor Input Task (upint())
User PrOceeeOr Output Task (upoutt())
Command Dispatch Task (dsptch())
Video Task (video())
hdio Task (audio())
Timer Taak (timer())
~de Switch Task (mewtch())

iii

&

1

2
2
2
3
7
7

7
7
9
9
9
9
10
10

13
13
14
14
14
15
15
16
21
24
24
25
25
26
26
29

;;
29
30
30
30
30
30
30
34
34
34

.“ ,.,-, ,.,, —.s,=..,.,.,..,-

CONTENTS (CONT’D)

3.4 User Processor Software Ceneral Description
3.4.1
3.4.2
3.4.3

3.4.4

Overview
Interrupt Rsndlers
Tasks
3.4.3.1 The Reyboard Task (keybd())
3.4.3.2 The ~U Task (teuo)
3.4.3.3 The Timer Task (stimo)
3.4.3.4 me Service Proceseor @tput Task (spOutt())
3.4.3.5 Tbe Service Processor Input Task (spint())
User Graphics Package

4.0 SOFTW~ DETAILED DESCRIPTION
4.1 System Software!

4.1.1 The Task
4.1.1.1’
4.1.1.2
4.1.1.3
4.1.1.4
4.1.1.5

4.1.2 The Data
4.1.2.1
4.1.2.2
4.1.2.3

4.1.2.4
4.1.2.5

Scheduler and Aasociated Functions
The Scheduler (sched()) Function
The Taak Initiation (run()) FunctiOn
me Task Suspension (sleep()) FunctiOn
The Task Wakeup (wake()) Function
The Tack Pauae (pause()) Function
@euea and @cue Wnagement Functions
me putq(source, dest, count) finctiOn
The getq(source, cleat)Function
The putqwt(source, dest, etask, count)
Function
me getqwt(source, dest, stask) FunctiOn
The Dutqwk(source, dest, cOunt) FunctiOn

4.1.2.6 The getqwk(source, dest) Function
4.1.2.7 The getqc(source) Function
4.1.2.8 The getqd(source) Function
4.1.2.9 The initq(source) Function
4.1.2.10 The mvbyt(source, dest, byte) Function

4.2 Service Processor SOftware
4.2.1

4.2.2
4.2.3

4.2.4

The User Processor Input Task and Associated
Functions
4.2.1.1 The User Processor Input Interrupt

Handler (upin())
4.2.1.2 The User Processor Input Task (upint())
The User Processor Output Task (upOut())
The Comand Dispatch Task and dissociatedFunctions
4.2.3.1 The Dispatch Task (dsptch())
ma Video Task and Associated Functions
4.2.4.1 The”Video Tack (videoo)
4.2.4.2 The draw() Subroutine
4.2.4.3 The scalex() and acaley(
4.2.4.4 The colorg() Subroutine

Subroutines

36
36
38
39
39
42
46
47
47
47

51
51
51
51
52
52
53
53
53
54
55

56
56
57
57
57
57
58
58
58

59

:;
59
60
60
61
61
61
61
62

iv

coNmNTs (CONT ‘D)

4.2.4.3
4.2.4.6
4.2.4.7

4.2.4.8

4.2.5 The hde
4.2.5.1
4.2.5.2

me circleg() Subroutine
The lineg() Subroutine
The setpix() Subroutine and Related
Routines
The etring() Subroutine and Related
Routines
Switch Task and Interrupt Handler
The Mde Switch Task (mawtch())
The ~de Switch Interrupt ~ndler (mswin())

4.2.6 The Audio Task and.Interrupt findler
4.2.6.1 The Audio Tack (audioo)
4.2.6.2 The Audio Interrupt findler (audin())

4.3 User Processor Software
4.3.1 The User Proceesor Win Program (msin())
4.3.2 The InitializationTask (inito)
4.3.3 The Keyboard Taak and Associated Functione

4.3.3.1 The @yboard Interrupt Handler (keyin())
4.3.3.2 The Keyboard Task (keybd())
4.3.3.3 Functions Called by the ~yboard Taak

4.3.4 me TSU Taak and Associated Functions
4.3.4.1 Overview
4.3.4.2 The Interrupt Handlera teuin() and cwin()
4.3.4.3 The ~U Task (teuo)
4.3.4.4 Functions Celled by the ~U Taak

4.3.5 me Service Processor Input Task and Interrupt
Handler
4.3.5.1 The Service-ProceeaorInput Taak (apint())
4.3.5.2 me Service-ProcessorInput Interrupt

Handler (apih())
4.3.6 Service Processor Output Task and Interrupt Rsndler

4.3.6.1 The Service-ProceseorOutput Task (spoutt())
4.3.6.2 The Transmission Startup Routine (spOut(b))
4.3.6.3 The Service-ProceseorOutput Interrupt

Handler (spoh())
4.3.7 The Timer Task (stim()) md InterruPt Wndler (ctc())

5.0 ~ AUDIO RSCORDING AND AUDIO RAN LOADING FUNCTIONS
5.1 The Audio Build (AUDBLD.C) File

.
5.2 The Audio Communication (AUDCOM.C) File

5.2.1 me Disk Input (input())FunctiOn
5.2.2 The kdio Annunciation (annun(audptr,audlng))

* Function
5.2.3 The Disk Output (output())FunctiOn
5.2.4 The Operator Prompt (prompt(msgptr,retflg)) FunctiOn

v

~

62
62

63

63
65
65
66
67
67
68
68
69
70

72

72
72

77
78

78
a5

a6
aa

95
95

95
96

96
97

98
9a

100
101
102

102

102
103

103

comms (CONT‘D)

5.3 me Aodio Secording (A~SSD. C) File
5.3.1 me Mdio Wcord (record()) Function
5.3.2 me hdio htput (audOut()) FunctiOn
5.3.3 fie &dio Editina (edit()) Function
5.3.4 me Tone &neratZr” (toni(j) Function

5.4 me Sample Bits Wcording (A~BITS. 280) File
5.5 Tbe hdio U bading (A~W. C) File

5.5.1 me W bading (A~W. COM) Function
5.5.2

APPENDIX A AID

APPE~IX B “c““

AFPE~IX C Aural Mert ing for ~ase I MD System

me kdio Zecord”Input (input()) FunctiOn

Operating System

to 280 Aaeembly Optimization

1

vi

103
103

104
105

105
106

106
107
107

A-1

B-1

c-l

ILLUSTRATIONS

,, ~.

2.3-1
2.4-1

d
2.4-2

4

3.2-1
3.2-2

3.2-3

3.2-4
3.2-5

3.2-6

3.3-1

3.3-2
3.3-3

3.3-4

3.3-5
3.3-6
3.4-1

3.4-2

3.4-3
3.4-4

3.4-5

4.3-1
4.3-2
4.3-3
4.3-4
4.3-5
4.3-6

Phase I AID Display
AID Hsrdware Configuration
S-1OO Buss Slot Usage

Video Control Masaages
Video Graphics Wssage
Audio Wssages
Miscellaneous Wssages
Task States
Task Centrol Block
Service Processor Interrupt Handlers and Tasks
Service Processor Functional Block Diagram
Service ProcessOr Data F1OW Diagram
Dispatch Task Flowchart (One User-Processor)
Video Task Flowchart
Audio Task Flowchart
User Processor Functional Block Diagram
Keyboard Aaeignments
Keyboard Task Flowchart
TEU Task Structure
Win TBU Processing KOutine TFROC

Keyboard Comanda
Display Options Array
TBU Input Data Block Fomat
TEU Task Structure - Functions Used by the ~U Task
Functions Used by the mu Task
Allocation of Screen for Text or Target Display

~

4
a
11

17
la
19
20
22
23
27
28
31
32
33
35
37
40
41
43
45

74
76
79
al
84
91

I
APPENDIX ILLUSTRATIONS

!

! A-1 Task tintrol Block
A-2 Task States
A-3 Task Program Structure
A-4 Task States and State @.ange Mechanisms
A-5 Computing Return Mdresses: R~ADR, SLPADR
A-6
A-7

c-1
c-2
C-S
c-~

c-5
C-6

C-7

c-1

Task Initialization
Task Scheduling and Return

Alerti~ Sounds..
Voice Wssages for Resolution Advisory Nerts
IVSI Light.e..hmbering~Scheme
Resolution Advieory.tiertprocessing
Traffic Advisory tiert Processing
Target Selection Logic
On-Screen Display LOgic

~

A-3
A-4
A-6
A-7 k

A-9
A-10
A-12

C-3

c-4
c-.5
c-6

c-7
c-8
c-g

T~L~

Aural ~ert~ng Phrases Available in Phase I AID Systern c-2

.

b

viii

1.0 INTROJ)UCTION

The Mode s beacon system, a combined secOndary surveillance radar
(beacon) and grollnd-air-grOunddata link system, is capable Of prOviding bOth
the aircraft surveillanceand communicationsnecessary’to support Air Traffic
Control automtion in the future. Wny uses of the Mode S data link within
the FAA ATC system are apparent but are, of course, untried and need to be

* validated. The Airborne Intelligent Display (AID) reported here was developed
by Lincoln Laboratory during 1979-1980 in order to evaluate and demonstrate
the use of the data link between a FlodeS ground sensor and Mode S
transponder-equippedaircraft. The AID served as a data link interface
allowing the pilot to see, respond to, and initiate cO~unicati Ons with a
ground sensor. Later, when Lincoln began testing the Traffic Alert and
Collision Avoidance System (TCAS), the AID became the TCAS display device,
showing position estimates for TCAS-tracked aircraft.

‘TheAil)is
a C1{T(modified
(keyboard), and

The orif;inal
co[iing,and l<OP[

a nlicroprocessor-based avionics display system which includes
Bendix color weather radar display), pilot entry device
annunciator.

AID design used a single Z80 Inicroprocessor,assembly language
storage and could not be easily mdified to meet growing user

delnands. A redesign effort, focused principally On sOftware, was begun tO
develop an AID that would be flexible in responding to the needs of a variety
of FAA development progralus. The redesign effort is beir!gdone in phases.
The phase I AID system, completed in 1982, supports the TCAS program. The
phase 11 system will add Mode S data link capability.

This document describes the redesigned phase I AID system. Three
sections follow: Section 2 covers system design, including design objectivea
and approach, display requirements,and hardware structure; Section 3 gives a
software overview followed by general descriptionsof each of the mjor phase
I software functional units; Section 4 gives detailed deacriptiona of these
software functional units.

1

2.0 SYSTEM DESIGN

2.1

The

1.

2.

3.

4.

5.

2.2

The

1.

2.

3.

4.

5.

Design Objectives

objectives of the AID software redesign effort were to:

produce a system that could be easily adapted to future design
changes and easily uintained,

require tinimum changes to existing hardware,

develop software on a software development facility (SDF) that could
be inexpensively duplicated elsewhere to allow the FAA Technical
Center and others to develop or uodify AID software,

use a program load device,

use structured, top-dom software design techniques.

Design Approach

stated objectives were met by:

distributing the processing load among mltiple 280 single-board
computers (SBC’s). This results In processing bandwidth
(instructions/sacond)and the amount of directly addressable mamory
being mltiplied by approximately the number of processors used. It
also allows the system to be divided into logical units that can run
in parallel. The software for these units my then be wintained by
different organizations if the defined interface requirements are
strictly observed.

limiting hardware changes to the addition of a second video 8AN board
and modification of the video controller. These changes allow more
time for software screen generation and elilninatescreen noise.

developing all software on an LSI-11 SDF and domlnading object files
to 280 SDF’s for testing and integrationwith hardware. This
technique has been demonstrated to be far superior to developing
software on 280 SDF’s directly.

using a floppy disk to permit program load before or during flight,
Load time ia typically 2 minutes using a single eight-inch disk.

miting all software in the C compiler language. This language
enforces structured brozramine. It has bean used on other similar.- . .
projects and is compatible with the objectives of this project.

2

1.

.

d

2.3 Display Requirements

A [@jor objective of the AID software redesign effort was to produce an
airborne display system flexible enough to respond to the needs of a variety
of FAA development programs. Each development program has specific
requirements in term of equipment to be interfaced tO the AID system and
inforwtion to be displayed. The phase I AID eystem was designed to interface
to a TCAS experimental unit, receiving aircraft position information and
displaying targets in a Planned pOsitiOn IndicatOr (ppI) mOde On the CRT. The
TCAS/AID installationwas used in subject pilOt tests at LincOln. These tests
gathered information on pilots‘ reactions to the display of TCAS traffic
advisories under actual flight conditions.

Features of the phase I AID display, especially in the areas of target
symbology and aural alerting, were reviewed by the FM’@ TCAS 11 ‘peratiOnal
Evaluation Working group. This was done to ensure that the flight testing done
at Lincoln would be relevant to future TCAS installations.Tbe phase I AID
display requirements are listed below. A sample display ia shorn in
Fig. 2.3-1.

1. Om aircraft

(a)

(b)

2.

(a)

(b)

(c)

(d)

The symbol for om aircraft will be a chenon centered horizontally
on the display, approximately 2/3 down from the top of the display.

Om aircraft altitude will appear in the lower left corner of the
screen when the display is in abaolute altitude mde. Om altitude
will not appear in relative altitude mode.

target aircraft

Target position will be indicated by a triangle 10cated at the range
and bearing determined by the TCAS processor.

An altitude tag will accompany each target, shOwing relative Or
a’baolutealtitude (as selected) in 100’s of feet. Non-mode C
aircraft will display three question mrka (???). h up or dom
arrow will indicate altitude trend whenever altitude rate is > ~10
feetlsec. The altitude tag will be in one of four positions
relative to the target triangle: above, right, below, or left.
Nominal position is above, but the position till be altered as
required to avoid clutter with other target information.

Target color will be red to indicate threat (aircraftgenerating a
TCAS resolution advisory), amber to indicate pre-threat (aircraft
generating a TCAS traffic advisory), or white to indicate proximate
traffic (aircraft within 4 nm and ~1200 feet vertically).

Information for threats or pre-threata without bearing will be
written in alphanumeric form in a block in the upper left portion of
the screen. No indicationwill be provided for proximate aircraft
without bearing.

3

NO BR6
R=O1.2
A=-02t

???

A

fig.23-1. ~se IMd Dqlay.

.

(e)

3.

(a)

(b)

(c)

(d.)

A threat (Jrpre-threat occurring off-screen will be indicated by a
smal.Lsquare located at the edge of the screen at the proper
bearirlg. An altitllde.tag will accompany this swbol.

General

A software-controlledaural alerting system will be provided aa
specified in Appendix C. The AID will drive a visual alert light
mounted on tbe forward instrument panel. The light will illuminate
red for the appearance of resolution advisories and amber for the
appearance ot pre-threat traffic advisories. Pressing the light
will extinguish any illuminated lights and will return a..aign.alto
the AID that tti.light has been <!~shed. Logic for control of..this
light.is provided in Appendix .?...

Under normalconditions tt!e display will be capable of providing
1 second updates for up to 8 tar.ge.ta.with full”altitude tags. But
as a fail-safe feature, the displaywill. revert temporarily to a
2 second update rate if it is ever incapable ef “updatingall targeta
within i second.

Fixed inforlwtion (owship s~bol and range ring) tillbe
overwritten (partially,ecased)by aircraft symbols and their
associated..altitude tags. ,

A”mode selector.switch will be:mounted in che:cOckp!.t. This switch
has.four poaitionfiwhich are.described below.

Switch Position.~~~ Result~~~~~

TCAS OFF Power to AID is off. Weather radar data
is displayed.

TCAS STANDBY Power to AID is on. Weather radar only
is displayed.

WX WAR/TCAS Power to AID is on. Weather radar data
ia displayed unless TCAS interrupts.
Then TCAS data only is displayed for
duration of interrupt.

TCAS Power to AID is on. TCAS data only is
displayed.

When the mode selector switch is in the wx M~/TCAS position, TCAS
will interrupt whenever 1) A pre-threat or threat advisory has been
generated or 2) extended display criteria are in effect.

5

4.

The
display.

(a)

(b)

(c)

(d)

(e)

(f)

Keyboard-SelectableOptions

following display options will be available for the phase I AID
Default values are underlined.

bnge

Autoacaling
the display
threata and

lfinimuIu(rear) distance.
2nm
G
4nm
5nm
bnm
7nm
8nm

onloff. men the autoacaling option haa been selected,
acal=ill be adjusted when necessary to allow all
pre-threats to be visible on the display screen. One of

seven scales will be selected with minimum screen distance equal to
2,3,4,5,6,?, or 8nm. Regardless of the autoacaling option selected,
the selected fixed display scale will be used whenever tnia scale
allows all threata and pre-threats to be visible on the display
screen.

Altitude format relative altitude
absolute altitude

Proximity suppression suppress proximity advisories (triggered mode)
display proximity advisories (continuous mode)

In triggered mode, proximity adviaoriea are suppressed except when
threat (red) or pre-threat (amber) advisories are present. The
display resuppresses 8 seconds after all threats and pre-threats
have cleared. In continuous mode, advisories (including proximity
advisories) are displayed whenever tracks qualify.

Display criteria norml criteria
=e~ia (call-up mode)

A “call-up” button till be provided on the keyboard which can
temporarily expand the display criteria. If the display is in
triggered mde, then pressing the call-up button results in
unsuppressed display for 15-seconds. During this time all proximity
advisories will be displayed. If the display is in continuous mode,
then pressing the button results in display of all tracks within 4 ,

miles and 1200 feet for a 15 second period. NO off-screen symbols
will be generated for targets which satisfy only expandeddisplay
criteria. b

Number of targets to display. O-8 —

The TCAS logic will provide priority ranking for all targets sent to
the AID. This ranking till be used to delete targeta when the
display limit is exceeded.

6

.—

J

.

●

2.4 liardwareStructure

2.4.1 Overview

Figure 2.4-1 is a block diagram of the AID hardware configuration.
Phase I components are show enclosed in solid lines. Components to be added
for phase II are shown enclosed in dashed lines.

The system is partitioned into functional units by the use of mltiple
single-board computers (SBC’s). The SBC’s are connected in a mster/slave
configuration. The maater SBC, referred to as the service processor, serves
primarily aa a general-purposeaudio/video processor. One or mOre slave SBC’a
serve aa user processors, performing functiOns which are sPecific tO a
particular user application. All slaves communciatewith the rester via the
S-1OO buss. The rester then interfaces with the CRT, audio annunciator, and
floppy disk. Unlike the slaves, the msster has complete acceaa to the S-1OO
buss. The slaves use the S-1OO data lines and some status and control lines
in their communication with the msster. llOwever,they cannot put an addreas
on the S-1OO address lines. In this sense they sre similar to 1/0 controller
devices on the buss.

The sections which follow describe briefly the hardware components ahom
attached to the SEC’S in Fig. 2.4-1. The hardware discuaaion ends with
sections on S-1OO Slot Usage and SEC Characteristics.

2.4.2 Video M, Video ~ Controller, and Video Multiplexer

The video RAN controllerhas been redesigned to add a second video RAN.
In the original AID, the video controller and the CPU accessed a single video
RAN card. This card contained three 8K banks of ~ -- one each for red,
green, and blue data. Normally the screen waa blanked while the computer
updated the video RAM. This caused a noticeable blink on the screen. In
addition, when symbols were purposely blinked, both the computer and the video
controller accessed commmon data lines, causing noise on the screen. To
correct these problems it was decided to use two video RAN cards and to add a
video multiplexer. In this way the video controller can be reading a screen
imsge from one video ml while the CPU is loading the other. The controller
callthen switch to the updated image.in the Other ~ during”the vertical
retrace of the CRT. This eliminate all blinking and noise problems. It also
provides the CPU with a full video frame period to generate a new frame. The
additional video W card is identical to the original unit.

2.4.3 Audio BAN and Audio enunciator

The phaae I AID system uses three 16K banka of audio RAM for storing
words and phraaea to be annunciated. The three banks used are the upper 16K
of the msster’s onboard memory plus two 16K banks from a 64K M card. The
16K off-board U banks are selected by the rester by de-selecting the onboard
bank with the same address space. The msster loads selected words or phraaes
from these audio banka into an annunciator M, then activates the
annunciator.

7

—
-—.”-.—

* ~:;:”;,~ 1

P
KEYBOARD / ~ PROCESSOR I ANNUNCIATOR

t (8LA”E SBC) I P

L ---- SERVICE
FROM TEU PROCESSOR P
OR ARtNC FLOPPY DISK
INTERFACE (MASTER SEC)

TEU USER
PROCE8SOR

8 Sr 1

KEYBOARD ~+ I PRINTER I

k !

‘L ----- J
CAUTIONlmRNlw p,
BUTTONIL~HT /

P= PARALLEL

8=8 ERIAL

8BC=SINQLE BOARD
COMPUTER

8MI=8TANDARD MESSAQE
INTERFACE

ELM= EXTENOED LENGTH
ME88AOE INTERFACE

-~ ‘L?
VIDEO
RAM O

VIDEO
CONTROLLER s,

h’

/

MODE

11

BENDIX
SWITCH CRT

Fb. 2.4-l. AIDhardwara conf~atW.

,.

.

To be consistent with the design philosophy, the audio data should.be
kept in the appropriate slave, since it is application dependent. However,
this would be irlefficientsince audio data would then have to be sent back to
the wster witileach audio co!n~nd. The audio data file can still be
maintained by the same person or group supporting the application. If
multiple applications exist in separate slaves, then mltiple audio data files
can exist and can be loaded into the same or different M banks.

2.4.4 ~lOppy Disk

Each SEC has b4K of onboard W[. ROM is used only for boot program
storage; program and data files are stored on floppy disk and loaded into the
onboard ml. The phase.I AID system contains a single floppy disk drive and
uses 8-inch, single-sided, double-densityfloppy disks for storage. Because
only the master interfaces to the floppy disk, the rester must be responsible
for the loading and proper distribution of all program and data files. In
response to a system boot, the CP/M operating system is loaded into the
[master. CP/lithen in turn automatically loads the program and data files into
the Lmster. From there, slave programs and audio data files are domloaded
via the s-1OO buss to the proper destinations.

Disk accesa is required only during”initialprogram load. Following
this, the floppy disk can be removed from the drive and those parts of CP/M
that handle disk access can be overmitten by the rester’s application
program.

2.4.5 FlodeSwitch

The Bendix front panel mode switch is used to switch the video display
among four positions: test, wather radar only, combination weather
radar/AID, and AID only. The switch is interfaced to one of the ~Ster’S
parallel ports on top of the card. When there is a change in the switch
position, the switch interrupt handler causes the new switch position.to be
sent to all slaves. The slaves can then change their operation as necessary.

2.4.6 Caution/WarningButton/Light

A combination buttonllight is interfaced to the p~se I TCAS slave via
one of the two parallel ports on top of the card. The upper half of the
button contains a red light labeled ‘warning’;the lower half contains an
amber light labeled ‘caution’. Software in the slave turns on one of the
lights and annunciates a correspondingaudio phrase when warranted .bythe
aircraft threat environment. Men the user presses the button, an interruPt
is generated in the slave. The interrupt handler then extinguishes both the
light and the audio annunciation.

2.4.7 Keyboard and TEU Serial Input

Serial inputs to the phase I.TCAS slave are from the aircraft’s onboard
TCAS Experimental Unit (TEU) and the lceyboard. These use the two serial ports
on the top of the card.

9

——.,. ..—.- . ..——. ,=-.,.-..—-. —— ——

2.4.8 S-1OO Slot Utilization

Figure 2.4-2 diagram buss slot usage for the AID design. Again phase I
components are enclosed in solid lines; phase 11.components are enclosed in
daahed lines. The figure also shows card interconnectionsvia connectors on
the tops of the cards.

Note that an additional slave SBC and an &{INC 429 interface card are
ahewn. Their purpose is to convert NINC-formatted TCAS data into a formt
compatible tith the current ‘TEU-AIDKS-232 interface. This provides an
interface to DalDo Victor’s TEU equipnlent. Note that these two cards will
only draw power from the s-1OO buss. All communicationsare through
connectors Qn the tops of tbe cards. They therefore have no effect on the AID
cards on the buss. This SBC’S programs are burned into EPROM’S,

The ARINC interface also serves a “secondpurpose. If the MINC TEST
OIJTPUTia connectsd to the AKINC INPUT, then WINC test messages, generated
within the ARINC slave, can be sent to the TCAS slave sdC. I.nthis way all
features of the audio/video display can be tested/delnonstrated.

2.4.9 ~

The salient characteristicsof the rester and slave SBCIS are sumwrized
belCw. The SBC’a are supplied by Sierra Data Sciences, Fair”iew Park, Ohio.

The rester SBC:

1. uses the.Z80A (4-~iz) processor,

2. containa 64K bytes of RAN divided into four 16K banks,

3. contains 4K of ‘“shadow”’EPROM (that ia, the EPROM shares the 64K MI
address space, It can be switched in or out. It contains a boot
program to load CPM from the disk),

4. is compatible with IEEE-696 buss standard (i.e., the IEEE standard
for the.S-100 buss),

5. has two serial and two parallel 1/0 channels accessible froufitkletop
of the card and,

5. t:asfour counter-timers.

The rester communicates with the slave SBC using the same protocol that it
would use to communicate wj.th any other 1/0 controller (slave) device. This
protocol has been at2ndardized by IEEE-696.

SLOTS NEEDED

1

ARINC

2 ARINC

I ARIN:O:LAVE POWER
ONLY

s
INPUT POWERARINC 420

INTERFACE ONLY

OR t
TEU INPUT

1

1
+

KEYBOARD
1

1 FLOPPY DISK
+~

PRINTER

1 MODE SWITCH —

1
ANNUNCIATOR-

REAOY INT.

2

1

1

2

13 19

1

2

2

1s

VIDEO MUX

]P]

I VIOEO RAM B

1
I

ANNUNCIATOR

FIo. 2.4-2. S-100 bua8sbt U@@@.

11

—

me slave SBC:

1. uses the Z80A (4-~z!

I
2. contai=s 64K bytes of,

I
3. contains up to 16K Of

processor,

W,i divided in:o four 16K banks,

“shadow” EPROM,

I 4. has two serial and two (or four, optional) parallel channels,

I 5. haa four counter-tinlersand
,,

6. contains an X-buss expansionirlterrace.

~.
The X-buss contains lines fr.om.all Z80Apins plus additionalcontrol and
sta.tuaaignals generated on the board. It my be used to irlterfaceto anottlex

I
memory bank or to a utility card contaiair,ga nigh-speed ..mthctlipand
additional serial and parallel ports.

I The slaveia supplied withasingle 2732(4K)EPRoM containing a boot

1.
program which causes the CPU to wait for a.program domload frolnthe master.

12

3.0 SOFTWA~ GENEUL

3.1 Overview

The AID software,

DESCRIPTION

like the hardware, is partitioned into functional units
by the use of multiple single-board computers (SBC’S). The rester SBC,
referred to as the service processor, serves primarily as a general-purpose
audio/video processor. One or more slave SBC’S serve as user processors,
performing functions which are specific to a particular user application.
Some software, called system software, is comon to all SBC’S.

The phaae I software described in this document provides for a aingle-
user application and thus contains a single-user processor. This user
processor interfaces to a TCAS experimental unit (TEU) and a keyboard. Its
function is to input TEU aircraft posit,io~ info~mation, Process the
information according to keyboard co-rids, and generate and send audiO and
video data blocks to the service processor. The service processor then drives
the audio annunciator and CRT to produce audio and video output. Phase I
audio outputs are of two types: (1) tones to indicate whether valid or
invalid keys have been pressed on the keyboard, and (2) words or sounds to
inform the pilot of a reco~~ended wneuver or simply draw his attention to the
display. Video output is a color PWI-type display showing targets at given
ranges and bearings from own aircraft which is located near the center of the
screen.

As stated earlier all programs are mitten in C. The C compiler allows
direct mchine code (object bytes) to be inserted in-line in a C program. The
direct code can reference C-defined parameters. This mchine code is used in
some caaea to program 1/0 interfaces when titing constraints require very
efficient coding.

All programs are coInposedof tasks
nonpre-emptive task scheduler satisfies
Communication between tasks and between
meallaof circular queues. Ml programa

and interrupt handlera. A
the requirementsof this program.
interrupt handlers and tasks ia by
use the same task scheduler design and

queue mnagement functions (i.e., functions for entering mssages into queues
and removing mssages from queues).

Certain naming conventions have been followed. In general, interrupt
handlera contain letters of the attached device followed by IN or OUT
depending on the direction of the data flow. Tasks which serve a functiOn
similar to that of the corresponding interrupt handler are distinguished from

. the interrupt handler by an additional letter T. @e.e names generally
contain b letters, the first three corresponding to the function which inputs
data to the queue, the last three to the function which removes data from the

. queue.

The three subsections which follow give a general description of the
phase I software: Section 3.2 - System Software, Section 3.3 - Service
Processor Software, and Section 3.4 - User Processor Software. A more
detailed description of the software in each of these areas is given in
Section 4, Software Detailed Description.

13

3.2 System Software

Topics to be discussed in this section include interprocessor
coordination functions: system startup (3.2.1) and interprocessor
comnication (3.2.2); functions used In common by all supplicationprograms:
the task scheduler (3.2.3) and queue mnagement functions (3.2.4); and
diagnostics (3.2.5).

3.2.1 System Startup

When an SBC is initially booted (power turned on) it runs a boot program
stored in an on-board EPROM. The slave’s boot program initializes the slave
to receive a program domload from the wster. The rester’s boot program
loads the CPFIoperating system from tracks zero and one of the floppy disk,

This section discusses the initial program load procedure, application
program initialization, and interprocessor startup coordination.

3.2.1.1 Initial Program Load

Except for boot program storage, all memory in the AID is M. ‘TheCPM
operating system plus program and data files are stored on and loaded from
floppy disk.

The Sierra Data Sciences’ system configuration utility has been used to
modify parts of the CP/11operating system residing on the floppy disk.
Specifically, an autol.oadcownd line has been specified, This comand line
contains a list of simulated operator counda. When CP/?lis initially loaded
into the rester, it checks to see if this co~nd line is present, and if so,
executes the first commnd. Upon completion, the syste]ndoes a warm boot and
executes the next comnd in the comnd line. This procedure continues

. .cnrougn execution or the last cownd in the cowand line.

