DOT/FAA/PM-83/30

Project Report
ATC-123

Airborne Intelligent Display (AID)
Phase | Software Description

A. C. Drumm
W. S. Heath
J. A. Richardson

24 October 1983

Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LEXINGTON, MASSACHUSETTS

Prepared for the Federal Aviation Administration,
Washington, D.C. 20591

This document is available to the public through
the National Technical Information Service,
Springfield, VA 22161

This document is disseminated under the sponsorship of the Department
of Transportation in the interest of information exchange. The United
States Government assumes no liability for its contents or use thereof.

TECHNICAL REPORT STANDARD TITLE. PAGE

1. Raport Ne. 2. Governmant Accessien No. 3. Recipient’s Cataleg No.
DOT/FAA/PM-83/30- .
4, Ticde and Subtile : 8. Raport Date
- 24 Qctober 1983
Airborne Intelligent Display (AID) Phase I Software Description ' 8. Performing Organization Cede
7. Authos(s) 8. Parforming Organization Repart Ne.
" Ann C. Drumm, Walter S. Heath and John A. Richardson - ATC-123
9. Parisrming Organizition Nome and Adiress ‘ 10. Work Unit Ne.
- Lincoln Lai)orato:y, MILT.
P.O. Box 73 . . 11, Contract or Grant No:
Lexington, MA 02175-0073 ' DOT-FAT7-WAI-817
13. Typs of Report and Pariod Coversd
12. Spansaring Agyency Name and Address .
Departiaent of Transportation _Project Report -
. Federal Aviation Administration .
Systems Research and Development Service 14. Sponsaring Agency Cods
- Washington, D.C. 20591 "
15. Supplementary Notes

This work reported in this decument was performed at Lincoln Laboratory,l a.center for research operated -
* by Massachusetts Institute of Technology, under Air Force Contract F19628-80-C-0002.

18. Abstract
The Airborne Hiteliigent Display is a microprocessor-based display capable of serving as a
cockpit data terminal in a variety of FAA developmental applications.-A prototype of this display
was developed by Lincoln Leboratory during 1979-1980 in order to evaluate and demonstrate the -
use of the data link between a Mode S ground sensof and Mode $ trangponder-equipped aircraft.
The AID served as a data link interface allowing the pilot to see, respond to, and initiate commu. -
nications from a ground sensor. Later, when Lincoln began testing the Traffic Alert and Collision
Avoidance System (TCAS), the AID became the TCAS display device, showing position estimates
for TCAS-tracked aircraft.
More recently, a redesign effort, focused principally on goftware, was begun to extend the AID
design so that it could be more quickly adapted to a variety of FAA developmental programs.
This document describes the redesigned Airborne Intelligent Display, with special emphasis on
software design.
V7. Kay Werls 18, Diruibution Statement
Microprocessor Mode S Document is available to the public through
'| . Display system : ‘ Software the National Technical Information Service,
Airborne Collision Avoidance Operating System Springfield, Virgina 22161.
19, Socurity Clussif. (of this repert} 20. Secwrity Classif. (of this page) 21. No. of Pages .| 22. Price
Uneclassified | Unclassified | 148

 Form DOT F 1700.7 (869)

CONTENTS

1,0 INTRODUCTION

2.0 SYSTEM DESIGN :
2.1 Design Objectives
2.2 Design Approach
2.3 Display Requirements
2.4 Hardware Structure

2.4,1
2.4.2

Overview

Video RAM, Video RAM Controller, and Video
Multiplexer

Audio RAM and Audio Annunciator

~ Floppy Disk

Mode Switch

Caution/Warning Button/Light

Keyboard and TEU Serial Input

5-100 Slot Utilization

Single Board Computer Characteristics

3.0 SOFTWARE GENERAL DESCRIPTION
3.1 COverview
3.2 System Software

3.2.1

System Startup

3,2.1,1 Initial Program Load

3,2.1.2 Program Initialization

3.2.1.3 Interprocessor Startup Coordination
Interprocessor Communication

Task Scheduler -

Message Queue Management

System Diagnostics

3.2.5.1 Non-Realtime Diagnostics

3.2,5.2 Realtime Diagnostics

3.3 Service Processor Software General Description

3.3.1
3.3.2

3.3.3

Qverview

Interrupt Handlers

3.3.2.1 The Service Processor/User Processor
Communications Interface

-*
L]

.
.
£ B

Wil W W w3 Wi iw
.
WwWwwwWwwbkn Wwww

¢ o« e
WWwwwlwWwiwd NN

1

2

3 The Command Dispatch Task (dsptch())
.4 The Video Task (video())

5

6

7

The Audio Task (audio())
The Timer Task (timer())
The Mode Switch Task (mewtch())

114

The Timer Interrupt Handler (ctein())
The Mode Switch Interrupt Handler (bswin())
The Audio Control Board Interface (audin())

The User Processor Input Task (upint())
The User Processor Output Task (upoutt())

Page

s NN

OO WVMW WO~~~

—f

13

14
14
14
15
15
16
21
24
24
25
25
26
26
29

29
29
29
30
30
30
30
30

34
34
34

CONTENTS (CONT'D)

Page
3.4 User Processor Software General Description ; 36
3.4,1 Overview 36
3.4.2 Interrupt Handlers 38
3.4.3 Tasks 39
3.4.3.1 The Keyboard Task (keybd()) 39
3.4.3.2 The TEU Task (teu()) 42
3.4.3.3 The Timer Task (stim()) ' 46
3.4.3.4 The Service Processor Output Task (spoutt()) 47
3.4.3.5 The Service Processor Input Task (spint()) 47
3.4.4 User Graphics Package 47
4,0 SOFTWARE DETAILED DESCRIPTION . 51
4.1 System Software _ 51
4,1,1 The Task Scheduler and Associated Functions 51
4,1.1.1' The Scheduler (sched()}) Function 51
4,1.1.2 The Task Initiation (run()) Function 52
4,1.1.3 The Task Suspension (sleep()) Function 52
4,1,1.4 The Task Wakeup (wake()) Function 53
4,1,1.5 The Task Pause (pause()) Function 53
4,1,2 The Data Queues and Queue Management Functions 53
4,1,2.1 The putq(source, dest, count) Function 54
4.1.2.2 The getq(source, dest) Function 55
4.,1,2.,3 The putqwt(source, dest, stask, count)
Function 56
4.1,2.4 The getqwt(source, dest, stask) Function 56
4,1.2.5 The putqwk(source, dest, count) Function 57
4.,1.2.6 The getqwk(source, dest) Function 57
4,1,2.7 The getqc(source) Function 57
4.1.2.8 The getqd(source) Function 57
4,1,2,9 The initq{source) Function 58
4,1.2,10 The mvbyt(source, dest, byte) Function 58
4.2 Service Processor Software 58
4.2.1 The User Processor Input Task and Associated
Functions 59
4.2.1.1 The User Processor Input Interrupt
Handler (upin()) 59
4.,2.1.2 The User Processor Input Task (upint()) 59
4.2,2 The User Processor Output Task {upout()) 59
4,2,3 The Command Dispatch Task and Assoclated Functions 60
4,2.3.1 The Dispatch Task (dsptch()} 60
4,2.4 The Video Task and Assoclated Functions 61
4.2.4.1 The Video Task (video()) 61
4,2.,4.2 The draw() Subroutine 61
4.2.4.3 The scalex{) and scaley() Subroutines 61
4,2,4.4 The colorg() Subroutine 62

iv

. CONTENTS (CONT'D)

Page
4,2,4,5 The circleg() Subroutine 62
4.2.4.6 The lineg() Subroutine 62
4,2,4,7 The setpix() Subroutine and Related
Routines 63
4,2.4.8 The string() Subroutine and Related
Routines 63
4,2.5 The Mode Switch Task and Interrupt Handler 65
4.2.5.1 The Mode Switch Task (mswtch()) 65
4.2,5.2 The Mode Switch Interrupt Handler (mswin()) 66
4,2.6 The Audio Task and.Interrupt Handler 67
4.2.6.1 The Audio Task (audio()) 67
4.2,6.2 The Audio Interrupt Handler (audin()) 68
4,3 User Processor Software 68
4.3.1 The User Processor Main Program (main()) 69
4.3.2 The Initialization Task (inait()) 70
4.3.3 The Keyboard Task and Associated Functions 72
4.3.3.1 The Keyboard Interrupt Handler (keyin()) 72
4.3.3.2 The Keyboard Task (keybd()) 72
4,3,3.3 Functions Called by the Keyboard Task 77
4.3.4 The TEU Task and Assoclated Functions 8
4.3.4.1 Overview 78
4,3.4.2 The Interrupt Handlers teuin() and cwin() 85
" 4,3.,4,3 The TEU Task (teu()) 86
4,3.4.4 Functions Called by the TEU Task 88
4,3.5 The Service Processor Input Task and Interrupt
Handler 95
4.3.5.1 The Service-Processor Input Task (spint()) 95
4,3,5.,2 The Service-Processor Input Interrupt
Handler (spih{)) 95
4,3.6 Service Processor Output Task and Interrupt Handler 96
4.3.6.1 The Service-Processor Output Task (spoutt()) 96
4,3,6.2 The Transmission Startup Routine (spout(b)) 97
4.3.6,3 The Service-Processor Output Interrupt
Handler (spoh()) - 98
4.3.7 The Timer Task (stim()) and Interrupt Handler (ctec()) 98
5.0 THE AUDIO RECORDING AND AUDIO RAM LOADING FUNCTIONS 100
5.1 The Audio Build (AUDBLD.C) File 101
5.2 The Audio Communication (AUDCOM.C) File 102
5.2.1 The Disk Input (input()) Function 102
5.2.2 The Audio Annunciation (annun(audptr, audlng)}
Function 102
5.2.3 The Disk Output (output()) Function 103
5.2.4 The Operator Prompt (prompt(msgptr,retflg)) Function 103

CONTENTS (CONT'D) .

dio Recording (AUDRED.C) File

5.3 Au

1 The Audio Record (record()) Function
2

3

The Audio Output (audout()) Function

The Audio Editing (edit()) Function

.4 The Tone Generator (tone()) Function

e Sample Bits Recording (AUDBITS.Z80) File
Audio RAM Loading (AUDRAM.C) File

.1 The RAM Loading (AUDRAM.COM) Function

.2 The Audio Record Input (input()) Function

vt
.
Jggereyg
oo u&o?wm

u \n

APPENDIX A AID Operating System

APPENDIX B "C" to Z80 Assembly Optimization

APPENDIX € Aural Alerting for Phase I AID System

vi

5

[S I - I)

- -
£
| LI |
N

G W= O -

bbb#bh)?uwwi»NNNNNN

1 1
WP N

WwwWwwwwbwbwwiwwibwwwnw

o N

ILLUSTRATIONS

Phase I AID Display

AT 1T
AID Hardware Configuration

=100 Buss Slot Usage

Video Control Messages

Video Graphics Message

Audio Messages

Miscellanecus Messages

Task States

Task Control Block

Service Processor Interrupt Handlers and Tasks
Service Processor Functional Block Diagram
Service Processor Data Flow Diagram
Dispatch Task Flowchart (One User~Procesasor)
Video Task Flowchart

Audio Task Flowchart

User Processor Functional Block Diagram
Keyboard Assignments

Keyboard Task Flowchart

TEU Task Structure

Main TEU Processing Routine TPROC

Keyboard Commands

Display Options Array

TEU Input Data Block Format

TEU Task Structure - Functions Used by the TEU Task
Functions Used by the TEU Task

Allocation of Screen for Text or Target Display

vii

17
18

1Q

& S

20
22
23

28
31
32
33
35
37
40
41
43

45
74
76
79
81
84
91

Fig,

A-1
A-2
A-3
A-4
A=5
A~6
A-7

c-1
c-2
c-3
Cc-4
c-5

c-6
c-7 ..

APPENDIX ILLUSTRATIONS

Task Control Block

Task States

Task Program Structure

Task States and State Change Mechanismse
Computing Return Addresses: RUNADR, SLPADR
Task Initialization

Task Scheduling and Return

Alerting Sounds
Voice Messages for Resolution Advisory Alerts

IVSI Lights Numbering Scheme
Resolution Advisory Alert Processing
Traffic -Advisory Alert Processing
Target: Selection Logic - '
On-Screen Display Logic

TABLE™ -

Aural Alerting Phrases Available in Phase I :AID System

viil

Page

A-3
A—4
A=b
A=7
A-9
A-10
A=12

c-3
c=4

Cc—5 .
C-6
c-7

c-8 -
c-9 -

c~-2

1.0 INTRODUCTION

The Mode $ beacon system, a combined secondary surveillance radar
(beacon) and ground-air—ground data link system, is capable of providing both
the aircraft surveillance and communications necessary to support Air Traffic
Control automation in the future. Many uses of the Mode $ data link within
the FAA ATC system are apparent but are, of course, untried and need to be
validated. The Airborne Intelligent Display (AID) reported here was developed
by Lincoln Laboratory during 1479-1980 in order to evaluate and demonstrate
the use of the data link between a Mode S ground sensor and Mode S
transponder—equipped aircraft. The AID served as a data link interface
allowing the pilot to see, respond to, and initiate communications with a
ground sensor. Later, when Lincoln began testing the Traffic Alert and
Collision Avoidance System (TCAS), the AID became the TCAS display device,
showing position estimates for TCAS-tracked aircraft.

The AID is a microprocessor-based avionics display system which includes
a CRT (modified Bendix color weather radar display), pilot entry device
(keybvard), and annunciator.

The original AID design used a single 280 microprocessor, assembly language
coding, and ROM storage and could not be easily modified to meet growing user
demands. A redesign effort, focused principally on software, was begun to
develop an AID that would be flexible in responding to the needs of a variety
of FAA development programs. The redesign effort is being dome in phases.

The phase I AID system, completed in 1982, supports the TCAS program. The
phase II system will add Mode § data link capability.

This document describes the redesigned phase I AID system. Three
sections follow: Section 2 covers system design, including design objectives
and approach, display requirements, and hardware structure; Section 3 gives a
software overview followed by general descriptions of each of the major phase
I software functional units; Section 4 gives detailed descriptions of these
software functional units.

2.0 SYSTEM DESIGN

2.1

Degign Objectives

‘The objectives of the AID software redesign effort were to:

2.

2.

4,

Se

[§+]
1]
i
n
ptie
ot
o
[
=%
fo

oduce a
oquce

(=9

r b
hanges and easily maintained,

D system that could
[&4

require minimum changes to existing hardware,

develop software on a software development facility (SDF) that could
be inexpensively duplicated elsewhere to allow the FAA Technical
Center and others to develop or modify AID software,

use a program load device,

use structured, top-—down software design techniques.

Design Approach

stated objectives were met by:

distributing the processing load among multiple Z80 single-board
computers (SBC's). This results in processing bandwidth
(instructions/second) and the amount of directly addressable memory
being multiplied by approximately the number of processors used. It
also allows the system to be divided into logical units that can run
in parallel. The software for these units may then be maintained by
different organizations if the defined interface requirements are

strictly observed,

limiting hardware changes to the addition of a second video RAM board
and modification of the video controller. These changes allow more
e

Afbrrnrn mAavrane mamana R ey

o . - Land o oy o
time for software screen E,cu.r:.l.aL.J.uu and eliwinate screen noise.

developing all software on an LSI-11 SDF and downloading object files
to Z80 SDF's for testing and integration with hardware. This
technique has been demonstrated to be far superior to developing
software on Z80 SDF's directly.

using a floppy disk to permit program load before or during flight.
Lead time 1s typically 2 minutes using a single eight—inch disk.

writing all software in the C compiler language. This language'
enforces structured programming. It has been used on other similar
projects and is compatible with the objectives of this project.

2.3 Display Requirements

A major objective of the AID software redesign effort was to produce an
airborne display system flexible enough to respond to the needs of a variety
of FAA development programs. Each development program has specific
requirements in terms of equipment to be interfaced to the AID system and
information to be displayed. The phase I AID system was designed to interface
to a TCAS experimental unit, receiving aircraft position information and
displaying targets in a Planned Position Indicator (PPI) mode on the CRT. The
TCAS/AID installation was used in subject pilot tests at Lincoln. These tests
gathered information on pilots' reactions to the display of TCAS traffic

"advisories under actual flight conditions.

Features of the phase I AID display, especially in the areas of target
symbology and aural alerting, were reviewed by the FAA's TCAS II Operational
Evaluation Working group. This was done to ensure that the flight testing done
at Lincoln would be relevant to future TCAS installations. The phase I AID
display requirements are listed below. A sample display is shown in
Fig. 2.3-1. '

1, Own aircraft

(a) The symbol for own aircraft will be a chevron centered horizontally
on the display, approximately 2/3 down from the top of the display.

(b) Own aircraft altitude will appear in the lower left corner of the
screen when the display is in absolute altitude mode. Own altitude
will not appear in relative altitude mode. :

2. Target aircraft

(a) Target position will be indicated by a triangle located at the range
and bearing determined by the TCAS processor.

(b) An altitude tag will accompany each target, showing relative or
absolute altitude (as selected) in 100's of feet. Non-mode C
aircraft will display three question marks (?277). An up or down
arrow will indicate altitude trend whenever altitude rate 1is > +10
feet/sec. The altitude tag will be in one of four positions
relative to the target triangle: above, right, below, or left.
Nominal position is above, but the position will be altered as
required to avoid clutter with other target information.

(c) Target color will be red to indicate threat (aircraft generating a
TCAS resolution advisory), amber to indicate pre-threat (aircraft
generating a TCAS traffic advisory), or white to indicate proximate
traffic (aircraft within 4 nm and +1200 feet vertically).

(d) Information for threats or pre-threats without bearing will be
written in alphanumeric form in a block in the upper left portion of
the screen. No indication will be provided for proximate aircraft
without bearing.

Fig. 2.3-1. Phase | Aid Display.

(e)

3'

(a)

(b) "~

(e)

(d)

A threat or pre-threat occurring off-screen will be indicated by a
small square located at the edge of the screen at the proper
bearing, An altitude tag will accompany this symbol.

General

A software-controlled aural alerting system will be provided as
specified in Appendix C. The AID will drive a visual alert light
mounted on the forward instrument.panel. The light will illuminate
red for .the appearance of resolution advisories and amber for the
appearance of pre-threat traffic advisories. Pressing the light
will extinguish any illumirated lights and will return a signal to
the AID that the light has been pushed. | Logic for .control of. this
light. is provided 'in Appendix C..

Under normal conditions -the displady will be capable of providing
1 second updateg for up to 8§ targets with full altitude tags. But
as a fail-safe feature, the display will revert temporarily to a
2 second update rate if it is ever incapable of updating all targets
within 1 second.

Fixed information (ownship symbol and range ring) will be-
overwritten {(partially .erased) by alrcraft symbols and their
associated..altitude tags.

A mode selector switch will be mounted in the cockpit. This switch
has four positions which -are described- below.

Switch Position ‘ Result

TCAS OFF Power to AlD is off. Weather radar data

is displayed.

TCAS STANDBY Power to AID is on. Weather radar only

is displayed.

WX RADAR/TCAS Power to AID is on. Weather radar data

is displayed unless TCAS interrupts.
Then TCAS data only is displayed for
duration of interrupt.

TCAS . Power to AID is on. TCAS data only is

displayed.

When the mode selector switch is in the WX RADAR/TCAS position, TCAS
will interrupt whenever 1) A pre-threat or threat advisory has been
generated or 2) extended display criteria are in effect.

4.

The
display.

(a)

(b)

(e)

(d)

(e)

(£)

Keyboard-Selectable Options

following display options will be available for the phase I AID
Default values are underlined.

Range Minimum (rear) distance.
Zom
3nm
4nm
5nm
6nm
Jnm
8nm

Autoscaling on/off. When the autoscaling option has been selected,
the display scale will be adjusted when necessary to allow all
threats and pre-threats to be visible on the display screen. One of
seven scales will be selected with minimum screen distance equal to
2,3,4,5,6,7, or 8nm. Regardless of the autoscaling option selected,
the selected fixed display scale will be used whenever this scale
allows all threats and pre-threats to be visible on the display
screen.,

Altitude format relative altitude
absolute altitude

Proximity suppresgsion suppress proximity advisories (triggered mode)
display proximity advisories (continuous mode)

In triggered mode, proximity advisories are suppressed except when
threat (red) or pre—-threat (amber} advisories are present. The
display resuppresses 8 seconds after all threats and pre-threats
have cleared. 1In continuous mode, advisories (including proximity
advisories) are displayed whenever tracks qualify.
Display criteria normal criteria

expanded criteria (call-up mode)

A "call-up” button will be provided on the keyboard which can
temporarily expand the display criteria. 1If the display is in
triggered mode, then pressing the call-up button resgults in
unsuppressed display for 15-seconds. UDuring this time all proximity
advisories will be displayed. If the display is in continuous mode,
then pressing the button results in display of all tracks within 4
miles and 1200 feet for a 15 second period. No off-screen symbols
will be generated for targets which satisfy only expanded display

criteria.

Number of targets to display. 0-38

The TCAS logic will provide priority ranking for all targets sent to.
the AID. This ranking will be used to delete targets when the
display limit is exceeded,

2.4 Hardware Structure

2.4,1 Overview

Figure 2.4—~1 is a block diagram of the AID hardware configuration.
Phase I components are shown enclosed in solid lines. Components to be added
for phase II are shown enclosed in dashed lines.

The system is partitioned into functional units by the use of multiple
single~board computers (SBC's). The SBC's are connected in a master/slave
configuration., The master SBC, referred to as the service processor, serves
primarily as a general-purpose audio/video processor. One or more slave SBC's
serve as user processors, performing functions which are specific to a
particular user application. All slaves coumunciate with the master via the
§-100 buss. The master then interfaces with the CRT, audio annunciator, and
floppy disk. Unlike the slaves, the master has complete access to the §-100
buss. The slaves use the $-100 data lines and some status and control lines
in their communication with the master. Ilowever, they cannot put an address
on the S-100 address lines. In this sense they are similar to I/0 controller
devices on the buss. '

The sections which follow describe briefly the hardware components shown
attached to the SBC's in Fig. 2.4-1. The hardware discussion ends with
sections on S$~100 Slot Usage and SBC Characteristics.

" 2.4.2 Video RAM, Video RAM Controller, and Video Multiplexer

The video RAM controller has been redesigned to add a second video RAM.
In the original AID, the video controller and the CPU accessed a single video
RAM card. This card contained three 8K banks of RAM —— one each for red,
green, and blue data. Normally the screen was blanked while the computer
updated the video RAM. This caused a noticeable blink on the screen. In
addition, when symbols were purposely blinked, both the computer and the video
controller accessed commmon data lines, causing noise on the screen. To
correct these problems it was decided to use two video RAM cards and to add a
video multiplexer. In this way the video controller can be reading a screen
image from one video RAM while the CPU is loading the other. The controller
can then switch to the updated image in the other RAM during the vertical
retrace of the CRT. This eliminates all blinking and noise problems. It also
provides the CPU with a full video frame period to generate a new frame, The
additional video RAM card is identical to the original unit.

2.4.,3 Audio RAM and Audio Annunciator

The phase I AID system uses three 16K banks of audio RAM for storing
words and phrases to be annunciated. The three banks used are the upper 16K
of the master's onboard memory plus two 16K banks from a 64K RAM card. The
16K off-board RAM banks are selected by the master by de-selecting the onboard
bank with the same address space. The master loads selected words or phrases
from these audio banks into an annunciator RAM, then activates the
annunciator.

eem ™™

£

——] ELM }
S

P

[

"'_'“-""LSMI |<—7‘-—L |
=T ———t P

l;ODE 8 USER

KEYBOARD————7‘H PROCESSOR :

FROM TEU
QR ARINC
INTERFAGE

CAUTION/WARNING
BUTTON/LIGHT

LEGEND
P=PARALLEL
8$=38ERIAL

8BC=SINGLE BOARD

COMPUTER

SMi=STANDARD MESSAGE

INTERFACE

ELM=EXTENDED LENGTH
MESSAGE INTERFAGE

| (SLAVE 8BC)

8 P,
TEU USER 7
KEYBOARD ~————<-mm] (SLAVE 8C) -t

84K
RAM
(-]
P
-—“me] ANNUNCIATOR
SERVICE
PROCESSOR P
_.f. FLOPPY DISK
(MASTER SBC)

PROCESSOR
Pro P 7(..l PRINTER !
L LB N I ¥ J
P, P T P,
7 7
VIDEO VIDEO P VIDEO
RAMO [“7™1 ‘mux RAM 1
VIDEO
CONTROLLER 8
MODE BENDIX
SWITCH CRT

Fig. 2.4-1. AID hardware configuration.

To be consistent with the design philosophy, the audioc data should.be
kept in the appropriate slave, since it is application dependent. However,
this would be inefficient since audio data would then have to be sent back to
the master with each audio command. The audio data file can still be
maintained by the same person or group supporting the application. If
multiple applications exist in separate slaves, then multiple audio data files
can exist and can be loaded into the same or different RAM banks.

2.4.4 Floppy Disk

, Each S$8C has 64K of onboard RAM. ROM is used only for boot program
storage; program and data files are stored on floppy disk and loaded into the
onboard RAM. The phase.I AID system contains a single floppy disk drive and
uses 8-inch, single-sided, double-density floppy disks for storage. Because
only the master interfaces to the floppy disk, the master must be responsible
for the loading and proper distribution of all program and data files. In
response to a system boot, the CP/M operating system is loaded into the
master. CP/M then in turn automwatically loads the program and data files imto
the master. From there, slave programs and audio data files are downloaded

via the 5-100 buss to the proper destinations,

Disk access is required only during initial program load. Following
this, the floppy disk can be removed from the drive and those parts of CP/M
that handle disk access can be overwritten by the master's application

program,
2.4.5 Mode Switch

The Bendix front panel mode switch is used to switch the video display
among four positions: test, weather radar only, combination weather
radar/AID, and AID only. The switch is interfaced to one of the master's
parallel ports on top of the card. When there is a change in the switch
position, the switch interrupt handler causes the new switch position to be
sent to all slaves. The slaves can then change their operation as necessary.

2.4.6 Caution/Warning Button/Light

A combination button/light is interfaced to the phase I TCAS slave via
one of the two parallel ports on top of the card. The upper half of the
button contains a red light labeled 'warning'; the lower half contains an
amber light labeled 'caution'. Software in the slave turns on one of the
lights and annunclates a corresponding audio phrase when warranted by the
aircraft threat environment. When the user presses the button, an interrupt
is generated in the slave. The interrupt handler then extinguishes both the
light and the audio annunciation.

2.4.7 Keyboard and TEU Serial Input

Serial inputs to the phase I TCAS slave are from the aircraft's onboard
TCAS Experimental Unit (TEU) and the keyboard. These use the two serial ports
on the top of the card.

2.4.8 §-100 Slot Utilization

Figure 2. 4-2 diagrams buss slot usage for the AID design. Again phase I
components are enclosed in solid lines; phase II components are enclosed in
dashed lines. The figure also shows card interconnections via connectors on

the tops of the cards.

Note that an additional slave SBC and an ARINC 429 interface card are
shown. Their purpose is to convert ARINC-formatted TCAS data into a format
compatible with the current TEU~AID RS-232 interface. This provides an
interface to Dalmo Victor's TEU equipment. Note that these two cards will
only draw power from the S-100 buss. All communications are through
connectors on the tops of the cards. They therefore have no effect on the AID
cards on the buss. This 3BC's programs are burned into EPRUM's.

The ARINC interface also serves a second purpose. If the ARINC TEST
OUTPUT is connected to the ARINC INPUT, then ARINC test messages, generated
within the ARINC slave, can be sent to the TCAS slave S8C. In this way all
features of the audio/video display can be tested/demonstrated,

2.4,9 8ingle—Board Computer Characteristics

The salient characteristics of the master and slave SBC's are summarized
belew., The 3BC's are supplied by Sierra Dbata Sciences, Fairview Park, Ohio.

The master SBC:
l. uses the Z80A (4-Miiz) processor,
2. contains 64K bytes of RAM divided into four 16K banks,

3. contains 4K of "shadow™ EPROM (that is, the EPROM shares the 64K RANM
address space. It can be switched in or out. It contains a boot
program to load CPM from the disk),

4. 1is compatible with IEEE-696 buss standard (i.e., the IEEE standard
for the S-100 buss),

5. has two serial and two parallel I/0 channels accessible from the top
of the card and,

6. has four counter—timers.
The master communicates with the slave SBC using the same protocol that it

would use to communicate with any other I/0 controller (slave) device. This
protocol has been standardized by IEEE-696.

10

8LOTS NEEDED

1

13

ARINC INPUT

ARINC TEST OUTPUT

TEU INPUT
KEYBOARD

FLOPPY DISK
PRINTER

MODE SWITCH

ANNUNCGCIATOR~
READY INT.

13

18

_ARING SLAVE
8BC

POWER

ONLY

1°]

OR

ARING 428
INTERFACE

POWER

ONLY

TCAS SLAVE
88cC

84K AUDIO RAM

MASTER 8BC

VIDEO RAM A

3

VIDEO MUX

{el

VIDEO RAM B

|

ANNUNCIATOR

DATA LINK
8LAVE 8BC

r——-nﬂ—

L—{ SMI INTERFACE

l——“—n

-
‘

ELM INTERFAGE |

Fig. 2.4-2. 8-100 buss slot usage.

11

8~-100 BUS

The slave $BC:

1. ~uses the Z80A (4-MHz) processor, .

2. contains 64K bytes of RAM divided.into four 16K banks,

3. contains up to 16K of “shadow" EPROM,::

4. has two serial and two (or four, optional) parallel channels,
5. has four counter-timers and

6. contains an X-buss expansion interface.

The X-buss contains lines from all Z8QA pins plus additional contrel and
status signals generated on the board. It may be used to interface to another

memory bank or to a utility card containing a high-speed math chip and
additional serial and parallel ports.

The slave is supplied with a single 2732(4K) EPROM containing a boot
program which causes the CPU to wait for a program download from the master.

12

3.0 SOFIWARE GENERAL DESCRIPTION

3.1 Overview

The AID software, like the hardware, is partitioned into functional units
by the use of multiple single-board computers (SBC's). The master SBC,
referred to as the service processor, serves primarily as a general-purpose
- audio/video processor. One or more slave SBC's serve as user processors,
performing functions which are specific to a particular user application.

Some software, called system software, is common to all SBC's.

The phase I software described in this document provides for a single-
user application and thus contains a single—user processor. This user
processor interfaces to a TCAS experimental unit (TEU) and a keyboard. Its
funetion is to input TEU aircraft position information, process the.
information according to keyboard commands, and generate and send audio and
video data blocks to the service processor. The service processor then drives
the audio annunciator and CRT to produce audic and video output. Phase I
audio outputs are of two types: (1) tones to indicate whether valid or
invalid keys have been pressed on the keyboard, and (2) words or sounds to
inform the pilot of a recomnended maneuver or simply draw his attention to the
display. Video output is a color PWI-type display showing targets at given
ranges and bearings from own aircraft which is located near the center of the
screen.

As stated earlier all programs are written in C. The C compiler allows
direct machine code (object bytes) to be inserted in-line in a C program. The
direct code can reference C—defined parameters. This machine code is used in
some cases to program I/0 interfaces when timing constraints require very
efficient coding.

All programs are composed of tasks and interrupt handlers. A
nonpre—emptive task scheduler satisfies the requirements of this program.
Communication between tasks and between interrupt handlers and tasks is by
means of circular queues. All programs use the same task scheduler design and
gqueue management functions (i.e., functions for entering messages into queues
and removing messages from queues).

Certain naming conventions have been followed. In general, interrupt
handlers contain letters of the attached device followed by IN or OUT
depending on the direction of the data flow. Tasks which serve a function
similar to that of the corresponding interrupt handler are distinguished from
the interrupt handler by an additional letter T. Queue names generally
contain 6 letters, the first three corresponding to the function which inputs
data to the queue, the last three to the function which removes data from the

gueue.

The three subsections which follow give a general description of the
phase I software: Section 3.2 - System Software, Section 3.3 — Service
Processor Software, and Section 3.4 - User Processor Software. A more
detailed description of the software in each of these areas is given in
Section 4, Software Detailed Description.

13

3.2 System Software

Topics to be discussed in this section include interprocessor
coordination functions: system startup (3.2.1) and interprocessor
communication (3.2.2); functions used in common by all application programs:
the task scheduler (3.2.3) and queue management Ffunctions (3.2.4); and

diagnosties (3.,2.5).

3.2.1 System Startup

When an SBC is initially booted (power turned om) it runs a boot program
stored in an on—board EPROM. The slave's boot program initializes the slave
to receive a program download from the master. . The master's boot program
loads the CPM operating system from tracks zero and one of the floppy disk,

This section discusses the initial program load procedure, application
program initialization, and interprocessor startup coordination.

3.2.1.1 Initial Program Load

Except for boot program storage, all mewory in the AID is RAM. The CPM
operating system plus program and data files are stored on and loaded from

floppy disk.

The Sierra Data Sciences' system configuration utility has been used to
modify parts of the CP/M operating system residing on the floppy disk. .
Specifically, an autoload command line has been specified, This command line
contains a list of simulated operator commands. When CP/M is initially loaded
into the master, it checks to see if this command line is present, and if so,
executes the first command. Upon completion, the system does a warm boot and
executes the next command in the command line. This procedure continues
through execution of the last command in the command line.

The first three commands load the three 16K banks of audic data into the
-master's upper 16K memory bank and into banks A and B of the 64K RAM card,
respectively. The fourth command loads a download program into the TCAS
glave. The fifth command loads a corresponding download program into the
master. Together the master and slave download programs then read the slave
application program, one block at a time, from the floppy disk into the
master, then send the program, still one block at a time, to the slave. Once
loaded, the slave application program begins execution. The sixth and final
command loads and executes the master's program. Note that once the master's
application program is loaded and begins running, control is never returned to
CP/M. The master program may therefore overwrite CP/M in the Master's RAM
Memory. .

During system Integration and at other times for troubleshooting, it 1is
desirable to run debuggers in both master and slave. Terminals are attached
to the master and slave serial ports to support this, and software is changed
in the slave application program to configure one of the serial ports for the
terminal. (In normal operation, the two slave serial ports are used for TEU
and pilot keyboard inputs. For debugging the slave serial ports are used for

14

either terminal and TEU or terminal and pilot keyboard.) The download of the
slave application program is accomplished in the same manner as described
above except that a different download program is loaded into the slave.

After this download program finishes downloading the application program, it
transfers control to Sierra Data Sciences' slave monitor program instead of to
the start of the application program. In the master, instead of directly
loading the master program, the standard CP/M symbolic debugger ZSID is

loaded. The master program is then loaded under ZSID control.

3.2.1.2 Program Initialization

Each program loaded into an SBC goes through a similar initialization
sequence. All C programs begin with the function main(). In this application
the initialization process is divided into two parts: that performed by the
function main() and that performed by the task init().

The main() function performs all initialization operations necessary only
at startup and not during a restart. These include:

a) =zero the data area

b} 1load the interrupt vec

¢) initialize the task scheduler

d) initialize all task control blocks (TCB)

e) initialize all tasks (call them and run them to their first suspend
point)

f) schedule the init() task

g) call the task scheduler.

The init() task performs all functions necessary to perform a restart. These
include:
a) dinitialize all circular queue headers
b) initialize all hardware I/0 devices {e.g., the counter—timers,
parallel and serial I/0 chips, audio and video controller boards,

e)
SLe)

Note that the main()/init() partitioning of initialization is more
appropriate in a system in which the program is stored in ROM. 1In that case
the application programs can initiate a restart by scheduling the init{) task.
Since the program is in ROM it is likely that this process will be successful.
However, if the program is in RAM, it is possible that the program itself was
altered during abnormal operation, and restart will not be successful.
Initialization is partitioned as described so that the program will be
suitable for ROM storage if the need should arise at a later date. In the

phase I system, restart is accomplished by rebooting the entire system from
the disk.

3,2.1.3 Interprocessor Startup Coordinatiocn

Slaves complete initialization before tne master and wait for a "PORE"
message from the master., While waiting, slave external interrupt handlers
ignore all data received (i.e., will not wake tasks to process data). When a

15

POKE is received, the slave activates its external interrupt handlers and
sends an acknowledgement back to the master. The master sends POKE messages
to each slave. When all slaves have replied, the master activates the front
panel mode switch handler and sends the current switch setting to all slaves.
The switch setting indicates which slave should send audio/video data to the
master. This completes the startup process.

3.2.2 Interptocessor Communication

Messages sent between master and slave have fixed formats. The first two
bytes of each message contain a type code and a byte couunt, respectively. An
actual transmission can be a string of concatenated, fixed-format messages.
Each transmission of a set of messages is initiated by sending a single byte
containing the total number of bytes to follow (up to 255). The block of
concatenated messages of the indicated length is then sent.

The message formats are shown in Figs. 3.2-1 through 3.2-4. There are
four general message categories: video control, video graphics, audio, and
miscellaneocus,

Figure 3.2-1 shows video control messages. All messages describing a
single video frame must be preceded by a START-OF-FRAME message and followed
by an END-OF-FRAME message., The screen is blanked by sending a CLEAR message.
An initial SCALE message is sent from the user processor to the service
processor to specify the dimensions of the video screen. (See Section 3.4.4
for a description of the virtual screen concept.)

The remaining three video control messages (COLOR, LINE TYPE, and REVEKSE
VIDEO) each select an option which then remains in effect until changed by a
CLEAR command or the video control message with a different option selected.
The control byte in the COLOR message selects one of seven colors. The
control byte in the LINE TYPE message selects dashed, dotted, or solid lines.
The control byte in the REVERSE VIDEO message selects either reverse video on
or off (off = normal mode).

Three video graphics message types have been defined: STRING, CIRCLE,
and LINE. These are shown in Fig. 3.2-2. The STRING message specifies the
-X,Y starting coordinates of an ASCII character string, a reference position
for the first character (i.e., centered on X,Y, lower left at X,Y, etc.), and
the ASCII string itself., The ASCII string is limited to 32 characters, the
width of the screen for our application. The CIRCLE message gives the X,Y
coordinates of the circle center and its radius. The LINE message contains a
byte specifying the number of line segments to be drawn and the X,Y
coordinates of the lines.

Figure 3.2-3 ghows the three types of audio messages. The basic AUDIO
message specifies an offset into the audio RAM data area and the length of
that data area in bytes., HMHultiple AUDIO messages may be combined to form a
single phrase by preceding the AUDIO messages by a START-OF-AUDIO and

CLEAR: : START-OF-FRAME: END-OF-FRAME:

TC10 TC11 TC12
] 0 0
SCALE: COLOR: ‘ LINE TYPE:
TC13 TC14 TGS
4 1 1
XMAX LS8 CONTROL CONTROL
MSB
YMAX LsB
MSB

REVERSE VIDEO:

LEGEND
TC=TYPE CODE

Tc20

1

CONTROL

Fig. 3.2-1. Video control messages.

17

S8TRING:

TC17

COUNT
X-COQRD L8B
MSB
Y-COORD L88
MS8B

REF. POS.
tJ.o ASCH
CHARS

Fig. 3.2-2, Video graphics message.

CIRCLE:
TC18
6
X-COORD LSB
MSB
Y-COORD LSB
MSB
RADIUS Ls8
MSB

18

LINE:

TC19

COUNT

+ SEGMENTS

X1
Y1

X2
Y2

1

"}

XN
YN

START-OF-AUDIC: END-OF-AUDIO: AUDIO:
""" TCa0 _ - TCaM B TC32
0 0 4
OFFSET LSB
MsB
LENGTH LS8
MsB

Fig. 3.2-3.. Audio messages.

19

POKE:

TCO

USER MODE
SWITGH SETTING:

TC21

1

SWITCH SETTING

SLAVE AGKNOWLEDGE: ERROR:
TC1 TC2
0 COUNT
ASClt
CHARS A

. .
LY

MODE
SWITCH SETTING:

TC40

1

SWITCH SETTING

Fig. 3.2~4. Miscellaneous messages.

20

following them by an END-OF-AUDIO. All such enclosed AUDIO messages are
accumulated in the annunciator RAM. When an END-OF-AUDIO message is
recognized, the annunciator is activated. A basic AUDIO message received
outside these framing wessages is annunciated immediately.

There are five types of miscellaneous messages, shown in Fig. 3.2-4.
The POKRE message is sent from master to slave during the communciation
establishment process. The SLAVE ACKHOWLEDGE message 1s sent from slave to
master each time the slave receives a message from the master. The ERROR
mesgsage provides a means for sending a free text ASCII diagnostic message from
slave Lo master. The intent was for ERROR messages to be printed on the
cockpit printer. However, since the printer is not included in the phase I
system, ERROK messages are currently ignored by the master. The final two
message types deal with the front panel mode control switch setting. The
MODE SWITCH SETTING is sent from master to slave each time the position of the
front panel mode control switch is changed. The USEK MODE SWITCH SETTING is
passed from slave to master. It is set by the slave to reflect the priority
of the slave's data and is used by the master only when the switch is in the
combination AID/weather radar positions. The master then determines whether
to display AID (slave) data or weather radar data based on the USER MODE
SWITCH SETTING.

3.2.3 Task Scheduler

The application software is broken into functional blocks called tasks.
Fach task carries out a specific function., Each task is written as a
sequential program, i.e., proceeding from beginning to end without a break in
execution. At any one time, several tasks may be ready to run. Since only
one task can be executing at a given time, the scheduler performs the function
of determining which of the ready tasks to execute,

Figure 3.2-5 shows the three possible states of a task: Ready, Running
or Waiting. A Waiting task is stopped because it is waiting for some
condition to occur, such as receipt of an input character. A Ready task is
ready to run but is stopped because another task is executing. The Running
task is the currently executing task. The transitions between the various
states are triggered by the run(), sleep() and wake() functioms. The
scheduler executes the run() function to start a task running. The Running
task will execute the sleep() function when it reaches a point in the
execution where it must wait for some condition, such as keyboard input.
Sleep() saves the task's stack pointer in its Task Control Block (TCB) and
sends control back to the task scheduler, The scheduler then determines the
next task to be executed from the list of Ready tasks. Tasks are transferred
from Waiting to Ready by the wake() function. Wake{) can be issued by an
interrupt handler or by another task.

Each task has an associated Task Control Block as shown in Fig. 3.2-6.
The TCB entries include the task Status flag, Signal flag, stack pointer, and
polnter to the next TCB, The Status flag, when set, indicates that the task
is ready to run. The Signal flag indicates that the task has been awakened by
an interrupt handler or another task. The purpose of the Signal flag is to

21

READY

RUN:

WAKE:

SET STATUS=1
SET SIGNAL= 1

]

WAKE:

SET SIGNAL=0

SET 8TATUS =1
SET SIGNAL= 1

-1 RUNNING

SLEEP:

SLEEP:

IF SIGNAL =1,
SET SIGNAL=0
SET STATUS={

'

WAITING

IF SIGNAL=D,
S8ET STATUS =0

Fig. 3.2-5. Task states.

22

POINTER TO NEXT TCB

TASK ENTRY POINTER

TASK STACK POINTER

TASK STATUS FLAG

TASK SIGNAL FLAG

Fig. 3.2-6. Task control block,

23

prevent a task wakeup from being lost while the task 1i¢ running., The stack
pointer is used to save return addresses for tasks that are Waiting or Ready.
Each task has-its own stack. .The pointer to the next TCB points te the next
highest priority task.

When a task is awakened, the. Status and Signal flags are both set. The
task is now in the Ready state. When a currently running task executes the -
sleep() function and enters the Waiting state;, the scheduler examines the TCBs
to determine the highest priority task that has the Status flag set, The
scheduler then -clears the Signal flag of this task and starts the task
running. If the task is awakened while running, the Signal flag is set, so
that :wake ups are not lost while a task 1s executing.:. The sleep() function
always checks the signal flag-of the Rumning task before suspending execution
of the task. If set, sleep() clears the signal flag and resumes executing the
Running task. - -

The application software functions operate below the executive level.
They are implemented ‘as re-entrant tasks. When a task is running, it cannot
be suspended by another task. This type of task scheduiing is termed
nonpre-emptive since a higher priority. task cannot pre~empt a running.task..
Task execution is suspended when.a-hardware interrupt occurs but the running
task is restored ‘when the iaterrupt service is complete. This type of task
scheduling avoids complex problems associated with inter—task .data transfer,
However, it also means that higheér priority tasks can be locked out -by lower
priority tasks.. For this reason, tasks must-be designed to cooperate in their
use of available processing time.

3.2.4 Message Queue Management

After initialization all intertask and interrupt handler/task
communication is performed by means of queues. Since tasks run asynchronously
this assures that messages will not be lost (over—written). Since the
messages required in this application are variable-length, the queue entries
are also variable length. The same queue management functions are used by all
application programs.

The queue access functions are written so that when an attempt is made to
enter a message in a full queue, the task is suspended. Later, when a message
is removed from the queue, the suspended task is awakened so that it can store
its message, Similarly, when a task attempts to remove a message from an
empty queue it suspends. When a message is later placed in the queue the
suspended task is awakened. In this way messages are "gated" through the
program.

3.2.5 System Diagnostics

There are two forms of AID system diagnostics: non real-time and
real-time, Non-realtime diagnostics are stored on their own floppy disks and
run separately from the application program, either routinely to perform
system checkout or specifically to pinpoint a suspected malfunction. In
contrast, realtime diagnostics are part of the application program. They
monitor actual system operation.

24

3.2.5.1 Non—-Realtime Diagnostics

The reliability of the AID hardware has been excellent. There have been
no known failures in any hardware components. Therefore the only diagnostics
run on a regular basis are floppy disk diagnostics. Two in—house programs
exist, TFLOP - test floppy disk, and WFLOP — write floppy disk. 3Both programs
communicate with the floppy disk controller chip and print out any unusual
status conditions which occur during disk operations. The programs are
interactive and user—friendly, guiding the user through selection of a variety
of options for testing the health of the entire floppy or a specific area
only. In practice, TFLOP performs all necessary tests. WFLOP is not normally
used.

A diagnostic package was purchased which runs under the CP/M operating
system.and is designed to test each major component of a CP/M-based Z80
microprocessor system. These components include memory, CPU, disk drives, CRT
terminal, and printer. We are not currently using this diagnostic package.

It requires modification to rum successfully with our Sierra Data Sclences
equipment, but it is available as a starting point should some of these tests
be congidered necessary in the futrure,

WE LUIG G J sl BN (8] .

3.2.5.2 Realtime Diagnostics

The AID realtime diagnostics operate in one of two ways., (1) The system
detects an error condition and sends a message either to the CRT or the
printer. (The printer is not implemented in phase I.) (2) The user selects a
test mode of operation (e.g., presses the TST key on the keyboard), then
checks to see that the audio and video cutputs are correct. The method
described in (2) checks the performance of the system as a whole. The error
checks used in method (1) are present and operational at all times, whether
the software and hardware are ip special test modes or not. These checks
catch more specifie errors that might not be apparent from simply observing

the system audio and video outputs.

The error conditions currently printed on the CRT include (1) 'user
inactive' - i.e., slave not responding to POKE messages from the master, (2)
'no data' - no TEU input received for 8 seconds, and (3) 'bad input' - TEU
input fields do not pass reasonableness checks. Many other error conditions
are sent from the slave to the master intended for the printer. These include
checksum errors in input data, queue overflows, timing conditions that should
never occur. These error checks are currently present only in the slave. In
phase II, when the printer is availahle, error checks will be included
throughout the master as well.

There are currently four test states in which the system can be run and
observed. In all four states, user interactions via the keyboard and the

caution/warning button function normally. For test states (3) and (4) refer
e +tha ATN Hardwara Rlnel Niagram (Rigo 2 A—]) and f"he S-—-]nn Rus Slot nsa

LU LUC Ol MQLURGl T DA Ulh WAG/RLGM (L Aife AsT 2 [-SRLE N EA

(Figl 2'4_2)'

[o]
N

(1) By pressing the TST key on the keyboard, the user selects a mode of
operation in which canned data for 8 targets is input once per second to the
user processor's TEU task for processing. Each target's range, bearing,
color, and associated audio are updated each second in a realistic manner,
The data repeats approximately every three minutes.

(2) When the TST mode is uséd in combination with the DEMO key, the user
can select one of eleven fixed target scenarios or one of ten moving
encounters showing own aircraft with one or two intruder aircraft., (See
Fig. 3.4-2 for operating details.)

(3) By changing the cable which plugs into the AID system's TEU input
port, the user can input actual recorded flight data for processing. TEU
inputs from four encounters were recorded onto floppy disk. A separate
single-board computer runs a program which reads the data from disk, then
sends it at one-second intervals over am RS~232 link to the usSer processor.

(4) A shorting plug can be used to route test data from the ARINC slave
single-board computer into the ARINC 429 interface to be sent to the user
processor TEU input port. This provides yet another set of audio and video
outputs which can be observed.

3.3 Service Processor Software General Description

The service processor is intended to be a general- purpose processor in
the AID system. It acts as bus master and is responsible for controlling the
AID display hardware, the audio annunciator system, and other utility devices,
such as the cockpit printer, thus allowing the user processor to concentrate
on its particular application. Since the service processor is the bus master,
it also has responsiblity for loading the user software into the user
processor,

3.3.1 Overview

The primary function of the service processor is the control of the video
display so that the user processor need not be concerned with the details of
driving the display. A set of general-purpose graphic commands are provided
by the service processor in order to allow a user to easily generate graphic
and alphanumeric displays. The service processor also provides control of the
audio annunicator hardware, thus relieving the user from the details of
directly handling the device, Additionally, the service processor can provide
support for other utility devices which may be required by user applications.

The software in the service processor consists of several interrupt
handlers, a task scheduler, and several utility tasks (see Fig. 3.3-1).
Functionally, the service processor receives commands from the USEr processor;
these are then dispatched to the appropriate task for execution (see :
Fig. 3.3-2). In addition, the service processor sends status, commands and

data to the user processor, depending upon the configuration required by the
user software and hardware.

26

*EXECUTIVE®

TASK SCHEDULER

ggg;‘ AUDIO | SCHED
2 3 ‘

INTERRUPT HANDLERS

TIMER
1

TASKS

Fig. 3.3—1. Service processor Interrupt handlers and tasks.

27

SWITCH

2 c
INTERFAGE SWITCH
MASTER/SLAVE AUDIO
' OMMAND CONTROL AUDIO
8-100 INTERFAGE |——3m gnspncu] CONTF AUDIC
DRIVERS
, INTERFAGE
| othen |
I——-—] DEVICES/ |— -
TASKS
' |
GRAPHICS
PROCESSING
VIDEO
INTERFACE [™ VIDEO CARD

Fig. 3.3-2. Service processor functional block diagram.

28

Communication among tasks and between tasks and interrupt drivers is
accomplished by means of first-in-first-out queues, The flow of data between
interrupt handlers and tasks and between tasks is shown in Fig. 3.3-3., The
task scheduler is nonpre~emptive and runs tasks on the basis of priority.

3.3.2 Interrupt Handlers

Since the service processor may be required to handle devices needing
fast response, it is necessary to minimize interrupt latency. To this end, a
multi-level, prioritized interrupt structure has been implemented, requiring
that low-priority interrupts, which require appreciable processing, be
interruptible. In general, therefore, most interrupt handiers consist of a
task to perform time~consuming computations, and a very short, fast interrupt
service routine.

The numbers under the interrupt handlers shown in Fig. 3.3-1 indicate the
relative priority of the interrupts, with 1 being the highest,

3.3.2.1 The 3ervice Processor/User Processor Communications
Interface

Data transfers between the service processor and the user processor
consist of variable~length blocks, the first byte of which contains the count
of the subsequent bytes in the transfer, thus constralning transfers to less
than 256 bytes. The first byte, containing the count, also acts as a
handshake signal, allowing the two processors to synchronize the transfer.
Each transfer direction is fully independent, requiring a separate interface
driver and task to manage the transfers (see Fig. 3.3-2).

Messages received from the user processor are initiated by an interrupt
from the user processor pert. The interrupt handler upin{) passes this one
byte message to upint(), the user processor input task, which receives the
remaining bytes of the transfer. Messages sent to the user processor are

output directly by task upoutt{).

3.3.2.2 The Timer Interrupnt Handler (ctcin())

The counter~timer circuit interrupt handler, ctecin(), receives an
interrupt whenever the timer counts down to zero. This interrupt merely puts
a message into the timer() task input queue and wakes the timer() task. It is
the responsibility of the timer() task to determine what actions, if any, this
event triggers.

Interrupt Handler (bswin())

The mode switch interrupt handler monitors parallel port lines which are
connected to the Bendix front panel mode control gswitch. Whenever the state
of this switch changes an interrupt is generated. The state of the switch is
read by bswin() and passed to the mode switch task, bswtch(). The parallel
port is then reconfigured to respond to any change from the new switch

setting.

29

INTERRUPT

< MSWUPO >

VIDTIM j

HANDLERS TASKS
CTCTIM
CTCIN —-(QUEUE)—’ TIMER
UPIUPI
UPIN —-—(QUEUE)——— UPINT UPIDSP
UPOUTT
AUDAUD
AUDIN ——(aueus)—’ AUDIO
MBWMSW
MSWIN ‘_—{QUEU:>_’ MSWTCH
DSPAUD
MSWVID DPSVID DSPTCH
e e |
|“
! VIDEO

< TIMVID >‘<‘

Fig. 3.3-3. Service processor data flow diagram.

30

3.3.2.4 The Audio Control Board Interface (audin())-

The audlo control board .interface handler, audin(), receives an interrupt
whenever the audio generator control board has completed a message. A one—~- -
byte message is queued to. the audio() task to netify it, and the audio() task
is awakened.

3.3.3. Tasks

]

The primary tasks in the service processor are shown in ¥ig. 3.3-1 along.

with their relative priority. Figure 3.3-3 shows the interaction and data
flow between the tasks. The following descriptions give an overview .of the

primary .functions of ‘each of the tasks.

3,3.3.1 . The: User Processor Input Task (upint())

This -task is initiated by the interrupt handler. for. the user processor.
input port, It is responsible for-completing the transfer and moving the
message -to the command dispatch task, dsptch(). The principal reason for this
architecture is to allow multiple-user processors to: communicate with the
service processor- in an orderly fashion. There will be a separate task for
each user processor on the buss.

3,3.3.2 The User Processor Output Task (upoutt(J}) -

This task has several input queues, one for each of the tasks required to
transmit data to the user processor. Upoutt() scans these queues and
assembles a message- (less than 256 bytes) which is-sent to the user processor.
No irterrupts are.involved in this -transfer, so no- interrupt handler is
necessary. (The user processor has the hardware and software required to
synchronize this traasfer.)

3.3.3.3 The Command Dispatch Task (dsptch())

This task has as input the command streams coming from one or more user
processors. The commands are decoded and dispatched to the appropriate
processing task (audio, video, etc.) via the queue to that task. This task,
then, has the responsibility of coordinating the use of one device by several
users, and resolves any conflicts in a mannex consistent with the device ia
use. Figure 3.3-4 shows a functional flow chart for this task in the case of

one user processor.

3.3.3.4 The Video Task (video())

The two main functions of the video() task are: {1) set the appropriate
bits (pixels) in the video RAM in order to generate a display from the user
graphic commands and (2) control the video RAM. Figure 3.3-5 gives an overall
functional diagram of this task.

31

DSPTCH

B SLEEP

J

GET Q

(UPIDSP)

MESSAQE
iIN QUEUVE

VIDEO YES PUT Q
MESSAGE ——
? : (DSPVID)
AUDIO YES PUT Q
MESSAGE
? (DSPAUD)
POKE YES PUT Q
MESSAQGE
(DSPUPO}

Y i

Fig. 3.3-4 Dispatch task flowchart (one user processor).