The first three commanda load the three 16K banks of audio data into the
maater’s upper 16K wmory bank and into banks A an’dB of the 64K W card,
respectively. The fourth commnd loads a download program into the TCAS ‘r
slave. The fifth co-rid loads a corresponding download program into the
master. Together the ~ster and slave download programs then read the slave
application prOgram, one block at a time, from the floppy disk into the
rester, then send the program, still one block at a time, to the slave. Once
loaded, the slave application program begins execution. The sixth and final
comnd loads and executes the msterts program. Note that once the rester’s
application program is loaded and begins running,
CP/M.

control is never returned to ,
The wster program my therefore overmite CP/M in the Wster’s KAM

memory.

Mring aystam Integration and at other times for troubleshooting,it ia
desirable to run debuggers in both rester and slave. Terfimls are attached
to the mater and slave serial ports to support this, and software is changed
in the slave application program to configure one of the serial ports for the
ter~nal. (In norwl operation, the two slave aerial ports are used for TEU
and pilot keyboard inputs. For debugging the slave serial ports are used for

14

either terminal and TEU or terminal and pilot keyboard.) The domload of the
slave application program ia acco[npliahedin the same mnner aa described
above except that a different download program ia loaded into the slave.
After this download program finishes downloading tbe application program, it
transfers control to Sierra Data Sciences’ slave monitor program instead of to
the start of the application program. In the mater, instead of directly
loading the stssterprogram, the standard CP/M aymbOlic debugger ZSID is
loaded. The rester program is then loaded under ZSID control.

3.2.1.2 Program Initialization

Each program loaded into an SBC goes through a similar initialization
sequence. All C programs begin with the function maino. In this application
the initialization process ia divided into two parts: that performed by the
function mirio and that performed by the task inito.

The wino function performs all initializationoperation necessary only
at startup and not during a restart. These include:

a) zero the data area
b) load the interrupt vector table
c) initialize the task scheduler
d) initialize all task control blocks (TCB~—, -,
e) initialize all tasks (call them and run

point)
f) schedule the inito taak
g) call the task scheduler.

The inito task performs all functions necessary

them to their first suspend

to perform a restart. These
include:

a)
b)

initialize all circular
initialize all hardware
parallel and serial 1/0
etc.).

Note that the mino/inito”
aPPrOPCiate in a system in which

queue headers
1/0 devices (e.g., the counter-timers,
chips, audio and video controller boarda,

partitioning of initializationia more
the program ie stored in ROP1. In that case

the application programa can initiate a restart by scheduling the inito task.
Since the program is in ROM it is likely that this process will be successful.
However, if the program is in RAM, it is possible that the program itself was
altered during abnornlaloperation, and restart will not be succeaaful.
Initialization is partitioned as described so that the program will be
suitable for I<OMstorage if the need should arise at a later date. In the
phase I sYstem, restart is accomplished by rebooting the entire system from
the disk.

3.2.1.3 InterprocesaorStartup Coordination

Slaves complete initializationbefore the Ester and wait for a “PORE”
message from the wster. While waiting, slave external interrupt handlers
ignore all data received (i.e., will not wake taaka to process data). When a

15

PO~ is received, the slave activates its external interrupt handlers and
eends an acknowledgement back to the rester. The rester sends PO~ nlessages
to each slsve. men all slaves have replied, the rester activates the front
panel mode switch handler and sends the current ewitch setting to all slaves.
The switch setting indicates which slave should send audio/video data to the
mater. This completes the startup process.

3.2.2 InterproceesorCommunication

Messages sent bstween Mster and slave have fixed formts, The first two
bytes of each meesage contain a type code and a byte count, respectively. An
actual transmission can be a string of concatenated,fixed-format messages.
Each transmission of a set of meesagee is initiated by sending a single byte
containing the total number of bytes to follow (up to 255). The block of
concatenated messages of the indicated length is then sent.

The message formats are shorn illFigs. 3,2-1 through 3,2-4. There are
four general masage categories: video control, video graphics, audio, and
miscellaneous.

Figure 3.2-1 shows video control messages. All messages describing a
single video frame wst be preceded by a START-OF-FME n~essageand followed
by an END-OF-F.W message, The screen is blanked by sending a CJ.EARmessage.
An initial SCALE wssage is sent from the user processor to the service
processor to specify the dimensions of the video screen. (See Section 3.L.4
for a description of the virtual screen concept.)

The rewining three video control messages (COLOtt,LINE TYPE, and REVEKSE
VIDEO) each select an option which then remains in effect until changed by a
CLEAR co~nd or the video control message with a different option selected.
The control byte In the COLOR wssage selects one of seven colors. The
control byte in the LINE TYPE message seleccs dashed, dotted, or solid lines.
The control byte in the REVERSE VIDEO message selects either reverse video on
or off (off = norul mode).

Three video graphics message types have been defined: STRING, CIRCLE,
and LI~. These ara shon in Fig, 3.2-2. The STRING wssage specifies the
X,Y starting coordinates of an ASCII charscter string, a reference position
for the first character (i.e., centered on X,Y, lower left at X,Y, etc.), and
the ASCII string itself. The ASCII string is limited to 32 characters, the
width of the screen for our application. The CIRCLE meesage gives the X,Y
coordinates of the circle center and its radius. The LINE mssage contains a
byte specifying the number of line segments to be drawn and the X,Y
coordinate of the lines.

Figure 3.2-3 shows the three types of audio mssages. The basic AUDIO
message specifies an offset into che audio Ml data are? and the length of
that data area in bytes. lfultipleAUDIO messages my be combined to form a
single phrase by preceding the AUDIO messages by a START-OF-AUDIOand

..—_. _— ---- .—,---

CLEAR: sTART-OF-FRAME: END-OF-FRAME

SCALE:

wTC13

4

XMAX LSS

I MSS I
YMAX LSS

MSS

COLOR:

H
TC14

1

CONTROL

REVERSE VIDEO:

TC=TYPE CODE

R

TC20

1

CONTROL

FIo. 3.2-1. Video control messages.

LINE TYPE:

1 TC15

I

17

.—....—.-.——. —-— —

I

8TRINQ

R
1C17

COUN7

X-COORD LSB

MSB

Y-OOORQ LSS

MSB

REF. Pos.

t
ASCII

T ‘“ri

CIRCLE:

3
TC1$

6

X-COORD LSB

MSB

Y-COORD LSB

LINE:

R
Tclo

COUNT

+ SEGMENTS

xl

Y1

x2

Y2

BXN

YN

Fig. 3.2-2. Video graphlcsmeasage,

18

.

!
I

START-OF-AUDIO: END-OF-AUDIO AUOIO:

TC31

o

Fig. 3.2-3. Audio messagea.

TC32
,,

LSNQTH L88

M8B I

POKE:

B

USER MOOE

SWITCH SETTIN@:

H
TC2 i

1

8wlTcH 8ETTINa

SLAVE ACKNOWLEDGE: ERROR:

MODE
SWITCH SETTINQ.

I SWITCH SETTING j

Fig. 3.2-4. Mlacellaneous messages.

20

.

. . ,.,.—-.--..-—-——-”-—,

follo!ring thelnby an END-OF-AUDIO. All such enclosed AUDIO messages are
accumulated in the annunciator M. When an END-OF-AUDIOlnessageis
recognized, the annunciator is activated. A basic AUDIO mssage received
outside these framing ~nessagesis annunciated immediately.

.

There are five types of iniscellaneousmessages, shown in Fig. 3.2-4.
The PORE ~!essageis sent frofillmaster to slave during the colmunciation

. establishment process. The SLAVE ACMJOWLEDGE message is sent from slave to

nlastereach time the slave receives a message from the wster. The ERROR
message provides a meatlsfor sending a free text ASCII diagnostic message from
slave to master. Tk]eintent was for ERSOR messages to be printed on the
cockpit printer. IIowever, since the printer is not included in the phase I
system, f:KROlinlessagesare currently ignored by the ~ster. The final two
[nessagetypes deal with the front panel mode control switch setting. The
llODESWITCI1SSTPIN(:is sent fro{tirester to slave each time the position of the
front panel node control switch is changed. The USEk MODE SWITCH SETTING is
passed frolllslave to Inaster. It is set by the slave to reflect the priority
of the slave’s data and is used by the master only when the switch is in the
combination AIO/weather radar positions. The rester then determines whether
to display AID (slave) data or weather radar data based on the USER MODE
$WITCtlSSTTING.

3.2.3 Task Scheduler

The apj]licationsoftware is broken into functionalblocks called tasks.
Each task carries out a specific function. Each task is mitten as a
sequential program, i.e., proceeding frOm beginning tO end withOut a break in
execution. At any one time, several tasks my be ready tO run. Since only
one task can be executing at a given time, the scheduler performs the function
of determining which of the ready tasks to execute.

Figure 3.2-5 shows the three possible states of a task: Ready, Running
or Waiting. A Waiting task is stopped because it is waiting for some
condition to occur, such as receipt of an input character. A ‘Wady task is
ready to run “butis stopped because another task is executing. The Running
task is the currently executing task. The transitions between the various
states are triggered by the runo , sleep() and wakeo functions. The
scheduler executes the run() function tO start a task running., ‘TheRunning
task will execute the sleep() function when it reaches a point in the
execution where it must wait for some condition, such as keyboard input.
Sleep() saves the task’s stack pointer in its Task Control Block (TCB) and
sends control back to the task scheduler. The scheduler then determines the
next task to be executed from the list of ‘Readytasks. Tasks are transferred
from Waiting to Ready by the wake() function. Wake() can be issued by an
interrupt handler or by another task.

Each task has an associated Task Control Block as shorn in Fig. 3.2-6.
The TCB entries include the task Status flag, Signal flag, stack pointer, and
pointer to the next TCB. The Status flag, when set, indicates that the task
is ready to run. The Signal flag indicates that the task has been awakened by
an interrupt handler or another task. The purpose of the Signal flag is to

21

.

.

WAKE:

SET’STATUS=l
SET SIQNAL= 1

I

READY RUN:

SET SIQNAL= O
+ RUNNING

I I SLEEP:

IF SIQNAL al,

WAKE: SET SIGNAL= O
SLEEP: SET STATUS=l

SET STATUS = 1 IF 81QNAL=0,
SET SIGNAL-1 SET STATUS=O

WAITING

Fig.3.2-5. Taak states.

I
! 22

POINTER TO NEXT TCS

TASK ENTRY POINTER
I

Fig. 3.2-6. Task control block.

23

prevent a task wakeup from being lost while the task is ruIining. The stack
pointer is used to save return addresses for tasksthat are Waiting or Ready.
Each task has its on stack. The poi~iterto the next TCB points to the next
highest priority task.

.

When a task is awakened, the Statua and Signal flags are both set. The
task is now in the Ready state. Lihena currently running task executes the
sleepo function and enters the Waiting state, the scheduler examines tl]eTCBS .
to determine the highest priority task that has the Status flag set. The
scheduler then clears the Signal flag of this task and starts the task
running. If the task is awakened while running$ the Signal flag is set, .SO
that :wke ups are not lost tiile a task is executin.g~:The sleepo fu”nction
always checks”the signalflaguf the Running task.kfore suspending exec~lt.i.on
of the task. Ifset, sleepo clears the signalflag and resumes exec,~tingthe
Running task.. ~~~

The application software functions operate below theesecutive ievel.
TheY are implemented‘asre-entrant tasks. When a .taskis running,.itcannoc
he suspendedby another task. This type of task scheduling is termed
nonpre-emptive since a higher priority.,taskcannot.pre-empt a runningtask..
Task execution is suspendedwhena hardware interrupt occurs but the running
taak is restoredwhen the.interrupt service ,iscompl.et@. This .type..nf task
scheduling avoids complex proble[ffiassociated with inter-taskdata transfer.
However, it alsomeaus that highef..priority..taskscan be”locked outby lower
priority tasks.. For this reason, tasks mustbe designed.to cooperate in their
use of available.processingtir e,.

3.2.4 Message @cue tinagement

After initializationall intertask and interrupt handler/task
communication is perforwd by maria of queues. Since rasks run asynchronously
this asaures that messages will not be lost (over-written). Since the
messages required in this application are variable-length,the queue entries
are also variable length. The same queue managelnentfunctions are used by all
application programa.

The queue acceas functions are mitten so that when an attempt is mde to
enter a message in a full queue, the task is suspended. Later, when a message
is removed from the queue, the suspended task is awakened so that it can store
ite mssage. Similarly,*en a task attempts to remove a message froluan
erSPtYqueue it suspends. When a message is later placed in the queue the
suspended task is awakened. In this way messages are “gated” through the
program.

3.2.5 System Diagnostics

There are two form of AID system diagnostics: non real-time and
real-time. Won-realtime diagnostics are stored on their om floppy diske and
run separately from the application program, either routinely to perform
system checkout or specifically to pinpoint a suspected malfunction. In
contraat, realtime diagnostics are part of the application program. They
monitor actual system operation.

24

..-, -.,. . ..

.

I

3.2.5.1 Non-kealtime Diagnostics

The reliability of the AID hardware has been excellent. There have been
no know failures in any hardware components. Therefore the only diagnostics
run on a regular basis are floppy disk diagnostics. Two in-house programs
exist, TFLOP - test floppy.disk,and WFLOP - ‘mite floppy disk. Both programs
communicate with the floppy disk controller chip and print out any unusual
status conditions which occur during disk operations. The programs are
interactive and user-friendly, guiding the user through selection of a variety
of options for testing the health of the entire floppy or a specific area
only. In practice, TFLOP performs all necessary tests. WFLOP is not normally
used.

A diagnostic package was purctlasedwhich runs under the CP/M operating
system.and is designed to test each major component of a CP/M-based Z80
microprocessor system. These compotlentsinclude memory, CPU, disk drives, CRT
terminal, and printer. We are not currently using this diagnostic package.
It requires modification to run successfullywith our Sierra Data Sciences
equipmerlt,but it is available as a starting point should some of these tests
be considered necessary in the future.

3.2.5.2 Realtime Diagnostics

The AID realtime diagnostic operate in one of two ways. (1) The syetem
detects an error condition and sends a @ssage either to the CRT or the
printer. (The printer ie not implemented in phase 1.) (2) The user eelecta a
test mode of operation (e.g., presses the TST key on the keyboard), then
checks to see that the audio and video outputs are correct. The method
described in (2) checks the performance of the system as a whole. The error
checks used in mthod (1) are present and operational at all times, whether
the software and hardware are in epecial test modes pr not. These checke
catch more specific errors that tight not be apparent from simply observing
the system audio and video outputs.

The error condition currently printed on the CRT include (1) ‘user
Inactive’ - i.e., slave not responding to PO~ messages from the master, (2)
‘no data’ - no TEU input received for 8 seconds, and (3) ‘bad input’ - TEU
input fields do not pass reasonablenesschecks. Many other error conditions
are sent from the slave to the rester intended for the printer. These include
checksum errors in input data, queue overflows, timing conditions that should
never occur. These error checks are currently present only in the slave. In
phase II, when the printer is available,error checks will be included
throughout the ~ster as well.

There are currently four test states in which the system can be run and
observed. In all four states, user interactionsvia the keyboard and the
cautionlwarningbutton function normlly. For teet states (3) and (4) refer
to the AID ~rdware Block Diagram (Fig. 2.4-1) and the S-1OO Bus Slot Usage
(Fig. 2.4-2).

25
i

~

(1) By pressing the TST key on the keyboard, the user selects a mode of
operation in which canned data for 8 targets is input once per second to the
user processor’s TEU task for processing. Each target’s range, bearing,
color, and associated audio are updated each second in a realistic mnner.
The data repeats approximatelyevery three tinutes.

(2) men the TST mode is u5ed in combination with the DEMO key, the user
can select one of eleven fixed target scenarios or one of ten moving
encounters showing own aircraft with one or two intruder aircraft. (See
Fig. 3.4-2 for operatiIlgdetails.)

(3) By changing the cable which plugs into the AID system’s TEU input
port, the user can input actual recorded flight data for processing. TEU
inputs from four encounters were recorded onto floppy disk. A separate
single-board computer runs a program which reads the data from disk, then
sends it at one-second intervals over an RS-232 link to the user processor.

(4) A shorting plug can be used to route test data from the ARINC slave
single-board computer into the ARILJC429 interface to be sent to the user
processor TEU input port. ‘~hisprovides yet another set of audio and video
outputs which can be observed.

3.3 Service Processor Software General Description

The service processor is intended to be a general-purposeprocessor in
the AID system. It acts as bus mater and is responsible for controlling the
AID display hardware, the audio annunciator system, and other utility devices,
such as the cockpit printer, thus allowing the user processor to concentrate
on its particular application. Since the service processor is the bus rester,
it also has responsibilityfor loading the user software into the user
processor.

3.3.1 Overview

The primary function of the service processor is the concrol of t!]evideo
display so that the user processor need not be concerned with the details of
driving the display. A set of general-purpose graphic comunds are provided
by the service processor i{]order’to allow a user to easily generate graphic
and alphanumeric displays. The service processor also provides control of the
audio annunicator hardware, thus relieving the user from the details of
directly handling the device. Additionally, the service processor can provide

{

/

support for other utility device6 which my be required by user applications.

The software in the service processor consists of several interrupt
handlers, a task scheduler, an@ several utility tasks (see Fig. 3.3-1).
Functionally, the service processor receives comunds from the user processor;
these are then dispatched to the appropriate task for execution (see
Fig. 3.3-2). In addition, the service processor sends status, commnds and

data tO the user PrOcessor, depending upon the configurationrequired by the
user software and hardware.

26 I
! I——.-.—-—--

.EXECUTIVE*

INTERRUPT HANDLERS

TASK SCHEDULER

TASKS

I

.
Fig. 3.3-1. Service processor interrupt handlereandtaeka.

27

7
SWITCH

INTERFAcE SWITCH

t
~

r

~
‘8-1OO

MASTERISLAVE AUOIO
INTERFAcE ~

COMMAND
— CONTROL AUOIO

DRIVERS OISPATCH
~

A No CARD
INTERFAcE

I ~

I I

bVIDEO
INTERFAcE VIDEO CARO

Fls 9.S-2. Service proces80r functional block diagram.

2%

Communication among taaks and between taaks and interrupt drivers ia
accomplished by means of first-in-first-outqueues. The flow of data between
interrupt handlers and tasks and between tasks is show in Fig, 3.3-3. The
task scheduler is nonpre-emptiveand runs tasks on the basis of priority.

3.3.2 Interrupt Handlers

. Since the service processor my be required to handle devices needing
fast response, it is necessary to minimize interrupt latency. To this end, a
multi-12vel, prioritized interrupt structure has been implemented,requiring
that low-priority interrupts,which require appreciable processing, be
interruptible. In general, therefore, most interrupt handlers consist of a
task to perform time-consumingcomputations, and a very short, fast interrupt
sqrvice routine.

The numbers under the interrupt handlers.shown in Fig. 3.3-1 indicate the
relative priority of the interrupts,with 1 being the highest.

3.3.2.1 The Service Processor/User Processor Communications
Interface

Data transfers between the service processor and the user processor
consist of variable-lengthblocks, the first byte of which contains the count
of the subsequent bytes in the transfer, thus constraining transfers to less
than 256 bytes. The first byte, containing the count, also acts aa a
handshake signal, allowing the two processors to synchronize the transfer.
Each transfer direction is fully independent, requiring a separate interface
driver and task to ~nage the transfers (see Fig. 3.3-2).

Mesaagea received from the user processor are initiated by an interrupt
from the user processor port. The interrupt handler upino passes this one
byte message to upinto, the user processor input task, which receives.the
remaining bytes of the transfer. Messages sent to the user processor are
output directly by task upoutto.

3.3.2.2 The Timer Interrupt Wndler (ctcino)

The counter-timer circuit interrupt handler, ctcino, receives an
interrupt whenever the timer counts down to zero. This interrupt merely puts
a message into the timero task input queua and wakes the timero task. It is
the responsibility of the timero task to determine what actions, if any, this
event triggers.

3.3.2.3 The Mode Switch Interrupt mndler (bswino)

The mode switch interrupt handler monitors parallel port lines which are
connected to the Bendix front panel mode control switch. ~enever the state
of this switch changes, an interrupt is generated. The state of the switch is
read by bswino and passed to the mode switch task, bswtcho. The parallel
port is then reconfigured to respond to any change from the new switch
setting.

29

INTERRUPT
HANOLCRS TASKS

4

- I I

I -

3MSWUPO

.

Fig. 3.3-3. Service processor data flow diagram,

30

I

—

,

I
!

3.3.2.4 The Audio Control Board Interface (audino)

The a~dio control board interface ‘handler,audifio, receives an ineerruPt
whenever the audio generator control board has completed a message. A one-
byte ,nessageis queued to the audiOO task tO nc~ify it, and the audiOO task
is awakened.

3.3.3 Tasks

The pril~ry tasks in the service processor are show in Fig. 3.3-1 along
with their relative priority. Ftgure 3.3-3.showsthe interactit]nand data
flow betweeITthe taaks. The follo.w.ingdescriptions give an overvie”w.of..the
primry functions of””eachof the .tas~ks.

3.3.3.1 .TtleUser ProcessorInput Task (upint!))

This task is initiated by tt]einterrupthandlerfor. the user processor..
input port. Itis responsible.forcompletingth.e transfer.and moving the
message to the co-rid dispatch task,dsptcho. Theprincipal reason:fnr this
ar.chicectureis to allow micip:le-user processors to communicatewith the
service processor.in an orderly fashion. There will be a separate taak for
each userprocessor on the buss.

3.3.3.2““TheUser Processer titput..Task(uwwtt(})

This task has several input queues,one for each of the tasksrequired to
transmit datato the user processor. upOutto scans these.que.ue~and”
assembles a message (less than 256 bytes) which””issent to the user processor
No .lnEerruptsare.involved..in this transfer,.so no interrupt harldleris
necessary. (The user processor has the hardware and software required to
synchronize this transfer.)

3.3.3.3 The Command Dispatch Task (dsptcho)

This task has as input the command streams toting from one or more user
processors. The commands are decoded and dispatched to the appropriate
processing task (audio, video, etc.) via the queue to that task. This task,
then, has the responsibilityof coordinating the use of one device by several
users, and resolves any cnnflicts in a mnner consistent with the device in
use. Figure 3.3-4 shows a functional flow chart for this task in the case Of
one user processor.

3.3.3.4 The Video Task (videoo)

The two min functions of the videoo task are: (1) set
. bits (pixels) in the video WI in order to generate a display

graphic comnds and (2) control the video M. Figure 3.3-5
functional diagram of this task.

the appropriate
from the user
gives an overall

31

T
D8PTCH

SLEEP

t

QET Q

(UPIDSP)

I

+

No MESSAGE
IN QUEUE

?

YES

PUT Q

(DSPVID)

.
PUT Q

>

(DSPAUD)

PUT Q

(DSPUPO)

.
*

ERROR
}

Fig. 3.3-4 Dlspatchtaak flowchart (one user processor).

32

.

VIDEO

1)

SLEEP

i
GET Q 1-

(D8PVID)

1

$
NO MES8AOE

IN QUEUE
?

YES

NO
FLASHING
ENABLED

?

I YES

oSWITCH
VIDEO RAM

-- ~ :iiki-:

JIvl(STRING COLOR OTHER

I

Fig. 3.3-5. Video task flowehut.

33

--

I
,

The videoo task provides a set of general-purpose comands with which
the user can easily generate the type of display needed. Comnds provided
include drawing a circle of a specified center and radius, drawing a line
given two end points, and displaying a string of characters and special
symbols at an arbitrary screen position. In addition, among other features,
the user is able to select the color of the objects to be displayed and the
tyPe Of line to be drawn (e.g., solid, dashed, dotted). Scaling comands are
also provided to convert user coordinates to display coordinates so that the
user need not be concerned with the resolution of the screen and other
hardware specific details of the video display.

The graphics are driven on a frame-oriented basis, such that all contents
of the previous frame are lost. A start-of-videomessage must be sent by the
user to begin accumulating the graphics for the next display. As each graphic
comand is received, it is “dram” into the currently available video “M.
When the end-of-video message is received, the screen is updated by switching
video Ws.

3.3.3.5 The Audio Task (audiOO)

The audioo task accepts co-rids Of the fOrm Of an Offset and length.
It is assumed that the data needed to generate the audio has been loaded by
the service processor into a contiguous area of memory. The audioo task uses
the offset as a pointer into this area and sends the number of bytes specified
by the length to the audio control card. These audio messages are accumulated
until a comnd is received to start the audio annunciation. In this way, a
number of audio messages can be stacked and then annunciated at once. (The
hardware puts a limit of 4K bytes on the total that can be accumulated for
subsequent annunciation).

Figure 3.3-6 gives a functional flowchart of the audioo task.

3.3.3.6 The Timer Task (timero)

The timero task provides a general-purpose timing facility for other
tasks. It accumulates ticks from the ctcino interrupt routine and maintains
a list of other tasks which need to be awakened after a certain number of
clock ticks. The list is generated by requests toting from tileother tasks
and is of the form of periodic or one-shot wake-ups, both of which can be
cancelled, if necessary. Because of the nature of this task, it is the
highest priority task.

3.3.3.7 The Mode Switch Task (mswtcho)

This task is awakened whenever the front panel mode switch changes state.
The’new state is recorded and then sent to the co-rid dispatch task which in
turn sends the setting to the user processor output task(s). The switch
position controls what is displayed on the CRT: weather radar data only, AID
data only, or combination weather radar/AID data.

34

QAUOIO

t

I GET Q I_
(DSPAUO)

I

NO

~

ENO YES
OF AUOIO 8?:

? 00NE

NO

SEND MESSAGE
TO AUDIO CARO

Fig. 3.3-& Audio tsskfEOwchert.

35

3.4 User Processor Software General Description

3.4.1 Overview

The AID software system is designed to allow division of processing load
among multiple single-board computers (SBC’S) in a (water/slave configuration.
The rester SBC, designated the service processor, serves primrily as a
general-purpose audio/video processor (see Section 3.3). One or more slaves
serve as user processors, each performing functions whic~~are specific tO a
particular user application. 1/0 devices which are application-specificare
attached directly to the user processor(s).

The phase I AID software provides for a single-user application and thus
a single-user processor. Its function is to input aircraft information from a
TCAS experimental unit (TEU) and produce audio/videooutput by sending
apprOeriate graphics data blocks to the service processor.

There are five basic types of software iontained in the user processor:
a min program, a task scheduler, taaks, interrupt handlers, and a user
graphics package. All data transferred betweerltasks and between interrupt
handlers and tasks is pasaed by means of circular queues. The user
processor’s main program, task scheduler, and queue mnagenent protocols are
similar to those in the service processor and are discussed in Section 3.2.
The user processor’s tasks, interrupt handlers, and user graphics package are
described here.

The user processor contains six taska and five interrupt hanalers. A
block diagram of these is shorn in Fig. 3.4-1. The user graphics package, not
ahom in the block diagram, is a set of routines which my be called frolnany
taak within the user proceseor.

Initially all of the user processor’s software ia loaded from the service
processor via the S-1OO buss. Control is paased to the user uin program,
which perform a number of initializationoperations, then wakes inito and
calla the task scheduler. The taak scheduler will immediately run inito
which perform more initialization operations. Thereafter the program loops
in the scheduler, continually checking for tasks which are ready to run.
Tasks, once begun, my not be interrupted by other taaks, although a task may
voluntarily suspend itself at any point to allow the task schedulerto
schedule another higher priority task. Interrupt handlers my interrupt both
tasks and other interrupt handlers depending upon priority.

There are four sources of input to the user processor: keyboard, TEU,
timer and service processor. Each input has a corresponding interrupt
handler: keyino, teuino, ctcino and spine. There is One outPut
destination, the service processor, with its interrupt handler spouto.

TEU inputs give position and equippage information for om aircraft and
up to eight other aircraft. Data is transferredfrom the aircraft’s TEU unit
directly to the processor via an RS-232 link at one-second intervals. Om
aircraft inforution ia always included. Other aircraft information is
included when available. Teuino inputs this data block from the RS-232,
places the information in the teuteu circular queue, and wakes the teuo
taak.

36

-...-._-" -... ------a

INTERRUPT
HANOLER8 TASKS

STIM
t H

KEYBD

\

I

!

KEYTEU
QUEUE

(018pLAy
OPTIONS
ARRAY)

I I

t

TEU

1

Fig. a.4-l. User prooeesor functional block diagram

37

The keyboard allows a user to change various TEU display characteristics,
(e.g., relative or absolute altitude, maximum range displayed). Keyboard
inputs consist of a single byte. They are asynchronous and my occur at any
time. When a key is depressed, an interruPt is generated. Keyimo inputs the
key’s corresponding 8-bit byte, places it into the keykey queue, and wakes
the keybdo task.

In phase I, two types of input (not including the initial progran load)
are receix,edfrom the service processor: a l-byte message which conveys the

setting of the Bendix front panel control switch and a zero-length “POW”
message which is used to indicate that the service processor is operational.
Both message..typesare received byspi.no and passed via the aPisPi queue tO

task spinto. Am acknowledgementfor each is immediately.sent backto the
serviceprocessor via spoutto and spouto. The awitchmessageis passed to
the TEU:taak whe~e it .iaused in””determiningwhether“audioand video data
blocks should be sent tn the servieeprocessor.

Currently..alluser proc”essOrOutP~~ iS dire”cbedtO tne sp~.vtointerrupt:
hsndler for.tranafer to the service processor. With miriOEexceptions (see
Bection 3.2.2) alloutputs are.variable-lengthgeneral-purpose graphics.data
blocks which ha~~eoriginated in the te~() or key.bdo tasks and been passed
throughthe spoutto task to SPOUE(). These data “blocksare used by the
service processor to produce audio and video output.

3.4.2 InterruptHandlers

There are four sources ofinput to the..userprocessor: keyboard, TEU,
timer, and service processor, with”corresponding in~errupt.handlers keyino,
teuino, ctcino, and spiho. There is one’output destination, the service
processor, with corresponding interrupt handler spouto.