32

VIDEO

GET Q

(TIMVID)

MESSAQGE

SLEEP

l

GET Q

{DSPVID)

MESSAGE
IN QUEUVE

. DISABLE -
? IN QUEUE FLASHING RE-INIT
?
FLASHING END VIDEO UPDATE ENABLE
* ENABLED MESSAGE SCREEN FLASHING
SWITCH PUT Q
VIDEO RAM (VIDTIM)
DECODE
FUT O GRAPHIC
(VIDTIM) MESSAGE
LINE CIRCLE STRING COLOR OTHER

33

Flg. 3.3-5. Video task flowchart.

The video() task provides a set of general-purpose commands with which
the user can easily generate the type of display needed. Commands provided
include drawing a circle of a specified center and radius, drawing a line

given two end points, and displaying a string of characters and special
symbols at an arbitrary screen position. In addition, among other features,
the user is able to select the color of the objects to be displayed and the
type of line to be drawn (e.g., solid, dashed, dotted}. Scaling commands are
also provided to convert user coordinates to display coordinates so that the
user need not be concerned with the resolution of the screen and other
hardware specific details of the video display.

The graphics are driven on a frame-oriented basis, such that all contents
of the previous frame are lost. A start-of-video message must be sent by the
user to begin accumulating the graphics for the next display. As each graphic
conmand is received, it is "drawn” into the currently available video RaM.
When the end-of-video message is received, the screen is updated by switching
video RAMs.

3.3.3.5 The Audio Task (audio())

The audio() task accepts commands of the form of an offset and length.
It is assumed that the data needed to generate the audio has been loaded by
the service processor into a contiguous area of memory. The audio{() task uses
the offset as a pointer into this area and sends the number of bytes specified
by the length to the audio control card. These audio messages are accumulated
until a command is received to start the audio annunciation. In this way, a
number of audio messages can be stacked and then annunciated at once. (The
hardware puts a limit of 4K bytes on the total that can be accumulated for
subsequent annunciation).

Figure 3.3-6 gives a functional flowchart of the audio() task.

3.3.3.6 The Timer Task (timer()})

The timer() task provides a general-purpose timing facility for other
tasks. It accumulates ticks from the ctcin() interrupt routine and maintains
a list of other tasks which need to be awakened after a certain number of
clock ticks. The list is generated by requests coming from the other tasks
and is of the form of periodic or one-shot wake—ups, both of which can be
cancelled, if necessary. Because of the nature of this task, it is the
highest priority task.

3.3.3.7 Thé Mode Switch Task (mswtch())

This task is awakened whenever the front panel mode switch changes state.
The new state is recorded and then sent to the command dispatch task which in
turn sends the setting to the user processor ocutput task(s). The switch
position controls what is displayed on the CRT: weather radar data only, AID
data only, or combination weather radar/AID data.

34

SLEEP el
GET Q
T -
{DSPALD)

QET QW

NO

(AUDAUD)

MESSAGE QET Q

IN QUEUE

{AUDAUD)

DONE
FLAG SET

?

MESSAGE
IN QUEUE

8ET
DONE FLAG

START YES
OF AUDIO

?

SET
START FLAG

END
OF AUDIO
v

START &
DONE FLAG

YES CLEAR

#

SEND MESSAQGE
TO AUDIO CARD

YES

START
FLAG SET

?

Fig. 3.3-8. Audio task flowchart.

35

START
AUDIO CARD

3.4 User Processor Software General Description

3.4.1 Overview

The AID software system is designed to allow division of processing load
among multiple single-board computers (SBC's) in a master/slave configuration.
The master SBC, designated the service processor, serves primarily as a
general-purpose audio/video processor (see Section 3.3). One or more slaves
serve as user processors, each performing functions which are specific to a
particular user application. I/0 devices which are application-specific are
attached directly to the user processor(s).

The phase I AID software provides for a single-user application and thus
a single-user processor. Its function is to input aircraft information from a
TCAS experimental unit (TEU) and produce audio/video output by sending
appropriate graphics data blocks to the service processor.

There are five basic types of software contained in the user processor:
a main program, a task scheduler, tasks, interrupt handlers, and a user
graphics package. All data transferred between tasks and between interrupt
handlers and tasks 1Is passed by means of circular queues. The user
processor's main program, task scheduler, and queue management protocols are
similar to those in the service processor and are discussed in Section 3.2,
The user processor's tasks, interrupt handlers, and user graphics package are
described here.

' t % tasks and five interrupt hanalers. A
block diagram of these is sh n Fig. 3.4-1. The user graphics package, not
shown in the block diagram, is a set of rouatines which may be called from any
task within the user processor.

Iinitially all of the user processor's software is -
processor via the 5-100 buss., Control is passed to the user main program,
which performs a number of initialization operations, then wakes init() and
calls the task scheduler. The task scheduler will immediately run init()
which performs more initialization operations. Thereafter the program loops
in the scheduler, continually checking for tasks which are ready to run.
Tasks, once begun, may not be interrupted by other tasks, although a task may
voluntarily suspend itself at any point to allow the task scheduler to

schedule another higher priority task. Interrupt handlers may interrupt both
tasks and other interrupt handlers depending upon priority.

L A=1=2° 1~ 3 A= 11) o b A A - ‘-tr -——-—c bl LI R
There are four sources of input to the user processor: keyboard, TEU,
timer and service processor. Each input has a corresponding interrupt
handler: keyin{), teuin{), ctcin() and spin(). There is one output
destination, the service processor, with its interrupt handler spout{).

TEU inputs give position and equippage information for own aircraft and
up to eight other aircraft. Data is transferred from the aircraft's TEU unit
directly to the processor via an RS5-232 link at one-second intervals. Own
aircraft information is always included. Other aircraft information is
included when available. Teuin{) inputs this data block from the R§-232,
places the information in the teuteu circular queue, and wakes the teu()

task.

36

INTERRUPT TASKS

HANDLERS
GTCIN :] STIM NIT
KEYKEY
QUEVE
KEYIN {KEYSTROKE KEYBD
HARAGTERS),

KEYTEU

TIMTEU

(DISPLAY QUEE
el (ONE S8ECOND
WAKE-UP)

ARRAY)

TEUTEU |
QUEUE -
TEUIN (AIRCRAFT TEU
POSITION e RERE——
INFO.)
e
QUEUES QUEVE
(AUDIO/VIDEO (AUDIO DATA
DATA BLOCKS)
BLOCKS)
. SPOBPO
QUEUE
SPOUT (AUDIO/VIDEO SPOUTT |=
DATA
BLOCKS)
SPITEU
it QUEUE
(*POKE"’ (SWITCH
MESSAQE) SETTING)
8PISPI
QUEUE
SPIN ("POKE" AND SPINT
SWITCH

SETTING)

Fig. 3.4~ 1. User processor functional block dlagram.

37

The keyboard allows a user to change various TEU display characteristics,
(e.g., relative or absolute altitude, maximum range displayed). Keyboard -
inputs comsist of a single byte. They are. asynchronous and may occur at any
time. When a key is depressed, an interrupt is generated., Keyim{) inputs ¢
key's corresponding 8-bit byte, places it into the keykey queue, and wakes -

the keéybd() task.

he

In phase I, two types of input (not including the initial program load)
are received from the service processor: a l-byte message which conveys the
setting of the Bendix front panel ceatrol switch and a zero—length "POKE"
message which is used to indicate that the service processor is operational.
Both message types are received by spin() and passed via the spispl queue to
task spint{}.- An acknowledgement for each is immediately .sent back.to the
service processor via spoutt() and spout(). The switch message is passed to
the TEY: task where it is used in determining whether dudio and video data

blocks should be sent to the service processor.

Currently all user processor output is directed to the spout(). interrupt
handler for.transfer to the service processor., With miror exceptions ({see
Section 3.2.2) all outputs are variable-length general-purpose graphics data -
blocks which have originated in the teu() or keybd() tasks and been passed.

through the spoutt() task to spout{). These data blocks are used by the-
service processor to produce audio and video output. ...

3.4.2 Interrupt Handlers

Thére are four sources of-ipnput to the user processor:.. keyboard, T&U,
timer, and service processor, with corresponding interrupt -handlers keyin(),
teuin(), ctecin(), and spih(). There is one'output destination, the service
processor, with corresponding interrupt handler spout().

The keyboard and TEU interface to the slave via serial input ports. The
slave contains a serial interface chip that supplies two serial ports
(Z80~SI0). At startup seven bytes are output to each port for initialization.
During program operation the interrupt handlers simply save the CPU state,
input a byte and store it in a queue, then restore state and return control to
the interrupted function. Keyin() wakes the keyboard task each time a byte is
received; teuin() wakes the teu() task only when an entire input message has

been received from the TEU,

The slave SBC contains a chip tnat supplies four counter—timers
{(z80-CTC). In initialization three bYtes are sent that set its mode, time
interval and interrupt vector. During program operation, control is passed to
the interrupt handler ctecin() at the selected time intervals. Ctcin() saves
all CPU registers and flags on a dedicated stack, wakes the timer() task, then
restores registers and flags and returns coatrol to the interrupted functien.

Communication between the service processor and user processor is via the
Q=100 huce Both service processor and user processor contain two dedicated

[AU uaooe AFLZ G LE ARl VA Wi P Wi osis Crerie ==

parallel ports (280-P10) for 5-100 buss communications. The user processor

L
co

interrupt handlers spih() and spout() handle inputs from and outputs to the
service-processor respectively. Spih() is awakened each time the service
processor sends a byte to the user processor. The first byte of all UP-SP and
SP-UP transmissions contains the byte count of the message which is to follow.
Following receipt of a byte count from the SP, spih() accumulates bytes until
an entire message is received. It then awakens the spint() tasks and passes
the message to spint{) for processing.

To initiate a transfer to the service processor, spout() outputs a single
byte on the 5-100 buss, This output, the byte count for the message to

Eoml 1 mre nn A - - 4t -~
follow, is configured to generate an interrupt im the service processor, T

service processor sets up a loop to receive the proper number of bytes.
SPOUT then sends the message, this time without generating an interrupt on
each byte.

a
[$1=

3.4.3 Tasks

The user processor contains six tasks: dinitialization (inict()),
keyboard (keybd()), TEU, interval timer (stim()), service processor output
(spoutt()), and service processor input (spint()). A general description of
init() is given in Section 3.2.1.2. General descriptions of the remaining
five tasks are given in thils section, Detailed descriptions of all user

processor software is given in Section 4.3.

nnnnnnnnnnnnnn LIS b +hon

PR 1 -l _.‘.. . s S -

The EEU.\} task is the major task within the user Processor . BWith the
exception of init() and stim{) all other tasks serve primarily to direct data
to or from the teu() task. Keyboard commands are processed by the keybd()
task, then passed to teu(). Teu() uses these commands in processing aircraft
position informatfon in order to produce graphics data blocks. These data
blocks are passed from teu() to spoutt() for tramsfer to the service
processor, '

3.4.3.1 The Keyboard Task (keybd())

The keyboard task has two primary functions: (1) to examine keyboard
entries for validity and generate an immediate appropriate audio response and
(2) to update a display options array with valid keyboard entries and send

this array to the teuf) task for processing., Figure 3 4~2 shows the keyboard
£fY 40 o

T4 e T |
r;su FaT Jde

............ = = Agram AL Teaulh

I.(Cy dSHLgllulﬁllLB- l‘lll UV“.:l.d-J.J.. u.l.dE.Lﬂul oL l\.::_yuu. J -

i
et
o
(=}
pA
=
=
s

There are two basic types of user keyboard commands: those which
consist of a single keystroke and those which are multi-keystroke., Keystrokes
which are not properly ordered in a multi-keystroke command are considered

invalid.

When keybd() is awakened, it first retrieves a character from the
circular input queue. Single-keystroke valid characters result in an update
of the options array and generation of a high audio tone. Single—keystroke
invalid characters result in generation of a low audio tone. In either case
(valid or invalid), the program then loops back to input another character.

39

40 41 a2 43 20 21 22 10 1 12
pre TOD | 1 2 3
44 45 46 47 24 25 26 14 15 =
) I
CLR CLR
ALT oisp| | ke I“‘ODE 4 6 8
48 49 44 4B 28 29 24 18 19 1A
SARI ltmia] | ext| |rnaE SURV 7 8 9
COR - 9
4C 40 4E 4F 2¢C 20 2E 1C |D I1E
TAU T8T DEMO] NTGQT Fusq _ STEP A g B

REL ALT Selects relative altitude format.

TOD Places time-of-day on screen. TOD clock on board aircraft
must be properly set,

ABS ALT Selects absolute altitude format.

CLR DISP Clears display.

CLR KB Clears keyboard entries,

MODE Selects a set of optionms.

BAR COR Fnters barometric correction in hundreds of feet. Corrections
are cumulative. TFor use in absolute altitude mode.
EXAMPLE: BAR COR ~ 2 would decrease own absolute altitude
by 200 feet,

TRIG Selects threat-triggered mode (proximity advisories
suppressed)}. TRIG is default mode. Pressing key toggles
between threat-triggered mode and continuous mode. 1In
continuous mode, max range for proximity advisories is shown
in green in lower right corner.

EXT Selects extended display criteria (4 nm) for 15 seconds.
"RNG 4" will appear in lower right corner of display.

RNGE Selects range and autoscaling. EXAMPLE: Entering "RNGE 20"
provides scale of 2 nmi to rear without autoscaling.
Entering "RNGE 21" provides scale of 2 nmi to rear with
autoscaling. :

TAU Selects display of current tau threshold value,

TST Puts display in test mode.

DEMO Selects canned demonstration frame. (00 - walking test data
Operable only in TST mode. 01-0B fixed display

11-1A FAA scenarios)

NTGT Selects maximum number of targets which will be displayed.

SURV Selects surveillance display mode (continuous mode, 5 nm).

PAUSE Freeze display. Operable only with FAA test scenarios.

STEP Single-step display. Operable only with FAA test scenarios.

Fig. 3.4-2. Keyboard assignments.

40

SLEEP

PROCESS=0

DEFAULT:

GETCHAR (CHAR)

GET CHARACTER
FROM INPUT QUEUE

YES

18 NIT
AUNNING

?

TONE =VALID

CASE REL ALT,
ABS ALT, TOD, CLR
DISP, CLR KB, TRIG,
EXT, TAU, T8T, BURY,
PAUSE, STEP:
CASE MODE:
CASE BAR COR:
CASE RNGE:
CASE DEMO:

CASE NTQGT:

PASS OPTIONS
ARRAY TO TEU TASK
WAKE TEU TASK

(BINQLE KEYSTROKE COMMANDS)

UPDATE OPTIONS ARRAY
PROCESS=1

MPROC

PROCESS MULTI~KEYSTROKE
MODE COMMAND

BPROC

PROCEBS MULTI-KEYSTROKE
BAROMETRIC CORRECTION CMD

RPROC

PROCESS MULTI-KEYSTROKE
RANGE COMMAND

DPROC

TONE = INVALID

CALL AUDIO (TONE)

PROCESS MULTI-KEYSTROKE
DEMO COMMAND

NPROC

PROCESS MULTI-KEYSTROKE
NUMBER~QF-TARGETS COMMAND

Fig. 3.4-3. Keyboard task flowchart.

41

In contrast, each time the program recognizes the start of a
mslti-keystroke command, a subroutine specific to that command is entered.
The program will remain within this gubroutine, executing its own calls to
fnput characters and generate audilc tomnes, until either the correct sequence
of characters or a keyboard clear has been entered. Only then is the options
array updated and the subroutine exited. The program then loops back to the

the beginning of keybd() to input a new character.

Each time the options array is updated, a flag (PROCESS) 1s set. When
the keyboard task has emptied its input queue, it checks the flag setting to
determine whether or not to output the options array and wake the TEU task

before golng to sleep.

3.4.3.2 The TEU Task (teu())

sar processor. Its

1 rha madinr task within the 11 r pr

The ‘I:E'Li(} task is L€ major h
functions are to input keyboard commands and aircraft position information,
process the aircraft information according to the keyboard commands, and
output audio/video graphics data blocks to be transferred to the service

processor.

Inputs

Primary TEU inputs are from two sources: the- TEU interrupt handler
teuin() and the keyboard task keybd(). Inputs from teuin() arrive once per

second. They are variable length data blocks which contain position and
. equippage information for own aircraft and up to elght other aircraft.

Users may enter keyboard commands at any time. It is the function of the

keyboard task to reject invalid keystrokes and accept valid keystrokes in

order to update a display options array. Each time this l6-byte display
options array changes, keybd() passes it to the teu() task.

Outputs

Outputs from the teu() task are the audio/video data blocks described in
Section 3.2.2 and Figs. 3.2-1, -2, -3, and -4.

Tagk Structure

The teu() task is made up of three levels of routines (Fig. 3.4-4). The
main TEU processing routine tproc() (Fig. 3.4-5) is the highest level, It

combines information in the display options array with aircraft information in

order to generate calls to second-level routines (e.g., rev(), tod(), tau(),

oalt(), rring(), tgt()). These routines in turn generate calls to third-level
user graphics package routines (e.g., cirele(), string(), color()). It is

these user graphics routines which actually generate the. graphics data blocks
and output them via the graspo queue to the spoutt() task for transfer to the

service processor.

42

LEVEL 1 LEVEL 2 LEVEL 3

USER GRAPHICS PACKAGE

TEU PROCESSING ROUTINE ‘ ROUTINES
TPROC
:
CALL REV
CALL TOD
CALL TAU
CALL OALT
CALL RRING —— REV (.) STRING ()
CALL TQT ——— : / :
: CALL STRING — PUTQ(~,GRASPO,-}
RETURN : , :
RETURN RETURN
RRING ()
H
L]
CALL CIRCLE
:
RETURN
T6T ()
CALL COLOR — '
[] coLor ()
CALL STRING .
CALL STRING PUTQ(-,QRASPO,~)
- L]
L] L]
RETURN :
: RETURN

Fig. 3.4-4. TEU task structure.

43

TPROC

DO
REASONABLENESS
CHECKS SHOW VALID
INPUT DATA

?

MORE TATS
TO DISP THAN
MAX NO. SELECTED BY
KEYBOARD

YES

CALL ORDER

(SELECT HIGHEST
PRIORITY TARGETS).

?

CALL BEGF
(BEGINNING OF FRAME)

!

CALL RALERT
(DO AUDIO PROCESSING)

1

CALL REV

CALL TOD

CALL TAU

CALL OALT

|
CALL TRIGGER
(DO EVENT-TRIGGERED
MODE PROCESSING)

Fig. 3.4~8. Maln TEU processing routine TPROC.

44

CALL CALLUP
(DO EXTENDED RANGE
MODE PROCESSING)

CALL BRG

(SHOW NO-BEARING
BLOCK IF APPLICABLE)

~" ANY
TARGETS
?

NO

AUTO

| I NO SCALING
o CHOSEN
L " i
: YES
Y Y -
CALL PSF
USE DISPLAY-HAMGE ° | ' | (DO PRELIMINARY SCALING |

-BELECTED BY KEYBOARD | ... | FACTOR CALCULATIONS) TO.
- | COMPUTE DISPLAY RANGE '’

""" : CALCULATE SCALING .
* FAGCTOR FOR TARQETS
(IF ANY) AND RANGE RINQ

'

CALL RRING -

L
cAlLTar TARQETs |

CALL ENDF
(END OF FRAME)

RETURN

Fig. 3.4-6. Main TEU processing routine TPROC (cont’d).

43

Task Operation

Whenever the teu() task is awakened, it first checks its keyboard imput
queue. If an entry is present, this 16~byte display options array is input
and used to update TEU's own display options array. Processing using this
updated array is not done, however, until new aircraft inputs are received
from teuin({). This means that there can be as much as a one-second lag in

response to keyboard commands,

When aircraft information is received from teuin(), the main TEU
processing routine tproc() is entered. Tproc() will execute once from start
to finish, generating a single frame for the display. Depending upon keyboard
commands and aircraft information, tproc() may execute the following
routines:

ralert() - Do resolution advisory processing. Annunciate audio. Set
caution/warning lights.
rev() - Display current software rev number in upper right cormer of
screen.
tod() - Display time of day in upper left corner.
tau() ~ Display current performance level's threat criteri
corner. (If time to closest approach is less than threa
eriteria, target will be declared a threat.)
oalt() - Display own aircraft altitude in lower left cormer,
trigger() - If threat-triggered mode has been selected, and if there are no
threats or pre-threats, set paraméters so that TPROC will
display no targets.
callup() = If 'call-up' or extended range mode has been selected, set display
range to extended value.
g() - Display "no bearing” targets in block in upper left screen area.
£() - Do preliminary scaling factor calculations to compute miniaum
display range that will show all threats and pre—threats.
rring() - Display 2-nm range ring and chevron.
tgt() - Display target triangle and altitude tag at correct range, bearing

position,

a in lower

When tproc() exits, the teu() task goes to sleep to awalt new inputs
from keybd() or teuin()}.

3.4.3.3 The Timer Task (stim())

The timer task provides general-purpose time interval delays to other

tasks. A hardware timer is initialized to produce an interrupt every
62.5 milliseconds. Interrupt handler ctcin() then wakes stim().

When an application task wishes to start a timer it passes a count to
stim() via a queue. Each time stim() runs in response to an interrupt it
checks its input queues and starts new timers when entries are preseat.

Stim() also decrements each existing counter. If the result is zero it sets
the counter to -1, sends a timeout signal message to the corresponding task
(via a queue) and wakes the task. If a task wishes to stop a running timer it

simply sends a -l count to stim().

46

3.4,3.4 The Service Processor Qutput Task (spoutt{))

e = ok e e L e, ey

The spoutt{) task receives data from three sources: slave acknowledg
messages from the spint() task, audio data blocks from the keybd() and teu(
‘tasks, and video data blocks from the teu() task. The function of the
spoutt() task is to merge this data into a single array and pass it om to the
spout() interrupt handler for transfer to the service processor. A maximum of
255 bytes may be transferred at one time to the service processor. Therefore
if the combined input from the queues 1s more than 255 bytes, spoutt() makes
more than one call to the interrupt handler, passing blocks of < 255 bytes
each time, until all three queues have been emptied. A call to the interrupt
handler starts the transfer to the service processor. The handler then

LETASANE A N

responds to interrupts to complete the transfer.

)

Spoutt() checks the three queues for input, reading one message from each
queue in turn instead of emptying one queue before going to the next, This is
done so that an audio message will not get backed up behind a long string of
video messages. When all three queues have been emptied, or when the 255-byte
buffer fills, whichever occurs first, the accumulated data is transferred to
the spospo queue and a call is made to the spout() interrupt handler.
Following this, the task either suspends itself, or if necessary, continues to
read, accumulate, and transfer data until all queues are empty.

3.4,3.5 The Service Processor Input Task {spint())

ves d ervice processor via the spih()

ranafwva

interrupt handler. There are two types of input from the service processor to
the user processor: a l-byte message which conveys the setting of the Bendix
front panel control switch and a zero—length “POKE" message which is used to
indicate that the service processor is operational, When spint() is awakened,
it reads the logical message passed to it by the interrupt handler. If it is
a mode switch message, the message 1s passed on to the teu() task for use
there. For all messages received, spint() sends a 2-byte acknowledgement to
the service processor output task spoutt() for transmission to the service

processor,

3.4.4 User Graphics Package

The user graphics packége consists of a set of C-callable audio and video

routines (\..uu.l “da}. They reside in the user processor and can be called from

any task within the user processor. These routines translate high-level user
calls and the associated argument strings into graphics data blocks -

(Figs. 3.2-1 through 3.2-4) which are transferred from the user processor to
the service processor for audio or video output. The graphics package acts as
" a software interface between the user and the display device; it frees the
user from the necessity of knowing detalls of interface protocols and hardware
configuration for a given display device. Users work with a virtual screen
with units of their own choosing. A scaling command tells the service
processor the number of units with which the user wishes to represent the
maximum horizontal and vertical distances on the display device. Any number
of audio and video commands can be grouped together using start-of-frame and
end-of-frame commands to generate a single frame on the display device.

47

The graphics package contains four general classes of routines: audio,
video control, video graphics, and miscellaneous. Descriptions of the
routines contained in each class are given below. All arguments are 16-bit

integers.
Audio

There are three audio commands.

CALL AUDIO (1)

where I refers to a word or phrase stored within the audio RAM. This RAM
must be provided in file form by the user along with a table giving the offset
and byte count for each phrase or word within the RAM.

CALL BEGA
Start-of—audio.

CALL ENDA

End-of-audio. Placing audio commands of the form CALL AUDIO (I) between BEGA

and ENDA causes all of the corresponding words or phrases to be stacked in an
annunicator RAM before the annunciator is activated. This allows the user to
compose phrases from words that are not stored sequentially in the user's
audio RAM. Audio messages mot enclosed in BEGA, ENDA pairs are sent to the
annunclator RAM and activated immediately.

Video Control

There are 7 video control commands. In general, a video control command

gselects an option which remains in effect until changed by a CLEAR command or -
the video control command with a different option selected. SCALE and CLEAR

are special commands.

CALL SCALE (X,Y)
This routine must be called in the INIT task. It defines the coordinates of

the user's virtual screen and allows the service processor to assoclate user
coordinates with the actual physical dimensions of the display device.

CALL CLEAR
This routine clears the display and resets to the following default options:

line type = solid, color = white. Any video calls following CLEAR but before
the next start—of-frame call are ignored.

CALL BEGF

Scart—of-frame,

48

CALL ENDF

End-of-frame. "All commands between BEGF and ENDF are sent to the display
device to be displayed as a single frame,

CALL LTYPE (I)

LTYPE selects the line type used. Current options are 0 = solid, 1 = dotted,
2 = dashed. Default is solid.

CALL COLOR (I)

Seven color options are available:

1 COLOR:
0X90 Blue

0XA0 Green

0X80 Light Blue
OXco Red

0XD0 Violet
0XEO Yellow
0XF0 White

Default is White.

CALL RVID (1)

RVID turns reverse video on (I=1) or off (I=0). When reverse video is on, all
characters drawn using the video graphics STRING command have their color
sense reversed: plxels normally colored are now left blank; pixels normally
blank are now shown in white,

Video Graphics

There are currently three video graphics commands. X and Y coordinates
and circle radii used as arguments must be expressed in terms of the user
coordinates selected by the SCALE command described above.

 CALL CIRCLE (X,Y, radius)
CALL LINE (NSEG,XPTR)

This routine draws line segments between (X,Y) coordinate pairs (i.e., (X1,Yy)
to (Xq,Y2), (X5,Y5) to (X3,Y3);---,(XN-1,XN_1) to (XN'YN>)' '

XPTR is a pointer to an array containing the coordinates ordered
X)Y;,X5,¥5,... NSEG 1s a signed integer. Its magnitude indicates the number

of (X,Y) pairs. If NSEG is positive, the first line segment is drawn
beginning at (X;,Y;). If NSEG is negative, the first line segment is drawn

beginning at the previous curser position. When all segments have been drawn
the cursor will be positiomed at (XN,YN). Current software limitations allow

a maximun of 9 (x,y) pairs.

49

r AIAIT AT DELERDAO o
i, NLOAR, REFCUD, U

This routine places a string of NCHAR characters on the display starting at
location (X,Y)., The maximum value for NCHAR is 32, limited by the width of
the screen. REFPOS allows the starting X,Y coordinate to refer to various
positions within the character: O = lower left corner 1 = upper left,

2 = upper right, 3 = lower right, 4 = center. C¥PIR is a pointer to an array
containing the NCHAR ASCII characters.

A special feature has been provided to allow color changes within character
strings. Seven 8-bit ASCII characters have been defined to represent the
eight colors., In a STRING command, if a character is preceded by one of
these 8-bit ASCII colors, that character (and only that one character) is

displayed in the selected color.

P

Miscellaneous

CALL ERROR (I, TIME)

This routine allows the user processor to send an error message to the service
processor for output to the line printer. 1 is the error number and TIME is
the time (since system restart, lsb = 1 sec) at which the error occurred. An
ASCII character string is generated of the form t = xxxxx, err = XxXx.

CALL MODE(I)

This routine is called once per scan to tell the service processor the
priority of the user-processor data. The service processor looks at this
message only when the Bendix front panel mode switch is in the combination
weather radar/AID position., 1I=1 (STANDBY) causes the service processor to
ignore any AID data received from the user processor and display only weather
radar data. I=3 (AID) causes the service processor to display the data
received from the user processor. I 18 set to 3 by the TEU task when there
are threats or pre—-threats to be displayed or when the EXT key has been
pressed on the keyboard.

50

4.0 SOFTWARE DETAILED DESCRIPTION

This section provides a detailed description of each of the major
subdivisions of the AID phase I software: system software, service processor
software, and user-processor software. This section is intended to be read in
conjunction with program listings. The level of detail is that needed by a

person wishing to modify portions of code,

4,1 System Software

System software provides an environment within which application programs
may be run., In the case of the AID, a minimal system executive has been
written to perform this function. It consists of a nonpre—emptive task
scheduler and a set of data queue management functions. The queues are used

to pass data between application tasks and between interrupt handlers and

tasks. The same system executive is used in the AID's user and service

processors.

4.1.1 The Task Scheduler and Associated Functions

A description of the design and operation of the task scheduler and queue
management functions is included in Appendix A. This section will describe
the implementation details of the scheduler's component parts. Five functions
are involved: sched(), run(), sleep(), wake() and pause(). Briefly, the
scheduler provides a mechanism for executing application tasks Iin response to

task "wakeups” by interrupt handlers and other tasks. It chooses the next
task to run based on a prugrammer—specified task priority.

The tasks' task control blocks (TCBs) and the tasks, themselves, are
initialized as part of the startup procedure in function main{). Task
initialization involves calling each task function and running it to the point
where it first calls sleep(). The task may perform task-specific

initialization operations during this process.

4.1.1.1 The Scheduler (sched{()) Function

As described in Appendix A, a task control block (TCB) is defined for
each application task. When a running task suspends (calls sleep()), sched()
scans the TCBs, starting with the one for the highest priority task, until it
finds one for a task that has been awakened., It then initiates execution of
that task by calling run(). If no application task has been awakened, sched()
simply keeps scanning TCBs. As a result, when the system is idle, the
program spends its time in this TCB scanning loop. The TCBs use a linked list
data structure to facilitate access.

The first operation performed in sched{) is to scan the TCB linked list
starting at the beginning (tidxi = 0, highest priority task). Each task's
status flag, "tsksta”, is tested until one is found that is set. That task's
signal flag is then cleared, the address of its TCB is saved in parameter
“tcbadr" for use by function sleep(), and run() is called. Function run()
will initiate execution for the selected task.

51

When the task later suspends, control is returned to the run() function
which then returns to sched(). sched() then loops back to the TCB scanning
operation which searches for another task to initiate.

4,1.1.2 The Task Initiation (run()) Function

This function has an initialization mode and a normal running mode. The
initialization mode 1s run during system initialization to compute an internal
return address, RUNADR, needed by the normal ruaning mode. The initialization
mode operates 1f parameter "runint” is set. The initialization operation,
itself, resets "runint” so that subsequent calls to run() will cause it to
operate in its normal running mode. All operations within run() are performed
with interrupts disabled.

The first operation performed is to test "runint”. If it is set, it is
cleared and the address RUNADR is computed. To do this a function “getpc” 1is
called. This function simply gets the current value of the Z80's program
counter., The value obtalned is the return address for the getpc call.
Address RUNADR may then be computed, since it is located a fixed number of
bytes below the getpc call instruction, Address RUNADR is then stored in
global parameter "runadr” and the run() function returns. This completes the
initialization of run().

Under normal operation (rumint = 0) the run() function saves the calling
function's (sched()'s) stack pointer in parameter "mainsp” and transfers
control to the address contained in parameter “slpadr”. slpadr is an entry
point in the sleep() function. The sleep() function simply loads the Z80's SP
register with the stack pointer for the selected task (its TCB is pointed to
by "tcbadr”) and returns to the task. When the task again calls sleep(),
sleep() saves its stack pointer in the current task's TCB and transfers
control to RUNADR (using parameter “runadr”) in run(}. The run() function
then restores sched()'s stack pointer from "mainsp”, enables interrupts and
returns to sched(). Note that the calls to and returns from run() use the
normal ¢ function entry/exit protocol. The return address is stored on and
retrieved from the scheduler's stack.

4.1.1.3 The Task Suspension (sleep()) Function

Like run(), this function has an initialization mode and a normal run
mode. The initialization mode is run to compute an internal entry address,
SLPADR, needed by the run() function. The initialization mode operates if
parameter "slpint" is set. The infitialization mode, itself, clears "glpint"”
so that subsequent calls will operate in the normal running mode. All machine
code operations within sleep() are performed with interrupts disabled.

The first operation performed in sleep() clears the selected task's
(specified by "tidx") status flag, “tsksta”. Then the task's signal flag,
"tsksig” is tested. 1If it is set, it means that an interrupt handler
rescheduled the current task to run again. In this case sleep() simply clears
the signal flag "tsksig"”, sets the status flag, "tsksta”, and returns to the
calling task.

52

If the calling task's signal flag is not set, sleep() will return to the
schaeduler, sched(), via a jump to address RUNADR in run(). Sleep(} first
tests "slpint" and, finding 1t zero, transfers to location LAB3, At this
point sleep() must save the current task's stack pointer in its TCB. The TCB
is pointed to by "techadr”. The stack pointer is located four bytes beyond the
TCE's start address. Once the stack pointer is saved, sleep() simply jumps to
address RUNADR in run(). Function run() then restores sched()'s stack pointer
from "mainsp” and returas to sched{).

When sched{) has selected another task to run it transfers control to
address SLPADR in sleep() via a call to run(). Function run{) gets address
SLPADR from global parawmeter "slpadr”, In sleep(), the stack pointer for the
gelected task (specified by pointer “tebadr”) is read and stored in the Z80's
S¥ register, VFunction sleep{) then enables interrupts and returns to the
selected rtask using the normal C function return protocol,

4,1.1.4 The Task Wakeup (wake()) Function

A task may be awakened (i.e., scheduled to be run) by an interrupt
handler or a task. A task may even awaken itself (see the pause() function).
A task 1s awakened by calling wake{tcbidx), where "tcbidx” specifies the
number (index into the TCB array) of the selected task. The wake() function
simply sets the task's status (tsksta) and signal (tsksig) flags and returns, o
The scheduler, on testing these flags, will then cause the task to run. :

4,1.1.5 The Task Pause (pause()) Function

Since the scheduler is nonpre-emptive a task must voluntarily suspend
itself if other higher priority tasks must be given a chance to run. A task
that requires a large amount of processing time should periodically suspend
itself to allow the scheduler to run other higher priority tasks. These tasks
may have been awakened by interrupt handlers. This "pause" operation is
performed by the pause() function.

The pause() function simply calls wake() with the task number of the
currently running task as an argument (tidx). It then calis sleep(). Control
is returned to the scheduler which scans task TC8s starting with the one for
the highest priority task. The highest priority awakened task is them rua.
Note that if no higher priority tasks are awakened, the task that originally
called pause() will simply continue running from the pause{() function call.

4.1.2 The Data Queues and Queue Management Functions

With the exception of parameter initialization, performed by the init()
task, and a few control flags, all data transferred between tasks and between
interrupt handlers and tasks is passed by means of queues. Since these
functions run asynchronously it is necessary to use this mechanism so that
interfunction data buffers will not be overwritten, resulting in the loss of
data., The queue mechanism also provides a means for controlling the flow of
data through the system so that operations are performed in the proper
sequence.,

53

The queues are lmplemented as circular buffers and contain variable
length entries. An entry that exceeds the space remaining at the end of a
buffer will be wrapped. That is, part of it will fill the remaining entries
in the buffer and the rest will be stored at the buffer's start. Entries are

added ‘at the queue's tail and removed at its.head.

A common data structure is defined to speecify all queue headers. It is
specified in the symb.h file which is attached (via an "#include" statement) -
to each scurce file. It is:

typedef struct {
int head
int tail
int:length
char task
unsigned char: #*pbuf

Wa we We Me W we

} QUE

Parameter "pbuf” is a pointer to the actual queue byte array. “tail” points
to the next opea-byte; "head" points to the first byte of the "oldest” entry -
in the gqueue (and hence, the next entry to.be removed). .. Thus, if "head”
equals "tail"” the:buffer is empty. The first byte in each entry specifies the -
number of bytes contained in that entry {excluding itself). Parameter "lngth”

specifies the.total size of the actual queue byte array. Certain queue

' management functions are designed to suspend the calling task 1f a queue is ~

csrnamAddng Facl {e._atnred in- [

full or -empty. In these cases the number of-the suspenaing task 1is-stored
parameter "task” so that 1t can be reawakened later. All queue headers are
initialized in the main() and init() functions. by calling functions-qinicl()
and qinit2(), respectively.

Nine C functions have been written to manage the data queues. Two
"basic” functions, putq() and getq() perform actual data entry and retieval
operations, respectively. Four functions, putqwt{), putqwk(), getqwt() and
getqwk(), perform higher level operatioms but call the basic functions to
perform actual data transfers. Finally, three minor functions, getqc(),

getqd() and initq() provides queue information and managemeat operations.
These functions will be described in the remainder of this section.’

4.1.2.1 The putq{source, dest, count) Function

This function moves "count” bytes from the array pointed to by “source"”
to the queue pointed to by “dest”. If not enough room exists {n "dest” to
store “count” bytes (plus one more for the count byte, itself) the function
returns a minus one. It also returns a zero if the queue was initially empty
and a one if it was partially loaded.

The firet operation performed tests the "head” and “tail” pointers., If
they are equal (queue initially empty) the returned value, rtaval, is set to
zero; otherwige it is set to one. Then a trial tail value, trytail, is
computed, based on input argument “count”. It is used to determine 1f the new
entry would overwrite a current entry. 1f it would, a minus—one value is
returned and the function is terminated.

[~ A
L

The next operation tests "trytail"” against the queue length to see 1f the
entry must be wrapped.

To wrap an entry a new tall pointer, "newtall”, 1s first computed. This
potential tail pointer must then be tested against the current head pointer to
see if enough room exists for the entry. If not, a minus one 1s returned.

If room exlists, part of the entry is then stored at the end of the queue
byte array; the remainder is then stored at the beginning of the array. The
actual byte transfers are performed by calling function mvbyt(). This
function takes advantage of the Z80's fast block move instruction. After the
move, the new tail value, "newtail”, is stored in the queue's header before
returning.

If no entry wrap operation is necessary, the new entry is stored
contiguously in the queue's buffer array. If the current tail is greater Cthan
the current head, then room exists at the end of the array (remember
wrap—around was ruled out by earlier tests) and the eatry is simply
transferred into the queue array. The queue's tail pointer is then updated
and the function returns. Also, if the trial tail, “"trytail”, is less than
the current head, then room exists inside the array and the entry 1s stored.
However, 1f the trial tail equals or exceeds the current head, insufficient

room exists in the queue and a minus one is returned.

4,1.2.2 The getq(source, dest) Function

This function moves a queue entry from the queue pointed to by "source”
to the array pointed to by "dest”. Note that it is the calling program's
fesponslbility to ;ﬁsure that enough room exists at “dest” for the entry. The
destination "array” may also be simply a single-byte parameter., The function
returng the returned entry's byte count if an entry is present, or a minus one

if the buffer is empty.

The first operation performed is to see if the buffer is empty ("head"”
equals "tail”). If it is, the function returns minus one, If an entry
exists, the byte count is then read and the new head pointer is tested and

wrapped, 1f necessary. The count is then used to determine if the entry was

1
wrapped. If it was, the b}rteg at the end of the queue's hvf‘p array are

removed, followed by the bytes at the beginning of the array. Function
mvbyt() is used to make the actual byte transfer; it uses an efficient Z80
block move instruction. After the entry has been removed, the queue's head
pointer is updated and the entry's byte count is returned.

1f the entry was not wrapped, the entire entry can be moved by one call

to mvbyt(). The head pointer is then updated and tested to see if it should
be wrapped. The function then returns the entry's byte count.

55

e

4.1.2.3 The putqwt(source, dest, stask, count) Function

This function puts an entry in a queue, if room exists, or waits (L.e.,
suspends the task) 1f not enough room exists. It moves "count” bytes from the
location pointed to by "source” to the array pointed to by "dest”. The
calling task's number is specified by "stask™., This function also checks the
"task” location in the queue's header to see 1f a task number exists. If one
does, it means that an earlier getqwt() operation was performed and the queue
was empty. When this occurs getqwt() loads “task" with the number of the
calling task and suspends. On detecting a task number in "task", putqwt()
wakes the specified task. Since putqwt() has also loaded an entry into the
queue, the getqwt() operation will then be successful and the suspended task
will be able to continue., Similarly, if the putqwt() function is not able to
store an entry because of insufficient room in the queue, it will store its
tagk number in “task" and suspend. Then, when getqwt() removes an entry, it
will check "task" and wake the waiting task. In this way the queues are used
to "gate” the flow of data through the system. A task will not run until its
input queue contalns data and will not finish processing an entry until room
exists in its output queue to store the results.

The first operation performed is to call putq() to attempt to store the
specified message in the queue. If putq() returns a zero (queue was empty)
and if "task" is not empty (not minus one) then the task specified by "task”
is awakened and "task" is set to empty (minus ome). However, if the putq()
call returned a minus one (not enough room), the calling task's number,
"stask”, 1s stored in "task" in the queue's header and the current task
suspends by calling sleep(). When the task is next awakened, putq() will.
again be called and its returned status tested. The process will be repeated
until putq() returns a value other than minus one (i.e., the message was
successfully stored). The function then returns to the calling program.

4.1.2.4 The getqwt(source, dest, stask) Function

This function is the complement to putqwt(). It gets a message from the
queue polnted at by "source” if the queue contains an entry. If it doesn't
it stores the calling task's number, "stask”, in the queue's "task"” parameter
and waits (suspends). If an entry is present it is moved to the array pointed
to by “dest”. When this function finally terminates it returns the byte count

in the message received.

The first operation performed is to call getq(). If an entry exists, it
will be transferred and getq() will return a number other than minus one (the
byte count). If, in addition, the "task” byte is not empty (not minus one),
the specified task 1s awakened and “task” is cleared. However, if getq()
returned minus one, then the queue is empty. In this case the calling task's
number, “stask”, is stored in “task” and the task is suspended by a calling
sleep(). When the task iz next awakened, getq() will again be called and 1its
returned status tested, The process will be repeated until getq()} returns a
status other than minus one (i.e., a message was successfully received). The
function then returns the received message's byte count to the calling

program,

56

4.1.2.5 The putqwk(source, dest, count) Function

This function operates similarly to putqwt{() except it does not suspend
if the queue does not contain enough room. Instead, like putq(), it returns
minus one. However, each time it is called it checks the queue's “"task” byte,
and if it is set, it wakes the waiting task. As such, this function’s
capabilities fall somewhere between those of putq() and putqwt(). It is used
to insure that if the receiving task is suspended for lack of input data, it
will run as soon as its priority will allow.

The first operation performed calls putq(). Then the destination queue's
“task” byte is tested. If a task number is present the specified task is
awakened and "task" is cleared. When the function exits it returns the value
returned from the putq() call, which may be minus one if the putq() operation
was unsuccessful. ’

4.1.2.6 The getqwk(source, dest) Function

This function is the complement to putqwk{). It gets a message from the
queue pointed to by "source” if an entry is present. If none exists it
returns minus one. In addition, it checks the source queues "task” byte to
see If a task suspended is awaiting storage space in the queue. If one is,
it wakes the waiting task.

The first operation performed is to call getq(), If an entry is present
it is transferred; otherwise getq() returns minus one. Then the function
checks the queue's "task" byte. If a task number is present, the
corresponding task is awakened and "task" is reset. Finally, the function
returns the value returned from the getqg() call. This ' may be either the size
of the entry transferred or minus one, indicating no entry was present.

4.1.2.7 The getqe(source) Function

This function checks the next entry to be removed from the queue pointed
to by "source” and returns its byte count if an entry exists or a minus one if
no entry is present. The entry itself (if one exists) is undisturbed.

The first operation performed is to test to see if the queue is empty
("head" equals "tail"). If it is, the function returns a minus one., If an
entry exists it reads its byte count and returns it. ‘

4.1.2.8 The getqd{source) Function

This function simply removes an entry (gets it and dumps it) from the
queue pointed to by "source" - if an entry is present, If none exists, it
returns a minus one.

57

The first operation performed is to test to see 1f the queue 1s empty
("head” equals “tail”), If it is, the function returns minus one. If an
entry is present, its byte count is read and a new trial head pointer,
tryhead, is computed. It is then tested to see if it falls outside the
queue array. In that case it must be wrapped and a new head pointer is
computed. It is stored in "head” in the queue's header. However, if
“tryhead” falls within the queue array it is used directly to update "head”.
Finally, if an entry was successfully dumped, the function returns a one.

4.1.2.9 The initq{source) Function

This function simply reinitializes (clears) the queue pointed to by
"gource”, It does this by zeroing the "head” and "tail” pointers and setting

“task" to minus one.

4,1.2.10 The mvbyt{source, dest, bytc) Function

This function moves "byte" bytes from the location pointed to be "source”
to the destination pointed to by "dest”. It uses assembly language code and
the Z80's block move instruction, LDIR, to perform the move as quickly as
possible.

4.2 Service Processor Software

The service processor 1s intended to be a general-purpose processor in
the AID system. It is the bus master and is responsible for controlling the
AID display hardware, the audio annunclator system, and other utility devices.
Because it is the bus master, it also has the responsibility of downloading

programs to the user processor(s) during initialization.

The primary function of the service processor is control of the AID video
display. A set of general-purpose commands has been provided to facilitate
the generation of graphic and alphanumeric displays, thus relieving the user
processor from the time required to drive the display. 1In addition, the
general nature of the commands eliminates the user processor's need to know
the detailed aspects of the display, and will thus facilitate conversion to a
different type of display, should that be necessary.

In the same way, the service processor handles the audic annunclator
hardware, providing a general way to select and annunclate phrases and tones.

Communication between the service processor and the user processor is via
I/0 ports on the 5~100 bus. The protocol established for transmission is as
follows: the first byte of transmission contains the count of the number of

bytes to follow.

This procotol limits the number of data bytes in a single transmission to
less than or equal to 255 bytes, Within each of these transmission frames are
a number of logical messages of the following format: one byte specifying the
message type, followed by one byte giving the length of the message, followed
by the message. . While in principle the logical messages could span

58

transmission frames, 1t should be noted that in the curreat version the
transmissions consist of an integral number of loglical messages. The type
codes and structure of the logical messages are given in MSYME.H.

The major tasks in the service processor software are as follows:

[
rd
-
=
poc
|

User processor input task
UPOUT -~ User processor output task

DSPTCH — Message/command decode and dispatch task
VIDEQ =~ Video processing task

AUDIO - Audio processing task

MSWTCH - Mode switch processing task

TIMER =~ Timer task
INIT - Initialization task.

4,2.1 The User Processor Input Task and Associated Functions

The upint() task obtains messages from the user processor and sends them
to the dsptch() task for decoding into logical messages.

4.2.1.1 The User Processor Input Interrupt Handler (upin())

By the protocol established for user/service processor data transfers,
the first byte of the message iIs the count of the bytes in the remainder of
the message. The user processor 1s configured so that the service processor
1s interrupted on this first byte only; so that it acts as a start of
transmission handshake signal., The interrupt handler inputs this byte and
puts it into the upiupi queue to be processed by the upint() task. It then
wakes the upint() task to notify it that a transmission has started and then

returas,

4,2.1,2 The User Processor Input Task (upint())

Each time the upint() task awakens, it checks the upiupi queue, which
contains counts from the input interrupt handler., If a byte count is in the
queue, 1t signifies that the user processor has started a transmission, so
upint() performs an “input and repeat” operation to obtain the remainder of
the message from the user processor. The use of the Z80 inir operator is
possible because the user processor has been counfigured to assert hardware

-walt states if the request for an input cannot be immediately fulfilled. When
the byte request is available, the walt state is released so the service
processor can continue. After the entire message has been input, it 18 placed
into the upidsp queue and the dsptch() task is awakened.

4,2,2 The User Processor Output Task (upout{))

This task accepts messages from the dsptch() task via the dspupo queue
and outputs them to the user processor. No interrupts are generated for the

service processor in the transmission to the user processor; the service
processor performs the transmission by doing an "output and repeat™ operation.
This is possible because the user processor has been configured to assert wait
states if it 18 not ready to accept a byte,

59

Because the number of messages going to the user processor is small, the
upoutt() task is configured to send one logical message per transmission. In
addition, due to several constraints in the user processor receiving software,

the service processor waits for each message to be acknowledged before sending
the next. The acknowledgement flag (sack) 1s set in the dsptch() task
whenever an acknowledgement message is received from the user processor.

Because of occasional problems encountered in user/service processor
transmissions, an optional synchronizing byte was added to the logical message
format. The sync byte is added before the message type code byte. The option
can be selected by defining the symbol SYNCB in MSYMB.H, and if it is
selected, it must be the same in all user and service processor I/0 routines.

4.2.3 The Command Dispatch Task and Associated Functions

The primary purpose of the dsptch() task is to unpack messages from the
user processor into logical messages and send these to the appropriate task
for processing. It also monitors the mode switch nd sends mode switch
changes to the video task and to the user processor.

Messages from the user processor arrive unmodified in the upldsp queue.
These messages consist of one or more logical messages whose format consists
of an optional sync byte, followed by a byte specifying the message type,
followed by a byte which contains the number of bytes in the remainder of the
logical message. Although the output routine in the user processor at present
sends an integral number of logical messages in a single tranmsmission, the
dsptch() task has been written to allow for logical messages which span
transmission boundaries.

4,2,3.1 The Dispatch Task (dsptch())

As in all tasks, the processing in dsptch() is performed in an infinite
loop. The first thing dsptch() does is to check if the mode switch has
changed by checking the mswdsp queue, If the mode switch has changed, it
sends a message to the video task and to the user processor output task and
wakes these tasks.

Dsptch{) then chécks for incoming messages from the user processor. If
none are available, it suspends itself and when awakened, it starts again at
the beginning of its outer loop. If there 1s a message from the user
processor, it begins extracting the logical messages.

If the sync byte option has been selected, dsptch{) scans the incoming
message until it encounters a sync byte. It then checks the following byte
for a legal message type code. If everything is okay, it obtains the length
of the message and sends the message to the appropriate task, depending on the

type code.
1f a partial packet is encountered, it is moved to the top of the input

buffer and the next message from the user processor is read in at the end of
the partial packet, thus concatenating the incoming messages.

60

4,2.4 The Video Task and Assoclated Functions

The function of the video() task is to control the AID videsc display in
response to requests from the user processor. The requests are expected to be
on a frame by frame basis., That is, & frame starts with a begin-video
command, followed by -any number of ‘graphics commands, and terminates. with an
end-video command. Commards . which do not- set pixels, such as color change
commands, are not required to be between a begin-video and an end-~video - -

command.

It should be noted that the current version of the videc task does not
support flashing. It was:found the comstraints of update rate, maximum number -
of targets, and setting/clearing pixels in software did not allow enough time
to perform flashing.

4.2.4.1 ~The Video Task (video())'

The first thing the video task does is to initialize the display. It
does this by blanking the screen, erasing both video RAMs, setting the default
conditions, and finally setting the video control bits to correspond
appropriately to the mode: switch setting.

The videa task then enters an infinite loop in which video commands are
received one by -one from the dsptch({) task and are processed appropriately.
The begin-video, end-video, and clear-video commands control the switching and
aerasing of the videc RAMs, while other graphic commands -are decoded and
dispatched to the-proper processing subroutine. Once a complete frame has
been generated in the service processor RAM, switching: causes the frame to be-
displayed and a new frame is then started.

4.2.4.2 The draw() Subroutine

This subroutine decodes all the graphic commands and calls the
appropriate subroutine. For any subroutine which setg/clears pixels, a check
1s made to ensure that the command is in a video frame. If not in a frame, it

is ignored.

The separation of the graphics commands into a different decoding
subroutine was done for historical reasons when flashing mode was allowed.

4,2.4,3 The scalex() and scaley() Subroutines

These subroutines convert user coordinates to screen coordinates in the x
an y directions, respectively. Scaling from user to screen coordinates was
incorporated into the graphics package to minimize the impact of using a
different display with a different number of pixels and a different aspect
ratio, The user is free to choose any scaling in the x and y directions with

P TR SR R - A amtrnnl Aahovadaasl

the only constraint that uxmax:uimdx should Lux;capuud to the actual physical

aspect ratio of the display being used.

61

The scaling subroutines use long integers internally to maintain
accuracy. The right shift is used in place of division by 2 because it does
the same thing and is much faster.

4.2.4.4 The colorg() Subroutine

This subroutine selects the color in which subsequent graphic commands
will be drawn. It updates a global variable which maintains the curreat color
and it also sets the appropriate bits in the bank select port.

4.2.4.5 The circleg() Subroutine

This is the subroutine to draw circles on the display. The required
inputs are the x,y coordinate of the center of the circle and the radius. Due
to the complexity and time needed to generate arbitrary circles, the current
version uses 7 prestored circles and requires that the radius match one of
these circles. The prestored circles are saved as offsets in the x and y
directions from the center; only one quadrant of the circle is stored, since
the other quadrants can be generated with appropriate changes in the sign of
the offgets.

By changing the value of the parameter POFF, the number of pixels drawn
can be controlled. In the present version, POFF is 2, which sets every other
point in the prestored circles. By doing this, the time required to draw the
circle fs reduced by half, and the generated circle i1s quite visible and not
ragged.

4,2.4.6 The lineg() Subroutine

. This routine generates straight lines on the display. It uses
Bressenham's algorithm (see "Principles of Interactive Computer Graphics" by
Newmann and Sproull) which requires no multiplications or divisions. The
inputs are the number of coordinate pairs and a pointer to the coordinate pair
array. Lf the number of coordinate pairs 1s a negative number, a line is
drawn from the last coordinate position of the previous call to the
subroutine.

The first thing lineg() does is to check if the selected line type has
changed, and if it has, it updates the saved on-count and off~count. The
on~count and off-count are used by the lplot() routine to determine if a pixel
should be set or mot. As each coordinate is generated, lplot() sets the pixel
and decrements the on~count until it goes to zero. Subsequent calls to
lplot() merely decrement the off-count until it goes to zero at which time the
cycle is started over, This process allowed dotted, dashed, and dimmed lines

to be drawn.
Next, the coordinate pair array is converted from user to screen

coordinates and the parameters are initialized for the subsequent line drawing
algorithm. The line drawn is always from the "last” coordinate to the

62

"current one", If the last coordinate from the previous call is used, the
"current” is set to be the first in the current coordinate array. If the last
coordinate for the previous cdll is not used, then the "last” coordinate 1s

set to the first pair and the “"current” is set to the second pair.

The primary loop of the lineg() routine is performed for each line
segment to be drawn. The "current” and “last" coordinate pairs are updated
and the line is generated by calculating the intermediate points to be set.
These points are calculated in one of eight different ways depending on the
slope and direction of the line segment (refer to the article mentioned above

PR oo T o~ o e -
for details of the algorithm).

4,2.4,7 The setpix() Subroutine and Related Routines

This 18 the routine used by lineg() and circleg() to set pixels in the
display memory. Although it sets/clears one bit (pixel) at a time, the
routine must manipulate bytes since the display memory is accessed a byte at
a tfme, In addition, bacause the colors are coatrolled by accessing separate

memory banks at the same address, the routine may need to manipulate up to 3
bvtes for everv nixzel access. In order to minimize the bank switching

bytes every pixel access. 1In minimize the bank
overhead, an array of three bytes is maintained in mewmory in which the bit
manipulation is done, and the actual display memory is updated when all the

bits are correctly set or cleared.

The inputs to setpix() are the display coordinate of the pixel and a
flag specifying whether the pixel should be set or cleared. In the special
case that the x-coordinate is =1, the routine flushes the working bytes in
memory to the display memory and returns. In the normal case, the routine
first converts the pigel x-y coordinate to an address offset from the
beginning of the display memory. The conversion is straightforward, noting
that the coordinate origin is at the lower left corner of the screen, but the
display mewmory origin address is at the upper left corner.