The keyboard and TEU interface to the slave via serial input ports. The
slave contains a serial interface chip that supplies two serial ports
(z80-SIO). At startup seven bytes are output to each port for initialization.
Wring program operation the interrupt handlers simply save the CPU state,
input a byte and store it in a queue, then restO”restate and retur~>cOntrOl to
the interrupted function. <eyino wakes the keyboard task each time a byte is
received; teuino wakes t“heteuo task ,Onlywhen an entire inPut J~ssage ‘~as
been received from the TEU.

The slave SBC contains a chip tnat supplies four counter-timers
(z80-CTC). In initialization three bytes are sent that set its mode, time
interval and interrupt vector. During program operation, control is passed tO .
the interrupt handler ctcino at the selected time intervals. Ctcino saves
all CPU registers and flags on a dedicated stack, wakes the timero task, then
restores registers and flags and returns control to the interrupted function.

Communication between the service processor and user processor is via the
s-1OO buss. Both service processor and user processor contain two dedicated
parallel ports (z80-PIO) fOr s-loo DUSS cO~unicatiOns. The ‘Ser processor

38

interrupt handlers spiho and apouto handle inputs from and outputs to the
service-processorrespectively. Spiho is awakened each time the service
processor sends a byte to the user processor. The first byte of all UP-5P and

. SP-UP transmissions contains the byte count of the message which is to follow.
Following receipt of a byte count from the SP, spiho accumulates bytes until
an entire message is received. It then awakens the spinto tasks and passes
the message to spinto for processing.

To initiate a transfer to the service processor, apouto outputs a single
byte on the S-1OO buss. This output, the byte count for the message to
follow, is configured to geIleratean interrupt in the service proceseor. The
service processor sets up a loop to receive the proper number of bytes.
SPOUT then sends the message, this tim without generating an interrupt on
each byte.

3.4.3 Tasks

The user processor contains eix tasks: initialization (inito),
keyboard (keybdo), TEU, interval timer (stimo), eervice processor output
(epOutto), and service prOcessOr input (aplnto). A general deecriPtiOn Of
inito is given in Section 3.2.1.2. &neral description of the remining
five taaks are given in this section. Detailed descriptions of all user
processor eoftware is given in Section 4.3.

The teuo task is the mjor task within the usar processor. With the
exception of inito and stlmo all other tasks serve pri~rily tO direct data
to or from the teuo task. Keyboerd co-rids are processed by the keybdo
taak, then passed to teuo. Teuo uses these comands in processing aircraft
position information in order to produce graphics data blocks. These data
blocke are passed from teuo to epoutto for transfer to the service
processor.

3.4.3.1 The Keyboard Task (keybdo)

The keyboard tesk has two primary functions: (1) to examine keyboard
entries for validity and generate an imediate appropriate audio response and
(2) to update a dieplay options array with valid keyboard entries and send
this array to the teuo task for processing. Figure 3.4-2 chows the keyboard
key assignments. h overall diagram of keybdo is shOwn in Fig. 3.4-3.

There are two basic types of user keyboard comnds: those which
consist of a single keystroke and those which are mlti-keystroke. Keystrokes
which are not properly ordered in a wlti-keystroke comnd are considered
invalid.

When keybdo is awakened, it first retrieves a character from the
circular input queue. Single-keystrokevalid characters result in an “update
of the options array and generation of a high audio tone. Single-keystroke
invalid characters result in generation of a low audio tone. In either case
(valid or invalid), the program then loops back to input another character.

39

—

I* I

IUUUIMUM
28 29 2A la 19 1A

❑BAR
con

4C

❑TAU

.-

❑TRIO

40

❑1s1

❑EXT

4E

❑DEMO

❑RNQE

4F

❑NTQT

❑
2C

❑us

❑SURV

2D

❑
❑

2E

❑STEP

.-

❑7

Ic

❑A

❑8

ID

❑~

❑9

IE

❑B

RRL ALT Selects relative altitude format.
TOD Places tine-of-day on screen. TOD clock on board aircraft

must be properly set.
ABS ALT Selects absolute altitude formt.
CLR DISP Clears display.
CLR RR Clears keyboard entries.
MODE Selects a set of options.
BAR C= Enters barometric correction in hundreds of feet, Corrections

are cumulative. For use in absolute altitude mode.
E~PLE: BAR COR - 2 would decrease om absolute altitude
by 200 feet.

TRIG Selects threat-triggeredmode (proximityadvisories
suuuressed). TRIG is default mode. Pressing kev toggles
be~ween threat-triggeredmode and centinuous-mod~. ~~
continuous mode, mx range for proximity advisories is
in green in lower right corner.

EXT Selects extended display criteria (4 nm) for 15 seconds.
“RNG 4“ will appear in lower right corner of display.

shorn

RNGE Selects range and autoacaling. EWPLE: Entering .’RNGE20.’
provides scale of 2 mi to rear without autoscaling.
Entering “RNGE 21” provides scale of 2 mi to rear with
autoscaling.

TAU Selects display of current tau thresholdvalue.
TST fits display in test mode.
DEMO Selecta canned demonstration frame. (00 - walking test data

Operable only in TST mode. 01-OB fixed display
11-1A FAA scenarios)

NTGT Selects ~ximum number of targets which will be displayed.
SURV Selects surveillance display mde (continuousmode, 5 nm).
PAUSE Freeze display. Operable only with FAA test scenarios.
STEP Single-step display. Operable only with FAA test scenarios.

Fl$ 9.4-2. Koybard aasiwmenta.

40

..-—.. ..

.

SLEEP

i]

I
PROCESS = O

QETCHAR (CHAR)

QET CHARACTER
FROM INPUT OUEUE

NO

PASS OPTIONS

WAKE TEU TASK

aTONE =VALID

SWITCH
(CHAR)

CASE REL ALT,
ABE ALT, TOD, CLR
D18P, CLR KB, TRIG,
EXT, TAU, 187, 8URV,

PAUSE, STEP

CASE MODE:

+. pRocE8,(81NQLE KEYSTROKE COMMANDS)

UPDATE OPTIONS ARRAY

I
CA8E BAR COR

PROCESS MULTI-KEYSTROKE -
RANGE COMMAND

CASE RN@E

CASE DEMO J DPROC
1

CASE NTQfi
PROCESS MULTI-KEYSTROKE -

1b DEMO COMMANO

Y

OEFAULfi
I

TONE a INVALIO
— PROCESS MULTI-KEYSTROKE -

NUMBER-OF-TARGETS COMMAND

CALL AUOIO (TONE)

1 Fig. 3.4-3. Keyboard taak flowchan.

41

In contrast, each time the program recognizes the start of a
mlti-keystroke comnd, a subroutine specific to that co-rid ie entered.
The program will remin within this subroutine, executing fts Own calls tO
input characters and generate audio tonee, until either the correct sequence
of character or a keyboard clear has been entered. Only then ie the options
array updated and the subroutine exited. The program then loops back to the
the beginning of keybd() co input a new character.

Each time the options array ie updated, a flag (pRoCESS) ie set. men
the keyboard task has emptied its input queue, it checks the flag setting tO
determine whether or not to output the options arrav and wake the TEU task
before going to eleep.

3.4.3.2

The teu() tack is
functions are to input

The TEU Tack (teu())

the mjor task within the user processor. ItS
keyboard comnde and aircraft DOeitiOn infOr~tiOn,

proceea the aircraft Information according to the keyb~ard commnds, and
output atiio/video graphite data blocks to be transferred to the service
processor.

Primry TEU inpute are from two sourcee: the TEU interrupt handler
teuin() and the keybOard taak keybd(). Inputs from teuin() arrive once per
second. They are variable length dat.ablocks which centain position and
equippage information for own aircraft and up to eight other aircraft.

Users WY enter keyboard comnds at any time. It ie the function of the
keyboard task to reject invalid keystrokes and accept valid keystrokes in
order to uudate a display options array. Each time this 16-byte display
Options ar;ay changes, keybd() pasees it tO the teu() task.

~tputs from the teu() task are the audio/video data blocks described in
Section 3.2.2 and Figs. 3.2-1, -2, -3, and ‘4.

Tack Structure

The teuo taak ia ~de UP Of three levele Of rOutines (Fig. 3.4-4). me
min TEU processing rOutine tprOc(~ (Fig. 3.4-5) iS the highest level. lt
combines inforwtion in the display options array with aircraft information in
order to generate calls to second-level rOutines (e.g., rev(), tOd(), tau(),
oalto, rringo, tgto). These routines in turn generate calls to third-level
ueer graphics package routines (e.g., circle(), string(), cOlOr()). It iS
these user graphics routines which actually generate the graphite data blocks
and output them via the ~aepO queue tO the SpOutt() task fOr tranafer tO the
eervice proce,asor.

42

I LEVEL 1

1-

LEVEL 2 LEVEL 3

USER GRAPHICS PACKAGE
ROUTINESTEU PROCESSING ROUTINE

TPROC

:
.

CALL REV
CALL TOD
CALL TAU

- ‘F ~m

\niRRINQ ()
.
:

CALL CIRCLE

:
.

RETURN

TQT (.)
I

Fig. 3.4-4. TEU taok structure.

43

. —.

TPROC

T

START

JYES

t

I CALL RALERT
(DO AUOIO PROCESSING) 1

i

I CALL TOO I

I CALL OALT I
t

I CALL TRIGQER
(00 EVENT-TRIGGEREO

MODE PROCESSING) I

Fig. 3.4-5.MainTEU processing routine TPROC.

44

1“
1

,:

&
A

CALL CALLUP
(DO EXTENDED RANQE

MODE PROCESSING)

t

I OALL ERG
(SHOW NO-SEARINQ

BLOCK IF APPLICABLE) 1
NO

*

*_______

*

i
LOOP ON [
TARQETS

I

k—————————J

Fig. 3.4-5.MainTEU processing routins T-C (cent’d).

45

Task Operation

~enever the teu() task is awakened, it first checks its keybOard input
queue. If an entry is present, this 16-byte dieplay options array ia input
and used to update TEU’s owu display options array. Processing using this
updated array is not done, however, until new aircraft inPutS are received
from teuin(). This means that there can be as mch as s one-second lag in
response to keyboard comnds.

When aircraft information is received from teuin(), the ~in TEU
processing routine tproc() ia entered. Tproc() till execute once frOm etart
to finish, generating a single frame for the display. Depending upon keyboard
comnds and aircraft inforwtion, tproc() my execute the following
routines:

ralert() - DO rasolutton advisory processing. bnunciate audio. Set
caution/warninglights.

rev() - Display current software rev nmber in upper right corner of
screen.

tnd() - Display time of day in upper left corner.
tau() - Display current performance level’s threat criteria In lower right

corner. (If tim to closest approach is less than threat
criteria, target will be declared a threat.)

oalt() - Display om aircraft altitude in lower left corner.
trigger() - If threat-triggeredmode has been selected, and if there are nO

threata or pre-threats, set parameters so that TPROC till
display no targets.

callup() - If ~call-uptor extended range mode has been selected, set display
range to extended value.

brg() - Display “no bearing” targets in block in upper left screen area.
pafo - On prelidrrary scaling factor calculations to compute ndnimum

display range that will show all threata and pre-threate.
rring() - Display 2-rimrange ring and chevron.
tgto - Display target triangle and altitude tag at correct range, baaring

position.

men tproc() exits, the teu() taak goes to sleep to await naw inPuts
from keybd() or teuin()o

3.4.3.3 The Timer Tack (etimo)

The timer task provides general-purpose time interval delays to other
tasks. A hardware timer is initialized to produce an interrupt every
62.5 milliseconds. Interrupt handler ctcin() then wakes stim().

men an application task wishes to start a timer it passes a count to
stim() via a queue. Each time atim() runs in response to an interrupt it
checks its input queuee and starts new timers when entries are present.
Stim() also decre~nts each existing cOunter. If the ‘esult ‘s zero ‘t ‘ets
the counter to -1, sends a timeout signal mssage to the corresponding tack
(via a queue) and wakas the taik. If a task tishes to stop a running timer it
simply sends a -1 count to stim().

46

,=-——-..,-. m.-—--

3.4.3.4 The Service Processor Mtput Task (spOutto)

The spoutt() task receives data from three sources: “slave acknowledge’.
messages from the spint() task, audio data blocks from the keybd() and teu()
tasks, and video data blocks from the teu() task. The function of the
spoutt() task is to merge this data into a single array and pasa it on to the
spout() interrupt handler for transfer to the service processor. A uximum of
255 bytes WY be transferred at one time to the service processor. Therefore.
if the combined input from the queues ia more than 255 bytes, spoutt() wakes
more than one call to the interrupt handler, pasaing blocks of < 255 bytes
each tim, until all three queues have been emptied. A call to the interrupt
handler starts the transfer to the service processor. The handler then
responds to interrupts to complete the transfer.

Spoutt,() checks the three queues for input, reading One message frOm each
queue in turn instead of emptying one queua before goi~ to the next. This la
done so that an audio ~saage will not get backed up behind a long string of
video wssagea. men all three queues have been emptied, or when the 255-byte
buffer fills, whichever occurs first, the accumulated data is transferred to
the spospo queue and a call is mde to the spout() interrupt handler.
Following this, the task either auapends itself, or if necessary, continues to
read, accumulate, and tranafer data until all queues are empty.

3.4.3.5 The Service Processor Input Task (spint())

The spint() task receives data from the service processor via the spih()
interrupt handler. There are two types of input from the service processor to
the user processor: a l-byte mssage which conveys the setting of the Bendix
front panel control switch and a zero–length “PO~” message which ia used to
indicate that the service processor is operational. men spint() is awakened,
it reada the logical mssaage paased to it by the interrupt handler. If it iS
a mode switch msaage, the message is pasaed on to the teu() taak for use
there. For all messages received, spirit() sends a 2-byte acknowledgement to
the service processor output task spoutt() for transmission to the service
processor.

3.4.4 User Graphics Package

The
routines
any task

user graphics package consista of a set of C-callable audio and video
(comwnds). They reside in the user processor and can be called from
within the user processor. These routines translate high-level user

tails and tke associated argument strings into graphica data blocks -
(Figs. 3.2-1 through 3.2-4) which are transferred from the user processor to
the service processor for audio or video output. The ~aphics package acts aa
a software interface between the user and the display device; it frees the
user from the necessity of knowing details of interface protocols and hardware
configuration for a given display device. Users wnrk with a virtual screen
with units of their om choosing. A scaling comnd tells the servica
processor the number of units with which the user wishes to represent the
wxfmum horizoqtal and vertical distances on the display device. &y number
of audio and video commnds can be grouped together using start-of-frameand
end-of-frame comnds to generate a single frame on the display device.

47

.—-. .. .

The graphics package contains four general classes of routines: audio,
video control, video graphics, and miscellaneous. Descriptions of the
routines contained in each class are given below. Ml arguments are 16-bit
integers.

Audio

There are three audio commnds.

CALL AUUIO (I)

where I refers to a word or phrase stored within the’audio W. This W
must be provided in file form by the user along with a table giving the offset
and byte count for each phEase or word within the M.

CALL BEGA

Start-of-audio.

CALL ENDA

End-of-audio. Placing audio comnds of the form CALL AUDIo (I) between BEGA
and ENDA causes all of the correspondingwords or phrases to be stacked in an
annunicator BAN before the annunciator is activated. This allows the usar to
compose phrasea from words that are not stored sequentially in the user’s
audio W. Audio ussages not enclosed in BEGA, ENDA pairs are sent to the
annunciator RAN and activated immediately.

Video Control

There are 7 video control comands. In general, a video control comnd

selects an option which remina in effect unti1 changed by a CLEAR comund or
the video control commnd witk a different option selected. SCALE and CLEAR
are special comnde.

CALL SCALE (X,Y)

This routine mst be called in the INIT task. It defines the coordinates of
the user1s virtual screen and allows the service processor to associate user
coordinates with the actual physical dimensions of the display device.

CALL CLEAR

This routine clears the display and resets to the following default options:
line type = solid, color - white. Any video ails following CLEAR but before
the next start-of-framecall are ignored.

CALL BEGF

Start-of-frame.

48

.-.,..-,.,-—-—

.

CALL ENDF

End-of-frame. All commnds between BEGF and ENDF are sent to the display
device to be displayed as a single fralne.

CALL LTYPE (I)

LTYPE selects the line type used. Current options are O = solid, 1 = dotted,
2 = dashed. Default is ~~lid.

CALL COLOR (I)

Seven color options are available:

I COLOR— ——

OX90 Blue
OXAO Green
OXBO Light Blue
Oxco Ked
OXDO violet
Omo Yellow
OXFO White

Default is White.

CALL RVID (I)

RVID turns reverse video on (1=1) or off (1-0).
characters drawn using the video graphi~~ STRING
sense reversed: pixels normlly colored are now
blank are now shorn in white.

Video Graphics

When reverse video is on, all
co~nd have their color
left blank; pixels nor~lly

There are currently three video graphics comnds. x and Y coordinates
and circle radii used aa arguments mst be expressed in term of the user
coordinate selected by the SCALE co-rid described above.

CALL CIKCLE (X,Y, radius)

CALL LINE (NsEG,XpTR)

This routine drawa line segments between (X,Y) coordinate pairs (i.e., (Xl,Yl)
tO (X2,y2), (X2,y2) tO (x3,y3),...,(xl,x~_l)l) to (xN,y~)).
XPTR ia a pointer to an array containing the coordinates ordered
XIYI,X2,Y2,... NSEG ia a signed “integer. Ita ugnitude indicates the number
of (X,Y) pairs. If NSEG ia positive, the first line segment is draw
beginning at (Xl,Yl). If NSEG is negative, the first line segment is draw
beginning at the previous cursor position. When all segmnts have been dram
the cursor will be positioned at (XN,yN). Current software limitations allow
a mximum of Y (,x,y) pairs.

49

.—— ———

MLL STRING (X, Y, NCRAR, ~FPOS , CPTR)

This routine places a strine of NCU characters on the display atartine at
location (X,Y). The ~ximum value for NCSAR is 32, limited by the width of
the screen. ~FPOS allows the starting X,Y coordinate to refer to various
positions within the character: O = lower left corner 1 = upper left,
2 - upper right, 3 = lower right, 4 = center. CPrR is a pointer to an array
containing the NCRAR ASCII characters.

A special feature has been provided to allow color changes within character
stringe. Seven 8-bit ASCII characters have been defined to represent the
eieht colors. In a STRING co-rid, if a character is preceded by one of
these S-bit ASCII colors, that character (and only that one character) is
displayed in the selected color.

Miscellaneous

CALL ERROR (I, TI~)

This routine allows the user processor to send an error message to the service
processor for output to the line printer. I is the error number and TIME is
the time (since system restart, lab = 1 aec) at which the error occurred. An
ASCII character string is eenerated of the form t - XXXXX, err = xxx.

CALL MODE(1)

This routine is called once per scan to tell the service proceaaor the
priority of the user-proceesor data. The service processor looks at this
messaee only when the Bendix frent panel mode awitch is in the combination
weather radar/AID position. 1=1 (STANDBY) causes the service processor to
ignore any AID data received from the user processor and display only weather
radar data. 1=3 (AID) cauaes the service proceaaor to dieplay the data
received from the user processor. I ie set to 3 by the TEU taak when there
are threats or pre-threata to be displayed or when the EXT key has been
pressed on the keyboard.

50

..—-.

4.1 System Software

Systetnsoftware provides an environment within which application programs
may be run. In the case of the AID, a Itinimalsystem executive has been
written to perform this function. It consists of a nonpre-emptive task
scheduler and a set of data queue mnagement functions. The queues are used
to pass data between application tasks and between interrupt handlera and
taaks. The same system executive is used in the AID’s user and service
processors.

4.0 SUF’TKAM DETAILED DESCRIPTIOIJ

This section provides a detailed description of each of the mjor
subdivisions of che AID phase I software: system software, service processor
software, and user-processor software. This section ia intended to be read in
conjunction with program listings. The level of detail is that needed by a
person wishing to modify portions of code.

4.1.1 ‘rheTask Scheduler and -sociated Functions

A description of the design and operation of the taak scheduler and queue
mana2etnentfunctions is included in Appendix A. This section will describe
the implementationdetails of the sctleduler’scomponent parts. Five functions ..
are involved: sched(j, rune, aleepo, wakeo and pauaeo. Briefly, the
scheduler provides a mechaniam for executing application tasks in response tO
task “wakeups” by interrupt handlera atldother tasks. It chooses the next
task to run based on a pru2rammer-specified task priority.

The tasks‘ taak control blocks (TCBS) and the taaks, themselves, are
initialized as part of the startup procedure in function mino. Task
initialization i,lvolvescal.Lin2each taak function and runnin2 it to the point
where it first calla sleepo. The taak my perform task-specific
initializatio[loperations during this process.

4.1.1.1 The Scheduler (achedo) FunctiOn

As described in Appendix A, a task control block (TCB) is defined for
each application task. men a runnin2 task suspends (calls sleep()), sched(j
scans the TCBS, starting with the one for the highest priority task, until it
finds one for a taak that has been awakened. It then initiates execution of
that task by calling run(). If no application taak has been awakened, achedo
simply keeps scannin2 TCBS. AS a result, when the system ia idle, the
program spends its time in this TCB scanning 100P. The TCBa use a linked list
data structure to facilitate access.

The first operation performed in ached() iS tO scan the TC~ linked list
starting at the beginnin2 (tidxi = o, highest PriOritY ‘aak). Each taak’s
status fla2, “teksta”, ia tested until One ia fOund that ‘a set. That task’s

signal flag ia then cleared, the address of its TCB la saved in parameter
“tcbadr” for use by function sleeP(), and runo is called. ‘unction ‘Un(j
will initiate execution for tbe selected task.

51

Nhen the task later suspends, control ie returned to the run() function
which then returne to sched(). sched() then loops back to the TCB scanning
operation which searches for another task to initiate.

4.1.1.2 The Task Initiation (rune) Function

This function has an initializationmode and a norml running mode. The
initializationmode is run during system initializationto compute an internal
return address, RUNDR, needed by the normsl running mode. The initialization
mode operates if parameter “runint’.is set. The initializationoperation,
itself, resets “runint” eo that subsequent CS1lS to run() will cause it to
operate in its normal running mode. All operations within run() are performed
with interrupts disabled.

The first operstion performed is to test “runfnt”. If it is set, it is
clesred and the addrese RUNAOR is computed. To do this a function “getpc” is
called. This function simply gets the current value of the z80’s program
counter. The value obtained is the return address for the getpc call.
Address RUNMR mcy then be computed, eince it is located a fixed number of
bytes below the getpc call instruction. Address RUNAUR is then stored in
global parameter “’runadr”and the run() function returne. This completes the
initializationof run().

Under normal operation (runint = O) the run() function saves the calling
function’s (sched()‘s) stack pointer in parameter “meinsp” and transfers
control to the address contained in parameter “slpadr”. slpadr is an entry
point in the sleep() functiOn. The sleep() function simply loads the z80’s SP
register with the stack pointer fOr the eelected task (its TCB iS pOinted tO
by “’tcbadr.’) and returns to the task. men the task again calls sleep(),
sleap() eavas its stack pointer in the current task’s TCB and transfers
control to RUN~R (using parameter “runadr”) in run(). The run() function
then restores sched()‘s stack pOinter frOm “~inep”, enablee interrupts and
returns to sched(). Note that the calla to and returna from run() use the
norml C function entry/exit protocol. The return address is stored on and
retrieved from the scheduler’s stack.

4.1.1.3 The ‘TaskSuspension (aleep()) FunctiOn

Like run(), this function hae an initializationmode and a norwl run
mode. The initializationmode is run to compute an internal entry address,
SLP~R, needed by the run() function. The initializationmde operates if
parameter “slpint”’is set. The initializationmode, itself, cleara “slpint”
so that subsequent calls till operste in the normsl running mode. All mschine
code operations within sleep() are performed with interruptsdisabled.

The first operation performed in sleeP() clears the selected task’s
(specified by “tidx”) status flag, “teksta”. Then the tack’s signal flag,
“’tsksig”ia teeted. If it is set, it means that an interruPt handler
rescheduled the current task to run again. In this case sleep() simply clears
the signal flag “tsksig”, sets the status flag, “tsksta”, and returns to the
calling task.

52

If the calling task’s signal flag is not set, sleepo will return to the
scheduler, sched(), via a jump to address RUN~R in run(). Sleep() first
tests “slpint” and, finding it zero, transfers to location M3. At this
poi[ltsleepo m~lstsave the curre:]ttask’s stack pointer in its TCB. The TCB
i:5poirlt,>dtO by “t<:b:ldr”.‘Thestslckl>ointeris located four bytes beyond the
Ti;)?’sSt?lrt+lddrt:ss.OIIC<!L\lestack poi[lteris saved, sleepo simply jumps to
addr<~ssl~UN,\l)l{in r,~,](). l:{lnctio!lr[ln() then restores schedo 1s stack pointer
froln “mairlsp” aI1d ret!~rrls to scbedo.

When scbed() has selected another task to run it transfers control to
address SLPADK in sleepo via a call to rune. Function rurl() gets address
S1.PADK frorllglobal para~neter“slpadr”. In sleep(), the stack pointer for the
s(?lectedL?isk(specified by poillcc?r“tcbadr”) is read and stored in the zBO’S
SIJregister. Vur$ccio[lsleep() Cbc)] en:]bles interrupts and returns to the
selected task using the ~lor[nalC function return protocol.

4.1.1.4 The ‘TaskWaKeU}>(wakeo) Function———

A task inay be awake[red(i.e., scheduled to be run) by aI1interrupt
hand.Ler01-0 task. A Lask may evettawaken itself (see the pause() function).
A tasK is a~rake.nedby calling wake(tcbidx), where “tcbidx” specifies the
nuinber(index into the TCB array) of the selected task. The wake() function
silnplysets tt~etask’s status (tsksta) and signal (tsksig) flags and returns.
The scheduler, on testing these flags, will then cause the task to run.

4.1.1.5 The Task Pause (pauseo) Function

Since the scheduler is nonpre-emptive a taslcmst voluntarily suspend
itself if other higher priority tasks must be given a chance to run. A task
that requires a large amount of processing time should periodically suspend
itself to allow the scheduler to run other higher priority tasks. These tasks
may have been awakened by interrupt handlers. This “’pause”operation is
performed by tbe pause() function.

The pause() function simply calls wake() with the task nulnberOf the
currently running task as an argulnent(tidx). It then calls s~eeP(). COntrOl
is returned to the scheduler which scans task TCBa starting with the one for
the highest priority task. The highest priority awakened task is then run.
Note that if no higher priority tasks are awakened, the task that originally
called pause() will simply continue rul~ningfrom the pause(j function call,

4.1.2 The Data Queues and $eue Nanageme,ltFunctions

With the exceptiotlof parameter initialization,performed by the inito
task, and a few control flags, all data transferred between tasks and between
interrupt handlers and tasks is passed by means of queues. Since these
functions run asynchronously it is necessary to use this mchaniam so that
interfunction data buffers will not be overwritten, resulting in the loss of
data. The queue mechanism also provides a meana for controlling the flow of
data through the syste,nso that operations are perfortnedin the proper
sequence.

53

.__- _.--. _--.—.- .- ,,..,== -_,

The queues are implementedae circular buffers and coutain variable
length entries. An entry,that exceeds the space reuining at the end of a
buffer wi-11be wrapped. That is, part of it will fill the remaining elltrieS

in the buffer and the rest will be stored at the buffer’s start. Entries sre
added at the queue’s tail and removed at its head.

A comon data structure is defined to specify all queue headers. It iS
specified in the symb.h file which is attached (via an “flinclude”statement) .
to each source file. It is:

typedef struct {
int head
int:tail
int length
char task
unsigned char *pbuf

}QUE

parameter “pbuf”““isa pointer to the actual queue byte array. “tail” POint”s
to the next openbyte; “head” points to the first byte.Of the “’oldest”entrY
in the queue (and hence, the next entry..to.be removed). Thus, if “head”
equale “tail” the:buffer is empty. The first byte in ea~ entrysPecifies the
number of bytes contained in that entry <excluding itself). Parameter “lngth”
specifies the~total size of the actual queue byte array.. Certain queue
mnagement functions are designed ..tosuspend the calling task if a queue is ~~~
ful> or empty. In these cases the number OS the suspendingta5k is stored in ~~~
parameter.“task” so that it can be reawakened later. All queue headers are
initialized in theuin() and init() ftinctions.by cslli%:functions ~qinit1()
and qinit2(), respectively.

Nine C functions have been written to mnage the data queues. Two
“basic” functions, putq() and getq() perfOrm actual data entrY and retieval
operations, respectively. Four functions, putqwt(), putqwk(), getqwt() and
getqwk(), perform higher level OperatiOns but call the basic ‘unctions ‘0
perform actual data transfera. Finally, three tinor functions, getqc(),
getqd() and Initq() prOvides queue infOr~tiOn and ~nagement ‘perations.
These functions will be described in the reminder of this section.

4.1.2.1 The putq(source, dest, count) FunctiOn

This function moves ‘“count“’bytes from the array pointed to by “source”
to the queue pointed to by “dest”. If not enough room exists in “dest” to
store “count” bytes (plus one more fOr the cOunt byte, itself) the ‘unction
returns a tinus one. It also returns a zero if the queue was initially empty “
and a one if it was partially loaded.

The first operation performed tests the “head” and “tail” pointers. If
they are equal (queue initially empty) the returned value, rtnval, iS set tO
zero; otherwise it is set to one. Then a trial tail value, trytail, is
computed, based on input argument “count”. It is used to determine if the new
entry would overwrite a current entry. If it would, a minus-one value is
returned and the function is terminated.

54

i

I

The next operation
entry must be wrapped.

TO wao an entrv a

teats “trytail” against the quaue length to aee if the

new tail Dointer. ‘“newtail”’.is first computed. This
potential t~il point~r must then ~e test~d against the current head pointer to
see if enough room exists for the entry. If not, a minus one is returned.

If room exists, part of the entry ia then stored at the end of the queue
byte array; the remainder is then stored at the beginning of the array. The
actual byte tranafers are perfor[aedby calling function mvbyt(). This
function takes advantage of the z80’s fast block move instruction. After the
move, the new tail value, “newtail”, is stored in the queue’s header before
returning.