~ If the new address offset 1s not the same as the current (i.e., a new
byte is being addressed), then the current bytes in memory are written to the
display memory and the new working bytes are obtained from the display memory.

A byte with the correct bit set is then formed and used to set or clear
the appropriate bit in each of the relevant working bytes.

The routines getbyt() and stobyt() are used in conjunction with setpix()
to obtain and update the bytes in the banks in the display memory.

4.2.4.8 The stringg).Subroutine and Related Routines

0f all the video display and graphic routines, string() and its related
subroutines are the most complex, This is due primarily to the fact that
characters are generated in software and can be positioned anywhere on the
display. Further complexity results from allowing imbedded color commands,
carriage-returns, and special graphic characters in character strings.
String() takes ASCII strings, generates the appropriate pixel image in an
internal buffer, and then writes the image to the display memory.

63

As input, a tring requires the x and y coordinate of the start of the
string, the reference position parameter, the number of characters in the
string and a pointer to the start of the string. The reference position
parameter specifies the position of the x-y starting coordinate relative to
one of five points of the first character, with the lower left corner being
the default position,

After checking to make sure that the byte count is positive, the string
checks for the special case for appending to the last string. If appending is
desired, the current coordinates are set to the last coordinates of the
previous call,

Next, it goes through a loop of all the characters in which lower case is
converted to upper case and all the non-printable characters are marked. In
addition, the string is checked for carriage-return and line-feed. 1f CR-LF
is found, the string is broken into two parts, the first part of which is
subsequently displayed up to the CR-LF, and the second part is displayed by a
recursive call to itself at the end of the display of the first part of the
message.

After checking the string, the reference position is checked and the
appropriate offsets from the default are set. Then the coordinates of the
beginning and end of the string are checked in both the x and y directions,
and the string is truncated if it exceeds the screen boundaries,

The call to setups() initializes the internal working buffer to start
building the characters in the string; it also computes the starting offsets
into the display memory where the completed string will be stored.

The next two loops do the actual character drawing. The outer loop goes
by each character (x direction) and the inner loop draws each character in the
vertical (y direction). The call to putebt() is the place where the correct
bits are extracted from the stored characters and put into the working array
(see below for a detailed description). At the end of the vertical loop, the
x position is updated and the next character is drawn. At the end of the
horizontal (character) loop the character counts are cleared to end the
"while" loop. The call to setbyt() with the first argument of minus one
fiushes the current working string buffer. At this point, if the string has
been broken, the string calls itself with a new pointer and a new byte count
to finish the second part of the message and reforms when it is drawn.

Putcbt() extracts a byte from the character dots array, rotates it if it
is necessary to align to a byte boundary and stores it into the working array.
It requires as input the character, the line number in the character matrix,
and the x,y coordinate where the line (byte) is to be stored. The x
coordinate is assumed to be at the left-hand edge of the character. If the
character to be drawn is not the same as the last character drawn, putcbt()
must first compute a pointer to the matrix of dots for the new character. If
the high bit of the character byte is set, then it is a special graphic
character; otherwise it is an ASCII character, Aptr then points to the start

64

of the correct array of character matrices and the offset gives the index of

the start of the matrix for that character. (The character dots arrays are in
the source module called ASCIIG.C). The correct byte is then extracted by
using the character line number. The character line number goes from 0 to 7

and is just the offset from the lower y coordinate of the character. However,
i from top to bottom.

T 1. -

for historical reasons, t

(=¥

he character y is store

1f the character line byte is te be stored on a byte boundary, it is
stored directly into the working array, but if it is not on a byte boundary,

the byte is shifted into two bytes, and the two are stored separately.

Setbyt() is the lowest level routine used by the string related routines
to store character bytes into the working striag buffer, which is large enough
to hold the displayed characters of a string that goes across the entire
screen. It computes the x and y offsets into the working buffer from the
initial coordinate positions as specified in the call to setups(). If the
offsets are legal, it puts the byte into the working buffer, being careful not

to overwrite previously written contents.

When the string is completely built in the working buffer, it is written
into the display memory with a call to stbyts(). Each "line" of the working
array is written twice into the display buffer because although characters are
stored as 8 bytes high, they are written 16 pixels high. After the entire
array has been written to the display memory, the “opposite” color is selected
and zeros are written to the same locations to clear any previocusly written

graphics.

4.2.5 The Mode Switch Task and Interrupt Handler

The mode switch task receives an indication that the switch position has
changed from interrupt handler mswin(). It then reads the new position and
sends it om to the dispatch task, dspteh(). Each time a position change
interrupt is received it (re)starts a delay timer. When the timer finally
times out it: 1) reconfigures the PI0 to detect the next switch position and
2) sends the new switch position data to the dsptch() task. 1In this way the
timer is used to 'debounce' the rotary switch by allowing multiple changes to

occur before the final position is sent to dsptch().

4.2.5.1 The Mode Switch Task (mswtch())

After initializing some parameters, the function checks two queues
(mswmsw and timmsw) to determine the source of the wakeup. If neither queue
contains a message then the wakeup was initiated by the init() task. 1In this
case the startup switch position is received (via "swtprv") and sent to the
dsptch() task via queue mswdsp.

If the wakeup was from the mode switch interrupt iandler, a message will
be present in queue mswmsw. In this case, due to switch bounce problems, more
than one message may be in the queue. As a result the queue must be cleared.
Next, a timer is started. The timer is used to allow time for the mode switch

65

to settie down before its position is read. Note that in the case of severe
switch bounce problems, the timer may be started several times. Eventually it
will be allowed to time out and will generate a wakeup to the mswtch() task.

If the wakeup is from the timer() task, the current mode switch setting,
mswmsg, 1s read. The three low—order bits correspond to the three switch
settings. A cleared bit in one of these three positions indicates the current
switch setting. Flags representing the three bits are established to
facilitate testing. The flags are then tested to determine the new setting.
However, its not that simple! The switch may have been moved and then allowed
to drop back to its previous position. In that case the old pesition and the
new are the same. If this occurs, no new switch position message should be
gsent to the dsptch() task. When this does occur, the PIO port is configured
to detect the “TCAS standby” position. That is, the operator must turn the
switch back to "standby" and then advance it to the desired final positionm.

If the new position is not the same as the previous position a new input
port mask byte is prepared to allow detection of the "other two" switch
positions only. In addition, the current switch position parameter, swtpos,
is set and the previous position parameter, prevsw, is updated. The new mask
byte is then output to the PIO.

Finally, a final test is made to make sure the new switch position is
different from the old. The new switch position is then sent to the dsptch()

o the beginning of the task loop and the task

dalenn memdiawrasn
LULLID WV LI UChQAben e aate Lads

task., Control then r
suspends.

4.2.5.2 The Mode Switch Interrupt Handler (mswin())

This function processes mode switch interrupts from PI0 channel A. An
interrupt occurs when the switch position 1is changed. The PIO was initilalized
" guch that its logical equation logically "ORs" the unmasked lines. A line is
logically true when it is zero. Therefore, the PI0's logical operation goes
from false to true on the occurrence of a zero on one of its unmasked lines.
This causes the interrupt. The logical equation is reset to false by
outputting a control byte (in this case, a 0X97 to port 0X85).

The mswin() interrupt handler saves the state of the interrupted functlon
and then outputs a control byte to reset the PIO. It then outputs & mask that
deactivates all input lines (OXF¥F to port 0X85). This blocks subsequent
switch bounce interrupts when interrupts are later enabled. The mask is
changed in the mode switch task when it is ready to accept new switch position

changs datds

After enabling interrupts, mswin() sends a “"signal” meésage, mswsig, to
the mswtch() task. The message byte contains nc information; the presence of

the message indicates to mswtch() that a switch change has occurred, mswtch()
reads the PIO's data port to determine the new setting.

With interrupts disabled the state of the iaterruptaed functiom is
restored. Interrupts are then enabled and control is razturned to the

interrupted function.

66

4.2,6 The Audio Task and Interrupt Handler

The audio task receives an audio request command from the dispatch
task(dsptch()), transfers the prestored, digitized audio data to the
annunciator buffer (4K) and starts the annunciator. The audio data 1s stored
in the upper 16K of the master's RAM and in the 64K audio RAM board. Audio
data is stored in these areas during the initial program load sequence by the
AUDM,.COM, AUDA.COM, and AUDB.COM programs.

A command may request a single audio message (a word or tone) or it may
be part of a concatenated string of messages (a phrase)., In the latter case a
"start—of-audio” message is received first, followed by one or more audio
"word" messages. The sequence is terminated by an “"end-cf~audio” message. 1In
this case all words are sent to the annuncfator's RAM hefore it is commanded
to start. When the annunciator is finished it issues an interrupt which is
received by handler audin(). Audin(} sends a message to this task via queue
andaud. When the annunciator is started, a two—second timer is also started.
The annunciator interrupt is used to stop the timer and reset the annunciator.
If the timer times out, it means that no interrupt was received from the
annunciator, In this case the annunclator is simply reset. Two seconds 1is
more than enough time for the annunciator to output all 4K of its data.

4,2,6,1 'The Audio Task (audio()})

After initializing the "done“ flag, the first operation performed is to

A e b ogrn ™ P O -1

Cthk Llic L[ucu.t: -l-l-Ul.l.l l-l.“’; uapl-‘-ll\} Lasi \uupuuu) I—U BCC J.J. i duu.LU LC\.[UCEL
caused the task to be scheduled. If no dsptch() message is present the queue
from the annunciator interrupt handiler is checked. A message in this queue
(audaud) indicates that the previous annunciation has been completed. The
task then sets the "done" flag, stops the timer (via queue audtim) and resets
the annunciator (by outputting a byte to port OPT4=0X4F),

If a message is present from the dsptch() task the "done” flag 1s checked
to see if the previous annunciation has been completed. If not, the queues

from the timer task and the annunclator interrupf handler ’*imaud and audand)

are checked. If the timer timed out, "done™ is setr, the annunclator is reset
and the program proceeds to process the message from dsptch(). If the
interrupt handler queue contains a byte it means that the annunciator is
finished. The “"done™ flag is set, the annunciator is reset, the timer is
turned off and the program proceeds to process the message from dsptch(). If
neither queue contains a megsage, the program cannot proceed, so sleep() 1is
called, When the task is again awakened the two queues are rechecked, etc.

The first step in nroceaginu the message from dsptch() is to check its
type for a begin-audio or "end-audio” type. For the former, the "start”
flag is set; for the latter, the "start™ and "done” flags are cleared and the
annunciator is started. In both cases the program returns to check the dspaud

queue again,

67

If the recelved message 1s not a begin or end audio control message then
it is an audio data message. The program proceeds to transfer the
corresponding data from the audio RAM to the annunciator's RAM. The audio
data 1s specified by means of an offset (audbuf.offset) and a length
(audbuf,.1lngth). The offset is used to determine the 16K audic bank in which
the data resides.

The procedure begins by deselecting the currently selected bank by
selecting a nonexistent bank (bank 1), The currently selected bank was one of
the video banks; it will be reselected after the audio operation is completed.
The offset 1s then tested to determine the proper audio bank to select. The
bank 1s selected and the offset into it ig computed, The data is then moved
to the annunciator's 4K RAM area.

If the audio bank selected was the upper 16K of the Master's RAM it must
be deselected before the previously selected video bank (as specified by
parameter "bank”} is reselected.

At this point the "start™ flag is checked to see if the dspaud message
recelved was part of a concatenated string., If it was, the program returns to
input the next part., If not, the "start" and "done" flags are cleared, the
annunciator is started, the timer 1s started, and the program returns to the
beginning of the task loop and suspends.

4,2.6,2 The Audio Interrupt Handler (audin())

This 1s the handler for the interrupt from the annunciator card. The
interrupt vector was set so that it polnts to the DI instruction at the
beginning of this function. In so doing the state of the interrupted function
can be saved immediately (actually, the DI instruction is not needed since the
Z80 disables interrupts automatically when an interrupt occurs).

After saving the interrupted function's state the PIO port's mask 1s set.
Note that this code seems to be redundant or it may be that it was found to be
" needed to make the PIO work.

After enabling interrupts the handler sends a "signal” byte, "audint”™ to
the audio() task via queue "audaud". This byte contains no information; the
fact that a byte was sent informs audio() that the interrupt was received.

Interrupts are turned off while the state of the previously running
function is restored. Control is then returned to the interrupt function via
the RETI instruction. The normal C function return sequence is bypassed.

4.3 User Processor Software

The AID software system is designed to allow division of the processing
load among multiple single~board computers (SBC's) in a master/slave
configuration. The Master SBC, designated the service processor, serves
primarily as a general-purpose audio/video processor (see Section 4.2). One
or more slaves serve as user processors, each performing functions which are
specific to a particular user application. I/0 devices which are
application-specific are attached directly to the user processor(s).

68

The phase I AID software described in this document provides for a
single-user application and thus uses a single-user processor. This user
processor interfaces to a TCAS experimental unit (TEY) .and a keyboard. Its-
function is to input TEU alrcraft position information, process..the
information according to keyboard commands, and generate- and send data blocks
to' the service processor for audio and/or video output. Audio. output is of
two types: (1) tones to indicate whether valid or invalid keys have. beea

pressed on the keyboard, and (2) words {e.g., climb, descend} or sounds to

inform the pilot of a recommended maneuver or simply draw his attention to the

display. Video output is a color PWI-type display showing targets at given .
ranges and bearings from own aircraft which 1s located mear:the center of the

P L -7-9.1

DLLTCLLe

There are five baslc types of software contained in the user processor:
a main program, a task scheduler, tasks, interrupt handlers, and a user-
graphice package. All data transferred between tasks and between interrupt -
handlers and tasks is passed by means of circular queues. The user-
processor's task scheduler and queue management protocols are similar.to those
. in the service procesgsor and are discussed in 'System Software', Sections 3.2
and 4.1. The user graphics package is covered in Section 3.4;4.: The user-
processor's main program, tasks, and interrupt handlere are described here.

The user processor. contalns six tasks and five interrupt--handlers.:: A~
block diagram of these, along with the connecting data queues, is shown ‘in
. The user graphics package; wmot shown in the block diagrams, is-:a-
nes which may be called from any tdsk within the user processor.

Initially all of the user processor's software 1s loaded from the service
processor via the $-100 buss. Control is passed to the user main program,
which performs a number of initialization operations, then calls the task
gcheduler. The task scheduler will immediately run the init() task which
performs more initialization operations. Thereafter the program loops in the
scheduler, continually checking for tasks which are ready to run.

There are four sources of input to the user processor: keyboard, TEU,
timer and service processor. FEach has a corresponding task (keybd(), teu(),
stim(), spint()) and interrupt handler (keyin(), teuin(), ctein(), spih()).
There is one output destination, the service processor, with task spoutt() and
interrupt handler spoh(). The sixth task is init().

There are seven sections which follow to describe the user processor
software. Section 4.3.1 covers the user—processor main program. Sections
4.3.2 - 4.3.7 correspond to the six user-processor tasks with their related
interrupt handlers and functions.

4.3.1 The User-Processor Main Program (main())

Upon power-up, the slave single-board computer runs a boot program stored
in an on-board ROM, This initializes the slave to receive a program download
from the Master via the S-100 buss. After the slave program has been

o
o

downloaded, control is passed to main(), the user processor main program.
Main() performs a number of initialization operations, then wakes init() and
calls the task scheduler. The task scheduler immediately runs init() which
performs more initialization operations. Thereafter the program loops in the
scheduler, continually checking for tasks which are ready to run. Neither
main()} nor init() run again unless the system is again powered-~up.

In the AID software, the initialization operations have been divided into
two parts. The idea was for maln() to perform those operations necessary only
at power—up and for init() to perform those operations necessary for a systen
restart, In reality, the partitioning of initialization is more suited to a
system in which the program is stored in ROM and in which restart could be
done by simply scheduling init(). In this system, with program stored in RAM,
restart by running init() would not necessarily be successful. Hence we
restart by rebooting the entire system from the disk, running both main() and
init(). The idea of partitioning is retained, however, in case it should be
desirable to store the program in ROM at a later date.

Main() begins by moving CPM's interrupt vectors from their high core

locations to low core (starting at location 0), Since we do not currently use
CPM or any of its interrupt vectors thig 1is simnly a nrppaufinn in case of

WA LR WA calay Vi Ak ARLCLAUREE TowwWLo g Riiad ALl Ly Sriawallil aad T

future software changes. Having the interrupt vectors start at location O
ensutes that we will not overwrite them by code or data.

The starting address of each interrupt handler we use is then loaded into
the interrupt vector table: timer, keyboard input, teu input, service
processor input, service processor output, and caution/warning switch, The
interrupt handler addresses used are actually the starting addresses plus 3.
This bypasses the normal C function entry sequence and allows the context of
the interrupted function to be saved immediately when the interrupt occurs.

Next, the task control blocks (TCB's) are partially initialized. The
task stacks are allocated space from BOOO downward. Run() and sleep() are
called to initialize them, and then each task is run to its first suspend

aint .
AL @

Qinitl() is called to initialize the length and buffer pointer fields of
the circular buffers or queues. Finally, main() wakes init() and calls the

task scheduler.

4,3.,2 The Initialization Task (init()})

Init() is awakened by the main program main() after power—up to complete
the initialization begun by main(). The major portion of init() is devoted to
initialization of the user processor hardware I/0 devices.

Init() first disables interrupts. These remain disabled for the duration

of the task. Init() completes initialization of the task control blocks
(PORT2Y +than nralle ainftt?() ta somnletse initializarion of the circular

VAN Oy Wil Laalalb Jllidbdy)/ w0 LUMPATLT JlLlLaILsLTLIVRR Ve e CAL LRl

buffers or queues. At this point the coordinates of the user's virtual screen

~l
[}

are defined via the scale{) function. This would nofmally be done in the
initialization segment of the TEU task. However, scale() makes use of the
graspo queue and thus must follow the queue initialization done in qinit2().

The rest of init{) deals with the user—processor hardware 1/0 devices.
First the CTC timer channels are initialized. Channels 0 and 1 are used to
generate baud rates for SIO serial channels A and B, respectively. Either of
two hardware configurations will be present: console 1/0 on channel A (9600
baud) and keyboard input on channel B (300 baud) or keyboard input on channel
A and TEU input on channel B (9600 baud). The Sierra monitor assumes that a
console will be connected to at least one of the serial ports and thus as a
default configures the channels for 9600 baud. Therefore, when the console is
on channel A, the software does not initialize either the corresponding CTC
timer—counter device or serial port.

A detailed explanation of the use of the CTC timer—counter device and of
the Z80 serial I/0 and parallel 1/0 is given in thé Sierra Data Sciences
Technical Manual._ This must be read in order for the I/0 initialization to be

understood.

The procedure to generate 300-baud rate for the keyboard is as follows:
The user outputs bytes which set the channel for timer mode, set the prescaler
P to 16, and set the down-counter time-constant TC to 52. This creates a
pulse train of period = (system clock period)*P*¥TC = ,25 psec*16*52 =
208 ysec. A 208-usec period is equivalent to 4807 pulses per second. This is
divided by the prescaler 16 to get 4807/16 = 300 pulses per second. An
important note is that the CTC timer runs off the 4-MHz system clock (period
= ,25 usec) whereas the CIC counter runs off the external clock (1.8432 mHz in

the slave + period = .54253 usec).

The procedure to generate 9600 baud rate for the TEU input is as follows:
The user outputs data bytes which set the channel for counter mode and set the
down counter time constant to 12. This creates a pulse every tc*IC = +54253
usec*12 = 6.5 psec. A 6.5 psec period is equivalent to 166,666.67 pulses per
second. -This is divided by 16 to get 9600 pulses per second.

Channels 2 and 3 are used together with channel-2 output wired to
channel-3 input. Channel 2 is set to timer mode to produce a period of
.25 usec*16%125 = 500 usec. Channel 3 {3 set to counter mode to produce a
period of 500 usec*125 = 62.5 msec. A bit is set in the channel control
register to generate an interrupt each time the 62.5-msec interval elapses.
This is used by the user—processor's timer interrupt handler ctcin() and timer
task stim().

Next the serial I/0 ports are initialized for keyboard input and teu
input, again depending upon the hardware configuration. Detaliled comments are
given in the program listings and follow closely the Sierra Technical
Manual.

71

Parallel 1I/0 ports are next initialized. Channel A is configured for bit
control mode to be used as the caution/warning switch interrupt port. Channel
B is configured for output mode to be used as the caution/warning light output
port. Channel ¢ is configured for input mode to be used as the service-
processor input port. Channel D is configured for output mode to be used as
the service~processor output port. Again detalled comments are given in the
listings.

After PIO initlalization 1s complete, interrupts are agaln enabled, and
the TEU timer is started to awaken the teu() task once per second, This is

the end of init().

4,3.3 The Keyboard Task and Assoclated Functions

The keyboard allows a user to change various TEU display characteristics
(e.g., relative or absolute altitude, maximum display range, number of targets
displayed). Keyboard inputs consist of single byteas., They are asynchronous
and may occur at any time. When a key is depressed, an interrupt is
generated. Keyin() inputs the key's corresponding 8-bit byte, places it into
the keykey queue, and wakes the keyboard task. The keyboard task then uses
valid keyboard entries to update a l6-byte display options array which is
passed to the teu() task for processing.

4.3.3.1 The Keyboard Interrupt Handler (keyin())

Keyboard bytes are received from the slave serial I/0, configured as
either channel A (port 0X80) or channel B (port 0X82). The normal
configuration is for keyboard inputs to be received on channel A and TEU
inputs to be received on channel B. However, our slave single-board computer
allows only two serial channels, and at times it is desirable to connect one
of these to a console for debugging. In this case, console input/output is
via channel A and keyboard input is via channel B. This is the reason for the
conditional compile in keyin().

When a key is depressed on the keyboard, an interrupt is generated and
control is pasgsed to keyin(). Interrupts are disabled, registers are saved,
and the key's corresponding 8-bit byte is read into location “inchar™. If room
exists in the keykey queue, the byte is placed into the keykey queue and the
keybd() task is awakened., If no room exists, the byte is lost. Registers are
then restoted, interrupts enabled, and control is returned to the interrupted

program via RETI.

4.3.3.2 The Keyboard Task (keybd())

The keyboard task has two primary functions: (1) to examine keyboard
entries for validity and generate an immediate appropriate audio response, and
(2) to update a display options array with valid keyboard entries and send
this array to the teu() task for processing. The keyboard key assignments,
along with a brief summary of keyboard commands, are shown in Fig. 3.4-2. A
more detailed description of valid keyboard commands 1s given in Fig. 4.3-1.
A description of the 16~byte display options array is given in Fig. 4.3-2.

72

NTGT 0,1l,++.,8

TRIG

MODE 1

0
RNGE (2,3..-,8)(1)

40 41 42 43 20 2! 22 10 (E 12
REL
ALT TOD 1 2 3
44 45 45 47 24 25 26 t4 1 5 ‘186
aps} Jcrl | cr] |,
ALT | {oisp] | kB | [MOCE 4 5 6
48 49 4A 48 28 29 2A |18 19 1A
BAR
COR TRIG EXT RNGE SURV . 7 8 9
4C 4D 4E 4F 2¢ 2D 2E 1C D |E
TAU 18T | |DEMO] |[NTGT| | JPAUSE STEP A g B
GENERAL
CLR KB Clear current keyboard entry.
CLR DISP Clear display screen. Reset (disable) TOD, TAU,
extended range, and threat-triggered mode.
TOD Enable/disable time-of-day line at upper left cormer
{default = disabled).
TAD Enable/disable display of threat criteria in lower

right corner (if time to closest approach is less
than threat criteria, target will be declared a
threat) (default = disabled).

Select maximum number or targets to display (default
= 8).

Enable/ disable threat-triggered mode. If enabled,

proximate A/C are not displayed unless a threat or

pre-threat is being displayed (default = disabled).

Reset to default display options array (see
Fig. 4.3-3).

RANGE CONTROL

lst set of parameters selects display range in nmiles
2nd set of parameters selects fixed range only (0) or
autoscaling (1)

73

EXT

Note 1: When autoscaling is selected, range will be

.s8et to selected range except when autoscaling is

necessary to show all threats and pre-threats.

Note 2: Fixed ranges 2 to 8 are distances from own
A/C to rear of display., Corresponding forward ranges

are 4.7 to 19.2 nmiles.

Allow extended range dlSplay (4 nm, continuous mode)
for 15 seconds.

ALTITUDE CONTROL

REL ALT

ABS ALT

BAR COR
-9,—8,cuu_1,0,1,2,00| ,9

Set the display to relative altitude mode but do

not clear any previously entered altitude correction.
(Initcial mode on power-up. The initial altitude
correction is zero).

Set the display to absolute altitude mode but do
not clear any Drev{ouglv entered altitude

correction.

Set the display to absolute altitude mode and add a
barometric correction of -900 to +900 feet to the
previcusly entered altitude correction (i.e.,
barometric corrections are cumulative). This sum is
then added to all absolute altitudes. :

BAR COR 0 1s a special case which clears the
barometric altitude correction. (Sets it to 0.)

TEST MODE

TST

DEMO 00,01,...,09 OA,OB
11,...,19,1A

Enable/digable test mode (default {1

ae 8 X
TEU data). Used in combination with DEMO key.

When in test mode, selects a moving test scenario
(00) a specific still-frame display (01-0B)}, or a

__.l_..‘..ﬂ = £11 14N

moving FAA-defined encounier {11-1A).

Fig. 4.3-1. Keyboard commands {cont'd),

74

:

associated

byt keyboard key description

0 CLR DISP clear display

1 - PP1/tabular

2 TOD time-of-day

3 TAU TAU limit for
current perfor-
mance level

REL ALT,

4 ABS ALT altitude

5 + BAR COR barometric
correction

6 RNGE range

7 ' RNGE auto-scaling

8 TRIG threat-triggered
mode

9 TST test data

10 DEMO selects
a specific
test data set¥*

11 EXT extended range
display

12 NTGT max., number of
targets to display

*Note:

value

1 = clear display
0 = do not clear display

1 = PPI display
0 = tabular display

1 = display TOD
0 = do not display TOD

1 = display TAU

0 = do not display TAU
1 = relative altitude

0 = absolute altitude

_9,_8,'00 ,-1,0,1,00 ,9
(each digit represents
100 ft)

2,3,0-- ,8 nni

1
0

autoscale
do not autoscale

]

1
0

]

threat-triggered mode
continus mode

use test data*
use live TEU data

1
0

00: 8 moving test targets

01,...,0B: still-frame
displays

11,...,1A: moving
FAA-defined
encounters

1 = extended range
0 = normal range

0,1,+0.,8

Doption[1G] is operational only when doption [9]=1.

Fig. 4.3-2. Display options array.

75

default

0

associated

byte keyboard key description value default
13 PAUSE** freeze display 1 = pause 0
0 = normal operation
14 STEP** single-step 1 = step 0
display 0 = normal operation
15 SURV surveillance 1 = surveillance mode 0
mode 0 = other, as defined
(5-nn continuous by TRIG and EXT keys
mode)

**% PAUSE and STEP keys operational only when running in test mode with
FAA-defined encounters, {i.e., doption {[9]=1, doption[10]=11,...,1A)

STEP operational only when PAUSE=l.

Fig. 4.3-2. Display options array (cont’d).

“t
o

Briefly, keyboard comsists mainly of one large 'while' loop.- Keybd()
will loop, reading entries from the keykey queue and updating the display
options array, until there are no more keykey entries. At that point, if any
entry in the display options array has been changed, the entire 15-byte array
is sant to the teu{) task via the keyteu queue.

In more detail, when keybd() is awakened, it first clears the flag
“process” to indicate that there have been no changes to the display options
array. It then enters the main 'while' loop, reading characters from the
keykey circular input queue. A case statement passes control to a separate
entry point for each valid character. There are two basic types of
characters: those which make up a single keystroke command, and those which
are part of a multi-keystroke command., Single keystroke valid characters
result in an immediate update of the display options array and generation of a
high audio tone. Single keystroke lnvalid characters result in generation of
a low audio tone. 1In elther case (valid or invalid), the program then loops
back to input another character.

In contrast, each time the program recognizes the first character of a
multi-keystroke command, a subroutine specific to that command 1s entered.
The program will remain within this subroutine, executing its own calls to
input characters and generate audio tones, until either the correct sequence
of characters or a keyboard clear has been entered., Only then is the display
options array updated and the subroutine exited, The program then loops back
to the beginning of keybd() to input a new character.

Each time the display options array is updated, the flag “process” is
gset, When the keyboard task has emptied its input queue, it checks the flag

setting to determine whether or not to output the display options array and
wake the teu() task before going to sleep.

4.,3.3.3 Functions Called by the Keyboard Task

Five functions, all organized in the same manner, are called by the
keyboard task to process multi-keystroke commands. They are:

mproc() to process the multi-keystroke mode command

rproc() to process the multi-keystroke range command

bproc() to process the multi~keystroke barometric correction command
dproc() to process the multi-keystroke demo command .

nproc() to process the multi-keystroke 'number of targets' command.

Each function contains an outer ‘'infinite loop' for reading characters
from the keykey queue until a valid character is encountered. {This then 1is
the second keystroke of the multi~keystroke command.) At this point, if the
command is completed (if it is a two-keystroke command), the display optioms
array is updated and control passes back to the main keybd() task. If it is
a three-keystroke command, an inner 'infinite loop' is entered, again reading
characters until a valid character is encountered, whereupon the array is
updated and control passes back to the main keybd() task. At any point
pressing the keyboard clear key will cause a return to the main keybd() task
without updating the display options array.

77

4.3.4 The TEU Task and Associated Functions

- 4.3.4.1 Overview

The teu() task is the major task within the user processor. Its
functions are to input keyboard commands and alreraft position information,
process the aircraft information according to the keybocard commands, and
output audio/video graphice data blocks to be transferred to the service
processor.,

Aircraft position information is received from the aircraft's onboard
TCAS experimental unit and read in via interrupt handler teuin(). When
teuin() receives a complete data block, it places this data in the teuteu
queue and wakes the teu() task. Teu() then is responsible for determining
which targets to display, where and how the targets should be placed on the
PWI-~type display, what audio should be annunciated, and for communicating this
information to the service processor.

4.3'4.1.1 InEutS

Primary TEU inputs are from two sources: the TEU interrupt handler
teuin() and the keyboard task keybd(). Inputs from teuin() are placed once
per second in the teuteu queue. These inputs are variable—-length data blocks
which contain position and equippage iaformation for own aircraft and up to
elight other aircraft. The format of the TEU input data blocks is showmn in
Figo 403"3| :

Users may enter keyboard commands at any time., The keyboard task rejects
invalid keystrokes and accepts valid keystrokes in order to update a display
options array. It 1s this l6-byte array (Fig. 4.3-3) which 1s passed to the

.TEU task in the keyteu queue.

There are three other inputs to the teu() task:

(1) The service processor sends a l-byte message to the user processor
each time there 18 a change in the Bendix front panel switch setting.
This byte is placed in the spiteu queue for the TEU task and used in
determining whether audio and video data blocks should be sent from
the user processor to the service processor.

(2) The timer task stim() is inittalized (and reinitialized each time
through teu()) ia order to wake the teu() task at one second
intervals. This wake-up 18 used by teu() to decrement counters once
per second and in test mode to process test data once per secoand.

(3) The third input is handled via global variables rather than a queue
entry. Whenever the caution/waraning button is pushed, the
caution/warning interrupt handler cwin{) zeroes the varlables "cwyel

and "cwred", which are used by the TEU function ralert().

"

78

o] 1] 2] 3] 41 51| 61} 7
1 hours of system time 0-23
2 | minuteg of system time 0-59
3 gseconds of system time 0~59
AEADER & | JHITTITTTE AUDIO [////] BRG|*
INFORMATION 5 BEU performance level 0-7
6 LS Byte own altitude
7 | M5 Byte LSB = 100 ft
8 | MS Byte - TVSI command
9 | LS Byte
1 | Priority 1-8 |Window no. 1-8
2 | _Range 0-16 nm LSB = 1/16 nn
TARGET 4 | Rel., Alt, + 9900 £t LSB =100 ft)
INFORMATIOR 5 | Azimuth 0-360° LSB = 360°/256]
6 | BB | NEW| 2A | UP | DN [A/D| COLOR
1
2.
3 target 2

|77F| -=spare

AUDIO Q00 none
001 'command’
016 'clear'
011 'alert'
160 tone .

BRG 0 BEU 1s not providing bearing data
1 BEU is providing bearing data
PRIORITY 1 = higbest
BB 1 = bad bearing
NEW 1 = new target
BA 1 = bad altitude
up 1 = alt rate > 10 ft/sec
DN 1 = alt rate < =10 ft/sec
A/D 0 ATCRBS
-1 DABS
COLOR 00 white
0l yellow
10 red

11 undefined

*NOTE: For certaln prerecorded data sets, header words &4 & 5
have special meaning. If word 4 = OXEQ, then word 5 contains a
number identifying the data set which is to follow.

Fig. 4.3-3. TEU Input data block format.

79

4.3-4‘.1-2 OutEutS

Outputs from the teu() task are the audio/video data blocks described in
Section 3.4.4.

4.3.4.1.3 Task Structure

The teu{) task is made up of five levels of functions (Fig. 4.3~4).
Figure 4,3-5 presents an alphabetical listing of these functions showing the
file in which each function is located and giving a brief description of each
function's purpose. The primary purpose of the level 1 function, task teu(),
is8 to check each of the four input queues (spiteu, keyteu, teuteu, and timteu)
for input. When TEU data is present in the teuteu queue, or Iin test mode,
when the timteu queue indicates that test data should be processed, the level

2 function tproc() 1is called.

Tproc() then makes calls to 12 different level-3 functions. These
"level-3 functions handle either keyboard selected options (e.g., tod()
~display time-of-day message in upper left screen corner) or handle some
well-defined part of the processing which must be done each scan (e.g.,
ralert{) -decide what, if any, audio should be annunciated}.

Level-4 and level-5 functions are specialized subroutines used by certain
level-3 functions. The lowest level functions will usually contain calls to
user graphics package routines. It is the user graphics routines which
actually generate the graphics data blocks and output them wvia the teuspo
queue to the gpoutt() task for transfer to the service processor.

4.3.4.1.4 Techniques for Dynamic Screen Allocation

There 1s one concept that requires explanation before many of the TEU
functions can be understood. This is the method of dynamically allocating
space on the screen whenever text messages are displayed for the first time or
Temoved.

Ailrcraft position information is given in terms of range and bearing from
own alrcraft. It is beneficial for trafiic displays to have greater range
vigibility in front of the aireraft (0°, up, on the screen) than behind (180°,
down, on the screen). Therefore own aircraft is not located at the center of
the display screen, and the available range from own aircraft to screen edge
is different for different bearings. In addition, when text messages are
displayed in the screen corners, or when 'no bearing blocks' are displayed,
the space available for target display is reduced in certain directions (i.e.,
for certain bearings). Therefore, the user-processor software malntains a
256—element array (target bearing LSB = 360/256 degrees) to show current
available range in each of the 256 bearing positions. This array 1is called
dunits[]. 1Its units are consistent with the units selected by the user in the
scale command (see Section 3.4.4) (our software sets the screen dimensions to
be 1024 units horizontally and 768 units vertically.)

80

Level 1

TEU
task

Level 2

u_tablesﬂw

__clrteu

initfaa

...tprog:

__update

- uypdat

Fig. 4.3-4.

Level 3 Level &

tinit

modeck

rev..

tod. -

ralert annunc

tau -
oalt.
oxrder -
trigger
callup

brg - units

psf
rring __ dspg

tgt

sqrt

_thet ..

Bl

Level 5

_ top
_ right
__ bottom

_ left .

_ deftop

TEU task structure-functions used by the TEU task.

File in which
1

Name fun

annunc tsubs2.c Decode IVSI command word to annunciate
proper audio word.

bottom tsubs.c "~ Put alt tag (if no overlap) below target

triangle.
brg tsubsl.c Display 'mo bearing' targets in block in

upper left screen area.

callup tsubsZ.c If extended range selected via keyboard
figure out what display range should be,

clrteu teu.c (Re)initialize various screen para
flags, and counters., Called at start-up,
when CLR DISP key is pressed, and when no
data has beea received for 8 seconds.

deftop tsubs.c No good position for alt tag. As a default,
put alt tag above target triangle, even
though it will overlap something.

dspw tsubs2.c Check to see if proximate a/c meet range
criteria for display.

initfaa faafilm.c Called whenever a new FAA encounter 1s
selected or a previously selected encounter
repeats from the beginning. Initialize
arrays and variables used in generating
encounters,

left tsubs.c Put alt tag (if no overlap) to left of
target triangle,

modeck tsubs2.c Set user mode switch based on mode switch
setting received from Master and target
severity (threat or prethreat present or

ext key pressed on keyboard)

oalt teu.c If in absolute altitude mode, display own
aircraft altitude in lower left screen
COLTIEL '

order tsubs2.c Reorder targets in aircraft data array

according to priority. Called when there
are more targets received than can be
displayed.

Fig. 4.3-8, Functions used by the TEU task.

82

Name

psf

ralert

rev

right

rring

sqrt

tables

tag

tau

tgt

thet

tinit

File in which _
function is located

Purpose

tsubsl.c

tsubs2.c

teu.c
tsubs.c

teu.C

faafilm.c

tables.c

tsubs.c

teu.c

tsubsl.c

faafilm.c

tables.c

Do preliminary scaling factor calculations
to compute min. display range that will
show all threats and prethreats. Called
when autoscaling 1s selected.

Do resolution advisory processing,
annunciate audio (except for commands,
which are annunciated by annunc), set
caution/warning lights.

Display rev message in upper right screen
corner for 8 seconds after -power—up.

Put alt tag (if no overlap) to right of
target triangles.

Display 2-nm range ring and chevron symbol.

Change target x,y coordinates to r, theta
coordinates in updating FAA encounters.

Set up the arrays used in dynamically
allocating space on the screen when text
messages come and go in the corners.
Called at initialization oaly.

Figure out where to put altitude tag so
that it doesn't overlap target trilangles or
other altitude tags. Calls top, right,
bottom, left, and deftop.

If selected, display the message in lower
right screen corner.

Convert target position from polar to x,¥
coordinates. Set up information necessary
to display target triangle and alt tag.

Change target x,y coordinates to r, theta
coordinates in updating FAA encounters.

Called at initialization only. Set up the
arrays used in dynamically allocating
space on the screen when text messages come
and go in the corners.

Fig. 4.3-5. Functions used by the TEU task (cont'd).

83

Name

tod
top
tproc

trigger

units

updat

update

File in which
function 1s located

Purpose

teu.cC
tsubs.c
teu.c

tsubs2.c

tsubs.c

faafilm.c

teu.c

If selected, display time—of-day message in
upper left screen corners.

_ Put alt tag (if no overlap) above target

triangle.

Main TEU processing routine. Called once
per scan, (See Fig. 3.4-53).

If threat-triggered mode selected via
keyboard, check to see if there are any
threats or pre-threats. If not, set tproc()
to do no processing.,

If there is a change in the number of 'no
bearing' targets displayed, make
appropriate changes in arrays used in
dynamically allocating space on the screen,

In test mode, when FAA encounters have been
selected, update encounter data once per
second so that targets move across the
screen as specified.

In test mode, (no demonstration scenarios
or FAA encounters selected) update canned
data once per scan so that targets appear
to move across screen in a realistic
manner.,

Fig. 4.3-5. Functions used by the TEU task (cont’d).

There are nine other arrays that are used in conjunction with dunits[]:
du0l], dul[],.e., du8[]. DuOf] is a 256-element array which contains
avallable units from own aircraft to screen edge for each bearing (i.e., it
assumes that no text messages are being displayed and that the entire screen
is available for target display). In the TEU initlalization, tables() is
called to set dunits|[] equal to duOf].

The other arrays, dul[],..., du8[], do not contain a full set of 256
elements. For imstance, dul[] contains 19 elements. When the rev message is
displayed in the upper right. screen corner, the 12 bearing elements in
dunits{] that span the upper right screen corner will be replaced by the 19
elements of dul[]. The available ranges for those bearings will be small
enough to ensure that target information does not overwrite screen text.-

Much code in many: of the TEU functions is devoted to. changing the
units|] -array when text messages change on the screen, This is true in

d
functions rev(), tod(), oalt(), trigger(), callup(), brg(), and units().

The numbers in du0f{],..., du8[] are calculated at run time using sine and
cosine tables stored in the file tables.c. The formulas used are
straightforward right-triangle-type calculations, but the input numbers were:
derived from careful screen layout and measurement. Changes..in this area
would be time-censuming.

4,3.4.2 The iInterrupt-Handlers teuin{) and cwin{)

Teuin{) is the interrupt handler for :the TEU.input interface. Bytes :are
received via serial I/0 channel B (port 0X82). Each time a byte is received,
control is passed to teuin() and the byte is read into location "inchar”.
Teuin() requires the TEU data to conform to an expected format: The first
character of the data block must be the sync character 0XA5. The second
character is the byte count of the number of bytes that follow. Teuin() will
look for the sync byte, then accumulate the bytes that follow in the teuara
array, 1 byte being stored each time teuin() is executed. When all bytes of a
data block have been received, teuin{) puts them into the teuteu queue aund
wakes the TEU task.,

There is a timing check performed to ensure that gaps in the input data
gtream do not cause the data processed by the TEU task to get out of sync.
When the sync character is received, the current system time (LSB= 1/16 sec)
is stored in "sttim”. When each subsequent byte 1s recelved, the new current
system time is compared with “"sttim". If the difference exceeds 3/4 second, a
gap in the input data stream is assumed, the teuara array is effectively
flushed, and teuin() ignores all data until another sync character is

anniL s

recelved.

There are two versions of teuin(): one version to handle TEU input with
an accompanying checksum, the other version to handle TEU input without a
checksum. The checksum version is located in file TEUCK.C and is the default
version for use at Lincoln. The non—-checksum version is located in file TEU.C

85

and has been delivered to the FAA to interface to the Dalmo Victor TCAS unit.
The checksum, when it is present, is expected to be the third byte of the TEU
data, following the sync character and byte count. The data stream is
considered correct when the exclusive OR of all bytes (including sync
character, byte count, and checksum) yields a zero result.

et Y da +tha

ke

W.Lu.\; 1z the intarr han“'lnv- 'FAr nnuticn”rr r‘ing]-“l‘l'f'nn ‘fﬂn"fu "’ia
ca

upt ier for cau
parallel I/0 channel A, The caution/warning button contains two separate
lights., The lights can be lit separately, but the software has been set up so
that pushing the button extinguishes both lights. An interrupt occurs when
the button 18 pushed. Cwin() simply turns both lights out via an output to
port 0X85 and zeroes the parameters “cwyel” and “cwred” which are used by the
ralert() function. The interrupt logic is disabled in the handler to
deactivate subsequent interrupts caused by switch bounce. Interrupts are
re-enabled in ralert() when the caution/warning lights are turned on.

= o k]

Note: The purpose of the caution/warning light/button is to direct the
pilot's attention to the display when a threatening or potentially threatening
situation exists, The caution/warning light/button is used in conjunction
with the aural alerting logic in ralert() When a prethreat appears,
ralert{) causes the yellow light to to be 1lit and a C-chord to be scunded.
When a threat appears, ralert() causes the red light to be lit and the
appropriate command to be annunciated. The lights will remain lit and the
commands will be annunciated repeatedly until the pilot pushes the

caution/warning button as acknowledgement.

4,3.4.3 The TEU Task (teu{))

The primary purpose of teu() is to check each of the four TEU input
queues {spiteu, keyvteu, teuteu, and timteu} for input and direct control to

deules vl Ll

the proper function for processing that input.

Teu() begins with an initialization segment which is run once at system
start-up time. TableS() is called to set up the dunits[] array (see Section
4-3.4-1.4}, and the useulj arra_v is initialized (acc Section 4.5-4.4.9).
Initialization is also done for test mode operation. Test mode operation
allows the use of either moving test data or specific fixed demonstration .

data sets and 1is explained in more detail at the end of this section.

Each time the teu() task is awakened, it checks to see if any of the four
queues has input, If so, it proceeds to check each of the queues

individually.

The only defined spiteu entry is a one-byte message passed from the
service processor each time there 1s a change in the Bendix front panel switch
setting. The message has one of three values corresponding to the three "on”
switch settings: weather radar only, combination weather radar/AID, and AID
‘only. The switch setting is used by the modeck() function in determining
whether audio and video data blocks should be sent from the user processor to
the service processor each scan. This is explained in detail in

Section 4.3.6.1.

86

The keyteu queue is checked next. In general, the 16-byte display
options array from the keyboard simply overwrites the display options array
currently used by teu(). This new display options array will then be used the
next time tproc() is called. Two array elements are handled in a special way.
If CLR DISP has been selected, the display is cleared immediately ingtead of
waiting for tproc() to be called. (Tproc() may not be called for some time.
Under error conditions (which is usually when CLR DISP is pressed), there may
be some problem getting TEU input data, and tproc() is only called when there
is valld TEU input data.) Also, care is taken to ensure that the extended

range or call-up mode (doption[ll]) is not zeroed before it has had a chance

to be processed by callup().

The teuteu queue is checked next. If the entry size is valid, the entry
is read into the aircraft data array acd[]. Note: "acdl™ is a one-byte field
that immediately precedes acd[]. When the teuteu entry is read by getq, the
entry byte count goes into acdl and the data itself (see format in Fig. 4.3-4)
goes into acd[]. Tproc() is then called to process the acd[] data.

Finally, the timteu queue is checked. The timer task stim() awakens the
TEU task once per second. At this time various counters are decremented.
Zach time new TEU data is received or each time test data is used, the restart
counter “rstct” is set to RTIM. Therefore, if in operational mode no
data is received for RTIM seconds, "rstct” will time out, If this happens,

the display is cleared and a “"no data” message is displayed on the screen.

The next section of code deals with test mode operation. Some
explanation is required. The user selects test mode via the TST key on the
keyboard. This sets doption[9] to l. The TST key 1is used in conjunction with
the DEMO key. The user presses the DEMO key followed by two digits
(00,01,...,09,04,0B,11,...,19,14). Doptionfl0] is set to the value entered.
1f DEMO 00 is pressed, or if only the TST key 1s pressed without pressing the
DEMO key at all, a moving test display results, with target positicns being
updated in a falrly realistic way each scan by update(). Lf DEMO Ol,...,DEMO
OB is pressed, a fixed prestored demounstration scenario is displayed on the

screen., 1f DEMO 11,..., DEMO 1A is pressed, an FAA-defined encounter is
displayed, with target positions being updated each scan by updat().

Care must be taken to initialize varilous parameters and arrays each time

a different test display is selected. The TEU functions have some

past-history memory, and without reinitlalization, non~related data sets would
be thought to be related. This is where the teu() parameters “canned” and
"olddemo” are used. "Canned” can take on three values: 0 = real data,

1 = moving test data, 2 = fixed demonstration scenario or FAA~defined
encounter. "0Olddemo” is set to doption [10] showing what demo scemario, i
any, was used last scan.

&=
L

All data for the moving test display and the fixed demonstration
scenarios is stored in the file tables.c. Teutst{] contains own aircraft
header information followed by data for eight aircraft used for the moving
test data. Dhdrl], demol], dsizel], and doffs[] contain information for the
fixed test data. This is well explained in the tables.c listing. All data
for the FAA-defined encounters is stored in the file faafilm.c.

87

The teu() code checks to see if test data is being used. 1If so, and if
no demo was selected (if moving test data is beilng used), and if this is the
first time moving test data is belng used, the aircraft data array acd[] is
loaded with the moving test data. If a fixed demonstration scenario was
selected, acd[] 1s loaded each scan with the data corresponding to the
scenario, regardless of whether it was already loaded the previous scan. If
an FAA-defined encounter was selected, acdf] is loaded with initrial encounter
data in the routine initfaa{). Whenever a demo is selected that differs from
the previous demo, the used{] array is reset.

Finally, tproc() is called to process the acd[] data. Following trpoc(),
if moving test data or an FAA encounter is being used, update() or updat() is
called to update it,

4.3.,4.,4 Functions Called by the TEU Task

There are 31 functions associated with the teu() task., These are shown
in Fig. 4.3-4 and Fig, 4,3-5. Only those functions which need special '
explanation will be covered in the sections which follow. Functions not
covered below are assumed to be adequately explained by comments in the
program listings.

4.3.4.4.1 The Main TEU Processing Function tproc()

Tproc() basically directs the program flow through thirteen differeat
routines (see Fig. 4.3-4) in order to set up a single frame for the display.
A brief description of each of these routines is given in Fig. 4.3-5. They
handle such tasks as setting up messages displayed in the screen corners,
determining what aural alerts to sound, setting up 'no bearing' blocks for
targets without valid bearing information, doing the calculations connected
with autoscaling, determining which targets to display and where to place the
target symbols and altitude tags on the screen., There is one exception to the
standard tproc() execution sequence. It occurs in playback mode when a
special 'title frame' data block is sent instead of the regular TEU aircraft
position information (see note in Fig. 4.3-3). 1In this case, a one-line title
is displayed on the screen, and the normal processing initiated by tproc() is
bypassed.

Pause statements appear throughout tproc(} to allow higher priority tasks
to run if necessary. There is a provision made in function tgt{) to check to
see 1f data from the next scan has arrived while data from this scan is still
being processed. If so, the processing is lagging, and the queue which sends
graphics data blocks out to the service processor is flushed. The service
processor will have already received the begin frame message for this scan,
but it will not receive the corresponding end frame. This causes the service
processor to ignore all of the data for this scan. The effect is a temporary
drop in the screen update rate from one second to two seconds. This
guarantees that queues will not severely back up, which in a worst-case
situation could cause the digplay to freeze,

88

4.3,4.4,2 Update()

If the user has elected to display moving test data, update() is called
once per scan, immediately following tproc(), to update the aircraft position
information. The intent is to cause the test targets to move somewhat
realistically across the screen, with target color changing in an appropriate
way and aural alerts being sounded.

When the moving test display is first selected, or whenever it is
reselected following another mode of operation, tproc() initializes the
aircraft data array acd[] to teutst[]. Teutst[] contains initial data values
for own alrcraft and eight other aircraft.

Each scan, the system time 1s updated. If the current time (elapsed time
since the start of moving test data mode) is greater than "maxtim” seconds,
acd[] is reinitialized and the sequence begins again., This reinitialization
is no longer necessary and could be removed, because target movement, as
currently done, could continue indefinitely.

After the time update, target information for each of the eight aircraft
is updated. (Position information for own aircraft (i.e., altitude) never
changes.) An 8-byte array, rarray[], is used in the updating process, each
array element corresponding to one of the eight aircraft. Rarray[] is zeroed
initially, signaling that the range for each target is to be decremented by
"er" each scan. Whenever an aircraft's range becomes negative, the rarray
entry for that aircraft is set to 1 to cause the range to thereafter be
{ncremented each scan. At the same time (at range cross-over), the aircraft
bearing is changed by 180 degrees. This effectively causes the target to
approach own aircraft from one side, pass directly above or below, and depart
in the opposite direction. Whenever an aircraft's range is less than 1.0 nm,
its color is set to red and an ivsi command is set. When an aircraft's range
is between 1,0 and 1.5 nm, the color is set to yellow; upon transitioning from -
white to yellow, the aural alert "traffic"” i1s annunciated,

4.3.4.4,3 0alt()

O0alt() is called each scan to display own aircraft altitude if absolute
altitude mode has beén selected. The function is non~trivial only because the
dunits array for allocating space on the screen must be updated whenever the
altitude text appears for the first time or disappears. The altitude text is
displayed in the lower left screen corner. In deciding how to update
dunits[], it is necessary to know how many 'no bearing’ blocks are being
displayed on the left screen side.

The left screen side is divided into six rectangular areas (see
Fig. 4.3-6(A)) These areas, when used for text, display (from top to bottom):
(1) time-of-day, (2) no bearing block 1, (3) no bearing block 2, (4) no
bearing block 3, (5) no bearing block 4, and (6) own aircraft altitude. The
basic idea for updating dunits[] is that if two or more adjacent rectangles
are available for target display, the corresponding elements of dunits[] will

89 ,

06

*NO BEARING

BLOCKS

'?

ToD

‘ il

2 Vi
f \ | 7\

OALT : ' W
(A (8)

11111111

i

//

)
T/ PN

m

(D) ' (E)

= RESERVED FOR TEXT
UNAVAILABLE FOR TARGET DISPLAY

v77A

7
i

Fig. 4.3-6. Allocation of screen for text or target dispiay.

-\
.
(C)
N
W
W
Y/ PN
(F)

be set for target display. However, if a single rectangle is available for
varget display, this 1s not really enough .space to be of use, and the elements

CALASL MLOp LGy 5 A e R L

of dunits are set to be unavailable for target display.

The code 1s as follows: If own alrcraft altitude is to be displayed, and
1f it was nct displayed last scan, dunits[] must be updated to reflect a
smaller display area. Lf 0,1, or 2 'no beariag' blocks are being displayed,-
simply redo the part of dunits{] that spans the lower left cormer (see
Fig. 4.3-6(B)). If 3 'mo bearing’ blocks are-being displayed, only -one
rectangle is available for display (Fig. 4.3-6(C)).- This is not enough.--Redo
dunits[] to show that none of the rectangles-are available for target display
(Fig. 4.3-6(D)). If 4 'no bearing' blocks are being displayed, .the oalt block
has already been declared unavailable in the brg() function, so no change tc-
dunits[] 1s necessary at this time.

If altitude is not to be displayed, and if it was displayed last scan,
dunits{] must be updated €o reflect a larger display area. . A gimilar
procedure is followed as before. If 0, 1, or.2 'no bearing' blocks are being

displayed, simply redo the part of dunits{] that spans the lower left corner.
I£f°3 'no bearing' blocks are being displayed, free the last two rectangles.

on the left side (Fig, 4.3-6(E)).. If 4 'no bearing' blocks are belng =~
displayed, only one rectangle is available for display (Fig. 4.3-6(F)). This -
is not erough.: Leave dunits[] alone (i.e., leave it with all rectangles.

unavailable for target display as in Fig. 4.3-6(D)). .

Note: A similar procedure. is carried out in function units(), called --
when: the 'no bearing' blocks are -set up.

4.3-4.4047 Order()

order() is called whenever there are more targets available than can be
displayed, as long as priority informatiom 1is available to do the ordering.
The TEU-associated functions always process the first “atgt" targets in the
acd array ("ntgt” = number of targets selected by the keyboard, default = 8).
Therefore order() does not need to produce a priority—ordered acd[] array,
only one in which all of the "ntgt" highest priority targets are within the
first "ntgt" acd entries.,

The approach is to first divide the acd array into two sections. When
order() is finished, the first sectlon will comtain the "ntgt" highest
priority targets; the second section will contain the other targets. Two
pointers are used: "i”, which is initialized to 0 to point to the first
section, and "index”, which is initialized to point to the second section.
“$10" and "index+9" are used to skip past the first 9 bytes of the acd array.

A LA Y L1 LA Sl

These 9 bytes contain own aircraft header information, not target information.

order() simply starts with the first acd entry and loops "ntgt” times
through the acd array. Each time a target priority is less than or egual to

"atgt”, it is left alone. Each time a target priority is greater than "atgt"”,
it switches places with the first target it comes to in the second section

whose priority is less than or equal to "ntgt”.

91

4.3.4.4.5 Trigger()

Trigger() 1is called to do event-triggered processing. If event-triggered
mode has been selected, proximate aircraft are displayed only if a threat or
prethreat is currently being displayed or has been displayed within the last
TTIM (currently 8) seconds. Trigger() loops through all targets to see if
there is a threat or prethreat. If so, the trigger counter “"trgct" is set to
TTIM. This counter is decremented once per second in teu() when an entry 1is
received in the timteu queue. If there are no threats or prethreats and
"trget” has timed out, "tsize” is set to 0, which causes the TEU functions to
process no targets.