If no entry map operation ia necessary, the new entry is stored
contiguously in the queuets buffer array. If the current tail is greater than
tbe current head, then room exists at the end of the array (remember
map-around waa ruled ou,tby earlier tests) and the entry is simply
transferred into the queue array, The queueJs tail pointer is then updated
and the function returns. Also, if the trial tail, “trytail”, is leae than
the current head, then room exists inside the array and the entry is scored.
However, if the trial tail equals or exceeds the current head, insufficient
room exists in the queue and a tinua one is returned.

4.1.2.2 The getq(eource, dest) Function

This function moves a queue entry from tbe queue pointed to by “source”
to the array pointed to by ‘“dest”. Note that it is the calling program’s
responsibility to ineure that enough room exists at “dest” for the entry. The
destination “array” my also be simply a single-byte parameter. The function
returns the returned entry’s byte count if an entry ia present, or a tinus one
if the buffer ia empty.

The first operation perforwd is to see if the buffer ia empty (“head”
equals “tail”). If it is, the function returns minus one. If an entry
exists, the byte count ia then read and the new bead pointer is tested and
wrapped, if necessary. The count is then used to determine if the entry was
wrapped. If it waa, the bytes at the end of the queue’s byte array are
removed, followed by the bytes at the beginning of the array. Function
mvbyt() iS used to mke the actual byte tranafer; it uses an efficient Z80
block mve instruction. After tbe entry has been removed, the queue’s head
pointer ia updated and the entry’a byte count is returned.

If tt]eentry was not mapped, the entire entry can be moved by one call
to mvbyto, The head pointer la then updated and tested to see if it should
be mapped. The function then returns the entry‘e byte count.

.-

55

4.1.2.3 The putqwt(source,dest, stask, count) Function

This function Puts an entry in a queue, if rOOm exists, Or waits (i.e.,
suspends the task) if not enough room existe. It moves “count” bytes from the
location pointed to by “source” to the array pOinted tO by “dest”. The
calling taekts number is specified by “stask’”.~is functiOn aleO checks the
“task” location in the queue’s header to see if a task number exists. If one
does, it maans that an earlier getqwt() operation was performed and the queue
wae empty. men this occurs getqwt() loads “task” with the number Of the
calling task and suspends. On detecting a task number in “task”’,putqwt()
wakes the specified task. Since putqwt() bas also loaded an entry into the
queue, the getqwt() operatiOn wfll then be successful and the suspended task
will ba able to continue. Similarly, if the putqwt() functiOn iS nOt able tO
store an entry becauee of insufficient room in the queue, It will atOre its
task number in ‘“task”’and suspend. Then, when’getqwt() removes an entrY, it
will check .“task”and wake the waiting taek. In this way the queues are used
to “gate”’the flow of data through the system. A task will not run until its
Input queue contains data and will not finish processing an entry until room
exists in its output queue to store the results.

The first operation performed is to call putq() to attempt to store the
specified message in the queue. If putq() returne a zerO (queue was empty)
and if “tack”’is not empty (nOt finue One) then tiletask apecifled by “taak”
ia awakened and ‘“task”ia aet to empty (dnus one). However, if the Putq()
call returned a tinue one (not enough room), the calling task’s number,
“stask”, ie etored in “task” In the queue’e header and the current taak
auapenda by calling sleep(). tien the task ie next awakened, putq() will.
again be called and ita returned statua tested. The procese will be repeated
until.putq() raturne a value other than finus one (f.e., the ~eaage was
aucceasfully stored). The function then returns to the calling program.

4.1.2.4 The getqwt(source,cleat,staak) FunctiOn

This function is the complement to putqwt(). It gets a ~ssage from the
queue pointed at by ‘source” if the queue containa an entry. If it doesn’t
it stores the cslliw tack’s number, “staak”, in the queue’s “task” Parameter
and waita (suepends). If an entry is present it ia moved to the array pointed
to by “alest”. men this function finally terminates it returns the byte count
in the meaaage received.

me first operation performed is tO call getq(). If an entrY existst it
will be transferred and getq() will return a number other than ~nus one (the
byte count). If, in addition, the “task”’byte is not ampty (not tinus one),
the specifiad taak ia awakened and “task” ia cleared. However, if getq()
returned minus one, then the queue is empty. In this case the calling task’a
number, “stask..,ia stored in “tack” and the task ie suspended by a calling

.

sleep(). men the task ie next awakened, getq() wI1l again be called and its
returned status tested. The process will be rapeated until gatq() returns a
status other than tinua one (i.e., a message waa successfullyreceived). The
function then returns the received massage’s byte count to the calling
program.

-—-—--..,. -..

56

4.1.2.5 The putqwk(source,dest, count) Function

This function operates sitilarly to putqwt() except it does not suspend
if the queue does not contain enough room. Instead, like ~tq(), it returns
minus one. However, each time it is called it checke the queue‘e “caek” byte,
and if it is set, it wakes the waiting task. As such, this function’s
capabilities fall somewhere”between those of putq() and putqwt(). It is used
to insure chat if the receiving task is suspended for lack of input data, it
will run as soon as its priority will allow.

The firet operation performed cane putq(). Then the destination queua‘a
“taak” byte is tested. If a task nmber is present the specified task is
awakened and “tack” ie cleared. When the function exits it returns tbe value
returned from the putq(j call, which my be minus one if the putq() operation
was unsuccessful.

4.1.2.6 The getqwk(source, dest) Function

This function is the complement to putqwk(). It gete a meesage from the
queue pointed to by “eource” if an entry is present. If none exists it
returns minus one. In addition, it checks the source queues “tack” byte to
see if a task suspended is awaiting storage space in the queue. If one is,
it wakes the waiting task.

The first operation performed is to call getq(j. If an entry is present
it is transferred;otherwise getq() returns ~nue one. Then the function
checks the queue’s “task” byte. If a tack number is present, the
corresponding task ie awakened and “task” is reset. Finally, the function
returns the value returned from the getq() call. This my be either the eize
of the entry transferred or minus one, indicating no entry waa present.

4.1.2.7 The getqc(so”rce) Function

This function checks the next entry to be removed from the queue pointed
to by ..eourcc..and returns ite byte count if an entry exists or a minus one if
nO entry is present. The entry itself (if one exists) is undisturbed.

The first operation performed is to test to aee if the queue is empty
(“head” equals “tail”). If it is, the function returns a minus one. If an
entry existe it reads its byte count and returns it.

4.1.2.8 The getqd(source) Function

This function simply removes an entry (gets it and dumps it) from the
queue pointed to by “source” - if an entry is present. If none exists, it
returns a minus one.

I
57

.” ..- .,,

The first operation performed is to test to see if the queue is empty
(“head.’equals ..tail”). If it is, the function returns tinus one. If an
entry is preeent, ita byte count is read and a new trial heed pointer,
tryhead, is computed. It is then tested to see if it falls outside the
queue arrey. In that caee it mst be mapped and a new head pointer is
computed. It is etored in “head” in the queue’s header. However, if
“tryhead” falls within the queue array it is used directly to update “head.”.
Finally, if an entry was succeeafully dumped, the function returns a one.

4.1.2.9 The initq(source)Function-

This function simply reinitializes (clears) the queue pointed to by
“source”. It does this by zeroing the “head’.and “tail” pointers and setting
“task”’to tinus one.

4.1.2.10 The mvbyt(source, dest, byte) FunctiOn

This function moves ‘“byte’”bytes from the location pointed to be ‘“SOurce’.
to the destination pointed to by “deet”. It usee assembly langnage code and
the z80’s block move instruction, LDIR, to perform the move as quickly as
possible.

4.2 Service Proceseor Software

The service processor ie intended to be a general-purposeprocessor in
the AID system. It is the bus master and ia reaponeible for controlling the
AID display hardware, the audio annunciator system, and other utility devices.
Because it is the bus msster, it also has the responsibilityof downloading
progrsms to the user processor(s) during initialization.

The priwry function of the service proceesor is control of the AID video
display. A set of general-purpose comnds has been provided to facilitate
the generation of graphic and alphanumeric displaye, thus relieving the user
processor from the time required to drive the display. In addition. the
general nature of the commsnds eliminates the user processor’s need to know
the detailed aspects of the display, and will thus facilitate conversion to a
different type of display, should that be neceseary.

In the same way, the service processor handles the audio annunciator
hardware, providing a general way to select and annunciate phrases and tones.

Communication between the service processor and the user processor is via
I/O ports on the s-1OO bue. The protocol eatabliehed for transmissionis aa
follows: the first byte of transmission contains the count of the number of
bytes to follow.

This procotol limits the nuber of data bYtes in a single trans~saiOn tO
less than or equal to 255 bytes. Within each of these transmissionframes are
a number of logical meeeagee of the following formet: one byte specifying the
message type, followed by one byte giving the length of the wssage. followed
by the meaaage. While in principle the logical meseagee could span

58

.———...-.,..., -..., -”-..., -.,..”-,----

I

transmission frames, it should be noted that in the current version the
transmissions consist of an integral number of logical wssagee. The type
codes and structure of the logical mssages are given in M~.H.

The msjor tasks in the service processor software are as follows:

UPINT - User proceseor input task
UPOUT - User processor output task
DSPTCH - Nsssage/commsnd decode and dispatch task
VIDEO - Video processing task
AUDIO - Audio processing task
MS~CH - tide switch processing task
TI~R - Timer task
INIT - Initializationtssk.

4.2.1 The User Processor Input Task and Associst.edFunctions

The upint() task obtains messages from the user proceesor and sends them
to the dsptcho task for decoding into logical messages.

4.2.1.1 The User Processor Input Interrupt Handler (upin())

By the protocol established for user/service processor,datatransfers,
the first byte of the message is the count of the bytes in the remainder of
the message. The user proceseor ia configured so that the service processor
is interrupted on thie first byte only; so that it acts as a start of
transmiesion handshake signal. The interrupt handler inputs this byte and
puts it into the upiupi queue to be processed by the upint() task. It then
wakee the upint() task to notify it that a transdssfon has st.arcedand then
returns.

4.2.1.2 The User Processor Input Tssk (upint())

Each time the upint() task awakens, it checks the upiupi queue; filch
contains counts from the input interrupt handler. If a byte count ia in the
queue, it signifies that the user processor has started a transmission,so
upint() perform an “input and repeat” operation to obtain the reminder of
the message from the user procsesor. The uae of the z80 inir operator ia
possible because the user processor has been configured to aseert hardware
wait etates if the request for an input cannot be immediatelyfulfilled. men
the byte request is available, the wait state is released so the service
processor can continue. After the entire message has been
into the upidsp queue and the dsptch() task is awakened.

4.2.2 The User Processor Output Taak (upout())

. ~is task accepts mssages from the dsptch() task via
and outputs them to the user processor. No interrupts are

input, it is placed

the dspupo queue
generated for the

service processor in the transmissionto the user processor; the service
processor performs the transfiaaionby doing an “output and repeat”’operation.
This is possible because the user processor has been confi~red to aesert wait
states if it is not ready to accept a byte.

59

Because the number of massages going to the user processor is small, the
upoutt() task is configured to send one logical meseage per transmiseion. In
addition, due to several constraints in the ueer processor receiving software,
the service processor waits for each message to be acknowledged before sending
the next. The acknowledgementflag (sack) is set in the dsptch() task
whenever an acknowledgementmessage ie received from the user processor.

Because of occasional problems encountered in user/serviceprocessor
transmissions,an optional synchronizingbyte was added to the logical message
format. The sync byte is added before the massage type code byte. The option
can be selected by defining the sPbOl SyNCB in MSy~. H, and if it is
selected, it moat be the same in all user and service processor 1/0 routines.

4.2.3 The Command Dispatch Tack and Associated Functions

The primary purpose of the dsptch() task is to unpack messages from the
user processor into logical messages and send these to the appropriate task
for processing. It also munitors the mode switch nd sends mode switch
changes to the video task and to the user processor.

Messages from the user processor arrive unmodified in the upidsp queue.
These meesagea consiet of one or more logical messages whose formt coneists
of an optional sync byte, followed by e byte specifying the message type,
followed by a byte which contains the number of bytes in the remirider of the
logical message. Although the output routine in the user processor at present
sends an integral number of logical mssages in a single transmission, the
dsptch() task has been written to allow for logical messages which span
tranamfssion boundaries.

4.2.3.1 The Dispatch Task (deptcho)

AS in all tasks, the processing in dsptch() iS perfOr~d in an infinite
loop. The first thing dsptch() does is to check if the mode switch has
changed by checking the mswdsp quaue. If the mode switch hs changed, it
sends a message to the video task and to the user processor output task and
wakes these tasks.

Dsptch() then ch6cks fOr fncOming ~seages frOm the user prOceseOr. If
none are available, it suspends itself and when awakened, it starts again at
the beginning nf ite outer loop. If there is a message from the user
processor, it begins extracting the logical messages.

If the sync byte option haa been selected, dsptch() scans the incoting
message until it encounters a sync byte. It then checks the following byte
for a legal mssage type code. If everything ie okay, it obtains the length
of the message and sends the message to the appropriate task, depending on the
type code.

If a partial packet ia encountered, it is moved to the top of the input
buffer and the next message from the user processor is read in at the end of
the partial packet, thus concatenatlugthe incoming messages.

60

4.2.4 The Video Task and Associated Functions

The function of the video() task iS to cOntrOl the.AID videO disPlaY in
response to requests from the user processor. The requests are expected to be
on a frame by frame basis. That is, s frame starts tich a begin-video
comnd, followed by any number of graphics comnds, and terdnates witk an
end-video co~nd. Comands which do not set pixels, such aa color change
comunds, are not required to be between a begin-video and an end-video
co-rid.

It should be noted that the current version of the video ta8k does not
suppert flashing. It waa feund the constraints of update rake, ~ximum number
of targets, and.setting/clearing pixels in softwsre did not allow enough +iu
to perform flashing.

4.2.4.1The Video Task (videoo) ~

The first thing the video task does ie to initialize the display. It
does this by blanking the screen, erasing both video -a, setting the default
conditions, an& finelly setting the video control bits to correspond
appropriately to che mode:switch setting.

The video task..then enters an in”f.inite loop in which”video cossssndsare
received one by one from the dsptch() taa.kand are.prOceesed appropriately.
The .bdgin-video,end-video, and clear-video consssndscontrol the @witchLngand
erasing of “thevideo Ma; while other grap~c cossaandaare decoded and
di~patched to the proper.processing subroutine..Once a complete frame ~S
been genetated in.the.service.processor M, awite~ing causee the frme to be
displayed and a new frame ia then started.

4.2.4.2 The draw() Subroutine

This subroutine decodes all the graphic comnds and calla the
appropriate subroutine. For any subroutine which acts/cleara pixels, a check
ia ~de to ensure that the comnd is in a video fra=. If not in a frame, it
is ignored.

The separation of the graphics cosnsandsinto a different decoding
subroutine was done for historical reasons when flaahing mode was allowed.

4.2.4.3 The scelex() and scaley() Subroutines

These subroutines convert user coordinates to screen coordinate in the x
an Y directions, respectively. Scaling from user to screen coordinateswas
incorporated into the graphics package to tinimize the impact of using a
different disDlav with a different number of pixels and a different aspect
ratio. The u~er-is
the only constraint
aspect ratio of the

free to choose any scaling in the x and y direction with
that uxmx/uyMx ehould correspond to the actual physical
display being used.

61

The scaling subroutinesuee long integers internally to maintain
accuracy. The right shift is used in place of divieion by 2 becauee it does
the same thing and is much faster.

4.2.4.4 The colorg() Subroutine

This aubroutIne selects the color in which aubeequent graphic co-rids
will be dran. It updates a global variable which mintains the current color -
and it also sets the appropriate bits in the bank select port.

4.2.4.5 The circleg() Subroutine

Thie is the subroutine to draw circlee on the display. The required
inputs are the x,y coordinate of the center of the circle and the radius. Due
to the complexity and time needed to generate arbitrary circles, the current
version uses 7 prestore,dcircles and raquires that the radius retch one of
these circles. The prestored circles are saved as offsets in the x and y
direction from the center; only one quadrant of the circle is etored, since
the other quadranta can be generated with appropriate changes in the sign of
the offsets.

By changing the value of the parameter POFF, the number of pixele dram
can be controlled. In the present vereion, POFF is 2, which sets every other
point in the preatored circles. By doing this, the time required to
circle la reduced by half, and the generated circle is quite visible
ragged.

4.2.4.6 The lineg() Subroutine

This routine generatea straight linee on the display. It uees

draw the
and not

Breaeenham’s algorithm (eee “Principlesof InteractiveComputer Graphics” by
Nemnn and Sproull) which requires no multiplicationsor diviaiona. The
Inputs are the number of coordinate pairs and a pointer to the coordinate pair
array. If the number of coordinate paira ia a negative number, a line Is
dran from the last coordinate position of the previous call to the
subroutine.

The first thing lineg() does is to check if the selected line tYPe has
changed, and if it hsa, it updates the saved on-count and off-count. Tbe
on-count and off-count are used by the lplot() routine to detertine if a pixel
should be set or not. As each coordinate is generated, lplot() acts the pixel
and decrements the on-count until it goes to zero. Subsequent calls to
lplot() mrely decreunt the off-count until it gOee tO zerO at which time the ,
cycle ia started over. ~is proceaa allowed dotted, dashed, and dimmed lines
to be drawn.

Next, the coordinate pair array ia converted from user to screen .

coordinate and the parameter are initialized for the subsequent line drawing
algorithm. The line drawn is always from the “last“’coordinate to the

62

“current one”. If the last coordinate from the previous call is used, the
“current” is set to .bethe first in the current coordinate array. If the last
coordinate for the previous call is not used, then the “last” coordinate is
set to the first pair and the “current” is set to the second pair.

The primary loop of the lineg() routine is performed for each line
. segment to be dram. The “’current”and .“last” coordinste pairs are updated

and the line is generated by calculating the intermediatepoints to be set.
These points are calculated in one of eight different ways depending on the
slope and direction of the line segment (refer to the article mentioned above
for details of the algorithm).

4.2.4.7 The eetpix() Subroutine and tilated Routines

Thie ie the routine used by lineg() and circleg() tO aet Pixels ~ the
display &mory. Although it sets/clears one bit (pixel) at a time, the
routine muet mnipulate bytes since the display memory ie acceased a byte at
a time. In addition, becauee the colors are controlled by acceasing eeparate
memory banks at tha same addreas, the routine may need to manipulate up to 3
bytes for every pixel acceee. In order to tinitize the bank switching
overhead, an array of three bytes is maintained in memory in which the bit
manipulation Is done, and the actual display memory ie updated when all the
bits are correctly set or cleared.

The inputs to setpix() are the display coordinate of the pixel and a
flag specifying whether the pixel should be set or cleared. In the speci,al
caee that the x-coordinate is -1, the routine flushes the working bytes in
memory to the displsy memory and returns. In the normal case, the routine
firet converte the pixel x-y coordinate to an addreee offset from the
beginning of the display mamory. The conversion ie straightforward,noting
that the coordinate origin is at the lower left corner of the screen, but the
display wmory origin address ie at the upper left corner.

If tl]enew address offset ie not the came as the current (i.e., a new
byte ia being addreseed), then the current bytee in memory are written to the
display msmory and the new working bytes are obtained from the display memory.

A bvte tith the correct bit set is thetlformed and used to eet or clear.< –.....
the appropriate bit in each of the relevant working bytes.

The routinee getbyt() and etobyt() are ueed in conjunctiontith
to obtain and update the bytee in the banks in the display mamory.

4.2.4.8 The string() Subroutineand Related Routines

* Of all the video display and graphic routines, stringo and Lta
subroutinea are the most complex. Thie is due primrily to the fact

setpix()

related
that

characters are generated in software and can be positioned anywhere on the
display. Further complexity results from allowing imbedded.cOlor co=nde,
carriage-returns,and epecial graphic characters in character etrings.
String() takes ASCII etringe, generatee the appropriatepixel image in an
internal buffer, and then writes the image to the display memory.

63

~ input, a tring requiree the x and y coordinate of the start of the
atring, the reference poeition parameter, the number of characters in the
string and a pointer to the start of the string. The reference position
parameter specifies the position of the x-y starting coordinate relative to
one of five points of the first character
the default position.

, with the lower left corner being

After checking to mke sure that the byte count is positive, the string
checks for the special case for appending to the last string. If appending is
desired, the current coordinates are set to the last coordinates of the
previous call.

Next, it goes through a loop of all the characters in which lower case is
converted to upper case and all the non-printable characters are mrked. In
addition, the string is checked for carriage-returnand line-feed. If CR-LF
is found, the string is broken into two parts, the first part of which is
subsequently displayed up to the CR-LF, and the second part is displayed by
recursive call to itself at the end of the display of the first part of the
message.

After checking the string, the reference position is checked and the
appropriate offsets from the default are set. Then the coordinates of the
beginning and end of the string are checked in both the x and y directions,
and the string is truncated if it exceeds the screen boundaries.

The call to setupa() initializes the internal working buffer to start

a

building the characters in the string; it also computes the starting offsets
into the display memory where the completed string will be stored.

The next tm loops do the actual character drawing. The outer loop goes
by each character (x direction) and the inner loop draws each character in the
vertical (y direction). The call to putcbt() is the place where the correct
bits are extracted from the stored characters and put into the working array
(see below for a detailed description). At the end of the vertical loop, the
x position is updated and the next character is drawn. At the end of the
horizontal (chaiacter)loop the character counts are cleared to end the
“while” loop. The call to setbyt() with the first argument of tinus one
flushes the current working string buffer. At this point, if the string has
been broken, the string calls itself with a new pointer and a new byte count
to finish the second part of the message and reform when it Is drawn.

~tcbt() extracts a byte from the character dots array, rotates it if it -
is necessary to align to a byte boundary and stores it into the working array.
It requires as input the character, the line number in the character mtrix,
and the x,y coordinate where the line (byte) is to be stored. The x .
coordinate is assumed to be at the left-hand edge of the cbracter. If the
character to be dram is not the same as the last character dram, putcbt()
must first compute a pointer to the mtrix of dots for the new character. If
the high bit of the character byte is set, then it is a special graphic
character; otherwise it is an ASCII character. Aptr then points to the start

64

of the correct array of character matrices and the offset gives the index Of
the start of the mtrix for that character. (The character dots arrays are in
the eource module called ASCIIG.C). The correct byte is then extracted by
using the character line number. The character line number goes from O to 7
and is just the offset from the lower y coordinate of the character. However,
for historical reaeons, the character dOte array iS stOred frOm tOP tO bOttOm.

If the character line byte is to be stored on a byte boundary, it is
stored directly into the working array, but if it is not on a byte boundary,
the byte ie shifted into two bytes, and the two are stored separately.

Setbyt() is the loweet level routine used by the string related rOutines
to store character bytes into the working string buffer, which is large enOugh
to hold the displayed characters of a string that goes across the entire
scgeen. It computes the x and y offeets into the working buffer from the
initial coordinate positions ae specified in the call to setupso. If the
offsets are legal, it PUCS the byte intO the wOrking buffer~ being careful not
to overwite previously mitten contents.

When the string ie completely built in the working buffer, it is witten
into the display memory with a call tO stbyts(). Each “line” Of the wOrking
array is mitten twice into the display buffer bcauae althOugh character are
stored as g bytes high, they are mitten 16 pixels high. After the entire
array has been mitten to the display memory, the ‘opposite” cOlor ie selected
and zeros are mitten to the same locations to clear any previously mitten
graphics.

4.2.5 The Mode Switch Tack and Interrupt-ndler

The mode switch task receives an indication that the ewitch position has
changed from interrupt handler mwin(). It then reads the new POSition and
sends it on to the dispatch task, dsptch(). Each time a position change
interrupt is received it (re)starts a delay timer. When the timer finally
times out it: 1) reconfigures the PIO to detect the next switch position and
2) sends the new switch poeition data to the dsptch() task. In this way the
timer is used to ‘debounce‘ the rotary switch by allowing wltiple changes to
occur before the final position is sent to dsptch().

4.2.5.1 The ~de Switch Task (mawtcho)

After initializingsome parameters, the function checks two queues
(mwsw and ti-w) to determine the source of the wakeup. If neither queue
contains a msaage then the wakeup was initiated by the init() taak. In this
case the startup switch position is received (via ‘“swtprv”)and sent tO the
dsptch() task via queue mwdsp.

If the wakeup waa from the mode switch interrupthandler, a mssage will
be present in queue mamsw. In thie caee, due to switch hunce problew, wre
than one NS sage my be in the queue. As a result the queue ms t be cleared.
Next, a timer is started. The timer is used to allow time for the mode switch

65

to settle don before its position is read. Note that in the case of severe
switch bounce problems, the timer my be started several times. Eventually it
will be allowed to tim out and will generate a wakeup to the mwtch() taak.

If the wakeup ia from the timer() taak, the current mode switch setting,
msnsg, 1S read. The three low-order bits correspond to the three switch
settings. A cleared bit in one of these three positions indicatee the current
switch setting. Flaga representing the three bits are eatabliahed to
facilitate testing. The flags are then tested to determine the new setting.
However, its not that simpleI The switch my have been wved and then allowed
to drop back to ita previous position. In that case the old position and the
new are the same. If this occurs, no new switch positiOn wssage shOuld be
sent to the daptch() task. ~len this does occur, the PIO port ia configured
to detect the “TCAS standby” position. That is, the operator mst turn the
switch back to “standby” and then advance it to the desired final pos”ition.

If the new position ia not the same aa the previous position a new input
port mak byte ia prepared to allow detection of the “other two” switch
positions only. In addition, the current switch position parameter, swtpos,
ia eet and the previous position parameter, prevsw, is updated. The new ~ek
byte is then output to the PIO.

Finally, a final test is made to mke sure the new switch position is
different from the old. The new switch position ia then sent to the dsptch()
task. Control then returns to the beginning of the task loop and the taak
suspends.

4.2.5.2 The Mde Switch Interrupt Ssndler (mawin())

~is function processes mode switch interrupts from PIO channel A. An
interrupt occurs when the switch position ia changed. The pIO waa initialized
such that its logical equation logically “ON’. the unmsked lines. A line is
logically true when it la zero. Therefore, the PIO’a logical operation goes
from falae to true on the occurrence of a zero on one of its unmsked lines.
This cat~seathe interrupt. The logical equation is reset to false by
outputting a control byte (in this case, a OX97 to port OX85).

The ~win() interrupt handler saves the state of the interruptedfunction
and then outputs a control byte to reset the P1O. It then outputs a ~ak that
dea.ctivateaall input lines (O~Y tO pOrt OX85)o This b~Ocks subsequent
switch bounc@ interrupts when interrupts are lat@r enabled. The Msk ia
changed‘in the mde switch task when it is ready to accepe new switch position
c!lsngedata.

After enabling interrupts, mwin(j sends a “signal” ~ssage, ~waig, tO
th= mswtch() taak. The ms5age byte containa no information; the presence of
the msoage indicates to mwtch() that a switch change haa occurred. mswtch()
reads the PIO’s data port to determine the new settil~g.

with interrupts disabled the state of tt~einterrupted function ie
restcred.. Interrupts are thei}e~abled and control is returned to the
it~terztiptedf{lnction.

66

4.2.6 The Audio Task and Intercupt Wndler

The audio task receives an audio request command from the dispatch
task(dsptch()), transfers the prestored, digitized audio data to the
annunciator buffer (4K) and starts the annunciator. The audio data is stored
in the upper 16K of the @ster’s M and in the 64K audio W board. Audio
data is stored in these areas during the initial program load sequence by the
AUDM.COM, AUDA.COM, and AUDB.COM programs.

A cownd my request a single audio message (a word or tone) or It may
be part of a concatenated string of messagea (a phrase). In the latter case a
“start-of-audio’”message is received first, followed by one or more audio
“word” msssages. The sequence is terminated by an “end-of-audio”maseage. In
this case all words are sent to the annunciator’s M before it is commanded
to start. When the annunciator is finished it issues an interrupt which is
received by handler audin(). Audin() sende a message to this task via queue
audaud. When the annunciator is started, a two-second timer ia also started.
The annunciator interrupt is used to stop the tiur aud reset the annunciator.
If the timer times out, it means that no interrupt was received from the
annunciator. In thie case the annunciator is simply reset. Two aeconda is
more than enough time for the annunciator to output all 4K of its data.

I

4.2.6.1 ~e Audio Task (audioo)

After initializing the “done” flag, the first operation performed is to
check the queue from the dsptch() task (dspaud) to see if an audio request
caused the task to be scheduled. If no dsptch() msssage is present the queue
from the annunciator interrupt handler ia checked. A message in this queue
(audaud) indicates that the previous annunciation has been completed. The
task than sets the “done” flag, stops the timer (via queue audtim) and resets
the annunciator (by outputting a byte to port 0PT4-0X4F).

If a meesage is present from the dsptch() task the “done” flag is checked
to see if the previous annunciationhas been completed. If not, the queues
from the timer task and the annunciator interrupt handler (timaud and audaud)
are checked. If the timer timad out, ‘done” is set, the annunciator ia reset
and the program proceeds to process the message from dsptch(). If the
interrupt handler queue contains a byte it meana that the annunciator is
finiahed. Tbe “done” flag is set, the annunciator is reset, the timar is
turned off and the program proceeds to process the masaage from dsptch(). If
neither queue contains a message, the program cannot proceed, so sleep() is
called. When the task is again awakened the two queues are rechecked, etc.

The first step in processing the message from dsptch() ia to check ita
type for a ‘“begin-audio.’or ‘end-audio”type. For the formsr, the “start”
flag is set; for the latter, the “start” and ‘“done”flaga are cleared amd the
annunciator is started. In both caaes the program returns to check the dspaud
queue again.

If the received message ie not a begin or end audio control message then
it ie an audio data message. The program proceeds to transfer the
corresponding data from the audio W to the annunciator’sW. The audio
data is specified by means of an offset (audbuf.offset)and a length
(audbuf.lngth). The offset Is used to detertine the 16K audio bank in which
the data resides.

The procedure begins by deselecting the currently selected bank by
eelecting a nonexistent bank (bank 1). The currently selected bank waa one of
the video banka; it will be reelected after the audio operation is completed.
The offset fs then tested to determine the proper audio bank to select. The
bank is selected and the offset into it is computed. The data is then moved
to the annunciator’s 4K ~ area.

If ths audio bank selected wae
be deselected before the previously
parameter “bank.’)is reselected.

At thie point the “’start”flag
received was gart of a concatenated

the upper 16K of the Mster’s W it must
selected video bank (as specified by

is checked to eee if the dspaud message
string. If it was. the program returns to

input the nex~ part. If not, the “start’’-and“done” fiags a~e ~leared, the
annunciator ia etarted, the timer ia etarted, and the program returns to the
beginning of the task loop and suspends.

4.2.6.2 The Audio Interrupt Handler (audin())

This is the handler for the interrupt from the annunciator card. The
interrupt vector was set so that it points to the DI instructionat the
beginning of this function. In so doing the state of the interrupted function
can be saved immediately (actually, the DI instruction is not needed since the
280 dieables interrupts automaticallywhen an interrupt occurs).

After saving the interrupted function’s state the PIO port‘a msk is set.
Note that this code eeems to be redundant or it may be that it was found to be
needad to make the PIO work.

After enabling interrupts the handler sends a “signal” byte, “audint” to
tbe audio() task via queue “audaud”. This byte contains no information; the
fact that a byte wae eeritinforms audio() that the interruptwas received.

Interrupts are turned off while the etate of the previously running
function fs restored. Control is then returned to the interrupt function via
the WTI instruction. The normal C function return sequence is bypassed.

4.3 User Processor SOftware

The AID software system is designed to allow division of the processing
load among multiple single-board computers (SBC’e) in a master/slave
configuration. The Water SBC, designated the service processor, serves
primarily as a general-purposeaudio/video processor “(seeSection 4.2). One
or mre slaves serve aa user processors, each perfordng functione which are
specific to a particular user application. 1/0 devices which are
application-specificare attached directly to the user processor(s).

68

The ph?se I AID software deecribed in this dOcument prOvides fOr a
single-user application and thus uses a single--dserprocessor. Thie ueer
processor imterfacea to a TCAS experimentalunit (TEW) and a keyboard. Its
function is to input TEU aircraft position information, process the
Informt ion according to keyboard commuds, and genera~e and send data blocks
tv the service processor for audio and/or video output. Audio output iS Of
two types: (1) tones tO indicate whether valid or invalid keys have been
pressed on the keyboard, and (2) “words(e.g., climb, descend) or sou~ldsto
inform the pilot of a recommended uneuver or simply draw his attention to the
display. Video output is a color NI-type display showing targets at given
ranges and bearinga from owo aircraft which is located near the center of the
screen.

There are five basic types of software contained in the user processor:
a min program, a task schedu~@r, tacks, interrupthandlers, and a uaer-
graphics .@ckage. All data traneferred between taak~ and between interrupt
handlers and tasks ie pessed by.means of circular qv?uea”. The USer-
processor’s task scheduler and queue Mnagement protOcOls are similar tO thOse
in the.eervice processorend arediscuase.d :iti1Syetem Seftwarel,.Sections3.2
and 4.1. The user graphics package is coveredin Sectitin3.4.4. ~ The user-
processor1S uin program, tasks, and:imterrupt handlere are described here.

The user processor.contains six teaksand five interrupthandlers. A ‘“
block diagramof these, along with the connecting data qeeuee, is ehO~ ‘in
Fig. 3.4–1...The user graphics package;nOt shOw in the blOck diagral~~ is”’a
set of routines which my. be called from any task “withinthe user PrOCe”ssOr.

Initially all of the user processor’s software is loaded from the service
prOcessOr via the s-1OO buss. Control ia pasaed to the usar Win prOgraM,
which perform a number of initialization operations, then calls the task
scheduler. The task scheduler will Immediatelyrun the init() task which
perform mre initializationoperations. Thereafter the progrm loops in the
scheduler, continually checking for tasks which are ready to run.

There are four sources of input to the user proceseor: keyboard, TEU,
timer and service processor. Each hea a corresponding taak (keybd(), teu(),
stim(), apint()) and interrupt handler (keyin(), teuin(), ctcin(). spih()).
There is one output destination, the service Processor, ~th task sPOutt() and
interrupt handler spoh(). The sixth task iS init().

There are seven sectione which follow to destribe the user processor
software. Section 4.3,1 covers the user-processormin program. Sections
4.3.2 - 4.3.7 correspond to the six user-processortasks with their related
interrupt handlers and functions.

4.3.1 The Ueer-Processortiin Program (Win())

Upon power-up, the slave single-board computer runs a boot program stored
in an on-board ROM. This initializes the elave to receive a program download
from the Wster via the S-1OO buss. After the slave program has been

69

. ..

domloaded, control is pissed to main(), the user processor main program.
Win() performs a nwber of initializationoperations, then wakes init() and
calls the task scheduler. The taak scheduler immediatelyruns init() which
performs more initializationoperations. Thereafter the program loops in the
acheduler, centinually checking for taake tiich are ready to run. Neither
main() nor init() run again unless the syatem is again pOwered-up.

In the AID software, the initializationoperation have been divided into -
two parts. The idea was for min() to perform those operations neceseary only
at power-up and for init() to perform those operations necessary for a system
restart. In reality, the partitioning of initializationis more suited to a
system in which the program is stored in ROM and in which restart could be
done by simply scheduling inlt(). In this system, with program stored in M,
restart by running inlt() would not necessarily be successful. Hence we
restart by rebooting the entire system from the disk, running both ~in() and
inito. The idea of partitioning is retained, however, in case it should be
desirable to store the program in ROM at a later date.

Main() begins by moving CPM’s interrupt vectors from their high core
locations to low core (etarting at location O). Since we do not currently use
CPM or any of ita Interrupt vectors, this ie simply a precaution in caee of
future software changes. Having the interrupt vectors start at location O
ensures that we till not overmite them by code or data.

The starting address of each interrupt handler we use is then loaded into
the interrupt vector table: timer, keyboard input, teu input, service
processor input, service processor output, and taution/warning ewitch. The
interrupt handler addresses used are actually the starting addresses plus 3.
This bypassee the normal C function entry eequence and allowa the context of
the interrupted function to be saved immediatelywhen the interrupt occurs.

Next, the task control blocks (TCB’s) are partially initialized. The
taak stacks areallocated apace from BOOO domward. Run() and aleep() are
called to initialize them, and then each task is run to its first suspend
point.

Qinitl() is called to initialize the length and buffer pointer fielde of
the circular buffers or queues. Finally, min() wakes init() and calls the
tack scheduler.

4.3.2 The InitializationTaak (init())

Init() ia awakened by the min program main() after power-up to complete
the initializationbe~n by main(). The mjor portion of init() is devoeed to -
initialization of the user processor hardware 1/0 devices.

Inie() first disablee ineerrupte. These remain disabled for the duration -
of ehe task. Init() completes initializationof the task COntrOl blOcks

(TCB’s), then calls qinit2() eo complete initializationOf the circular
buffers or queues. Ae this poine ehe coordinate of ehe user’s virtual screen

70

-.—.-——

are defined via the scale() functiOn. This would nor~lly be done in the
initialization segment of the TEU task. However, scale() mkea use of the
graspo queue and thus must follow the queue initializationdone in qinit2().

The rest of init() deala with the user-prOcessOrhardware I/o devices.
First the CTC timer channels are.initialized. Channels O and 1 are used to
generate baud rates for S10 serial channels A and B, respectively. Either Of
two hardware configurationa will be present: console 1/0 On channel A (9600
baud) and keyboard input on channel B (300 baud) or keyboard inPut On channel
A and TEU input on channel B (9600 baud). The Sierra monitor assumes that a
console will be connected to at least one of the serial ports and thus as a
default configures the channels for 9600 baud. Therefore, when the cOnsOle is
on channel A, the software does not initialize either the correspondingCTC
timer-counterdevice or serial port.

A detailed explanation of the,use of the CTC timer-counterdevice and of
the 280 serial 1/0 and parallel 1/0 is given in the Sierra Data sciences
Technical Wnual. This must be read in order for the 1/0 initializationto be
understood.

The procedure to generate 300-baud rate for the keyboard is as fOllOws:
The user outputs bytes which set the channel for timer mde, set the prescaler
P to 16, and set the don-counter time-constantTC to 52. This creates a
pulse train of period = (syetem clock period)*P*TC = .25 usec*16*52 =
208 paec. A 208~sec perind is equivalent to 4807 pulses per second. This is
divided by the prescaler 16 to get 4807/16 = 300 pulses per second. ~
important note is that the CTC timer runs off the 4-~z system cloc’k(period
= .25 ~See) “hereas the CTC counter runs off the external clock (1.8432 ~z in

the slave + period = .54253 Msec).

The procedure to generate 9600 baud rate for the TEU input iS as fOllOwe:
The user outputs data bytes which set the channel for counter mode and set the
dom counter time constant to 12. This creates a pulse every tc*TC = .54253
~sec*12 = 6.5 Vsec. A 6.5 psec period is equivalent to 166,666.67pulses per
second. This is divided by 16 to get 9600 pulses per second.

Channe1s 2 and 3 are used together with channel-2 output wired to
channel-3 input. Channel 2 is set to timer mode to produce a period of
.25 psec*16*125 = 500 psec. Channel 3 is set to counter mode to produce a
period of 500 psec*125 = 62.5 wee. A bit is set in the channel control
register to generate an interrupt each time the 62.5-met interval elapaes.
This is used by the user-processor‘S timer interrupt hndler ctcin() and timer
task stimo.

Next the serial 1/0 ports are initialized for keyboard input and teu
input, again depending upon the hardware configuration. Detailed co~ents are
given in the program listings and follow closely the Sierra Technical
Manual.

Parallel 1/0 ports are next initialized. Channel A is configured for bit
control mode to be used as the caution/warningswitch interrupt port. Channel
B is configured for output mode to be used as the caution/warninglight Output
port. Channel C is configured for input mode to be used as the service-
proceasor input port. Channel D is configured for output mode to be used as
the service-processoroutput port. Again detailed cements are given in the
listings.

After PIO initialization is complete, interrupts are again enabled, and
the TEU timer is started to awaken the teu() task once per second. This iS
the end of init().

4.3.3 The Keyboard Tack and Associated Functions

The keyboard allows a user to change various TEU display characteristic
(e.g.; relative or abaolute altitude, mxi,num display range, number of targeta
displayed). Keyboard inputs consist of single bytes. They are asynchronous
and My occur at any time. When a key is depressed, an interrupt is
generated. Keyino inputs the key’s corresponding 8-bit byte, places It into
the keykey queue, and wakes the keyboard taak. The keyboard taak then uses
valid keyboard entries to update a 16-byte display options array which is
paased to the teu() task for processing.

4.3.3.1 The Keyboard Interrupt %ndler (keyin())

Keyboard bytes are received from the slave serial 1/0, configured as
either channel A (port 0X80) or channel B (port 0x82). The norml
configuration is for keyboard inputs to be received on channel A and TEU
inpute to be received on channel B. However, our slave single-board computer
allowa only two serial channela, and at times it is desirable to connect one
of these to a console for debugging. In this case, console input/output is
via channel A and keyboard input is via channel B. This la the reaaon for the
conditional compile in keyin().

When a key is depressed on the keyboard, an interrupt is generated and
control ie pasaed to keyin(). Interrupts are disabled, regiatera are saved,
and the keyts corresponding 8-bit byte is read into location ‘“inchar”.If room
exists in the keykay queue, the byte is placed into the keykey queue and the
keybd() task is awakened. If no room exists, the byte is lost. Registers are
then restored, interrupt enabled, and control ie returned to the interrupted
progra via ~TI.

4.3.3.2 The Keyboard Taak (keybd())

The keyboard task haa two primary functions: (1) to examine keyboard
entries for validity and generate an Iwdiate appropriate audio response, and
(2) to update a display options array with valid keyboard entries and send
this array to the teu() taak for processing. The keyboard key aasignments,
along with a brief smry of keyboard co~nda, are ahom in Fig. 3.4-2. A
more detailed deacription of valid keyboard comnds is given in Fig. 4.3-1.
A description of the 16-byte display options array la given in Fig. 4.3-2.

72

CLR R8

CLR DISP

TOD

TAU

NTGT 0,1,...,8

TRIG

MODE 1

GENERAL

Clear current keyboard entry.

Clear display screen. Rset (disable)TOD, TAU,
extended range, and threat-triggeredmode.

Enable/disable time-of-day line at upper left corner
(default = disabled).

Enable/disable display of threat criteria‘inlower
right corner (if time to cloaeat approach is less
than threat criteria, target will be declared a
threat) (default = disabled).

Select mximum number or targets to display (default
= 8).

Enable/disable threat-triggered mde. If enabled,
proximate A/C are not displayed unless a threat or
pre-threat is being displayed (default = disabled).

Reset to default display options array (see
Fig. 4.3-3).

WNGE CONTROL

RNGE (2,3...,8)(;) Ist set of parameters eelects display range in dlea
2nd set of parameter selects fixed range only (0) or
autoscaling (1)

Fig. 4.3-1. Keyboard oommand=

73

.——. —..—.,... --. -..m..

Note 1: men autoscaling is selected, range will be ‘
set to selected range except when autoscaling is
necessary to show all threats end pre-threats.

Note 2: Fixed ranges 2 to 8 are distancee from on
A/C to rear of dieplay. Correspondingfo~ard ranges
are 4.7 to 19.2 miles.

A210w extended range display (4 m, centinuous mode)
for 15 seconds.

ALTITUDE CONTROL

ML ALT

ABS MT

BAR COR
-9,-8,...-1,0,1,2,...,9

Set the display to relative altitude mode but do
not clear any previously entered altitude correction.
(Initial mode on power-up. The initial altitude
correction is zero).

Set the display to absolute altitude ~de but do
not clear any previously entered altitude
correction.

Set the display to absolute altitude mode and add a
barometric correction of -900 to +900 feet to the
previously entered altitude correction (i.e.,
barometric corrections are cunmlative). This eum is
then added to all absolute altitudes.

BAR COR O is a spatial case which clears the
barometric altitude correction. (Sets it to O.)

TEST MODE

TST Enable/disabletest mode (default is real (non-test)
TEU data). Used in combinationwith DEMO key.

DWO 00,01,...,09 OA,OB men in teat mode, selects a moving test scenario
11,...,l9,lA (00) a specific still-frama display (01-OB), or a

moving FAA-clefined encountar (11-1A).

Fig. 4.3-1. Keyboard commande (cent’d),

74

E

o

1

2

3

4

5

6

7

8

9

10

11

12

associated
keyboard key

CLR DISP

TOD

TAU

REL ALT,
ABS ALT

BAR COR

WGE

WGE

TRIG

TST

DEMO

EXT

~GT

*Note: Doption[10] is

description

clear display

PPI/tabular

time-of-day

TAU limit for
current perfor-
mance level

altitude

barometric
correction

range

auto-scaling

threat-triggered
mode

teat data

selects
a specific
test data set*

extended range
display

max. nwber of
targets to display

value default

1 = clear display o
o= do not clear display

1 = PPI display 1
0 = tabular display

1 = display TOD o
0 = do not display TOD

1 = display TAU o
0 = do not display TAU

I = relative altitude
O = absolute altitude 1

-9,-8,...,-1,0,1,..,9 o
(each digit represents
100 ft)

2,3,...,8 nd 3

1 = autoscale o
0 - do not autoacale

1 - threat-triggeredmde O
0 = continus mde

1 - use test data* o
0 = use live ~U data

00: 8 moving test targets
01,...,OB: still-frame

displays
11,...,1A: wving

FAA-clefined
encounters

1 - extended range
O - norml range

0,.1,...,8

operational only when doption [9]=1.

o

8

Fig. 4.3-2. Display options array.

75

associated
~ keyboard key &scription

13 PAUSE** freeze display

14 STEP** single-step
display

**

15 SURV surveillance
mode
(5.nm continuous
mode)

value default

1 = pause o
0 = no-l operation

1= step o
0 = nornl operation

1 = surveillancemode o
0 = other, as defined

by TRIG and EXT keys

PAUSE and’STEP keys operational only when running in test mode with
FAA-defined encounters, (i.e.,doption [9]=1, doption[101=11,...,1A)

STEP operational only when PAUSE=1.

Fig. 4.3-2. Display options array (oont’d).

?6

Briefly, keyboard consists mainly of one large ‘while’100P. Keybd()
will loop, reading entries from the keykey queue and updating the display
options array, until there are no more keykey entrias. At that point, if any
entry in the display options array has been changed, the entire 15-byte arraY
is sent to the teu() task via the keyteu queue.

In more detail, when keybd() is awakened, it first clears the flag
.“process”to indicate that there have been no changes to the display options
array. It then enters the min ‘while‘ loop, reading charectera from the
keykey circular input queue. A case statement passee control to a separate
entry point for each valid character. There are two basic types of
characters: those which make op a single keystroke command, and those which
are part of a mlti-keystroke command. Single keystroke valid character
result in an immediate update of the display options array and generation of a
high audio tone. Single keystroke invalid characters result in generation of
a low audio tone. In either case (valid or invalid), the program then loops
back to input another cheracter.

In contract, each time the program recognizes the first character of a
multi-keystroke command, a subroutine specific to that command is entered.
The program will remain within this subroutine, executing ita ow calls to
input characters and generate audio tones, until either the correct sequence
of characters or a keyboard clear has been entered. tily then is the display
options array updated and the subroutine exited. The program then loops back
to the beginning of keybdo tO inPut a new character.

Each time the display options array is updated, the flag “process” is
set. men the keyboard task has emptied its input queue, it checks the flag
setting to determine whether or not to output the display options array and
wake the teu() task before going tO sleeP.

4.3.3.3 Functions Called by the Keyboard Task

Five functions, all organized in the same ~nner, are called by the
keyboard task to process mlti-keystroke commnnds. They are:

I mproc() to process the mlti-keystroke mde command
rproc() to process the mlti-keystroke range comnd
bproc() to process the multi-keystrOkebarOutric correction cOm~nd
dproc() to process the wlti-keystroke demo command
yproc() tO procese tbe mnlti-keystrOke ‘number Of targets’ cO~nd.

. Each function contains an outer finfinite loop’ for reading characters
from the keykey queue until a valid character is encountered. (This then is
the eecond keystroke of the mlt i-keyetroke command.) At this point, if the

~“
co-rid is completed (if it is a two-keystrOke cO~nd), the diselaY OPtiofis
array is updated and control paases hack to the ~in keybd() tack. If it iS
a three-keystrokeco-rid, an inner ‘infinite 100P’ iS entered, again reading
characters until a valid character ie encountered, whereupon the array is
updated and control paases back to the ~in keybd() task. At anY POint
pressing the keyboard clear key will cause a return to the main keybd() task
without updating the display options array.

I 77

———.. -—

4.3.4 The TEU Task and Associated Functions

4.3.4.1 Overview

The teu() task ie the mjor task within the user processor. Its
functions are to input keyboard co-rids and aircraft position inforution,
process the aircraft informt ion according to the keyboard comnds, and
output atiio/videographics data blocks to be transferred to the service
processor.

tircraft position information is received from the aircraft’s onboard
TCAS e~eriuntal unit and read in via interrupt handler teuin(). When
teuin() receives a complete data block, it places this data in the teuteu
queue and wakea the teu() task. Teuo then ia responsible for determining
which targeta to display, where and how the targeta should be placed on the
PWI-type display, what audio should ba annunciated, and for communicating this
infer-tion to tha service processor.

4.3.4.1.1 Inputs

Primry TEU inputs are from two sources: the ~U interrupt handler
teuin() and the keyboard taak keybd(). Inputs from teuin() are placed once
per aacond in the teutau queue. These inputs are variable-lengthdata blocks
which contain position and equippage inforwtion for on aircraft and up to
eight other aircraft. The formt of the TEU input data blocks la ahon in
Fig. 4.3-3.

Uaera UY enter keyboard comnda at any time. The keyboard task rejects
invalid keystrokes and accepta valid keystrokes in order to update a display
options array. It is this 16-byte array (Fig. 4.3-3) which is passed to the
TEU taak in the keyteu queue.

There are thrae other inputs to the tau() task:

(1) The service proceaaor sends a l-byte msaage to the user processor
each time there is a change in the Bendix frent panel switch aetting.
This byte is placed in the spiteu quaua for the TEU task and used in
detartining whether audio and video data blocks ehould be sent from
the user processor to the service processor.

(2) The timer task stim() is initialized (and reinitializedeach time
through teu()) in ordar to wake the teu() task at one second
intervals. This wake-p la used by teu() to decrement counters once
per second and in test mode to proceaa teat data once per second.

(3) The third input is handled via global variablea rather than a queue
entry. Whenaver the taution/warning button ia pushed, the
caution/warninginterrupt handler cwin() zeroes the variablea “cwyel’”
and “cwred”, which are used by the TEU function ralert().

7a

HEADER
INFOWTION

T~GET
INFOKWTIO1{

01112131415161 7

1 hours of system time O-23

Y
Y

~ 8

// Ill I 1111 1//1/1

:taretl
3 I %nge %te g
4 Ral. MS”. z ggoo ft LSB =100ft I

5 Azimuth 0-360” LSB = 360°i256:!

6 BB .NEWI3A 1 UP ~N.I~/~I COLOR
1
2:
3
.
.
.

I .:target 2

I

Iml “-””spare

AUDIO 000 none
001””‘command’
OiO’ clear’
011 ‘alert’
100 tone

BRG O BEU ie not providing bearing data
1 BEU is providing bearing data

PRIOKITY 1 = highest
BB 1 = bad bearing
NEW 1 = new target
BA 1 = bad altitude
UP 1 = alt rate > 10 ft/sec
DN 1 = alt rate < -10 ft/seC.

A/D O ATCRBS
1 DABS

COLOR 00 white
01 yellow
10 red
11 undefined

*NOTE: For certain prerecordeddata sets, header words 4 & 5
have special meaning. If word 4 = OMO, then word 5 contains a

number identifying the data set which is to follow.

Fig. 4.3-3 TEU Input data blook format.

79

—. “.-—

4.3.4.1.2 Outputs

Outputs from the teu() taak are the audio/video data blocks described in
Section 3.4.4.

4.3.4.1.3 Task Structure

The teu() taak is ~de up of five levels of functions (Fig. 4.3-4).
Figure 4.3-5 presents an alphabetical listing of these functions showing the
file in which each function ia located and giving a brief description of each
function’s purpose. The priwry purpose of the level 1 function, task teu(),
is to check each of the four input queues (apiteu, keyteu, teuteu, and timteu)
for input. men TEU data la present in the teuteu queue, or i.nteat mode,
when the timteu queue indicatea that test data should be processed, the level
2 function tproc() is called.

Tproc() then wkes calls to 12 different level-3 functions. These
level-3 functions handle either keyboard selected options (e.g., tod()
-display tiw-of-day *saage in upper left screen corner) or handle some
well-defined part of the processing which must be done each scan (e.g.,
ralert() +ecide tiat, if any, audio should be annunciated).

Level-4 and level-5 functions are specialized subroutinesused by certain
level-3 functions. The lowest level functions will usually contain calls to
user graphica package routines. It ie the user graphics routines which
actually generate the graphics data blocks and output them via the teuspo
queue to the spoutt() task for transfer to the service processor.

4.3.4.1.4 Techniques for Oynatic Screen tilocation

There is one concept that requires explanation before mny of the TEU
functions can be understood. This is the mthod of dynamically allocating
apace on the screen whenever text meseagea are dieplayed for the first time or
remved.

Aircraft position informt ion is given in terms of,range and bearing from
om aircraft. It is beneficial for traffic displaya to have greater range
visibility in front of the aircraft (O”, up, on the screen) than behind (180”,
don, on the screen). Therefore own aircraft is not located at the center of
the display screen, and the available range from ow aircraft to screen edge
ia different for different bearinga. In addition, when text ussages are
dieplayed in the screen corners, or when ‘no bearing blocks’ are displayed,
the space available for target display is reduced in certain directions (i.e.,
for certain bearings). Therefore, the user-processor software mintains a
256-elewnt array (target bearing LSB - 360/256 degrees) to show current
avaflable range in each of the 256 bearing poaitions. This array is called
dunita[1. Ita units are consistent with the units selected by the user in the
scale comnd (see Section 3.4.4) (our software sets the screen dimensions tO
be 1024 units horizontally and 768 units vertically.)

80

..—-..—...—..--— -----

Level 1 Leve1 2 Level 3 Wvel 4 Level 5

tables~~~~~~ tinit

TEU —l-
task I_ clrteu

\- initfaa _ nodeck

I,tproc rev..:

1-
—— —

l_”pdate _ ted..