There is a special 'surveillance' mode which takes precedence over and
essentially negates trigger mode. If the SURV key has been pressed on the
keyboard, all targets within 5 nm are displayed. A check is made at the
beginning of trigger() to determine if surveillance mode is in effect. If so,
the checks for threats and prethreats described above are bypassed.

4.3.4.4.6 Callup()

Caliup() is called to do extended range or call-up processing. Extended
range mode is in effect for CTIM (currently 15) seconds each time the EXT key
1s pressed on the keyboard. In this mode, if threat-triggered mode is also in
effect, show proximate aircraft to 4 nm even 1f there are no threats or
prethreats being displayed. (This would undo the "tslize” = 0 setting in
order() above.) If continuous mode 1s in effect, extend the display range for
proximate aircraft (show proximate airecraft to 4 nm instead of 2 nm).

The surveillance mode described in trigger() above alsc take precedence
over callup mode. If the SURV key has been pressed on the keyboard, all
targets within 5 nm are displayed. A check is made at the beginning of
callup() to determine if surveillance mode is in effect. If so, callup() is
not executed.

4.3.4.4.7 Units()

Units{) alters dunits[] to reflect a change in the available target
display area due to a change in the number of 'no bearing' blocks being
displayed. Units() is called by brg(), the function which sets up 'no
bearing’' text blocks for targets with invalid bearing. Ia altering dunitsl},
it is necessary to also check whether the time-of-day message is belng
displayed in the upper left screen corner and whether the own aircraft
altitude message 1ls being displayed in the lower left screen corner. See
Section 3.4.4.3, oalt(), for a similar description of how dunits[] is altered.

4,3.4.4.8 Pef()

The function psf() does preliminary scaling factor calculations, when
necessary, in order to determine the screen display range, "dr”.

92

in order to correctly position targets on the display screen, it is

necessary to coavert from target range, bearing units to screen X,y

coordinates. The keyboard RNGE option determines in part how this conversion
is done. If the auto-scaling option has been selected, psf() must first
determine "dr”, the range to display. If the fixed range only option has been
selected, psf() simply sets "dr" equal to the selected range. In both cases,
i £oa

"dr" is then used to compute a scaling factor "sf” which scales all aircrait
ranges for display.

Determination of Display'Rangg

The AID software was designed to allow own aircraft to be positioned at
any point on the display screen., In the current system own aircraft is
centered on the screen horizontally, but located about 1/3 of the way up from
the bottom vertically ((512,240) on a virtual screen of (1024,768)). When a

P nomde e m B L enmd ammn e
user selects a fixed range, this range corresponds to the distance from own

aireraft position to the bottom of the screen, i.e., the range at 1807, the
direction of least visibility.

When the auto-scaling option is selected, a display range must be
determined which allows all threats and prethreats to be visible. This is
done by means of the 256-element array dunits[]. (Target bearing LSB= 360/256
degrees.,) Each array element gives the number of available display units from
own aircraft position to the screen edge corresponding to that bearing. Thus
at 0° there are 768 — 240 = 528 avallable units; at 90°, 1024 - 512 = 512
available units; at 180°, 240 available units; and at 270°, 512 available
units. Note that when text strings exist around the edges of the screen, the
dunits[] values are reduced so that targets will not overlay the text.

The procedure to compute the display range is as foll
target, use target bearing as an index into the array to get avallable units.
Divide the number of units by the target range to form the units/am ratio
necegsary if the target were to lie at screen's edge. After this has been
done for all targets, select the smallest ratio. This is the number of units
which must equal one nm if all targets are to fit on the screen.

Aryo e v
ows: For each

However, there is an additional constraint. The range selected (180°
range) must be an integral number of nautical miles (2,3,4,...,8 with 2 being
the smallest allowed). Therefore divide the 180° available units by the ratio

(units/nm) just selected to get the range (am) in the 180° direction. Round
this up to be an integer. This is "dr", the display range to be used.

Calculating the Scaling Factor

Once the display range "dr” has been determined, or if a fixed range has
been selected, or if all targets are within 2 nm (in which case "dr“=2), the
scaling factor "sf" can be calculated. "sf" = 180° available unite/"dr”, All
target ranges are then multiplied by “sf”, and the radius of the 2-nm range

ring 1s 2 * "sf".

93

Example
Abbreviated Array

element bearing (dggrees) avallable units
0 Q 528
32 45 735
64 90 512
128 180 240
192 270 512
unlts final
ratio =—————- radial distance
ne in anits
target 1 5 nm 45° 735/5 = 147 240
target 2 9.2 nm 0° 528/9.2 = 57.39 441
target 3 .5 nm 90° 512/.5 = 1024 24

Smallest ratio is 57.39 units/nm, i.e., 57.39 units = 1 nm for all targets to
fit on the screen. Divide 180° available units by 57.39.

240/57.39 = 4.18 nm = range in 180° direction. Round up to get display range
DR = 5 nm, and SF = 240/5 = 48 units/nm.

Radius 2-am range
Target 1 range 1s
Target 2 range is

ring is 2%SF = 96 units.
then 5 nm * 48 units/nm = 240 units.
9.2 * 48 = 44] units.

Target 3 range is .5 * 48 = 24 units.

4.3.4.4,9 Tgt()

feature of the AID 18 that target altitude tags do not
target symbols or other tags. Altitude tags may be

positioned in any of four directions relative to the target triangle: top,

right, bottom, or left. In addition, whenever possible, tag direction will
not change from one scan to another. The result is a high level of screen
clarity and readability. In order to accomplish this, in positioning
altitude tags, one must keep track of the position of all previously placed
target symbols and tags. This is done by means of the used array. Used[] is
a two-dimensional array that stores information for up to B targets, with 8
fields per target: x,y coordipates of the center of the target triangle; x,y
coordinates of the lower left cormer of the altitude tag; new target flag;
offscreen target flag; color (white, yellow or red); and most recent tag
position (top, right, bottom, or left), There is also a row (the first row)
for storing own aircraft chevron position information.

An important
overwrite text or

moandted anad Avver

Target triangles are placed as accurately as possible, with overwriting
othar triancglas allowed. however, are pogitioned if possible to be

ovaer L ARISLST AR -8 =V St PRl s PSSR LU TS

in the clear.

Taga

nf
Lo s - Il |

Tgt() consists mainly of two loops through all of the targets. In the
first loop, all target triangle positions are calculated and stored in the
used array without regard for overlap. In the second loop, calls are made to
function tag() to calculate altitude tag positions and store them in the used
array. Each time tag() is called, it attempts to position an aircraft’s
altitude tag so as not to overlap any of the target triangles or any of the
previously placed altitude tags. Tag() attempts first to place the aircraft's
altitude tag in the same relative direction (top, right, bottom, left) as in
the previous scan, Failing this, it trys the next direction clockwise. If
all four directions fail (i.e., if the altitude tag cannot be placed in the
clear), the top direction will be chosen as a default,

4.3.5 The Service-Processor Input Task and Interrupt Handler

The service-processor input task, spint(), receives two types of logical
messages from the service processor via the interrupt handler: a "switch”
message indicating the setting of the mode switch, and a "poke” message which
is used to indicate to the user processor that the service processor is
operational, In the current version, spint() expects only one logical message
per transmission from the service processor and sends an acknowledgement

message back for every message it receives.

4.3.5.1 The Service-Processor Input Task (spint())

The spint() task is constructed as an infinite loop. Each time it is
awakened, it checks to see if a message has come from the interrupt handler
via the spispi queue, If there is no message, the task merely suspends itself

“again. If there is a message, it clears the first byte(s) of its input
buffer, and then reads the message from the spispi queue into the input
buffer. (The first byte(s) are cleared to effectively remove any previous
message in the input buffer.) If the message is a mode switch message, it is
gent to the TEU task via the spiteu queue, and the TEU task is awakened to
notify it of the receipt of the message. This is the only type of message
that is currently checked.

Then, for every message received, an acknowledgement message is sent back
to the service processor, via the spispo queue and the service processor
output routine, spoutt(). The service processor will not send another message
until the last one 1s acknowledged - this protocol simplifies the interrupt
handler by allowing it to be singly buffered. In addition to sending the
acknowledgement message, spint() also sets a flag to indicate to the output
routine that a message has been received, This is only really significant on
the first message from the service processor.

After processing the input message, spint() again checks the input queue
for messages and continues its infinite loop.

4.3.5.2 The Service—Processor Input Interrupt Handler (spih{))

The slave processor is configured to be interrupted for every byte sent
to it from the service processor. For this reason, unlike the service
processor, it must distinguish in software between the first byte of a message

95

and its subsequent bytes. It does this by maintaining a flag called ioinp,
which is cleared initially. Whenever an interrupt occurs, after saving the
registers, the interrupt routine checks this flag and does one of two
different things. If the flag is cleared (the else clause), the byte input is
the first byte, which, in the transmission format established for service/user
processor communication, is the byte count for the message, The count 1is
saved and also stored as a temporary counter. The address pointer is

initialized to the start of the input buffer and if the byte count is
non-zero, the ioinp flag is set.

Once the flag is set, subsequent interrupts cause the input bytes to be
stored in the input buffer uatil all the bytes have been input. When the
entire message has been received, the ioinp flag 1s cleared and the input is

sent to the spint() task via the spilspi queue.

4.3.6 Service-Processor Output Task and Intérrupt Handler

The service-processor output task, spoutt(), receives data from three
queues — spispo, audspo, and graspo. It merges these data into a double-

buffered output array and calls the interrupt handler to start the
+ranamiassinn A maximum of 255 bytes can be transferred at one time to the

BLGUHOWLOWGAVLLE AA LRSIl W L - - =222 L2

gervice processor; if the combined input from the queues 1s more than 255

bytes, spoutt() will make more than one call to the interrupt handler, until

all the queues have been emptied. The logic of spoutt() has been set up to

take one message at a time from all the queues instead of emptying oce queue
A

oy
AT L

before going to the next. This was done so that an audio message would
get backed up behind a long string of graphic messages.

4.3.6.1 The Service-Processor Qutput Task (spoutt())

After waiting for the initialization task, spoutt() initializes the
counts of its double buffers, resets the pointer to the buffers, and clears
the I/0 flag. It initializes an array of pointers to the input queues and

gets the value of the auxiliary control port, which has been set in the INIT
- ol mMhda 4ec dana haranags fhae interrunt handler must set and clear one bit

LD e 143 15 QOO uelalbit Lt AnLTiivpi uGiillatl =528 2%

of this port without changing the other bits. After its initialization is
complete, spoutt() waits until the first message from the service processor is
received before it sends anything.

After the first message has been received from the service processor,
gpoutt() enters an infinite loop in which 1t checks its input queues and if
nothing has been input, it suspends itself. If there is an entry, it enters a
do-while loop which continues until all the input has been processed. The
input is processed by extracting one message at a time from each queue which
contains an entry. The messages are added to one of the output buffers until
either the output buffer is filled or all the messages have been extracted,
This output buffer is sent to the interrupt handler by the call to spout(b)

and then the buffer pointer is switched to the other buffer. The double-

buffering technique allows one buffer to be transmitted while the other 1is

being filled in preparation for transmission.

(Y]
£

There is one condition that requires special handling by spoutt(). It is
the selective transmigsion of messages based on the setting of the Bendix
front panel mode switch. The mode switch has three 'on' settings. They are
weather radar only, combination weather radar/AID, and AID only. In general,
regardless of switch setting, tasks within the user processor functiom as if
audio and video data blocks are always to be sent to the service processor.

In actuality, the data blocks are always sent as far as spoutt(). Then
gpoutt(), with the help of the teu() task, determines which audio and video
data blocks should be sent on to the service processor. Audio data blocks in
response to keystrokes are always sent. Target-related audio and video data
blocks are sent always in AID only mode, never in weather radar only mode, and

sometimes in combination mode.

In more detail the process is as follows. Each time there is a change in

the front panel switch setting, the service processor sends this setting to
ocessor. It ultimately is passed to the teu() task where it is used

To curmmwe v
the user PIOCCOOUL s v UiLiluuLT Ly azecl Lile LE

by the modeck() function. Modeck() is called once per scan before any audio
or video data blocks are sent to spoutt() for this scan. Modeck() sends a
tuser mode switch' data block to spoutt(). The user mode switch has one of two
settings: AID only or weather radar only. Ii the front panel setting is AID
only, the user mode switch setting will be AID only. If the front panel
satting is weather radar oanly, the user mode switch setting will be weather
radar only. If the front panel setting is combination mode, the user mode
switch setting will be weather radar only except when one of the following
conditions is met:; (1) there is a threat or prethreat to be displayed, (2) a
threat or prethreat has been displayed within the last 8 seconds, or (3) the
EXT key has been pressed on the keyboard. If one of these conditions is met,

the user mode switch setting is AID only.

When spoutt{) recognizes a user mode switch message in its input data
stream, it uses this to set its internal flag "uswitch". Thereafter, whenever
there i1s an entry in one of spoutt()'s input queues, spoutt() uses "uswitch”
to decide whether to flush the entry or to send it on to the interrupt handler
for transmission to the service processor. If "uswitch” = weather radar only,
the entry will be flushed. If “uswitch®™ = AID only, the entry will be sent
on. Regardless of “"uswitch” setting, three message types are always sent to
the service processor. They are the scale message, slave acknowlege message,

and user mode switch nessage.

4.3.6.2 The Transmission Startup Routine (spout(b))

Spout(b) 1s used by the spoutt() task to start the transmission of a

message to the service processor. It is called with the pointer (index) of

the buffer to be output and has the facility to retransmit a message if a

transmission timeout occurs. This was included because the service processor
is interrupted only on the first byte of the message and if that interrupt is
missed for some reason, the message must be retransmitted from the start.
Thus, if spout{b) is called by spoutt() and I/0 is still in progress, spout(b)
walts until it is awakened either by a timeout or by the completion of the
1/0. 1If the timeout occurred, the previous message is retransmitted.

97

If the last message was transmitted properly, any pending timeout
messages are cleared and then the byte count of the current message is
checked. If the byte count is not legal, spout(b) merely returns, thus
ignoring the message. If the byte count is ckay, it then prepares to set up
the transmission. Interrupts are disabled at this point because the alternate
register set, used by the interrupt handler, is set up during this time. A

spurious interrupt would cause the set up to be erronecusly done.

The alternate registers are used for the output interrupt handler so that
this interrupt can be handled as fast as possible. The hardware of the user

processor 1s set up so that the service processor is put into a wait state

each time it tries to input a byte from the user processor and remains in the
walt state until the interrupt routine in the user processor outputs the byte.
The use of the alternate registers allows the interrupt routine to save and
restore the state of the machine as fast as possible in the Z80,

Register C is set to the output port address, register B is set to the
byte count, and HL is set to the address of the byte to be ocutput. This setup
‘allows the interrupt routine to use the OUTI instruction. Next the byte count
is output to the transmission port and then bit 7 of the auxiliary control
port is set, which causes the service processor to be interrupted. (See

Sierra documentation.)

4,3.6.3 The Service Processor Output Interrupt Handler
: (spoh(D)

The interrupt routine switches to the alternate register set, which has
been initialized by the startup routine, spout(b). Register A is output to
the auxilary control port to make sure that the service processor is
interrupted only on the first byte. (Register A had been left by spout(b) to
contain the proper value to be output.) Next the Z flag is tested to
determine if the transmission Is complete. (Note that the OUTI instruction
will set the Z flag when the byte count goes to zero.) If there is more to
do, it outputs the next byte using OUTI and returns. If the transmission is
done, it clears the I/0 flag and wakes the output task, spoutt().

4.3.7 The Timer Task (stim()) and Interrupt Handler {(ctc())

Stim() and cte{) together provide interval timing for tasks within the
user processor. They also maintain a one-second timer, "sectimr", which is a
global parameter that may be referenced by other tasks.

The slave single~board computer contains a chip that supplies four
counter-timers. It is initialized in init() to produce an interrupt every
62,5 milliseconds. When this interrupt occurs, control is passed to the
interrupt handler, cte(), which simply places a one~byte dummy message into
the timtim queue and wakes the timer task, stim().

98

In addition to being awakened by cte() at regular intervals, stim() can
be awakened by a task wishing to initiate or halt a timer.. Stim() maintains .
an array tcount[], each element of which serves as a timer for one of the-
user—-processor tasks. A task initiates a timer by loading a delay count into
its timer -output queue and waking the timer task. ..The delay count 1is from 1

to 255, with each count = 62.5 méeconds, Stim{), when awakenad, places thig

delay count inte the task's tcount[] entry. Thereafter, each time stim() is
awakened by cte(), it will decrement each active tcount[] entry. When a count
reaches zero, the corresponding task is sent a message in its timer input
buffer, the task is awakened, and the timer is deactivated (set to -l). A
task may stop its timer at any time by sending stim() a =1 count. -

Stim() first checks three queues for imput: {nitim, teutim, and spotim,
from tasks init(), teu(), and spoutt(), respectively. If an input is present,
it #s uged te update the tcount[]} array. Next stim{) checks for an entry in - -

the timtim queue, signalling a 62,.5-msec wake~up from ctc(). If an entry ig
present, all active tcountf| entries are decremented. Tasks whose timers.

time~out are sent a cne~byte message and awakened. Finally, stim{) increments -

"sectimr” every 16th ctc() wake—up, to keep elapsed system time since-
power-up, leb:=:1. gecond.

929

5.0 THE AUDIO RECORDING AND AUDIO RAM LOADING FUNCTIONS

A program has: been written to facilitate the recording of spoken words
and phrases and generated tones. Another program was written to store the
generated data ‘Into audio RAM banks in the AID system during its initial
program load sequence,

The audio recording program is formed by linking the following
relocatable files using indirect command file LZBLD.CMD:

AUDBLD,.R
AUDCOM,R
AUDREC.R
AUDBITS.R :
CT.Z

MT.Z
CEDR.Z

The. first. four are application files; CT.Z and MT.Z are C-compiler libraries..
which provide console and disk.I/0 interfaces; CHDR.Z provides the :rall/return
interface between the CP/M operating system and the initial C-function,
main().

The audio recording program provides a menu-driven imterface for the
operator. It iInterfaces--to-the Continuously Variable Slope Delta Modulation
(CVSDM) audio recording and playback S-100 boards. It is also capable of
processing previcusly recorded. data contained in a floppy disk input file and
of storing old or newly recorded data Iin an output disk file. Input file
entries and newly recorded :data mey be annunciated, edited, bypassed or output::
be deleted, edited or passed on to the output file. In addition, newly
recorded entries may be inserted between previously recorded entries in the
output file. A provision is also present for quickly bypassing N records of
the input file. Finally, a capability is present for synthesizing audio tones
of operator-specified frequency and duration.

The input and output data files contain variable-~length records. Each
record consists of a fourteen—byte header and a variable-length (4095 bytes

max) data array. The record format is specified using the C "union” and
"struct"” data structures as follows:

union{
atruct{
int entpres
int Ingth
char audnam[10]
char auddat[4096]
}audent
char filrec[1]
Jun = 0

ME WS WE W We Ve s

100

Parameter “entpres" 1s used simply to verify that a valid entry is present.
"Lngth" specifies the length of the audio data stored in array “"auddat[]".
Array “audnam[]" contains an operator-selectable name for the recorded
audio. Array “filrec{]" overlays the “audent” data structure and provides a
means for easily moving records.

The linked output from LZBLD.CMD is down t are
development facility and converted to a COM file. It is then renamed to
AUDBLD,.COM., The program 1s run by operator command:

ha PR anfruar
o e VY

et] -~
EY v WIS LA =4

A> AUDBLD Fl1.T F2.T

where F1,T is the input audio data file and F2.T is the output file (any file
names may be substituted)., Both files must be specified. If no input data is
available, a dummy F1.T file should be specified. A "null" file, F3.T, is
present on the floppy disk. It may be used to clear a data file, as follows:

el 2 2

A> PIP Fl.T = F3.T

Note that a program calling arguments can't easily be run under the ZSID
debugger. When debugging, the conditional compile flag "FIXED" 1in file
AUDBLD.C should be set. The program will then automatically use F1.T for
input and F2.T for output without specifying them as arguments in the call.

5.1 The Audio Build (AUDBLD.C) File

This file contains the main() function, which is the first function run
in any C program (called by CHDR.Z).

The main() program opens the input and output files, presents the

Fa it iy /s pPeVgesin VNS LeiT i1

n
operator with prompts for selecting program operations and then closes I/0
files when the program terminates.

The first operation performed is to open the 1/0 files. Depending on the
setting of the conditional compile switch “FIXED", these files may be operator
specified in the program initiation statement or the pre-specified files Fl.T
and F2.T. In the former case a test is made to make sure the operator

specified the correct number of files (two).

A set of prompt statements are then output to the operator iInforming him
of the options available. They include: "R", record new data, "I", input
next record from input file, "B", bypass N records in input file and *Q",
quit — return to CP/M. The program proceeds, based upon the operator
response. After each operation has been performed, the operator is again
presented with the options menu.

If the operator chose to record new data, the record() function i3 called.
If (s)he chose to input a record, the input() function is called. In this

case the function returns a one if a rvecord is presemt. The operator 1s then

prompted to determine if the record should be sent to the output file or

101

ignored. If it should be output, the output() function is called. If input()
returned a zero then no more entries exist in the input file. The operator 1s

so informed.

If the operator chose to bypass input records then (s)he is prompted to
specify the number to bypass. That number of records are then input (by

calling function input()) automatically. Note that function input() displays

the name attached to each record as it 1s read. If less than the specified
number of records exist in the input file, the operator is so informed.

The operator may also choose to‘quit, in which case the I/0 files are
closed and contrel is returned to CP/M, Finally, if the operator enters an
illegal respomnse (s)he is so informed.

5.2 The Audio Communication {AUDCOM.C) File

This file contains the functions that input/output audio data records
from/to the disk and communicate with the console and annunciator card.

5.2.1 The Disk Input {input()) Function

This function inputs an audio record from the input disk file and sends
its identifying character string to the console. Upon operator direction it
then sends the recorded audio to the annunciator card where it is annunciated.
The function returns a one 1f a record was found, a zero 1f none was present
{the last record had been read) and a two if the record could not be read.

The first operation performed is to read the record header from the disk.
The length of '‘the record's data area may then be used to load the data. If
either of these reads falls, the operator 1s so informed and the function
returns a two. Next, the function sends the record's name and size to the
console. The operator is then prompted to see 1f the data should be sent to
the annunciator. Note that this operation 1s bypassed when the operator has
chosen to bypass N records The function returns a one when a successful

3 han

A
Tedldtfa reaa idas

5.2.2 The Audio Annuncilation (annun(audptr, audlng)) Function

This function sends audio data to the annunciator card and activates the
annunclator. The data to be sent starts at address "audptr™; “"audlng” bytes
are sent, :

The first operation performed 1s to reset the annunciator card. This is
accomplished by outputting a byte {any byte) to port OX4F, The "audlng”
bytes, starting at "audptr” are then output using the otir() function to
perform the actual transfers. This function uses the fast block move Z80
instruction "OTIR" for this purpose. Port OX4D 1s used. Since otir() may
move a maximum of 256 bytes at a time, multiple calls may be needed. Finally,
a byte (any byte) to port OX4E. The

[
the annunciator is started by outputting

function then returns.

._.
o
X]

5.2.3 The Disk Output {output()) Function

This function outputs the record currently stored in union "un™ to the
output disk file,

The first operation performed is to inform the operator of the size of
the record to be output. The record is then output, If the output operation
fails the operator is so informed and is asked if another attempt should be
made, .

5.2.4 The Operator Pr

This function outputs the ASCII string pointed to by "msgptr” to the
console. 1If "retflg" is ome, it walts for the operator to press a key, If
the key entered is a 'Y' the function returns a one. If the entered key is an
'N' it returns a zero. Entering any other key causes an error prompt to be
gent to the operator. If "retflg” is zero the function simply returns after
outputting the prompt.

The first operation performed is to send the message pointed to by
"msgptr” to the console. Note that C library function lenstr() is used to
determine the length of the string.

f a response was requested ("retflg" non zero) then a character is input
& ateh()Y 1s used and that

e Trmer e d
he keyboard. Nots that the C library function getch() 1is uged an

I
from ¢

a loop 1is needed to "fix" it. The loop removes any left over line feed (0X(0A)
characters from the input buffer.

The character received is tested to see if it was a 'Y' or amn 'N'. If it

was, a one or a zero, respectively, is returned. Otherwise, an error message
is sent to the operator. The function will not return until a legal key 1is
pressed, However, the error prompt is output only once.

5.3 The Audio Recording (AUDREC.C) File

This file contains the functions reduired to record and edit audio data.
It also contains the function that generates a tome record.

E [+] b mL. .. Ao AL ~ o o -
5.3.1 The Audio Record (reccr

This function supervises the recording of data received from the CVSDM
card, the editing of the data, its playback by the annunciator and finally,
its output to the output disk file.

The CVSD card always records 4095 bytes of data (about 1.6 seconds of
speech). Z80 assembly language function getaud() inputs this data and
stores it in array crsddat{]. The data in this array may then be edited
(i.e., starting and ending bytes may be specified) by manipulating pointers
"strptr” and "endptr”. When the operator is gatisfied with the results, the
edited data may then be copied into the file record buffer un,audnet and
output to the output disk file.

103

The first operation performed is to compute starting (stradd) and ending
(endadd) address for the cvsddat[] array. Then the operator is sent a series
of prompts specifying the options avallable. These include: “S", start
recording, "T", generate a tone, "E", edit, "P", playback, "0", output a
record and "Q", quit.

When the operdtor presses "S", the getand() function is called and audio
data 1s recorded and placed in cvsddat[]. Flag "recflg" is set to indicate
that audio has been recorded, the start and end pointers, "strptr” and
“endptr"” are initialized to "stradd” and “"endadd", respectively, and the

function redisplays its options prompts.

If the operator presses "P", the recorded data is played back through the
annunclator. The "recflg” 1s checked first to make sure recorded data is

present., If it is not, the operator is so informed. The function's option
prompts are then redisplayed.

If the operator presses "E", the "recflg" flag i1s checked. If it is zero
it means that no data recorded using the "S" option exists in un.audent.
However, it may contain a record received from the disk input file, This data
will then be edited and the operator is so informed. Start and end pointers
"strptr” and "endptr” are set and the data is read from un.audent to
cvaddat[]. Flag "recflg” is then set, since "recorded" data now exists in
cvaddat[] and the edit function edit() is called. When edit() returns, the
record() function's option prompts are redisplayed.

If the “recflg" flag was set when "E" was entered, then edit() 1s called
directly.

The operator may also enter "T" to record a tone. In this case "recflg"
is set and the tone() function is called. When it returns and the options
prompta are redisplayed. Note that a tone record may also be edited.

_ Once a nmew record has been satiasfactorily created it may be output to the
output disk file by pressing "0". This operation tests “"recflg” to make sure
a new record exists. If one doesn't the operator is so informed, If one
does, the audout() function is called to output the record. The options
prompts are then redisplayed.

Finally, when the operator has completed recording operations (s)he may
return to the main menu by pressing "Q".

'5.3.2 The Audio Output (audout()) Function

This function bullds an audio record in un.audent from data in array
cvaddat[] and the audio nametag supplied by the operator. It then outputs
the record to the output disk file.

104

The first operation performed is to get the audio nametag from the
operator and store it in the record header. The tag can be up to. nine
characters in length. Next the "lngth" and "eatpres” fields in the header are
set. Then the audio data in array cvsddat[] is moved to. the record's auddat [}
array. Finally, the output{() function is called to output the record to the
output disk file.

5.3.3 The Audio Editing (edit()) Function

This function displays the current start and end indexes for the audio
data in array cvsddat[]. It then requests index changes from the operator.
Finally, it checks to see that the end index is greater than the start index.
If not, it re-requests index values.

The first operation performed is to compute cvsddat[] array indexes
“gtridx”, "endidx” from pointers “"strptr", "endptr" and cvsddat[] start
pointer, "staadd". It then displays these indexes on the console.