_ ralett — annunc~

I_ tau

I
I_ Oal.t

~~~~ \_ order

_ trigger

Callup
l–
I_ brg — unite

*_ psf

rring dspq~- top

I_ tgt
,-

‘l_ tag ~ right

_ sqrt
- updat — I thet—

_ bottom

left

_ deftop

Fig. 4.3-4. TEU task structure-functions usd by the TEU task.

El



Name

annunc

bottom

brg

callup

clrteu

deftop

File in which
function is loceted

tsubs2.c

tsubs.c

tsubsl.c

tsubsz. c

teu.c

tsubs.c

dspw tsube2.c

initfaa faafilm.c

left

modeck

oalt

order

tsubs. c

tsubs2. c

teu.c

tsubs2.c

Purpose

Decode IVSI command word to annunciate
proper audio word.

Put alt tag (if no overlap) below target
triangle.

Display ‘no bearing’ targets in block in

upper left screen area.

If extended range selected via keyboard
figure out what display range should be.

(Reinitialize various screen parameters,
flags, and counters. Called at start-up,
when CLR DISP key is preaaed, and when no
data has been received for 8 aeconda.

No good positionfor alt tag. As a default,
put alt tag above target triangle, even
though it will overlap something.

Check to see if proxi~te afc meet range
criteria for display.

Called whenever a new FAA encounter is
eelected or a previously selected encounter
repeats from the beginning. Initialize
arrays and variables used in generating
encounters.

Put alt tag (if no overlap) to left of
target triangle.

Set ueer mode switch baaed on mode switch
setting recaived from tister and target
severity (threat or prethreat present or
ext key pressed on keyboard).

If in abaolute altitude mode, display own
aircraft altitude in lower left screen
corner.

Raorder targets in aircraft data array
according to priority. Called when there
are more targets received than can be
displayed.

Fig. 4,$-6. Functions used by the TEU tack.

82

.—..—.-—---—— ..- -



I

,.

File in which
Name function is located Purpose

psf tsubsl.c Do preliminary scaling factor calculations
to compute min. display range that will
show all threats and pretreats. Called
when autoscaling is selected.

DO resolution advisory processing,
annunciate atiio (except for comnds,
which are annunciated by annunc), set
caution/warninglights.

ralert tsubs2.c

rev

right

rring

aqrt

tables

tag

t au

tgt

thet

tinit

.

teu.c

tsubs.c

teu. c

faafilm.c

tables.c

tsubs.c

Display rev message in upper right screen
corner for 8 seconde after -power-up.

put alt tag (if no overlap) tO right Of
target trianglea.

Display Z-m range ring and chevron symbol.

Change target x,y coordinates to r, theta
coordinates in updating FM encounters.

Set up the arrays used in dynamically
allocating space on the screen when text
messages come and go in the corners.
Called at initialization only.

Figure out whera to put altitude tag eo
that it doesn’t overlap target triangles or
other altitude tags. Calls top, right,
bottom, left, and deftOp.

teu.c If selected,’display tilemessage in lower
right screen corner.

tsubel.c Convert target position from polar to x,y
coordinate. Set up informationneceaaary
to dieplay targat triangle and alt tag.

faafilm.c Change target x,y coordinates to r, theta
coordinates in updating FW encounters.

tables.c Called at Initialization only. Sat up the
arrays used in dyna~cally allocating
space on the screen when text massagee CO-
and go in the cornars.

Fig. 4.3-5. Functione ueed by the TEU task (cent’d).

83



File in which
Name function is located Purpose

tod teu.c If selected, display time-of-daymessage in

upper left screen corners.

t 0p tsubs.c Put alt tag (if no overlap) above target
triangle.

tproc teu.c Min TEU processing routine. Called once
per smn. (See Fig. 3.4-5).

units taubs.c

trigger tsubs2.c If threat-triggeredmode selected via
keyboard, check to see if there are any
threate or pre-threats. If not, set tproc()
to do no proceaeing.

If there is a change in the number of ‘no
bearing! targets displayed,,mke
appropriate changes in arrays used in
dynamically allocating space on the screen.

updat

update

faafilm.c

teu.c

In test mode, when Ffi encounters have been
selected, update encounter data once per
second so that targets move acrosa the
screen as specified.

In test mnde, (no demonstration scenarios
or FM encounters selected) update canned
data once per scan so that targeta appear
to move acrosa screen in a realistic
manner.

FIo. 4.3-S. Functions used by the TEU task (cent’d).

84



There are nine other arrays that are used in conjunctionwith dunits[]:
duo[], dul[],.... du8[J. MO[] is a 256-element array which COntainS
available units from own aircraft to screen edge for each bearing (i.e., it
assum~ that no text meaaagea are being displayed and that the entire screen
is available for target display). In the TEU initialization,tables() Is
called to set dunits[1 equal co duO[].

The other arrays, dul[1,..., du8[1, do not contain a full set of 256
elements. For instance, dul[] contains 19 elemanta. When the rev maaage ia
displayed in the upper right screen corner, the 19 bearing elements in
dunits[] that span the upper right screen corner will be replaced by the 19
elemeneanf dul[]. The available ranges.fofthose bearinga will be small
enough to ensure that target information does.not overwrite screen text.

Much code in mny of theTEU” functions is devotedto changing the
dunits[.] array.when text mssages change on the screen.. This is true in
functions revo, todo., oalto, triggero; callupo; brgo,: and unitao.

The numbers in duO[1,..., du8[] are calculated at run time using sine and
cosine tables stored in the file tables.c. Tke formulas used are
straightforward right-triangle-type...calculationa,but the input rsnbers were.
derived from careful”screen iayolltand measurement. Changea..in this area
would be time-.caneuming.

4.3.4.2 TheInterrupt Mndlers teuin() and cwin()

Teuinc) is the interrupt handler for the TEU.~input interface. Bytes ~are
received via aerial..1/0channel B (port OX82). Each time.a byte is received;
control is passed to teuin() and the byte ia read into location ““inchar”.
Teuin() requires the TEU data to conform to an expected format: The first
character of the data block must be the sync character 0W5. The second
character la the byte count of the number of bytee that follow. Teuin() will
look for the sync byte, then accumulate the bytes that follow in the teuara
array, 1 byte being stored each time teuin() is executed. When all bytes of a
data block have been received, teuin() puts them into the teuteu queue and
wakea the TEU taak.

There la a timing check performed to ensure that gapa in the input data
stream do not cauae the data processed by the TEU task to get out of ape.
When the sync character is received, the current ayatem time (LSB= 1/16 aec)
is stored in ‘“sttim”.When each aubaequent byte ie received, the new current
system time la compared with ‘“attim”’.If the difference exceeds 314 second, a
gap in the input data stream is aasumd, the teuara array la effectively
flu8hed, and teuin() ignores all data until anotker sync character is
received.

.
There are two versions of teuin(): one veralon to handle TEU input with

an accompanying checksum, the other version to handle TEU input without a
checksum. The checksum version ie located in file TSUCK.C and is the default
version for uae at Lincoln. The non-checkeum version is located in file TEU.C

85

———.—..-”.-—-



and has been delivered to the FAA to interface to the Dalmo Victor TCAS unit.
The checksum, when it is present, is expected to be the third byte of the TEU
data, following the sync character and byte count. The data stream ia
considered correct when the exclusive OR of all bytee (including sync
character, byte count, and checksum) yields a zero result.

Cwin() is the interrupt handler for caution/warningbutton inputs via
parallel 1/0 channel A. The mut ion/warningbutton centaina two separate
lights. Tbe lights can be lit separately, but the software has been set up so
that pushing the button extinguishes both lights. Ao interrupt occure when
the button is pushed. Cwin() eimply turns both lights out via an output to
port OX85 and zeroes the parameters “cwyel” and “creed” which are used by the
ralert() function. The interrupt “logicis disabled in the handler to
deactivate aubeequent interrupts cauaed by ewitch bounce. Interrupts are
re-enabled in ralert() when the taution/warning lights are turned on.

Note: The purpose of the cautionfwarning light/button is to direct the
pilot‘a attention to the display when a threatening or potentially threatening
situation exists. The caution/warninglight/button ia used in conjunction
with the aural alerting logic in ralert(). When a prethreat appears,
ralert() causes the yellow light to to be lit and a C-chord to be sounded.
When a threat appeara, ralert() cauaea the red light to be lit and the
appropriate cO-nd to be annunciated. The lights will remcin lit and the
commsnda will be annunciated repeatedly until the pilot pushes the
caution/warninghtton as acknowledgement.

4.3.4.3 Tba TEU Task (teuo)

The primry purpose of teu() is to check each of the four TEU input
queues (spiteu, keyteu, teuteu, and timteu) for input and direct control to
the proper function for proceaeing that input.

Teu() begins with an initializationsegment which is run once at syetem
start-up time. Tables() is called to set up the dunits[] array (see SectiOn
4.3.4.1.4), and tha used[] array is initialized (see Section 4.3.4.4.9).
Initialization is also done for test mode operation. Test mode operation
allows the use of either moving test data or specific fixed demonstration
data sets and ie explained in more detail at the end of this section.

Each time the teu() task is awakened, it checks tO aee if anY Of tbe fOur
queues has input. If so, it proceeds to check each of the queuea
individually.

The only defined apiteu entry is a one-byte msssage paased from the
service proceaaor each tiresthere ia a change in the Bendix front panel switch
setting. The meaaage has one of three valuee corresponding to the three “on’” .
stitch settings: weather radar only, combination weather radar/AID, and AID
only. The switch aetting is used by the modeck( ) function in deter~ning

whether audio and video data blocks should be sent from the user processor to
the service processor each scan. This is explained in detail in
Section 4.3.6.1.

86



—

The keyteu queue is checked next. In general, the 16-byte display
options array from the keyboard simply overwrites the display options array
~ur=ently used by teu(). Thie new display options array will then be used the
next time tProc() is called. TWO array elements are handled in a special way.

If CLR DISP has been selected, the display ie cleared i~ediatelY instead of
waiting fOr tproc() to be called. (Tproc() may not be called fOr sOme time.
Under error conditions (which is usually when CLR DISP ~S pressed), ther? MY
be some problem getting TEU input data, and tPrOc() iS OnlY called when there
is valid TEU input data.) Also, care is taken to ensure that the extended
range or call-up mode (doption[11]) is not zeroed before it has had a chance

to be processed by callue().

The teuteu queue ia checked next. If the entry size is valid, the entry
is read into the aircraft data array acd[]. Note: “acdl” ia a one-byte field
that immediately precedes acd[]. men the teuteu entry is read by getq, the
entry byte count goes into acdl and the data itself (see format in Fig. 4.3-4)
goee into acd[1. Tproc() is then called tO erOcess the acd[I data.

Finally, the timteu queue is checked. The tiwr task stim() awakena the
TEU task once per eecond. At this time various counters are decremented.
Each time new TEU data is received or each time test data Is used, the restart
counter “rstct” is set to RTIM. ~erefore, if in operationalmode no
data is received for RTIM secOnda, “rstct” will time Out. If this bppens,
the display is cleared and a “no data” meesage is displayed on the screen.

The next section of code deals tith test mode operation. Some
explanation IS required. The user selects test mode via the TST key on the
keyboard. This sets doption[9] tO 1. The TST key is used in conjunction with
the DEMO key. The user presses the DEMO key followed by two digits
(00,01,..., 09,0A,0B,11,...,19,1A). Doption[10] is set to the value entered.
If DEMO 00 is pressed, Or if onlY the TST key iS pressad ~thOut Pressing the
DEMO key at all, a moving test display results, with target positions being
updated in a fairly realistic way each scan by update(). If DEMO 01,....DEMO
OB is pressed, a fixed prestored demonstration scenario is displayed on the
screen. If DEMO 11,..., DEMO 1A is pressed, an FAA-defined encounter is
displayed, with target positions beinguedated each scan by uedat().

Care wst be taken to initialize various parameters and arrays each time
a different test display is salected. The TEU functions have some
past-history wmory, and without reinitialization,non-related data sets would
be thought to be related. Thie is where the teu() Parameters “canned””and

“olddemo” are used. “Canned.“can take on three values: O - real data,
1 = moving test data, 2 - fixed demOnstratfOn scemriO Or F~-defined
encounter. “Olddemo” is aet to doptiOn [101 showing what demO scenariO~ if
any, was used last scan.

.

All data for the moving test display and the fixed demonstration
scenarios is stored in the file tables.c. Teutst[] containa om aircraft
header information followed by data for eight aircraft used for the moving
test data. Dhdr[], demo[], dsize[1, and dOffs[] cOntain infOr~tiOn ‘or ‘he
fixed test data. This is well explained in the tables.c listing. A21 data
for the FM-defined encounters ie etored in the file faafllm.c.

87

.—. —



The teu() code checks to see if teet data is being ueed. If so. and if
no demo was selected (if moving test data is being use~), and if this is the
first time moving test data is bsing used, the aircraft data array acd[] is
loaded with the moving test data. If a fixed demonstrationscenario was
selected, acd[] is loaded each scan with the data correspondingto the
scenario, regardless of whether it was already loaded the previous scan. If
an FAA-clefined encounter was selected, acd[] is loaded with initial encounter
data in the routine initfea(). ~enever a demo is selected that differs from -
the previous demo, the uaed[] array is reeet.

Finally, tproc() is called to process the acd[] data. Following trpoc(),
if mvfng test data or an FAA encounter is being used, update() or updat() is
called to update it.

4.3.4.4 Functions Called by the TEU Taak

There are 31 functions associated with the teu() task. These are show
in Fig. 4.3-4 and Fig. 4.3-5. Only those functions which need special
explanation will be covered in the sections which follow. Functions not
covered below are assumed to be adequately explained by comments in the
program listings.

4.3.4.4.1 The Min TEU Proceaaing Function tproc()

Tproc() basically directs the program flow through thirteen different
routines (see Fig. 4.3-4) in order to set up a eingle frame for the display.
A brief description of each of these routines is given in Fig. 4.3-5. They
handle euch taska as eetti~ up messages displayed in the screen corners,
deter~ninz what aural alerta to sound. eettinc UD ‘no bearing’ blocks for
targete without valid bearing informstion, doi~g ~he calculat~ons connected
with autoscaling, determining which targeta to display and where to place the
target symbols and altitude tags on the screen. There is one exception to the
standard tproc() execution sequence. It occurs in playback mode when a
special ‘title frame’ data block is sent instead of the regular TEU aircraft
position information (see note in Fig. 4.3-3). In thie case, a one-line title
ie displayed on the screen, and the normsl processing initiated by tproc() is
bypassed.

Pause statements appear throughout tproc() to allow higher priority taske
to run if necessary. There is a provision mde in function tgt() to check to
aee if data from the next scan has arrived while data from this scan is etill
being processed. If ao, the processing ia lagging, and the queue which eends
graphics data blocke out to the service processor is flushed. The service
processor till have already received the begin frame meseage for this ecan,
but it will not receive the correspondingend frame. This causee the eervice
processor to ignore all of the data for this scan. The effect ie a temporary
drop in the screen updete rate from one second to two eeconds. This
guarantees that queues will not severely back up, which in a worat-case
eituation could cauae the display to freeze.

88



4.3.4.4.2 Updateo

If the user has elected to display moving teat data, update() is called
once per scan, immediately following tprOc(), to update the afrcraft poeition
information. The intent ia to cauee the test targeta to move somewhat
realistically across the screen, with target color changing in an appropriate
way and aural alerts being sounded.

When the moving teat display is first selected, or whenever it is
reselected following another mode of operation, tproc() initializes the
aircraft data array acd[] to teutst[]. Teutat[1 centaina initial data valuea
for own aircraft and eight other aircraft.

Each scan, the system time is updated. If the current time (elapsed time
since the start of moving teat data mode) is greater than “maxtim” seconds,
acd[1 is reinitialized and the sequence begins again. This reinitializatfon
is no longer necessary and could be removed, because target movement, as
currently done, could continue indefinitely.

After the time update, target information for each of the eight aircraft
ia updated. (Position information for own aircraft (i.e., altitude) never
changea.) An 8-byte array, rarray[], ia used in the updating process, each
array element corresponding to one of the eight aircraft. tirray[1 is zeroed
initially, eignaling that the range for each target ia to be decremented by
.“cr“’each scan. Whenever an aircraft’s range “becomeenegative, the rarray
entry for that aircraft ia set to 1 to cauae the range to thereafter be
Incremented each scan. At tha aama time (at range cross-over), the aircraft
bearing is changed by 180 degrees. Thie effectively cauaea the target to

aPPrOach Om aircraft from one side, pass directly above or below, and depart
in the oppoeite direction. Whenever an aircraft‘a range is less than 1.0 nm,
its color is set to red and an ivsi comnd is set. When an aircraft’a range
is between 1.0 and 1.5 nm, the color is aet to yellow; upon transitioning from
white to yellow, the aural alert “’traffic”is annunciated.

4.3.4.4.3 Oalto

Oalt() is called each scan to display own aircraft altitude if absolute
altitude mode has been selected. The function is non-trivial only because the
dunits array for allocating apace on the screen must be updated whenever the
altitude text appeara for the first time or disappear. The altitude text is
displayed in the lower left screen corner. In deciding how to update
dunits[1, it is necessary to know how many 1no bearing! blocks are being
displayed on the left screen side.

The left screen aide is divided into six rectangular areas (see
Fig. 4.3-6(A)) These areas, when used for text, display (from top to bottom):
(1) time-of-day, (2) no bearing block 1, (3) no bearing block 2, (4) no
bearing block 3, (5) no bearing block 4, and (6) 0~ aircraft altitude. The
basic idea for updating dunits[1 ia that if two or more adjscent rectangles
are available for target display, the correspondingelements of dunlte[J will

89



“NO BEARW’ \n z I

(A)

(D)

A

(B) (c)

(E) (F)

= RESERVED FOR TEXT
UNAVAILABLE FOR TARGET DISPLAY



.

1.

be set for target display. However, if a single rectangle is available for

target display, this ia not really enough space to be of use, and the ele~n~a
of dunits are set to be unavailable for target display.

The code is ss follows: If ow aircraft altitude is to be displayed, and
if it was not displayd last scan, dunits[1 mst be updated to reflect a
s~ller display area. If0,1, or 2 ‘no bearing1 blocks are being displayed,
simply redo the part of dunits[] thst SPanS tbe ~~wer left cOrner (see
Fig. 4.3-6(B)). If 3 ‘no bearing’ blocks are being displayed, only 0?S

rectangle is svailable for display (Fig. 4.3-4(C)). This iS not enough. Red”
dunita[1 tc show that none of the rectanglesare svailable for target display
(Fig. 4.3-6(D)). If 4 ‘no bearing’ blocks are being displayed,the oalt block

has already be”endeclared unavailable iR She brg() fufictiOn~ so nO change ‘e”
dunits[I is necessary at.thistime.

If altitude is notte be displayed, and if it WaS displayed last scan>
dunits[] mst be updated to reflect a larger display area. A similar
procedure is followed as before. If O, 1, or..2 ‘no Waring’ blocks are be”ing.::~~~
displayed, aimplyredo the part of dunits[] that spans :&he10Wer left cOrner.
If3 ‘no bearing? blocks are being displayed, free the last two rectangles
on the left side (Fig, 4.3-6(E))..,..If4 ‘no bearing! blocks are being
displayed;”only,,~nerectangle is availab~ fOr diaplaY (Fig. 4.3-6(F))” ‘his
iS not enough.~ Leave dunits[] alOne (i.e., leave”it with all rectangl@s ~~~
unavailablefor tsrget display as in Fig..4.3-6(D)),.

Note: A similar.procedtireis czrried out in functionuniCS(), called
when~the ‘no bearing’ blocks areeet UP.

4.3.4.4.4 Ordero.—

Order() ia called whenever there are more targets available than can be
displayed, as long aa priority information is available to dO the Ordering.

The TEU-associatedfunctions always process the first “fitgt”targets in the
a~d array (“ntgt’.= number of targets eelected by the keyboard, default = 8).
Therefore order() does not need to produce a priority-orderedacd[1 array,
only one in which all of the “ntgt” highest priority targets are tithin the
first “ntgt” acd entries.

The approach is to first divide t~leacd arraY intO twO sections. ~en
ordero is finished, the first section till contain the “ntgt””highest
priority targets; the second section will contain the other targets. Two
pointers are used: “i”, which is initialized to O to point to the first
section, and “index”,which is initialized to point to the second section.
“1+9” and “indeti9” are used to skip past the first 9 bytes of the acd array.
These 9 bytes contain om aircraft header infor~tion, not target infor~tion.

Order() simply starts with the first acd entry and 100PS “ntgt” times
through the acd array. Each time a target priority ia less thSU or eqUal tO

,,ntgt”, it IS left alone. Each time a target priority is greater than “ntgt”,

it switches places with tha first target it coma to in the second section
whose priority is less than or equal to “ntgt”.

91



4.3.4.4.5 Triggero

Trigger() is called to do event-triggeredproceeding. If event-triggered
mode has been eelected, proximte aircraft are displayed only if a threat or
prethreat is currently being displayed or has been displayed within the last
TTIM (currently 8) seconds. Trigger() loops through all targete to see if
there is a threat or prethreat. If so, the trigger counter “rtrgct”is set to
TTIM. This counter is decreuented once per secOnd in teu() when an entrY is
received in the timteu queue. If there are no threate or pretreats and
“’trgct”haa timed out, ““taize”is aet to O, which causea the TEU functions to
process no targets.

There is a special ‘surveillance’mode which takes precedence over and
eaaentially negates trigger mode. If the SURV key has been presaed on the
keyboard, all targets within 5 nm are dieplayed. A check ia mde at the
beginning of trigger() to determine if surveillancemode is in effect. If so,
the checks for threats and pretreats described above are bypassed.

4.3.4.4.6 Callupo

Callup() is called tO dO extended range Or call-uP PrOceaaing. Extended
range mode is in effect for CTIM (currently 15) seconde each time the EXT key
ie pressed on the keyboard. In this mode, if threat-triggeredmode is also In
effect, show proximate aircraft to 4 m even if there are no threats or
prethreate being dieplayed. (This would undo the “taize” = O setting in
order() above.) If continuous mode ie in effect, extend the display range for
proximte aircraft (chow proximate aircraft to 4 m inetead of 2 nm).

The surveillance mede described in trigger() above alao take precedence
over callup mode. If the SURV key has been pressed on the keyboard, all
targets within 5 nm are displayed. A check is made at the beginning of
callup() to determine if surveillance~de iS in effect. If so, callup() is
not executed.

4.3.4.4.7 Uniteo

Units() alters dunits[1 to reflect a change in the available target
display area due to a change in the number of ‘no bearing’ blocks being
displayed. Unita() ia called by brg(), the functiOn which sets uP ‘nO
beari~’ text blocke for targeta with invalid bearing. In altering dunits[],
it is necessary to aleo check whether the time-of-day mesage ie beiug
displayed in the upper left screen corner and whether the om aircraft
altitude meseage ie being dieplayed in the lower left screen corner. See
section 3.4.4.3, oalt(), for a similar description Of hOw dunits[I ie altered.

4.3.4.4.8 ~

The function paf() does preliminary scaling faCtOr calculations~ when
necessary, in order to detertine the ecreen display range, “dr”.

92



In order to correctly position targets on the display screen, it is
neceaaary to convert from target range, bearing units to screen x,Y
coordinate. The keyboard RNGE option determines in part how this conversion
is done. If the’auto-scaling option has been
determine “’dr”,the range to display. If the
selected, paf() simply aeta ‘“dr”equal to the
“dr” is then used to compute a scaling factor

.
rangea for display.

Deter&nation of Display Range

selected, psfo mat first
fixed range only option has been
selected range. In both caaes,
“sf” which scales all aircraft

The AID software was designed to allow om aircraft to be positioned at
any point on the display screen. In the current ayetem om aircraft is
centered on the screen horizontally, but located about 1/3 of the way up from
the bottom vertically ((512,240) on a virtual screen Of (1024,768)). men a
user selects a fixed range, this range.correaponda to tbe distance from om
aircraft position to the bottom of the screen, i.e., the range at 180”, the
direction of least visibility.

When the auto-scaling option is selected, a display range mat be
determined which allows all threats and prethreata to be visible. This is
done by meana of the 256-element array dunita[1. (Target bearing LSB= 360/256
degrees.) Each array element gives the number of available display units from
om aircraft position to tbe screen edge corresponding to that bearing. Thus
at O“ there are 768 - 240 = 528 available units; at 90°, 1024 - 512 = 512
available units; at 180”, 240 available units; and at 270”, 512 available
units. Note that when text strings exist around the edges of the screen, the
dunits[I valuea are reduced so that targets will nOt OverlaY the text.

The procedure to compute the display range ia as follows: For each
target, use target bearing as an index into the array to get available units.
Divide the number of units by the target range to form the units/nm ratiO
necessary if the target were to lie at screen’s edge. After this has been
done for all targeta, select the smlleat ratio. ~ie ia the number Of unite
which mst equal one nm if all targeta are to fit on the screen.

However, there is an additional constraint. The range selected (180°
range) mat be an integral number of nautical miles (2,3,4,...,8with 2 being
the s~llest allowed). Therefore divide the 180” available units by the ratio

(unite/nm) just eelected tO get the range (rim)in the 180” dlrectiOn. Round
this up to be an integer. This is “dr”’,the display range to be used.

Calculating the Scaling Factor

WCe the display range “.dr.’haa been determined, or if a fixed range has
u been selected, or if all targets are within 2 nm (in which case “dr”=2), the

scaling factor “ef” can be calculated. “sf” - 180” available units/“dr”. til
target rangea are then multiplied by “sf”, and the radius of the 2-rimrange
ring is 2 * ‘“sf”.

93



Abbreviated Array

target 1

element bearing (degrees) available units

o 0 528
32 45 735
64 90 512
128 180 240
192 270 512

units final
ratio ------- radial distance

nm in onits

5m 45“ 735/5 - 147 240
target 2 9.2 nm 0° 52a19.2 = 57.39 441
target 3 .5 nm 90° 512/.5 = 1024 24

Smllest ratio is 57.39 units/nm, i.e., 57.39 mits = 1 m for all targets to
fit on the screen. Divide 180” available units by 57.39.
240157.39 = 4.la nm = range in laO” direction. Round UP to get display range
DR = 5 m, and SF
Radius 2*M range
Target 1 range ia
Target 2 range is
Target 3 range is

h important
overwite text or
positioned in any
right, bottom, or

= 240/5-- 48 unitelnm.
ring is 2*SF = 96 units.
then 5 nm * 48 unitelnm = 240 units.
g.2 * 48 = 441 units.
.5 * 4a - Z4 units.

4.3.4.4.9 ~

feature of the AID is that target altitude tage do not
target symbols or other tags. ‘Mt itude tags ~y be
of four directions relative to the target triangle: top,
left. In addition, whenever possible, tag direction will

not cbnge from one scan to another. The result is a high level of screen
clarity and readability. In order to acco~lish this, in positioning
altitude tage, one mst keep track of the position of all previously placed
target e~bole and tags. This is done by mane of the ueed array. Used[] is
a tm-dimensioml array that stores information for up to 8 targets, with 8
fields per target: x,y coordinatesof the center of the target triangle; x,y
coordinate of the lower left corner of the altittie tag; new target flag;
offscreen target flag; color (whita, yellow or red); and mst recent tag
poeition (top, right, bottom, or left). There is also a row (the first row)
for storing own aircraft chevron position Information.

of
in

Target trianglee are placed as accurately aa poesible, with overwriting
other trianglea allowed. Tags, however, are positioned if poesible tO be
the clear.

94

.



Tgt() cOnsists ~inly of two loops through all of the targets. In the
first loop, all target triangle positions are calculated and stored in the
used array without regard for overlap. In the second loop, calls are mde to
fu*ction tag() tO calculate altitude tag poeitions and stOre them in the used

array. Each time tag() is called, it attemPts tO POsitiOn an aircraft‘s
altitude tag so as not to overlap any of the target triangles or any of the

. previously placed altitude tags. Tag() attempta first tO Place the aircraft’s
altitude tag in the same relative direction (top, right, bottom, left) ae in
the previous scan. Failing this, it trye the next direction clockwise. If
all four direction fail (i.e., if the altitude tag cannOt be placed in the
clear), the top direction will be chosen as a default.

4.3.5 The Service-ProcessorInput Task and Interrupt Mndler

The service-processorinput task, sPint(), receives twO tYPes Of 10gical
meesages from the service processor via the interrupt handler: a “switch”
message indicating the setting of the mode switch, and a ‘poke” Wssage which
is used to indicate to the user processor that the service processor is
operational. In the current version, spirit() expects only one logical uesage
per transmisaion from the service processor and sends an acknowledgement
message back for every wssage it receives.

4.3.5.1 The Service-ProcessorInput Task (spint())

The spint() task is constructed as an infinite 10oP. ‘ach ‘ime ‘t ‘a
awakened, it checks to see if a ws sage has come from the interrupt handler
via the apispl queue. If there ia no mssage, the task merely suepends itself
again. If there is a message, it clears the first byte(s) of ite input
buffer, and then reads the message from the spiapi queue into the input
buffer. (The first byte(s) are cleared to effectivelyremove any previous
meeaage in the input buffer.) If the message is a mde switch ussage, it is
cent to the TEU tack via the spiteu queue, and the TEU task is awakened to
notify it of the receipt of the message. This is the only type of ussage
that ie currently checked.

Then, for every message received, an acknowledgementmessage is sent back
to the service processor, via the splspo queue and the service processor
OutPut routine, spOutt(). The service processor will not send another assage

until the last one is acknowledged - this protocol simplifies the interrupt
handler by allowing it to be singly buffered. In addition tO sending the
acknowledgeunt message, spirit() also sets a flag tO indicate tO the OutPut
routine that a ussage has been received. This is only really significant on
the first mssage from the service processor.

After processing the input wsaage, spint() again checks the inPut queue
. for messages and continues its infinite loop.

4.3.5.2 The Service-ProcessorInput Interrupt findler (apih())

The slave processor is configured to be interrupted for every byte sent
to it from the service processor. For thie reason, ulfke the service
processor, it mst diatin~ish in sOftware between the first byte ‘f a ‘Saage

95

—.— .....—



and its subsequent bytes. It does this by maintaining a flag called ioinp,
which ie cleared initially. ~enever an interrupt occurs, after saving the ~

regieters, the interrupt routine checks this flag and does one of two
different things. If the flag is cleared (the else clause), the byte inPut is .
the first byte, which, in the transmission formt established for service/user
processor comunlcation, is the byte count for the message. The count iS
saved and also stored as a temporary counter. The address pointer is
initialized to the start of the input buffer and if the byte count is .

non-zero, the ioinp flag is set.

Once the flag is set, subsequent interrupts cause the input bytes to be
stored in the input buffer until all the bytes have been input. men the
entire ussage has been received, the ioinp flag is cleared and”the input is
cent to the spint() task via the spispi queue.

4.3.6 Service-Proceesor@tput Task and Interrupt Wndler

The service-processoroutput task, spOutt(), receives data frOm three
queues - spispo, audspo, and graapO. It urges these data into a double-
buffered output array and calls the interrupt handler to start the
transmission. A mximum of 255 bytes can be transferredat one time to the
service processor; if the combined input from the queues is more than 255
bytes, spoutt() till ~ke more than one call to the interrupt handler, until
all the queuee have been emptied. The logic of spoutt() has been set up to
take one mssage at A time from all the queues instead of emptying one queue
before going to the next. Thie was done so that an audio ussage would not
get backed up behind a long string of graphic messages.

4.3.6.1 The Service-ProcessorOutput Tack (spoutt())

After waiting for the initialization task, spoutto Initialize the
counts of its double buffers, resete the pointer to the buffers, and clears
the 1/0 flag. It initialize an array of pointers to the inDut aueuee and
gete the vaiue of the auxiliary contrOl port, ~ich has been eet“in the INIT
task. This is done because the interrupt handler mst set and clear one bit
of this port without changing the other bits. After its initialization is
complete, spoutt() waits until the first Essage frOm the service prOcessOr iS
received before it sende anything.1

After the first ussage has been received from the service processor,
sPoutt() enters an infinite 100P in which it checks its inPut queues and ‘f
nothing haa been input, it suspends itself. If there is an entry, it enters a
dowhile loop which continues until all the input has bean processed. The
input ia proceseed by extracting one meesage at a time from each queue which
contains an entry. The mssages are added to ona of the output buffers until
either the output buffer is filled or all the messages have baen extracted.
Thie output buffer is sent to the interrupt handler by the call to spout(b)
and then the buffer pointer is switched to the other buffer. The double-
buffering tachnique allows one buffer to be transmittedwhile the other is
being filled in preparation for transmission.

96



I

There is one condition that requires special handling by sPOutt(). It is
the selective transmissionof messages based on the setting of the Bendix
front panel mode switch. The mde ewitch has three ‘on1 settings. TheY are
weather radar only, combinationweather radar/AID, and AID only. In general,
regardless of switch setting, tasks within the user processor function as if
audio and video data blocks are always to be sent to the service processor.
In actuality, the data blocks are always sent aa far as spoutt(). Then
spOutt(), with the help Of the teu() task, determineswhich audio and video
data blocks should be sent on to the service prOcessOr. AudiO data blOcks in
response to keystrokes are always sent. Target-relatedaudio and video data
blocks are sent always in AID Only mOde, never inweather radar OnlY rnOde~ and
sometimes in combination mode.

In more detail the process is as follows. Each time there is a changa in
the front panel switch setting, the service processor sends this setting tO
the user processor. It ultimately is passed to the teu() task where it ia used
by the mdeck( ) function. Modeck() is called Once eer scan befOre any audiO

or video data blocks are sent to spoutt() for this scan. Modeck() sends a
!User mode switch’ dats block to spoutt( ). me user ~de switch has One of ‘Wo

aettings: AID only or weather radar only. If the front panel setting is AID
only, the uaar mode switch setting will be AID only. If the front panel
setting is weather radar only, the user mode switch setting will be weather
radar only. If the front panel setting is combinationrode, the user mde
switch setting will be weather radar only except when one of the following
conditions is met: (1) there is a threat or prethreat to be diaelayed, (2) a
threat or prethreat has been displayed within the laat 8 seconds, or (3) the
EXT key hae been preseed on the keyboard. If one of these conditions is mat,
the user mode switch setting is AID only.

When spoutt() recognizes a user mode switch message in its input data
stream, it uees this to set ite internal flag “uswitch”.Thereafter, whenever
there is an entry in one of apoutt()‘s input queues, spoutt() uses “uswitch”
to decide whether to flush the entry or to aend it on to the interrupt handler
for transmission to the service prOceeaOr. If “uswitch” = weather radar onlYS
the entry will be flushed. If ‘.USWi tch” 5 AID only, the entry ,willbe sent
on. Regardless of ‘“uawitch”’setting, three mesage typee are alwaye sent to
the service processor. They are the scale message, slave acknowledge~asage,
and user mode switch mssage.

4.3.6.2 The fiansmisaion Startup Routine (seOut(b))

Spout(b) is used by the spoutt() task to start the tranemiSSiOn Of a
message to the service processor. It is called dth the pointer (index) of
the buffer to be output and haa the facility to retransmit a message if a
transmission timeout occurs. This was included because the service processor
is interrupted only on the first byte of the usaage and if that interrupt iS
missed for some reason, the massage mst be retranetittedfrom the start.
Thus, if spout(b) is called by apoutt() and 1/0 is still in erogreaa, spout(b)
waits unti1 it is awakened either by a timeout or by the completion of the
1/0. If the timeout occurred, the previous mssage is retransmitted.

97

I



If the last message waa transmitted properly, any pending timeout
mesaages are cleared and then the byte count of the current message is
checked. If the byte count is not legal, spout(b) merely returns, thus
iRnoring the message. If the byte count ia okay, it then prepares to aet UP
tfietra~smisaion. ‘Interrupts a~e disabled at this point becauae the alternate
register set, used by the interrupt handler, ie aet up during this time. A
spurious interrupt would cauae the set up to be erroneously done.

The alternate registers are used for the output interrupt handler so that
this interrupt can be handled as fast as possible. The hardware of the user
proceaaor is set up so that the service processor is put into a wait state
each time it tries to input a byte from the user processor and remins in the
wait state until the interrupt routine in the user processor outputs the byte.
The use of the alternate registers allows the interrupt routine to save and
restore the state of the wchine as fast as possible in the,280.

Register C is set to the output port addresa, register B is set to the
byte count, and ~ is set to the address of the byte to be output. This setup
“al,lowsthe interrupt routine to use the OUTI instruction. Next the byte cnunt
is output to the transmission port and then bit 7 of the auxiliary control
port ia set, which causes the service processor to bs interrupted. (See
Sierra documentation.)

,!
.,,...:.,, “~ter the.transmissionhaa started, spout(b) requeata a timeout mssaage

~rom the titir “taakand if not a transmission,returns to the spoutt() taak.

4,3.6.3 The Service Processor @tput Interrupt Handler
(spoho)

The interrupt routine switches to the alternate register set, tiich has
been initialized by the startup routine, spout(b). Ragister A is output tO
the auxilary control port to mke sure that the service processor is
interrupted only on the first byte. (RegisterA had been left by spout(b) to
contain the proper value to be output.) Next the Z flag is tested to
detertine if the transmission is complete. (Note that the OUTI instruction
will set the Z flag when the byte count goes to zero.) If there is more to
do, it outputs the next byte using OUTI and returns. If the transmission ia
done, it clears the 1/0 flag and wakes the output taak, spoutt().

4.3.7 The Timer Task (stim()) and InterruptHandler (ctc())

Stim() and ctc() together provide interval ti~ng fOr tasks within the
user processor. They also mintain a one-second timer, “sectimr”, which is a
global para~ter that nmy be referenced by other tasks.

The slave single-board computer contains a chip that supplies four
counter-timsrs. It ia initialized in init() to prOduce an interruPt everY
.62.5 milliseconds, men this interrupt occurs, control is passed to the
interrupt handler, ctc(), which simply places a one-byte dumy message intO
the timtim queue and wakes the timer task, atim().

98



In addition to being awakened by ctc() at reg,nlarintervals, stirn() can
be awakened by a task wishi~ to initiate or halt a timer. Stirn() mintains
an array tcount[], each elemant of which aervea as a timer for one of the-
user-processor tasks. A task initiatea a timer by loading a delay count into
its timer output queue and waking the timer task. The delay coutltis from 1
to 255, dth each count = 62.5 mseconds. Stim(), when awakenad, places this
delay count into the task’s tcount[] entry. Thereafter, each time stim() is
awakened by ctc(), it will decremnt each active tcount[] antry. ~en a count
reaches zero, the cor,reapondingtaak is sent a ~ssage in ita timer input
buffer, the task is awakened, and tbe tiur is deactivated (set to -1). A
taak may stop its timer at any time by sanding stim() a -1 count.

sttm() first checks three queuee for inpg.!: initim,..teutim.and sPOtim,
from tasks init()j teu(), and spo”utto, respectively. If an inPut is Present.
it la used to update the tcount[] array. Next ~stire(.) checks for.an entry..in
the timtim queue, aignallinga .62.5msec wake=~p from ctc().“ If an entry is
present, all active tcountl.1entries are decremented. Tasks whose timere
time-ouC are sent a.ene-byte ms.sage and awakened. Finally,..s.timo. increments
“sectimr’!..every 16thctco wake-up, to keep elapsed system time since.:
power-up, lsb~= 1.second.

,,

99

.-.._ ,.. .. ..,..._.. _,.__,_



5.0 ~ A~IO ~CO~ING Mm ~10 ‘U LOADING FDNCTIONS

A program has been written to facilitate tbe recording of spoken words
and phrases and generated tones. Another program was mitten to store the
generated data into audio W banka in the AID system during its initial
program load eequence.

The audio recording program is fomed by linking the following
relocatable files using indirect comand file LZBLD.Cm:

A~BLD. R
AWCOM.R
ADD~C .R
A~BITS.R
CT.Z
MTaz
CRDR.Z

The.first.fourare,application files; CT.Z and ~.Z are C-c.nmpilerlibraries..
which provide:console and disk.1/0 Interface; ~R. Z provides thecall/return
interface btween the CY/M operating system and the initial~C-function,
-in(.).

The audio recording program provides a mu-driven interface for.the
operator. It .interfaces to t~ Continuously.Variable Slop~::Delta Modulation
(CVSDM) audio recording and“playbackS-1OO board6. It ie also capable..of.’
proeesaing~previously recorded~data centained in a floppy.disk input file and
of storing old or newly recorded.data in’an output disk file. Input file
entries and newly.recorded:data my be annunciated, edited, wpassed or outp%t”::
to the output file. ~us, the entries in a pr~viotiilyrecorded audio file my...
be deleted, edited or passed on to the output file. In addition, newly
recorded entries my be inserted between previously recorded entries in the
output file. A provision is deo present for quickly bypassing N records of
the input file. Finally, a capability ia preaant for s~theaizing audio tones
of operator-specifiedfrequency and duration.

The input and output data files contain variable-length records. Each
record consists of a fourteen-byteheader and a variable-length (4095 bytes
W) data array. The record fomat is specified using the C “union” and
“atruct””data structures as follows:

union{
struct{

int entpres ;
int lngth ;
char audnam[101
char auddat[4096] 1

}audent ;
char filrec[1]

}un = O
;
;

100



Parameter “entprea”’ia used simply to verify that a valid entry is present.
“Lngth” apecifiea the length of the audio data stored in array ‘“auddat[]”.
Array ““audna[].’contains an operator-selectablename for the recorded
audio. Array “filrec[]” overlays the ‘“audent““data stmcture and provides a
meana for easily moving records.

The linked output from LZBLD.~ is downloaded to the 2S0 eoftware
. development facility and converted to a COM file. It ia then renamed tO

A~BLD. COM. The program ia ran by operator command:

A> A~BLD F1.T F2.T

where F1.T ie the input audio data file and F2.T ie the mtput file (any fila
namee my be substituted). Both filee mst be specified. If no input data is
available, a dummy F1.T file should be specified. A “null” file, F3.T, is
present on the floppy disk. It may be used to clear a data file, as follows:

A> PIP F1.T = F3.T

Note that a program calling arguments can’t eaaily be mn under the ZSID
debugger. Nhen debugging, the.conditional compile flag “’FIXED”in file
AUDBLD.C ahoul”dbe aet. The program will then automaticallyuse F1.T for
input and F2.T for output without specifying them as argumente in the call.

5.1 The AudiO Build (A~BLD. C) File

This file containa the main() function, which is tha first function rwn
in any C program (called by ~R. Z).

The main() program opana the input and output files, presanta the
operator tith prompts for selecting program operations and then closes 1/0
files when the program terminates.

The first oparation performed is to opan the 1/0 files. Depending On the
setting of the conditional compile switch “FI~D’”, these files msy be operator
epecified in the program initiation atatament or the pre-speciflad files F1.T
and F2.T. In the former case a test ia mde to make sure the operator
specified the correct number of files (two).

A aet of prompt statement are then mtput to the operator infoming Mm
Of the options available. They include: ‘“~, recOrd new data> “I”> inPut
next record from input fila, “B”, bypass N records in input file and “Q”,
quit — raturn to 0/M. me program proceeds, baaed upon the operator
response. After each operation haa been performed, the operator ia again
presented with the options mnu.

*
If the operator choee to record new data, the record() function ia called.

If (a)he
caee the
prompted

. .
chose to input a recOrd, the input() function ia called. In thie
function returne a one if a record ie present. The Operator ia then
to determine if the record should be cent to the output file or

101

——————— —-. ... .. .. .- —



ignored. If it should be output, the output() function is called. If input()
returned a zero then no more entries exist in the input file. The operator is
so infomed.

If the operator choee to bypass Input records then (s)he is prompted to
specify the mber to bypass. That number of records are then input (by
calling function input()) autO~tically. Note that function input() displays
the name attached to each record as it is read. If less than the specified
n~ber of records exiet in the input file, the operator is ao informed.

The operator my s2eo choose to quit, in which caae the 1/0 files are
closed and control ie returned to CP/M. Finally, if the operator enters an
illegal response (a)he ia so informed.

5.2 The hdio @mmunication (AUDCOM.C) File

Thie file contains the functions that input/outputaudio data records
frem/to the disk and communicatewith the console and annunciator card.

5.2.1 The Disk Input (input()) Function

This function inputs an audio record from the input disk file and sends
ite identifying character string to the console. Upon operator direction it
then sends the recorded audio to the annunciator card where it ie annunciated.
The function returna a one if a record wae found, a zero if none was present
(the last record had been read) and a two if the record could not be read.

The first operation performed ia to read the record header from the diek.
The length of“the record1s data area may then be Wed to load the data. If
either of these reads fails, the operator is eo informed md the function
returns a wo. Next, the function sends the record’s name and size to the
console. The operator ia then prompted to see if the data should be sent to
the annunciator. Note that this operation is bypassed when the operator has
chosen to bypasa N recorde. The function returns a one when a successful
record read haa been accomplished.

5.2.2 The Audio Annunciation (annun(audptr,audlng)) Function

This function sends adio data to the annunciator card and activatea the
annunciator. The data to be sent starts at address “audptr“; ‘“audlng”’bytes
are sent.

me first operation perfomed is to reset the annunciator card. Thie is
accomplished by outputting a byte (any byte) to port OX4F. The “audlng-
bytes, etarting at “’audptr”are then output ueing the otir() function to
perform the actual tranafers. ~is function usee tbe faat block move 280
instmction “OTIR’”for thie purpose. Port OX4D ie used. Since otir() may
move a mimum of 256 bytes at a time, mlt iple calls my be needed. Finally,
the annunciator is started by outputting a byte (any byte) to port OX4E. The
function then returns.

.

102

.——.



5.2.3 The Disk @tput (output()) Function

This function outputs the record currently stored in union nun”’to the
output disk file.

The first operation perfomed is to infom the operator of the size of
the record to be output. The record is then output. If the OUtPut OPeration
fails the operator is so infomed and ie asked if another attempt should be
made.

5.2.4 The OFerator prompt (prompt(msgptr,retflg)) FunctiOn

This function outputs the ASCII string pointed to by “msgptr” to the
console, If ‘“retflg”is one, it waits for the operator to press a key. If
the key entered is a ‘Y‘ the function returns a one. If the entered key is an
‘N! it returns a zero. Entering any other key causes sn error prompt to be
sent to the operator. If “retflg’.is zero the function simply returns after
outputting the prompt.

The first operation perfomed is to send the message pointed to by
“’msgptr“ to the console. Note that C librag function lenstr() is used tO
detemine the length of the string.

If a response was requested (.”retflg”non zero) then a character ia input
from the keyboard. Note that the C library function getch() is used and that
a loop is needed to “fix” it. fie loop removes any left over line faed (OXOA)
characters from the input buffer.

The character received ia tested to see if it was a ‘Y! or an ‘N’. If it
waa, a one or a zero, respectively,is returned. Othemise, an error meaaage
is sent to the operator. The function will not return until a legal by ia
pressed. However, the error prompt is wtput only once.

5.3 Tbe kdio Recording (A~MC. C) File

This file contains the functions required to record and edit audio data.
It also contains the function that generates a tone record.

5.3.1 The Audio Record (record()) FunctiOn

This function supervises the recording of data received from the ~SDM
card, the editing of the data, its playback by the annunciator md finally,
its output to the output disk file.

The WSD card always records 4095 bytes of data (about 1.6 seconds of
. speech). z80 assembly language function getaud() inputs this data and

stores it in array’crsddat[]. The data in this array My then be edited
(i.e., starting and ending bytes my be specified) by manipulating pointers
!strptr” and “endptr”. Nhen the operator is satisfiedwith the results, the
edited data msy then k copied into the file record hffer un.audnet snd
output to the output disk file.

103



me first operation perfomed ie to compute starting (stradd) and ending
(endadd) address for the cvsddat[] array. Then the operator is sent a aeriea
of prompts specifying the options available. These include: “S”, start
recording, “T”, generate a tone, “E”, edit, “P”, playback, “O”, output a
record and ‘“Q’”,quit.

men the operator preaaea “S”, the getand() function is called and audio
data ia recorded and placed in cvsddat[]. Flag ‘“recflg”’ia aet to indicate
that audio hsa been recorded, the start and end pointers, “atrptr” and
“endptr” are initializedto “atradd” and “’endadd”, respectively, and the
function redisplays ita options prompts.

If the operator preaaea “P”, the recorded data is played back through the
annunciator. The “recflg” is checked flrat to mke sure recorded data is
present. If it ia not, the operator is eo infnrmed. The function’s option
prompta are than redisplayed.

If the operator presaea ‘“E”,the “recflg” flag is checked. If it is zero
it maria that no data recorded using the “S” option exists in un.audent.
However, it my contain a record received from the disk input file. This data
will then be edited and the operator ia ao infomed. Start and end pointers
“atrutr’”and “endotr” are aet and the data is read from
cvsddat[]. Flag “recflg”’is then aet,
cvaddat[] and the edit function edit()
racord() function1s option prompts are

If the “recflg’”flag was set when
directly.

since “recorded”
is called. Nhen
redisplayed.

“E” was enterad,

The onerator =V also enter “T” to record a tone.

un.audent to
data now exists in
edit() feturns, the

then edit() ia called

In this caae “recfl~”
is set and”the tone(j function”is called. Nhen it returns and the “options-
prompts are redisplayed. Note that a tone record my also be edited.

bce a new record has been satisfactorily created it my be output to the
output disk file by pressing .“0”. This operation teata “recflg’.to tie sure
a new record exists. If one doesn’t the operator is so itiomed. If one
does, the audout() function ia called to output the record. The options
pmmpta are then redisplayed.

Finally, when the operator haa completed recording operations (s)he may
return to the min mnu by pressing “’Q”.

5.3.2 The kdio Output (audout()) Function

This function builds an audio record in un.audent from data in array
cvaddat[] and the audio -etag supplied by the operator. It then outputs
the record to the output disk file.

104

.

.—” .—



The first operation performed is to get the audio nsmetag from the
operator and store it in the record header. The tag can be up to.nine
characters in length. Next the “lngth” and ‘“entPres’Ofields in the ‘ader are
set. Then the audio data in array cvsddat[] is roved to the record’s auddat[1
array. Finally, the ootput() function is called to output the record to the
output disk file.

5.3.3 The Audio Editing (edit()) FunctiOn

This function displays the current start and end indexes for the audiO
data in array cvsddat[]. It then requests index changes from the operator.
Finally, it checks to see that the end index is greater than the start index.
If not, it re-raquests index valuee.

The first operation perfomed is to compute cvsddat[] array indexes
“’stridx”,“endidx” from pointers ‘“etrptr”,“endptr”’and cvsddat[1 start
pointer, “staadd”. It then displays these indexes on the console.

me operator la then prompted to input, if desired, a naw start index and
end index. ~eae values are then tested to be sure they do not exceed 4094.
A test is then mde to insure that the and index ia not less than the start
index. Finally, n- start and end pointers to the cvsddat[] array are
computed and the new data size is displayed on the console. The function then
returns.

5.3.4 The Tone @nerator (tone()) FunctiOn

This function generates data bytes in edit file cvaddat[] representing a
continuous tone, as specifled by the operator. The operator is prompted for
tone frequency and duration. The data apace after the tone is filled tith
zeros (silence).

The first operation perfomed la to prompt the operator to input the tone
frequency. If the value epecifled is out of range (20 to 2000 Hz) the
OPeratOr ia so infO~ed. The oparator is then prompted to enter tons duration
in tenths of seconds. Again, if the value input is oot Of range (0 to 16) the
operator is infomed and prompted to re-enter the value.

The program then computes the mmber of 19.7 kHz (the sampling rate)
samplee in a half cycle of the tone and the number of amples in the tone’s
duration. Note: Tone duration waa limited to 1.6 saconda so that the total
number of smples would fit in a 16-bit, signed parameter ‘“timidx”(16xlg70 -
31520), thus avoiding the uae of double-precisionarithmetic. A tone
duration of 1.6 aeconda is long enough for dl applications. Some 10oP
control flags are then set before proceeding to the tone smple generation
loop.

Before the tone ample loop is started the operator is informed that
calculations are proceeding. This ‘“humanfactors”’prompt was found to be
necessary, since the loop takes a noticeable time to cmplete. The loop ie
then entered.

105



““tfmidx”tone samples are generated and stored in bytes in array
I cvsddat[]. An inner loop counte through the number of samples in each half

cycle of a tone. If amplitude flag “amp” is one, then ones are stored in the
bytes in cvsddat[]; otherwise the bite are left zero.
after each half cycle of samplea has baen generated.
divisable by eight, a partially loaded byte remains.
to cvsddat[].

The start and end pointers “strptr” and “endptr”’
edit() function can be used to edit the tone data, if
remaining bytes in the 4K cvsddat[1 array are zeroed.

Flag “amp” is toggled
men timidx is not
mat byte is then output

are then set so that the
desired. Finally, the
This produces a

“eilent“-pe~iod after the tone which may-be “edited into” the record if
needed. The function then returns.

5.4 The Sample Bits Wcording (ADDBITS.Z80) File

~is function inputs audio sample bits from the ~SD audio recording
card, packa them into bytes and stores the bytes in array usddat []. Tbie
function also provides the scmpling clock signal at a 19.7 kKz rate that ie
needed by the WSD card. This timing is dependent upon the execution time of
the major loop tithin the program, itself. In fact, certain statements are
included simply to adjuet asmple timing. The program ia written in assembly
language and assembled using the Az80.W asaembler indirect command file.

The first operation performed is to read the start eddreea for cvaddat[],
“staddd”, into the DE register pair. Eight data bits till be shifted into a
byte tithin the sampling loop. A bit count of eight is placed in the C
register to control this loading operation. Next, the asmpling loop is
entered and a WSD card sample pulse-high ia output. The audio data sample is
then input and shifted into the wrrent byte (pointed to by registers DE) in
array cvaddat[]. me byte count in C is then decremented. If the current
byte has been completely filled, the bit counter is aet back to eight.and a
sample clock pulse-low la output. A check is then mde to see if the end of
the cvsddat[] array hea been reached (check DE cgalnst “’enddat”); if it has,
the program returns. If it hasn’t, the program delays a fixed number of
clock cycles and returns to the start of the sampling loop.

If the arrent byte has not yet been filled, some path delay instructions
are executed, a sample clock pulse-low is mtput, some more delay statements
are executed md the program returns to the beginning of the sampling loop.

Note that the timing in thie program has been “fine tuned” to produce the
required 19.7 Wz sampling frequency. Program changea could alter this timing
and cause the audio recording ayetem to mslfunction.

5.5 The hdio W Loading (A~SAM. C) File

This file containa tha functions raquired to load the pravioualy recorded
audio data into tha audio M banks. The ~BAM. COM function ie callad es
part of the AIDte initial program load sequence. If mre than ona 16K audio
M bank existe, then aaparata versions of ~W. COM are called. Each
version ie tailored to load a particular bank with ita propar audio data.

106



i:

,

1

I

This
specified

5.5. i The w Loading (A~W.CGl<) Function

function operatea in two males. If it ie called ‘titha file
as an argument, e.g.:

A>A~~l F2.T

then it till load the audio data bytee from the records in the specified file
into an internal 16K-byte array and then return tO the ~/M OPerating sYaten*
me operator maY then cave the new version of the program (with the l~K arraY

loade~) .w entering:

A> SAW” 11”1”~M.COM.

This “loaded” version is then ready to be called..Aa part of the AID1e initial
progr= load sequence.

In the second mode, which mna when A~W. COM is~called “withouta file
specifiedin the call, it .tranefersthe audio data ~tea from the 16K iriternal
array to the specified atiio RAM bank.

The first operation perfomed ie to check tO see if an inPut file wae
apecified in the progcam call line. An Sdditimal check ia mde to ~e” sure
that only one file was specffied.

If a fiie waa specified;“”it is.opened. me contents of the file are read
(tinus the record..headers)into array annunc[.]..:..Acheck.ia ~de duringthis
process to tie .aurethe array*e 16K size ie not exceeded. If it ia, the
operator is so infomed$ the input file ia closed and the function returns.
If the array size ie not -ceeded, the functiOn ~iaEe nO-llY ~“’ckOa*U the
input file and returning.

If no input file is specified, the function mvea the contents of
annunc[1 to the specified ~ bank. ~is ie accomplished in machine code
uelng the block mve instmction, LOIR. Note that if the deatifietion~ bank
is the Upper L6K of the mater ~s M, then the move ia atraightfO~ard ~th

destination starting addreas OXCOOO. However, if the audio RAM bank is one of
the 16K M banks on the 64K RAM board, then the on-board 16K bank mat be
deselected ad the off-board bank selected before”the block mve ia perfOmed.
The on-board bank is then reselected.

5.5.2 The kdio ~cOrd Input (input()) ~nctiOn
,.

The ~M. COM function tiat read records from the specified input file.
It does this ~ calling the input() function.

*
The first operation performed is to read the recOrd’a entrY-Present flag

and record-lengthfield (the first four bYtea). If this read fails, the
OPeratOr ia aO info~ed, It then checks to see if the file is empty Or if UO

records remain (entry-presentflag not ‘A’). If this is true, the function

returne a zero.

107



If the file is not =pty the remainder of the record is read. If this
read operation fails, the operator ie ao infomed and the function returns a
2. If the record read wae successful, the function returns a 1.

“

108



APPENDIX A

AID Operating System

1.0 INTRODUCTION

The purpose of this appendix is to present a descriptionof the system
executive used in the AID rester and slave single board computers. The aystern
executive to be described consists of two major components: a task scheduler
and a set of queue access functions. The scheduler initiates application
taaks on a priority basis in response to wakeups from interrupt handlera and
tasks. Messages are pasaed between tasks and between interrupt handlers and
tasks by means of circular queues. The’queue acceas functions provide
standardized access to these queues. The task scheduler will be described
first, followed in later sections by a description of queue data structures
and queue accea’afunctions.

2.0 S~EDULER

Task scheduler desigrlsmy be grouped into two general catagoriea:
pre-emptive and nonpre-emptive. A task running under a pre-emptive scheduler
may be suspended if a task of higher priority is awakened by an interrupt
handler. This is important for system in which data received by an interrupt
handler mst be processed immediatelyby a task awakened by that handler.
Pre-emptive scheduling my also be necessary if the data rate ia such that
there is the possibility of data being overwritten before it can be processed.
This problem can sometimes be solved by double buffering the data either in
hardware or in software.

BY contrast, a task running under a nOnere-emetive scheduler msY nOt be
pre-empted (that is, suspended) even though a task of higher priority ie
awakened. Except for interrupt servicing, the running task has control of the
computer until it suspends itself. In systems using non pre-emptive
scheduling it is necessary for tasks to cooperate in using proceaeor bandwidth
by limiting the amourltof proceaaing performed between voluntary auapensions.
This is not a serious limitation in many real-time applications in which
timing requirements are not too critical. A significant advantage is that it
considerablysimplifies the scheduler design and therefore reduces memory and
execution time requirements.

Another mj or advantage of nonpre-emptive scheduling ie that it reduces
the possibilityof inconsistent data being passed between program components.
Presumably, a taak will complete the output (or input) of an entire data
message before voluntarily suspending. By contraat, a taak running under a
pre-emptive scheduler may have processed part of the data in a message when an
interrupt handler causes a higher priority task to run. This taak might
change the content of the meeaage that was being processed by the original

. task. A data acceaa lockout mechanism ~st be imple~nted to avoid this
probleml.

lThe use of queues to pass all data between program components also reduces
the possibilityof this type of error, since new data does not overmite old
data until the space has been released.

A-1

—



An objective of this design was to keep the scheduler as simple as
possible ao that executive execution time overhead would be tinimized. In
addition, the anticipated applications did not require the immediate
processing of data received from interrupt handlera. As a result, a
nonpre-emptive type scheduler was choeen.

2.1 Task Control

The status of each task ie mintained in a Task Control Block.(TCB). The
TCBa for all application tasks are contained in a linked list data structure,“
as shown in Fig. A-1. A TCB contains a forward link pointer, used by the
scheduler to accesa TCBS, the starting address Of the task, the task’s current
etack pointer and ““status.’and “signal” flags.

A linked list data structure ie used for the TCB data area primarily for
the purpose of determining tack priority and to facilitate scheduler
operation. When a task suspends itself the scheduler always starts checking
TCBS at the baginning of the linked list. k a result, the task described by
this TCB has highest priority. Scheduler operationsare also facilitated by
linking the lowest priority TCB to the highest. Then, during periods when no
taaka are acheduled, the acbeduler simply searches centinuously through the
TCBS. Note that this will be the norwl idle condition for the taak scheduler
unlese a lowest priority Idle task is defined. The idle task ms t be designed
such that it pauses periodically to allow higher priority tasks to run.

The linked list data structure for TCBS is also convenient for system
in which tasks imtall other taske to run or in situation in which task
priorities mst be changed dynamically. The forward link pointers my simply
be changed to reorder the list.

A task my be in one of three states: running, waiting or ready, aa
shown in Fig. A-2. Its current state is determined by tbe values of its
“etatus” and “eignal” flags. A task’s state may be changed by calling one of
the three functions: run(), aleep() or wake(). Note that the ‘“signal”flag
for a RUNNING task my be in one of two statea. This mans that a RUNNING
task my aleo be in the RB~Y state. This situation can occtirwhen a RUNNING
task is interruptedand scheduled to run again. I.(orewill be said about this
later.

The scheduler and each task mintain their om stack areas. When a task
is interrupted or suspended, its context (that is, the processor’s registers
and flags) is stored on its stack. Similarly,when the scheduler transfers
control to a task, the echeduler’s context is stored on its stack. The
context is restored when control is returned to the task or scheduler. When a
high level language is used, the scheduler my use the stack area-OriginallY
allocated by the compiler; task stacks mst be explicitly declared as data
areas in the program.

A-2



POINTER TO NEXT TCB

TASK ENTRY POINTER

TASK STACK POINTER

TASK STATUS FLAG I

TASK SIGNAL FLAG I

Fig. A-1. Task control block.

A-3



wako ( )

Fig. A-2. Task states.

A-4



Nhen a task is invoked, the schedulerts stack pointer is saved in a
memory location. The task’s stack pointer is then read from its TCB and
loaded into the z80’s SP register. Nhen a task is suspended the reverse
oDeration is DerfO~ed. @ the other hand. when an interrupt occurs, the
c~ntext of th~ running program (task or scheduler) is saved on its stack, but
the interrupt handler uses the running program!s stack for its operations. It
must, of course, POP off all data that it pushes onto this stack bafore
returning to the interruptedprogram. Interrupts are disabled while the
handler is saving and restoring the interruptedprogram’s context. However,
they may be enabled while it is performing other operations, since subsequent
interrupt handlers will merely stack the context of the handler they
interrupt.

A task program has the general structure shorn in Fig. A-3. It ie a C
function containing an “infinite” loop. Duri~ program startup each taak is
run from its beginning to the point where it first suspends itself (i.e.,
calls sleepo). During this time the task may perform any task-specific
initial setup operations. This would include the initializationof auY data
items that do not have to be reinitialized during a restart (restart ia
perfomed by an initializationtask which will be described later). After
startup, task entry ad exit operations are performed entirely within sleeP().

2.2 Scheduler Functional Components

The scheduler is comprised of four basic functions: sched(), wske(),
run() and sleep(). Their relatIonshipa to task states are shon in Fig. A-4.
Each is a C function; come contain machine code.

After initialization,the scheduler scana TCBa until it finds one tith a
“ostatus” flag set. It then clears the corresponding “signal” flag aud calls
run(). Run() transfers control to the previously suspended taak and resumes
task operation at the point where suspension occurred.

A taak suapenda itself by calling sleep(). ~ie function clears tha
taskfs “’status”flag ati tranafers control back to the scheduler. However, it
first checks the “sf~al” flag. If it is set it means that the RUNNING task
was dso ~DY. mat is, whila the task was mnning, an interrupt occurred.
The interrupt handler rescheduled the running tack to run again. Tha “signal”
flag indicatee this condition. me sleep() function handles thie situatiOn by
resetting the task’s state to ~Y (by aetting the “statua” flag) aud
returning control to the scheduler. The scheduler then scans TCBa, ~tarting
at the highest priority, until it finds a HY task and invokes it.

2 Note that the order in which the operation are performed in aleep() is
important. For ~ample, it would appear that STATUS could be reset after the
SIGNW teat.,when the SIGNW test fails. However, if ~ interrupt occurs
between the teat and the reset, then STATUS and SIGNM till both be sat (if
the interrupt handler reschedules the running task). Then, when STATUS ia
reset after raturning from the interrupt, the final state will be:
STATUS = O, SIGN~ = 1, which ia a disallowed state. Progr@ing sleep() as
shorn till avoid this problem.

A-5

.,,.-. .— .....-——



*

taskn ( )

PERFORM TASK

- SPECIFIC
INITIAL: SETUP
OPERATIONS..

m

0CALL s10090

I
I

oCALL ●loeD ( )

1
I

TASK APPLICATION
OPERATIONS

Fig. A-3. Tssk program structure.

A-6



oREADY:

STATUS = 1
SIQNAL = 1

wake( k I

aSIONAL = O

0CALL run( )

Interrupt

.1.*P( k I

PSTATUS=O

FIo. A-4. Task otatee andstatech~e-~

A-?

..... ....-



A task may be awakened from the’WAITING state by calling wakeo. This
function’s single argument specifies the nmber of the task to be awakened.
It is used as an index into the array of TCBS. Wakeo sets the task’s
‘statua” and “signal” flags. These are the only operation performed by
wake; it is written entirely in C. Wakeo my be called either from an
interrupt handler or from a taak.

One additional scheduler program component is the pauseo function. It
was not included as a “basic” function since it can be derived from the wakeo
and sleepo functions. It provides a means for a taak to voluntarily give
processor control back to the scheduler but, before doing so, reschedule
itself to mn again. ~ia gives higher priority tasks that may have been
awakened ~ interrupt handlers a chance to mn before the pausing task
resumes. me pauseo function may be implemented simply as a C function
that calls wakeo and then sleepo. me taak number needed aa an argument in
the call to wakeo mav be aUDDlied either aa an araument in the uauseo call. .
or, since the number of the currently running
it may be supplied automatically.

2.3 Scheduler Initialization

All C Drozrama start at the beKinnin~ of

tack is hom to the scheduler,

the function called maino. In
this applic~ti~n ~no performs’in~tial.~tartup operation that do not-have
to be performed during a program-controlledreetart.

One operation performed by msino is to initialize runo ~d sleepo, as
ahom in Fig. A-5, by computing addreasea R~WR md SLPMR, respectively.
These tidresaes are needed when control is pasaed between runo md sleepo
during invocation and auapenaion of tasks, as till be explained later. Since
these addreaaea will be refaranced from outside their respective functions,
they mat be computed and treated aa global data items.

Aa mentioned earlier, each task must be called and run to the point at
which it first suspends itself. ~ia operation ia diagramed in Fig. A-6. In
mine, return addresa S~R is computed and stored in variable “rtnadr”’. It
ie used ae a return address by sleepo during taak initializationOperatiOna.
Than maino aavea its stack pointer and gets the stack pointer for the first
application taak (in the figure, taskno represents ‘“taakn“) from its TCB.

It then calls the taak using a normal C function call operation. The taak
initializes startup data, as described earlier, and suspends by calling
sleepo. Function aleepo savas the task’s stack pointer in its TCB and
paesea control back to msino via tha addreas in “rtnadr”. Mino then
restores its etack pointer and repeats the entire sequence of operations for
each application task. At this point aleepo’a return addresa, “’rtnadr”,is
switched to RNN~R, the entry point in rune. ~ring all future operations
sleepo till return to this point.



I

.

Trun( )

&
runlnt = O

COMPUTE

ADDRESS

RUNADU

t

MAIN BODY OF

run( k
:
:
:
:

RUNAOR ~
:
:
:
:

Fb. A-6.

+

NO
.Iplnt = 1

?

YES

slplnt =0

COMPUTE

ADORE8S

SLPADR:

t

MAIN BODYOP
Sloop( k

:.
:
:
:

BLPADR .
:
:
:
:

Cmputing return addres8e. RUNAD~ SLPADR.

A-9



Qrt~dr = 8TRADR

mSAVE 8P IN mahsm

6ET ta.kn( )’. 8P

FROM 11$ TCB

Io8TRAOW

RE8TORE 8P
FROM malnso

+

YES ANY MORE
TASKS

?

NO

+

taokn( )

3
INITIALIZE

TASK DATA

CALL .ICOP( )

4●l*op( )

aJUMP TO
rtnadr

8LPADR I

I

I
I
I

A-M

.. . . .,-J--...........—.-........



2.4 Scheduler Operation

After initialization, scheduler operation proceeds ae diagramed in,
Fig. A-7. Function ached() scans TCBe, starting at the beginning Of the
linked list’,until one is found in which the “status” flag is aet. It then
storee the index of the selected TCB in variable “tcbidx” and calls run().
Run() eaves the scheduler’s context by switching to the eecond set of
regiatere provided by the 280 (it also pushes regieters ~ and N on Ite
~tack),3 It then Savee the current stack pointer and transfers cOntrOl ‘0

address SLPAOR in sleep(). Sleep() gets the etack pOinter frOm the TCB
pointed to by “tcbidx” and places it in the Z80ts SP register. It then
restores the task’e context from its stack and returns to the task by means of
the normal C function return protocol. This is poaaible since the return
addresa wse pushed on the stack when the tack was initially run to fte firet
call to sleep(), as described earlier.

At this point the task proceeds to perform application operations until
it again calla sleep(). As shown in Fig. A-7, after eleep() cleare the
“statue” flag it checks the “signal“’flag. If it ie set it proceeds, as
described earlier, to reschedule the tack. In either caae it then saves the
task?s’context on ite etack, stores the task!e stack pointer in ite TCB and
transfers control to address R~WR in run(). run() then restoree the
scheduler1s stack pointer and its context and returns to the scheduler via the
normal C return protocol. The scheduler then starte at the top of the TCB
linked list and ecans for another task to nn.

Note that as far as the task is concerned, its call tO eleeP() Md the
return were just the asme as any other C function call. It is not “awara” of
the fact that eleep() transferred centrol back to the scheduler and that other
tasks possibly ran before aleep() returned. me same is true of eched() md
ite call to rune. me scheduler ie not ‘“aware”that run() transfers control
to a task and receivee control back before returning. It ie therefore
unnecessary for the person writing an application task to bow the operational
details of the task scheduler; (s)he simply programs a call to sleep() tO
cauee a suspension and expects the taak to be awakened at the next C
instruction.

Programing interrupt handlers is somewhat more complicated. First, the
context of the interrupted function muet be saved on tbe currently active
stack. This ie performed using ~SH instructions in mchine code. After
nerforminz 1/0 oueratione the context is POPed off the stack and control is..– -.
returned to the

J If the eecond

interrupted function.

regieter bank is needed
schedulerfe entire-contextmay be saved

for some other purpose, the
on ite stack. For example, the eecond

register bank could be used to save context in interrupt handlers and thereby
minimize their execution times.



G-&-m— 1

I
I
I
I
I
I
I
I
I
I
I

I
I
I

r
I
.1
I
I
1.

L ———

RETURN FROM
PREVOUS run( I
CALL

I
I
I
I
I
I

J

I

+

QSTORE TASK’S
SPMnS TCS

QRESTORE
SCHEWS SP
FROM MtiD [7RSSTORE TAW’S

SF FROM TCS
PO~EO TO SY

tcbidx
L 1

f
I

1

I
I
I
i
I
I

I
I
I
L.

REWRN FROM
PREvmS sbeo( )
CALL

l—— i

ks70RE TASK’S I

CONTEXT RETURN
FROM ITS STA~

)



I

1

.

1“

i.,,

,-

,.

The interrupt hendler is written as a normal C function (with in-line
machine code). However, it is not entered or exited-using the normal C
protocol. Instead, the interrupt vector ia computed such that tha first
instruction performed ia the firet PUSH of the context-save sequence. ~is
bypassea the normal C function entry sequence. It is necessary tO save the
context before any other operation occur so that the interrupted programts
context till not be lost. Similarly, control is transferrad back to the
interrupted program tith a normal z80 return-from-interruPt (~TI ) instruction
just after the context has been POPed from the stack, bypasaing the normal C
function exit sequence.

An interestingobservation can mow:be ~de con~ernfng.this Particular”
implamefitationof a task scheduler. It bca not been necessary for the
implementorto. be swar:eof the details of the.C function ent~ or exit
protocols used by the compiler. In”interrupt handlers, they are simply
bypaaaed. Tha running program’a .context (machine state) ~i8 saved, interruPt
operatims are performed,the context ia restored and control is returned to
the running task.before the handler1s normal C fu”nction return.~oparations.
Similarly, tranafers .b.etweenthe scheduler and tasks are performed within C
functions..run() and sleep(). These functions save -chine context on the
currently active.e.tack,transfer centrol and restore the context of”“the
destination function frm its stack. In this.way task scheduling and
interrupt operation are transparent to the compiler.. The C program’s conte~~
is saved bafore these operations ara performed ‘and‘restoredafterward.

3.0 QWUES

The other aapect of real-time program design involves the implementation
of a means for passing data between tasks and between interrupt handlers and
taaks. Since taska and interrupt tindlers run asynchronously,the use of
queues for these operations Insures that meaaagea till net be lost. A
dtecussion of the eubject of queues, queue acceea functions, and their
interactiontith the taak echeduler will be presented in this saction.

3.1 @cue Strictures

Within C it ia possible to
naing a “typedef‘“daclaratfOn.
take the form:

typedef struct{
int head
int tail
int length
char taak
char *pbnf

]QUS

define a queue headar atmctnre data type by
For a variable-entry-sizequeue, this dght

;
;

;
;
;

A-13



This declaration may be placed in an “include” file that is attached to each
oro~ram source file. Entrias ara added to the aueue startinx at tha “tail”.-
pointar and removad starting at tha “head”. The quaue’s len~th is spacifiad
by paramatar ‘“langth”’.Tha parameter “taak” till ba daacribed in mora datail
later when queua access functions are described. Briefly, it contains the
number of a task that suspanded itself when it was not sble to complete a
reqneatad queue accaaa operation. Pointar “pbuf” points to the baginning of
the actual queue data array. me first byte in each queue entry containa the
nwber of bytas that follow in that entry.

Using the Q~ data type it is then possible to dafine queues and thair
headers as follows:

#dafine ~NG~ - 6
Q~ timkey = {O,O,~NGTH, O) ;
char tkbuf[TUNGTHI

This might defina, for example, a
and a keyboard task. The pointer
initialized to the addresa of tha

;.

queue for pasaing data betwaen a timer taak
“pbuf”’to the queue array tkbuf[] met be

timkay.pbuf = tkbuf

Thie queue may be referenced
keyboard taak by first daclaring the queue haader as an e~tarnal reference:

array with a statamant of the form:

;.

from the file containing the timar or

extern w timkay ;

and then by refarring to its addrase, &timkey, in, for example, the argument
list of a queue acceas function.

3.2 Quaue hcaas Functions

Varioue queue accaas functions may ba written to satisfy diffarent
application requirements. Tbase functions may be built upon two primitive
functions which will be called putq() md getq().

me putq() function declaration has the fOrm:

putq(aource, cleat,count)

where ‘Saourca”ia a pointer to an array (or item) of data to be placed in the
queue and “dest” ia a polntar to the quaue header. “Count” ia the length Of
the massage to be movad, in bytes. For example, this function could be used
to mova a four-byte message from array gmttim[1 in the timar taak to tha
keyboard task ~ writing:

if (putq(gmttim,6timkey, 4) == -1)
aleepo ; .

A-14

...-.-. ------



As indicated, putq() is programed to return a -1 value if nut enough room
exists in the specified queue to store a message of length four (includingone
more byte for the entry size). In the case show the programer hae simply
chosen to suspend the task if this situation ariees.

The function getq() is declared similarly:

getq(source, dest).

It also returns a -1 if no entry is present in the queue pointed to by
argument ““source”’.

Using these two primitive functions to perfom the actual queue access
operations it is possible to write other useful functions that have general
application within a task scheduling environmentend support the orderly flow
of ussages between tasks. For e~mple, a function my be designed snch that
when an attempt is made to enter a message into a full queue, the taak will be
suspended. Later, when a message is removed, the suspended task till be
awakened so that it can store its meseage. The suspended task identifies
itself by storing its task number in the queue’s header in item “tsak”. Snch
a function tight be declared as follows:

putqwt(source,dest, staak, count).

The function n=e suggests that the task till put a mesaagk in the queua If
room exists bt will wait (suspend, call sleeP()) if ~t enough rOom exists.
Parameter ‘“stask”specifiea the nmber of the cslling task4. Similarly, a
function to remove ws sages from a queue, getqwt(), ~Y be designed such that
when a task attempte to remove a message from an empty queue it till suspend.
men a message ia later placed in the queue the auspanded task will be
awakened.

By using putqwt() sod getqwt() it is possible to centrol the execution of
taska in response to the availability of uasagee to process in their input
queues and the availability of space to store mssages in their wtput queues.
For example, if an output device becomes momentarily blocked, the queues that
feed it mssagee till become “backed np” and will cause tha corresponding
taaks to suspend. men the device becomes unblocked the tasks wsiting to send
data till be awakened in an orderly mnner, based upon the availability of
storage space in their respective output queues. The flow of mseages ia
eimilar to the flow of automobiles in a traffic tie-up on a msjor Mghway.

4.0 SYSTEM OPEBATION

The previous sections have described.the design ~d oPeration of the taak
scheduler and queua mnagemant functions. Nbat remains ie to deecriba the
sequence of operations that occur during the startup of an application program
and to briefly discuss some typical application tasks.

3Note that the number of the currently running task is available in global
parameter ‘“tcbidx”so that it need not be specified as an armment. ~is
would eliminate s poseible source of programing error.

A-15



After the initializationof each task, as described earlier, min( ) calls
wske() to schedule the initialization taak, init(), and acts the TCB linked
list pointer to zero so that the scheduler will test init()‘s TCB first
(init() ia the highest priority task). Win( ) then calls ached() and, from
this point on, control is never passed.back to msin() unless the system is
reset from hardware. Sched() then checks init()‘a TCB and Passes cOntrOl tO
it.

I Taak init() perfoms all initialization operations that must be perfomed
first during etartup and later during restart. That is, init() is programmed
so that if another task or interrupt handler wakes it, it will restart the
application program from the beginning. It performs these operations with
interrupts disabled and it enables interrupts just before it suspends itself.

I
The first operation performed in init() is to link dl the TCB’s together

~
in a loop. Thfa ia accomplished by setting the forward link pointers in the
TCBa. Aa described aarlier, the last (lowest priority) TCB ia linked to the
first so that the scheduler till loop looking for WY tasks. Init() then
perfoms other application-specificrestart initializationoperations and
finally suspends itself by calling sleep(). These operations may involve
waking application tasks. However, if other tasks are not awakened the

, scheduler till simply loop until an interrupt handler wakes a task.

/

)

1

Taaks and interrupt handlers provide the various data processing and
control services required by the particular application. For example, most
real-time applicationstill be required to service interrupts from a hardware
timer device. The interrupt handler wakes a timer task which, in turn,
provides interval timing services to other application tasks. Application
that provide a msn-achine interface till usually need to service a keyboard.
The interrupt handler for this device places the received key-stroke character
in an output queue and wakes a keyboard task. ~is task till then input the
character from the queue and process it. Taaka and interrupt handlers my
also be defined to process data from other sources such as communication
channels or measurement sensors.

Taaks processing data inputs will usually wake tasks that provide data to
output devices. ~eae tight be video or alpha-numericdisplays, communication
channels or equipment controllers. The typical output device is designed to
receive a byte of data and then produce an interrupt when it is ready to
receive the next byte. The interrupt handler must therefore be designed to
output subsequent bytea until the entire,message has been sent. It then wakes
the mtput task. The output task must initiate the transfer by sending the
first byte and then suspend and wait to be wakened by the interrupt handler.
It may be asaured that the wakeup waa from the interrupt handler if the
handler sends a “signal” byte message to the task before waking it. The tack,
on being awakened, checks the queue from the interrupt handler and poesibly
other input queues to determine the source of the wakeup.

A-16



APPENDIX B

“C”’To 280 Assembly Optimization

1.0 INTRODUCTION

The purpose of this appendix is to provide a brief guideline for
generating and optimizing the 280 aasembly language output of Vandata”s “’C”
compiler and translator. The reader is assumed to be familiar tith the C
programming language and tith 280 assembly language”. In addition, the reader
is assumed to be familiar with the use of Vandata’s compiler under the RSX-1lM
operating system.

1.1 Procedure

The C source to be optimized should be compiled as ueual and thoroughly
tested before the optimization procedure is started. When this has been done,
the first step in optimizing is to generate the 280 asaembly language from the
C source code. ~is is accomplished using the indirect command file
CZ80A.Cm, which goes through all the phases of the compiler to the point
where the asharp code has been generated =d then invokes the translator to
convert asharp to 280 assembly. The output assembly language file haa the
file me extension .ASM.

The next step is to use PIP to copy the .ASM file to a file tith .280 se
an exteneion. All subsequent modifications are done to the .280 file. Thie
step is done for seversl reaaons: first, it leaves the original aeeembly
language source intact for comparisons to the edited version; second, it
provides a way to know if the asaembly eource has been optimized; and third,
it provides some safety in preventing the deletion of the hand-optimized file
if, for example, the CZ80A.Cm command file is invoked again.

The .280 file is then edited and when the optidzations required are
accomplished, the AZ80.CMD command file ie invoked to assemble the file md
generate the relocatable object file. (If a listing file ie desired in
addition, use Az80W.~. ) Again, the modlffed object should be thoroughly
tested. When thie“is done, the .ASlifile may be deleted since it can be
regenerated easily from the C source and is no longer useful.

1.2 Optimization Guidelines

The primary reason in the AID application for optimizing the C code is to
increase the speed of execution. Appropriate optimization can ueually gain a
factor of two in execution speed but much considerationmust be given to what
parts should be optimized md how in order to obtain the benefits. Efforts in

. improving the original C algorithm till often result in ~gher performance
than hand optimizing a poor algorithm.

B-1



1.2.1 Tuning the C Source

In addition to the proper choice of algorithm, there are a number of
considerations at the C source level that will aid in the subsequent
optimization of the z80. First, the C source should be divided into
relatively smll and simple modules in order to make the optimization editing
more tractable and easier to follow. A two-page C source file my be eight or I
more pages long when translated to assembly language and because of the nature
nf the compilation process, the generated assembly code will not necessarily
follow the C source line for line, especially with deeply imbedded logical
structures. @ the other hand, it my not help much to optimi?e procedures
which are too small because the overhead in calling and returning from such
routines could account for a large part of the time spent in them.

Secondly, one must give some consideration to the variables in the
routine. As far as possible all variables should be declared ae characters
(1 byte) and local variables should be declared static. Static variables are
eaeier to locate and eliminate the relatively long indexed stack instructions,
but ueing static local variables will render a subroutine nonrecursive.

Thirdly, care should be used in eelecting arithmetic operations. For
exmple, wltiplication alwsya calls the library multiplication routine,
whereas left shifts are encoded in-line with add instructions. Thus, if
multiplication by a power of two is needed, use the left shift operator
instead.

There are a number of other ways to help .’tune”to C source fOr later
optimization. For example, the ordering of statements affects the way in
which the compiler generates its output. Such considerations,however, are
tOO specific to discuss here, and can be learned thrOugh ~xPerience.

1.2.2 Qtimizing the z80 &sembly Lan~age

Once the assembly code has been generated, care mst be given to what
sections should be ❑odified. Obvious candidacies for optixnization are 100PS

and code inside loops, arithmetic expressions, array indexing expressions,
complex logical tests, and procedure calla. The following discussions are
intended as general considerationsand cannot cover all the possible means of
optimization.

1.2.2.1 Arithmetic Expressions

One of the specificstioneof C is that in arithmetic expressions, all
8-bit quantities are converted to 16-bit quantities and 16-bit arithmetic is
performed, even if all the quantities are 8 bits. On an 8,-bit~chine like
the 280, the overhead involved in doing 16-bit arithmetic is considerable,
and can be eliminated if it is not necessary. Here is a typical example.

,

B-2



C .SOurce 2-80 OUTPUT

char na, nb ; LD H,20H
. nb =32-a; LD A,(na.)

LD E,A
ADD A
SBC A
LD D,A
LD A,L
SUB E
LD L,A
LD” A,H
SBC D
LD H,A
LD
LD” !i:.), A
20 sec (@ 4 ~z)

OPTIMIZED Z-80

LD A,(na.)
LD B,A
LD A, 20H
SUB B
LD (rib.),A
10 sec (@ 4 MSz)

Multiplication.and division.~ powers of ho should be done by adding
and shiftfriginsteadof the”calls to the C libraw functions. Here is a
typical example:

C Source 2-80 Output Optimized280

setups (x,ysnb,nl) LD”~~~L,(IXHM) LD AD(.EX+OAH)
imt .X,y; LB ~~~H,(IXHBH) SZL A
char nb,nl ;~~~ PUSH HL LD (h.),A ““”

LD EL,02H 10 uaec
static char n ; PUSH HL
n = nl/2 ; CALL C.idiv

POP HL
LD A,L
LD (n.),A
30 + vsec (not including time in c.idiv)—

(Note that even though nl
argument values as 16-bit

There are mny other
some experience is weded

waa declared a character argument, C alwaya paasea
integers).

ways of improving arltbmetic expression coding, and
to be able to understand tiY the compiler sometimes

genarates very obscure code and to be able to optimiz~ the coding
appropriately. Needlese to say, a primary consideration in mdifying such
code is that the result should be the sme ae in the umodified version. Here
ia another sample where the compiler omst parfom unnecessary operations to
perform 16-bit logic where only 8-bit is required.

.
It also shows bow ragister

ueage my be improved.



C Source

#define WSKO h70

#define MSK1 OXFO

#define WITE OXFO

extern char ccolor ;

stbyt()

static char scolor ;

if (ccolor!:= ~ITE)

scolor - ccolor ;

colorg ((-(ecolor &
~SKO)) &MSKI);

2S0 OUTPUT

CALL c.entO
LD A, (Ccolor=)
CP OfOH
JR Z,.35
LD A, (ccolor.)
LD (.74),A
LD A, (ccolor.)
LD C,A
ADD A
SBC: A“””
LD B;A

LD L,C
LD H;B ”””
LD A,L
m 70H
LD L,A
LD ~~~A,H
m 00
LD ~~~H,A
LD A;L
CPL
LD L,A
LD ~~~A,H
CPL
LD H,A
LD ~~~A,L

~ OFOH
LD ~~~L,A
LD A,H
m 00

OPTIMIZED

CALL c.ento
LD A, (ccolor.)
CP OFOH
JR Z, ,,,,,35
LD (.74), A
m 70H
CPL
~ OFOH
LD L,A
LD H;O
CALL COlO~~

.35 JP c.ret~
17 sec (not inciudihg

calls)

LD H,A
CALL colorg

.35: JP c.retO
44 usec (not including cane)

1.2.2.2 g

Loops are an obvious area for optimization. If it is knon that a loop
index till s2ways be less than 128, it should be declared aa a character
rather than au integer. Even when declared aa a character some time can be
saved in incrementing and checki~ the loop index as the following example
demonstrates:

,

B-4



1.

C Source 280 OUTPUT

static char i, nb ; SUB A
LD (.34),A

for (i=O; i<nb; i*) .55:LD HL, nb. .55:
{body of 100p~ LD A,(.34)

CP (HL)
JP P,.75
(body of loop)
LD A,(.34)
ADD OIH
LD (.34),A
JP .55 .75:

.75:

OPTIMIZED 280

SUB A
LD (.34),A
LD ~. nb.
CP (Hi)
JP P,.75
(body of 100P)
LD A,(.34)
INC A
LD (.34),A
JP .55

fiile in this example only 4 usec per iteration is saved, it showe one type Of
optimization that can be performed. If the above loop was executed 100 times
inside of a loop that executed 1000 times, a tOtal 4/10 secOnd cOuld ~ ‘aved.
In a real-time program, such a eavings cOUld be crucial.

1.2.2.3 Logical and kithmetic Teste

Nomally, the code generated for tests is quite compact, kt it is not
unusual to encounter jumps to jumps, unnecessary regieter manipulations, and
other time wasting instructions. Here is an example where an integer on the
stack ia compared to -1.

280 OUTPUT

LD A,(IX+04)
CP OFFH
JR NZ, .2
LD A,(IX+05)
CP OFFH

.2: JR NZ, .11
(body)

.11: (continue)

Improved Optimized

LD A,(IX@4)
CP OFFH
JR N2, .11
LD A,(IXH5)
CP OFFH
JR NZ. .11

(body)
.11: centinue

LD A,(IXM4)
INC A
JR Nz, .11
LD A,(IX~5)
INC A
JR NZ, .11

(body)
11: continue

The above “optimized”version could be further improved if the integer wae
expected to be -1 mre often than nOt. It is left to the interested reader
to find the improvement.

1.2.2.4 Other Areas of Optimization

There are a number of other areas where code optimization can be applied.
For example, the compiler doee not do an optimum jOb at ~locating and using
registers. Wny such cases are obvious, kt in complex expressions, it -y
require considerable thought and effort to improve the code. How mch effort
should be applied to extract as wch aa poesible frOm cOde OptimizatiOn met
be answered from the overall progradng effort.

B-5

.——



1.2.3 Warnings, Bugs, and Disclaimers

Thare is one knon bog in the Vandata 280 assemblerwhich mst be
mentioned - it does not flag some relativa addresses properly to the linker.
In particular, this maans that one should not use the WSE etatement in the C
source of routinee to be optimized because~e CASE statement generates a
table of addresses. When this table goes through the 280 asaembler and the
linker, only the addreas offsets get generated in the actual code, which
causes the program to jump to the wrong place.

I “’

.



APPE~IX C

Aural Merting for Phaae I AID System

The AID alerting syaternis baaed primarily upon the guidelines for ~S
alerting developed in aimulation at the Boeing Comercial Mrplane Company.
Sounds employed in the alerting system are stored in digital fom in 48K of
w. Both voice and non-voice eounde are umployed. The user-proceaeor single
board computer contains logic which detemines when to annunciate each aural
alert meesage.

Aural alerting phrases are listed in TabIe C-1. Definitions of the
siren, C-chord and chime are provided in Fig. C-1. fieae sounds are identical
to those used in the Seeing simulation.

Figures C-2 and C-3 define the voice alerting usaages which correspond
to each of the poseible IVSI iomands. In the event of both up-aenae and
don-5ense limit rete advisories, the aural wssages for each will be
concatenatedwith a short pause.

Figure C-4 provides a flowchart of the logic used for resolution
advisory alert processing. This logic ie called once per scan.

Figure C-5 provides a flowchart of the logic used for controlling alerts
associated tith traffic advisories. ~ia logic is entered once per scan per
terget. It is entered after resolution tivisory ~ert processing haa been
completed.

Figure c-6 provides a high-level flowchart of the logic used to detemine
whether or not a particular target received from the MS logic should be
selected for possible display.

Figure C-7 provide5 a high-level flowchart of the logic used to detemine
if a selected target can be displayed on-screen or, if it is off-screen,
whether to uae an off-screen spbol or to eimply delete the target.

Some principal design characteristicsof this alerting ayetem are:

1. The siren ia enunciated once at the beginning of a sequence of SA
indications on the IVSI.

2. After the siren, a voice mseage which corresponds to the types of
M’s present ia repeated continuously until -nually cancelled by the
crew.

3. After cencellation, the voice alert meeage (unaccompaniedby the
eiren) till aeund once each time the state of the IVSI changea. tily
tbe W-aenee tich has changed is annunciated.

4. A C-chord is sounded when a target transitions to prethreat (-her)
status from a lower priority statua. However, this alert Ie
auppresaed if an uncanceled aural alert for an SA is being
annunciated.

c-1



TARLE C-1.

Aural flerting Phrases Available in Phase I AID System

(Note: Some of these phrases are not employed in the Phase I AID system,
but have been provided to facilitate future modifications.)

VOICE

ARORT

ALERT

ALTITUDE

CAUTION

CLEAR

CLINR

DESCEND

DESCENT

DON1T

FEET

FIVE

HUNDmD

LIMIT

NAINTAIN

OM

PER ~NUTE

TCAS

TEST

THOUSAND

TRAFFIC

Two

WARNING

NON-VOICE

Beep

Buzz

C-chord

Chime

Chirp

Pause

Sir&n

c-2

..——.-—— --—---



.

L (.) w.,”lng ( siren)
800

lmf

~ em -
‘b) ‘Ution (C-chord)

U50 Hz)
~

01 1 I I I I I 1 I I I I

I“!L
(c)Advi~v (Fmque- 475Nz) (chime)

01 I I I I I I 1 I I I I I

o 0.1 02 03 0.4 05 0.6 0.7 08 09 10 1.1 12

TIME (SeC)

Fig. C-l. Alerting sounds.

.

.-

--

+ 50WS rise
- ls.smdew

c-3

.—. S....-—.- .!mm.:r:. I”.. .



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

VOICE ~SSAGE

CLIMB

DESCEND

DON’T CLIMB

LIMIT CLIMB

LIMIT VLIMB

LIMIT CLIMB..

DON’T DESCEND

LIMIT DESCENT:

LIMIT DESCENT

LIMIT DESCENT:

U“INTAIN CLIM%

MAINTAIN CLIMB

MAINTAIN CLINB

MAINTAIN DESCENT

MAINTAIN DESCENT

~INTAIN DESCENT

TCAS ABORT

CAStIVSI WS
1098765432 1

1000000000

0100000000

001,1.1.1.0.000

0011100000

0“0 110:00.0 0.0 ~~~~~

o 0 1 0 0:0 0.0..00

00000 :0:11.1 1

00..0 ”O.00.01 :1.1.

0:0,00000011

0 0 0 0 .0..00:001..

00000 ”1”1”1”1”1

0 :o.;~:oll 1 111

0001111111

0011111000

001 1 1 1 1 100

001 1 1 1 1 1 10

1 1 1 11 1 1 11 1

*

Fig. C-2. Voice Messages For Resolution Advisory Alerts.

c-4

— —.



m
/-N



I

81REN=Olf slron haa not ●oundod for
t~ RA soauonew. oth.rwloe, SIREN=l.

&EXIT

CWRED=O Mr.d CIW Ibht IS oft
othorwfce, CWREO=l. Lbht can b~
aaneoflod manually or by ●oftwaro.

FIs C-4. Resotitlon Adv180ry alert processing.

C-6



<

,*

YES

AATA= 1

NO
i

t I

SOUND !
C-CHORO *

CWYEL. 1 1

NOTE:

Logic 10 entorcd onto for ●aoh ●otlve targ.t. AATA=O

if target has not boon annunclatod; Othorwloo AATA=l.

Throat aural alerta ●orveto annunciate ●ll thromts ●d

pro-throats on display at tho time tho threat appears.

CWYEL=l lfamber Caution/Warning Ilght Istobollt.

,“

*
Fig. C-6. Trafflo advlaory alert proceaairrg.

t

( EXIT

I

c-7



-“ Thla {OOICIs called once per 8can for
each target reoelved from the GAS 10glc.

YES
A hard limit On the number of taraeta to be
displayed can ba set 88 any number 010 0.

1

Time Of activation Is stored to
allow 8-8acond time-out.

10

~

Note Contlnuou8 mode
means that display
Is alwaye .actlve”.

ACTIVATE
- OISPLAY

,
-

NO
●

NO
●

NO

NO
s

,

4,

Fig. C-6. Target aeleotlonloglc.

c-8

—-.-- ———-....-— — —-



L

Thla Ioglc 10 ●ntered once per ●ean
for ●ach target s-lcctodby tho target
.eloctlon logic.

YES COMPUTE
*

NEW SCALE

I
NO

@

NO

USE
OFF-SCREEN

SYMBOL

USE
ON-SCREEN

SYMSOL

T
( EXIT )

Fig. C-7. On-screen dleplayloglc.