The operator is then prompted to imput, if desired, a new start index and
end index., These values are then tested to be sure they do not exceed 4094,

A test is then made to insure that the end index is not less than the start
index. Finally, new start and end pointers to the cvsddat|[] array are
computed and the new data size is displayed on the console. The function then

returns.

5.3.4 The Tone Generator {tone()) Function

This function generates data bytes in edit file cvsddat[] representing a
continuous tone, as specified by the operator. The operator is prompted for
tone frequency and duration. The data space after the tone is filled with

zeros {(silence).

The first operation performed is to prompt the operator to input the tone
frequency. If the value specified is out of range (20 to 2000 Hz) the
operator is so informed. The operator 1s then prompted to enter tone duration
in tenths of seconds. Again, if the value input is out of range (0 to 16) the
operator is informed and prompted to re-enter the value.

The program then computes the number of 19,7 kHz (the sampling rate)
samples in a half cycle of the tone and the number of samples in the tone's
duration. Note: Tone duration was limited to 1.6 seconds so that the total
number of samples would fit in a 16-bit, signed parameter *timidx" (16x1970 =
31520), thus avoiding the use of double-precision arithmetic. A tone
duration of 1.6 seconds is long enough for all applicatioms, Some loop
control flags are then set before proceeding to the tome sample generation

loop.

Before the tone sample loop is started the operator 1is informed that
calculations are proceeding. This "human factors™ prompt was found to be
necessary, since the loop takes a noticeable time to complete. The loop 1is
then entered.

105

"timidx" tone samples are generated and stored in bytes in array

cvsddat[). An inner loop counts through the number of samples in each half

cycle of a tone, If amplitude flag "amp" is one, then ones are stored in the
bytes in cvsddat[]; otherwise the bits are left zero. Flag "amp” is toggled
after each half cycle of samples has been generated. When timidx 1s not
divisable by elght, a partially loaded byte remains. That byte is then output
to cvsddatiij.

The start and end pointers "strptr” and "endptr” are then set so that the
" edit() function can be used to edit the tone data, if desired, Finally, the
remaining bytes in the 4K cvsddat[] array are zeroed. This produces a
"silent"” period after the tone which may be "edited into” the record if
needed. The function then returns.

5.4 The Sample Bits Recording (AUDBITS.Z8Q) File

This function inputs audic sample bits from the CVSD audio recording
card, packs them into bytes and stores the bytes in array cvsddat[]. This
function also provides the sampling clock signal at a 19.7 kHz rate that is
needed by the CVSD card. This timing is dependent upon the execution time of
the major loop within the program, itself, In fact, certain statements are
included simply to adjust sample timing., The program is written in assembly
language and assembled using the AZ80.CMD agsembler indirect command file.

The first operation performed is to read the start address for cvsddat{],
"staddd”, into the DE register pair. Eight data bits will be shifted into a
byte within the sampling loop. A bit count of eight is placed in the C
register to control this loading operation. Next, the sampling loop is
‘entered and a CVSD card sample pulse-high is output. The audlo data sample is

rha 2rnitr and ohifrad dntn tha srurrant hetae fnnintaed t+a he racgietrera Tﬂi‘\ in

]
Ik AL BLiy Qi i ol ALl il Yl A AR MY e N PN ke b e N T L] A Nt oy e W B S B 4

array cveddat[]. The byte count in C is then decremented. If the current
byte has been completely filled, the bit counter is set back to eight and a
sample clock pulse-low is output. A check is then made to see 1f the end of
the cvsddat[] array has been reached (check DE against “enddat™); if it has, .
the program returns, If it hasn’t, the program delays a fixed number of
clock cycles and returns to the start of the sampling loop.

If the current byte has not yet been filled, some path delay instructilons
are executed, a sample clock pulse-low is output, some more delay statements

are executed and the program returns to the beginning of the sampling loop.

Note that the timing in this program has been "fine tuned” to produce the
required 19.7 kHz sampling frequency. Program changes could alter this timing

and cause the audio recording system to malfunction.

5.5 The Audio RAM Loading (AUDRAM.C) File

This file contains the functions required to load the previously recorded
audio data into the audio RAM banks. The AUDRAM.COM function is called as
part of the AID's initial program load sequence. If more than one 16K audio
RAM bank exists, then separate versions of AUDRAM,.COM are called. Each
version is tailored to load a particular bank with its proper audio data.

106

5.5.1 The RAM Loadiggr(AUDRAM.CGM) Function

This function operates in two modes. If it is called with a file
specified as an argument, e.g::

A>AUDRAM F2.T

then it will load the audio data bytes from the records in the -specified file
into an internal 16K-byte array and then return to the CP/M operating system.
The operator may then save the new version of the program (with the 16K array

loaded} by entering:
A:> SAVE 111 AUDRAM.COM.

This "loaded" version is then ready to be called as part of the AID's initilal
program load sequence. :

In the second mode, which runs when AUDRAM.COM is*ealled'ﬁithoucza'filé -
specified in the call, 1t transfers the audio data bytes from the 16K internal

errvay to the specified audio RAM bank: - -

The first operation performed is-to check to see 1f an input flle was
specified in the program call line, An additional check is made-te make sure

that only one file was specified.

1f a fiie was specified, it is opened. The contents of the file are read
(minus the record headers) into - array annunc[]. A check 1s made during this
process to make sure the array's 16K size is not exceeded.. If it is, .the--
operator 1s so informed, the input file is closed and the function- returns.
If the array size is not exceeded, the function exists -normally by closing the
input file and returning. '

1f no input file is specified, the function moves the coantents of

annunc[] to the specified RAM bank., This is accomplished in machine code
using the block move instruction, LDIR. Note that if the destination RAM bank
is the upper 16K of the master's RAM, then the move 1s straightforward with
destination starting address 0XC000. However, if the audio RAM bank 1is one of
the 16K RAM banks on the 64K RAM board, then the on-board 16K bank must be
deselected and the off-board bank selected before the block move is performed.
The on-board bank is then reselected. '

5.5.2 The Audio Record Input (input()) Function

The AUDRAM.COM function mist read records from the specified input file.
It does this by calling the input() function.

The first operation performed is to read the record's entry-present flag
and record-length field (the first four bytes). If this read fails, the
operator is so informed. It then checks to see if the file is empty or if no
records remain (entry-present flag not 'A'). If this is true, the function

returns a Zero.

107

If the file is not empty the remainder of the record is read. If this
read operation fails, the operator is so informed and the function returns a
2, If the record read was successful, the function returns a 1.

108

APPENDIX A

AID Operating System

1.0 INTRODUCTION

The purpose of this appendix is to present a description of the system
executive used in the AID master and slave single board computers. The system
executive to be described consists of two major compoments: a task scheduler
and a set of queue access functions. The scheduler initiates application
tasks on a priority basis in response to wakeups from interrupt handlers and
tasks. Messages are passed between tasks and between interrupt handlers and
tasks by means of circular queues. The queue access functlons provide
standardized access to these queues. The task scheduler will be desecribed
first, followed in later sections by a description of queue data structures
and queue access functions.

2.0 SCHEDU
Task scheduler designs may be grouped into two general catagories:
pre-emptive and nonpre-emptive. A task running under a pre—emptive scheduler
may be suspended if a task of higher priority is awakened by an interrupt
handler. .This is important for systems in which data received by an interrupt
handler must be processed immediately by a task awakened by that handler.
Pre—emptive scheduling may also be necessary if the data rate is such that
there is the possibility of data being overwritten before it can be processed.
This problem can sometimes be solved by double buffering the data either in

hardware or in software.

By contrast, a task running under a nonpre~emptive scheduler may not be
pre-empted (that is, suspended) even though a task of higher priority is

awakened. Except for interrupt servicing, the running task has control of the
computer until it suspends itself. In systems using non pre—emptive
scheduling it is necessary for tasks to cooperate in using processor bandwidth
by limiting the amount of processing performed between voluntary suspensions.
This is not a serious limitation in many real-time applications in which
timing requirements are not too critical., A significant advantage is that it
considerably simplifies the scheduler design and therefore reduces memory and
execution time requirements, .

Another major advantage of nonpre—emptive scheduling is that it reduces
the possibility of inconsistent data being passed between program components.
Presumably, a task will complete the output (or input) of an entire data
message before voluntarily suspending. By contrast, a task running under a
pre—emptive scheduler may have processed part of the data in a message when an

a higher priority task to run. This task might

NAaio oo
causes a HEISMHTL PLaVILALy SO WY Lkeils LeT

dnrarriinmt handlaw
Ll L Luyi- HQLIMW L L
change the content of the message that was being processed by the original
task. A data access lockout mechanism must be implemented to aveid this

probleml.

IThe use of queues to pass all data between program components also reduces
the possibility of this type of error, since new data does not overwrite old

data until the space has been released.

A-1

An objective of this design was to keep the scheduler as simple as
possible so that executive execution time overhead would be minimized. In

addition, the anticipated applications did not require the immediate
processing of data received from interrupt handlers. As a result, a
nonpre—emptive type scheduler was chosen.

2.1 Task Control

The status of each task is maintained in a Task Control Block (TCB). The
TCBs for all application tasks are contained in a linked list data structure,
as shown in Fig. A-l. A TCB contains a forward link pointer, used by the
scheduler to access TCBs, the starting address of the task, the task's current
stack pointer and "status™ and "signal” flags.

A linked list data structure is used for the TCB data area primarily for
the purpose of determining task priority and to facilitate scheduler
operations. When a task suspends itself the scheduler always starts checking
TCBs at the beginning of the linked list. As a result, the task described by
this TCB has highest priority. Scheduler operatioms are also facilitated by
linking the lowest priority TCB to the highest, Then, during periods when no
tasks are scheduled, the scheduler simply searches continuously through the
TCBs. Note that this will be the normal idle condition for the task scheduler
unless a lowest priority idle task is defined. The idle task must be designed
such that it pauses periodically to allow higher priority tasks to run.

The linked list data structure for TCBs is also convenient for systems
in which tasks install other tasks to run or in situations in which task
priorities must be changed dynamically. The forward link pointers may simply
be changed to reorder the list.

A task may be in one of three states: running, waiting or ready, as
shown in Fig. A-2. 1Its current state is determined by the values of its
"gtatus” and "signal" flags. A task's state may be changed by calling one of
the three functions: run(), sleep() or wake(). Note that the "signal” flag
for a RUNNING task may be in one of two states. This means that a RUNNING
task may also be in the READY state. This situation can occur when a RUNNING
task is interrupted and scheduled to run again. More will be said about this
later.

The scheduler and each task maintain their own stack areas. When a task
is interrupted or suspended, its context (that is, the processor's registers
and flags) is stored on its stack. Similarly, when the scheduler transfers
control to a task, -the scheduler's context is stored on its stack. The
context is restored when control is returnmed to the task or scheduler. When a
high level language is used, the scheduler may use the stack area originally
allocated by the compiler; task stacks must be explicitly declared as data
areas in the program.

TASK ENTRY POINTER

TASK STACK POINTER

TASK STATUS FLAG

TASK SIGNAL FLAG

READY:

RUNNING:
tun ()

STATUS =1
SIQNAL =1

STATUS=1
SIGNAL =0,1

WAITING:

slesp {)

STATUS =0
SI1IGNAL =0

Fig. A-2. Task states.

When a task 1igs invoked, the scheduler's stack polnter is saved in a
memory location. The task's stack pointer is then read from its TCB and
loaded into the Z80's SP register. When a task 1s suspended the reverse
operation is performed. On the other hand, when an interrupt occurs, the
context of the running program (task or scheduler) 1s saved on its stack, but
the interrupt handler uses the running program's stack for its operations. It
must, of course, POP off all data that it pushes onto this stack before
returning to the interrupted program. Interrupts are disabled while the
handler is saving and restoring the interrupted program's context. However,
they may be enabled while it is performing other operations, since subsequent
interrupt handlers will merely stack the context of the handler they
interrupt.

A task program has the general structure shown in Fig. A-3. It is a C
function containing an "infinite"” loop. During program startup each task is
run from its beginning to the point where it first suspends itself (i.e.,
calls sleep()). During this time the task may perform any task-specific
initial setup operations. This would include the initialization of any data
items that do not have to be reinitialized during a restart (restart 1is
performed by an initialization task which will be described later). After
startup, task entry and exit operations are performed entirely within sleep().

2,2 Scheduler Functional Components

The scheduler is comprised of four basic functions: sched(), wake(),
run{) and sleep(). Their relatiomships to task states are shown in Fig. A-4.
Each is a C function; some contain machine code.

After initialization, the scheduler scans TCBs until it finds one with a
"status” flag set. It then clears the corresponding "signal” flag and calls
run{). Run() transfers control to the previously suspended task and resumes

task operation at the point where suspension occurred.

A task suspends itself by calling sleep(). This function clears the
tagk's "status" flag and transfers control back to the scheduler. However, it

first checks the "signal®” flag. If it is set 1t mesns that the RUNNING task
was also READY, That is, while the task was running, an interrupt occurred.
The interrupt handler rescheduled the running task to run again. The "signal”
flag indicates this condition. The sleep() function handles this situation by
resetting the task's state to READY (by setting the "status" flag) and
returning control to the scheduler. The scheduler then scans TCBs, gtarting
at the highest priority, until it finds a READY task and invokes 1it.

2 Note that the order in which the operations are performed in sleep() is
important. For example, it would appear that STATUS could be reset after the
SIGNAL test, when the SIGNAL test fails. However, 1f an interrupt occurs
between the test and the reset, then STATUS and SIGNAL will both be set (if
the interrupt handler reschedules the runming task). Then, when STATUS is
regset after returning from the interrupt, the final state will be:

STATUS = O, SIGNAL = 1, which is a disallowed state. Programming sleep() as
shown will avoid this problem.

A=5

PERFORM TASK

- SPECIFIC
INITIAL SETUP
'OPERATIONS

_{ _

GCALL sleap ()

TASK APPLICATION:
OPERATIONS

pagllp e o -

CALL sieap ()

T
|
|
d

Fig. A-8. Task program structure.

READY:

sched():

S8TATUS =1
SIGNAL =1

SIGNAL=0

CALL run{)

A

interrupt

wakef{):

SIGNAL =1
STATUS = 1

RUNNING:

wake():

SIGNAL =1
STATUS = 1

WAITING:

STATUS =0
SIGNAL =0

L STATUS = 1

SIGNAL = 0,1

¥
sleep():
STATUS =0

NO YES

SIGNAL =1 STATUS =1
?

Fig. A~4, Task states and state change mechanisms.

A task may be awakened from the WAITING state by calling wake()., This
function's single argument specifies the number of the task to be awakened.
It 18 used as an index into the array of TCBs. Wake() sets the task's
"status” and "signal™ flags., These are the only operations performed by
wake; it is written entirely in C. Wake() may be called either from an
interrupt handler or from a task.

One additional scheduler program component is the pause() function. It
was not Included as a "basic” function since it can be derived from the wake()

and sleep() functions. It provides a means for a task to voluntarily give
processor control back to the scheduler but, before doing so, reschedule
itself to run again. This gives higher priority tasks that may have been
awakened by interrupt handlers a chance to run before the pausing task
regumes. The pause() function may be implemented simply as a C function

that calls wake() and then sleep(). The task number needed as an argument in
the call to wake() may be supplied either as an argument in the pause() call
or, since the number of the currently running task is known to the scheduler,
it may be supplied automatically.

2.3 Scheduler Initialization

All C programs start at the beginning of the function called main(). In
this application main() performs initial startup operations that do not have
to be performed during a program-controlled restart.

One operation performed by main() is to initialize run() and sleep(), as
shown in Fig. A=~5, by computing addresses RUNADR and SLPADR, respectively.
These addresses are needed when control is passed between run() and sleep()
during invocation and suspension of tasks, as will be explained later. Since
these addresses will be referenced from outside thelr respective functions,
they must be computed and treated as global data items.

As mentioned earlier, each task must be called and run to the point at
which it first suspends itself, This operation is diagramed in Fig, A~6. In
main(), return address STRADR is computed and stored in variable "rtnadr™. It
is used as a return address by sleep() during task initialization operations.
Then main() saves its stack pointer and gets the stack pointer for the first
application task (in the figure, taskn() represents "task n") from its TCB.

It then calls the task using a normal C function call operation. The task
initializes startup data, as described earlier, and suspends by calling
sleep(). Punction sleep() saves the task's stack pointer in its TCB and
passes control back to main() via the address in "rtnadr”. Main() then
restores its stack pointer and repeats the entire sequence of operations for
each application task. At this polnt sleep()'s return address, “rtnadr”, is
switched to RUNADR, the entry point fn run(). During all future operations
sleep() will return to this point.

runint =1
?

YES

runint =Q
COMPUTE
ADDRESS
RUNADR:

slpint =0
COMPUTE
ADDRESS
SLPADR:

'

MAIN BODY OF
rund):

RUNADR:

LA XX E)]

[

MAIN BODY OF
sleep():

sSsBsetbons

SLPADR

[EE2TTEX)

‘ RETURN ’

Fig. A-8. Computing return addressooﬁ RUNADR, SLPADR.

D

]

rtnadr = STRADR

SAVE 8P IN mainsp:
QET taskn()'s 8P
FROM ITS TCD

CALL taskn(

STRADA: J’

REBTORE 8P
FROM mainsp

ANY MORE
TASKS
?

NO

rtnadr = RUNADR

taskn{)

INITIALIZE
TASK DATA

sisep()

SAVE SP IN
taskn(}'s TCB

JUMP TO
rinadr

SLPADAR: |
]

Fig. A-6. Task initialization.

A~-10

2.4 Scheduler Operation

After initialization, scheduler operation proceeds as diagramed in
Fig. A-7. Function sched() scans TCBs, starting at the beginning of the
linked 1list, until one is found in which the “status” flag is set. It then
stores the index of the selected TCB in variable "tcbidx” and calls run().
Run() saves the scheduler's context by switching to the second set of
registers provided by the Z80 (1t also pushes registers IX and IY on its
stack). It then saves the current stack pointer and transfers control to
address SLPADR in sleep(). Sleep() gets the stack pointer from the TCB
pointed to by "tcbidx” and places it in the Z80's SP register. It then
restores the task's context from its stack and returns to the task by means of
the normal ¢ function return protocol. This 1s possible since the return
address was pushed on the stack when the task was initially run to its first
call to sleep(), as described earlier.

At this point the task proceeds to perform application operations until
it again calls sleep(). As shown in Fig. A-7, after sleep() clears the
"status” flag it checks the "signal” flag., If it is set it proceeds, as
described earlier, to reschedule the task. In elther case it then saves the
task's context on its stack, stores the task's stack pointer in its TCB and
transfers control to address RUNADR in run{). run() then restores the
scheduler's stack pointer and its context and returns to the scheduler via the
normal C return protocol. The scheduler then starts at the top of the TCB
linked list and scans for another task to run.

Note that as far as the task is concerned, its call to sleep() and the
return were just the same as any other C function call. It is not “aware” of
the fact that sleep() transferred control back to the scheduler and that other
tasks possibly ran before sleep() returned. The same is true of sched() and
its call to run(). The scheduler is not “aware® that run() transfers control
to a task and receives control back before returning. It is therefore
unnecessary for the person writing an application task to know the operational
details of the rask scheduler; (s)he simply programs a call to sleep() to
cause a suspension and expects the task to be awakened at the next C
instruction. :

Programming interrupt handlers is somewhat more complicated. First, the
context of the interrupted function must be saved on the currently active
stack., This is performed using PUSH instructions in machine code. After
performing I/0 operations the context is POPed off the stack and control is
returned to the interrupted functiom.

3 If the second register bank is needed for some other purpose, the
scheduler's entire context may be saved on its stack. For example, the second
register bank could be used to save context in interrupt handlers and thereby

minimize their execution times.

A-11

ZT-v

M _} M
P ——
i sched() ' ——L;M) ' i
| I
|
| : | |
| [svone moex | | |
| | of seecreo
' Drascsrcam | | | !
l tebidx | l |
| I
l ' STORE SCHED'S SAVE TASK'S I |
8P M meinep CONTEXT ON |fes-{ STATUS=1 | |
|- CALL run{) T8 STACK | I
i i “J0MP TO |
l | SLPADR l
STORE TASK'S I |
| | 8P INITS TCB l
| | l |
| : | JUMP TO | ; '
_ RUNADR
I ' l e
l. |
._______I RUNADR: * sunoa:—* I__.......___'
RESTORE Res?g:gi: :_gn;'s
st | | remroe
RETURN FROM . ‘ RETURN FROM
PREVOUS run() PREVIOUS sleep()
oLt . RESTORE lnesrons TASK’S CALL
{ RETLJR?-—_— gg:::;rsev CONTEXT A =1 RETLION \
N— SWAPPING [FROM TS STAGK. N—J
REGISTER BANKS| |

Fig. A-7. Task scheduling and return.

The interrupt handler is written as a normal C function (with in-line
machine cede). However, it 1s not entered. or exited using the normal C
protocol. Instead, the Interrupt vector is computed such that the firset: . .
instruction performed is the first PUSH of the context-save sequence, - This
bypasses the normal C function entry sequence. It is necessary to. save. the
context before any other operations occur so that the interrupted progran's
context will not be lost, Simiiarly, control is transferred back to the. .
interrupted program with a normal Z80 return—-from—interrupt (RETI) instruction ..
just after the context has been POPed from the stack, bypassing the normal €
function exit sequence.

An interesting observation can now be made concerning this particular
implementation of a task scheduler. It has not been necessary for the
implementor -to be aware of the details of the C function entry or exit
protocols used: by the compiler. In' interrupt: handlers, they are simply -
bypassed. The running program's context {machine state) is saved, interrupt
operations are performed, the context is restored and control is returned to -
the running task before the ‘handler's normai C function return-operations.
Stmilarly, transfers between the scheduler and tasks are performed within C
functions run() and sleep(). These functions save machine context on the
currently active stack, transfer control and restore the .context - of the
destination function from its stack. In this way task scheduling and
interrupt operations are transparent to the compiler. The C program's context
ie . saved before these operations are performed amd ‘restored afterward.

3.0 QUEUES

The other aspect of real-time program design involves the implementation
of a means for passing data between tasks and between interrupt handlers and
tasks. Since tasks and interrupt handlers run asynchronously, the use of
queues for these operations insures that messages will not be lost. A
discussion of the subject of queues, queue access functions, and their
interaction with the task scheduler will be presented in this section.

3.1 Queue Structures

Within C 1t is possible to define a queue header structure data type by
using a “"typedef" declaration. For a variable—entry—-size queue, this might
take the form:

typedef struct{

int head H

int tail H

int length H

char task H

char *pbuf H
}oue

A-13

This declaration may be placed in an "include” file that is attached to each
program source file. Entries are added to the queue starting at the "tail"
pointer and removed starting at the "head". The queue's length 1s specified
by parameter “length"., The parameter "task"” will be described in more detail
later when queue access functlons are described. Briefly, it contains the
number of a task that suspended itself when it was not able to complete 2
requested queue access operation. Pointer “pbuf" points to the beginning of
the actual queue data array. The first byte in each queue entry contains the
number of bytes that follow in that entry.

Using the QUE data type it is then possible to define queues and their
headers as follows:

#define TKLNGTH = 6 .
QUE timkey = 10,0,TKLNGTH,0| ;
char tkbuf [TKLNGTH] A

This might define, for example, a queue for passing data between a timer task
and a keyboard task. The pointer "pbuf" to the queue array tkbuf[] mst be
initialized to the address of the array with a statement of the form:

timkey.pbuf = tkbuf H
This queue may be referenced from the file contalning the timer or
keyboard task by first declaring the queue header as an external reference:

-

extern QUE timkey

and then by referring to its address, &timkey, in, for example, the argument
1list of a queue access function.

3.2 Queue Access Functions

Various queue access functions may be written to satisfy different
application requirements. These functions may be bullt upon two primitive
functions which will be called putq() and getq().

5

The putq()
putq(source, dest, count)

where “source" is a pointer to an array (or item) of data to be placed in the
queue and "dest” is a pointer to the queue header. “Count” is the length of
the message to be moved, in bytes. For example, this function could be used
to move a four-byte message from array gmttim[] in the timer task to the

keyboard task by writing:

if (putq{gmttim, &timkey, 4) == ~1)
sleep() H .

A-14

As iIndicated, putq() 1s programmed to return a -1 value if not enough room
exists in the specified queue to store a message of length four {including one

more byte for the entry size). In the case shown the programmer has simply
chosen to suspend the task if this situation arises.

The function getq() is declared similarly:
getq(source, dest).

It also returns a -1 if no entry is present in the queue pointed to by
argument "source”,

Using these two primitive functions to perform the actual queue access
operations it is possible to write other useful functions that have general
application within a task scheduling environment and support the orderly flow
of messages between tasks. For example, a function may be designed such that
when an attempt is made to enter a message into a full queue, the task will be
suspended., Later, when a message is removed, the suspended task will be
awakened so that it can store its message. The suspended task ldentifies
itself by storing its task number in the queue's header in item "task". Such
a function might be declared as follows:

putqwt(source, dest, stask, count).

The function name suggests that the task will put a message in the queue if
room exists but will wait (suspend, call sleep()) if not enough room exists.
Parameter "stask” specifies the number of the calling task”. Similarly, a
function to remove messages from a queue, getqwt(), may be designed such that
when a task attempts to remove a message from an empty queue it will suspend.
When a message 1s later placed in the queue the suspended task will be
awakened.,

By using putqwt() and getqwt() it is possible to control the execution of
" tasks in response to the availability of messages to process in thelr input
queues and the availability of space to store messages in their ocutput queues.
For example, if an output device becomes momentarily blocked, the queues that
feed it messages will become "backed up” and will cause the corresponding
tasks to suspend. When the device becomes unblocked the tasks walting to send
data will be awakened in an orderly manner, based upon the avallability of
storage space in their respective output queues, The flow of messages is
gsimilar to the flow of automobiles in a traffic tie-up on a major highway.

4,0 SYSTEM OPERATION

The previous sections have described the design and operation of the task
scheduler and queue management functions, What remains is to describe the
sequence of operations that occur during the startup of an application program
and to briefly discuss some typical application tasks.

UNote that the number of the currently running task is available in global
parameter "tcbidx" so that it need not be specified as an argument. This

would eliminate a possible source of programming error.

A-15

After the initialization of each task, as described earlier, main() calls
wake() to schedule the initialization task, init(), and sets the TCB linked
1ist pointer to zero so that the scheduler will test init()'s TCB first
(init() is the highest priority task). Main{) then calls sched() and, from
this point on, control is never passed back to main() unless the system is
reset from hardware. Sched{) then checks init()'s TCB and passes control to
it. -

Task init() performs all initialization operations that must be performed
first during startup and later during restart. That is, init() is programmed
so that if another task or interrupt handler wakes 1it, it will restart the
application program from the beginning. It performs these operations with
interrupts disabled and it enables interrupts just before it suspends itself.

The first operation performed in init() is to link all the TCB's together
in a loop. This is accomplished by setting the forward link pointers in the
TCBs. As described earlier, the last (lowest priority) TCB is linked to the
first so that the scheduler will loop looking for READY tasks. Init() then
performs other application-specific restart initialization operations and
finally suspends itself by calling sleep(). These operations may involve
waking application tasks., However, 1f other tasks are not awakened the
scheduler will simply loop until an interrupt handler wakes a task.

Tasks and interrupt handlers provide the various data processing and
control services required by the particular application. For example, most
real-time applications will be required to service interrupts from a hardware
timer device. The interrupt handler wakes a timer task which, in turn,
provides interval timing services to other application tasks. Applications
that provide a man—machine interface will usually need to service a keyboard.
The interrupt handler for this device places the received key-stroke character
in an output queue and wakes a keyboard task. This task will them input the
character from the queue and process it. Tasks and interrupt handlers may
also be defined to process data from other sources such as communication
channels or measurement sensors.

Tasks processing data inputs will usually wake tasks that provide data to
output devices. These might be video or alpha-numeric displays, communication
channels or equipment controllers. The typical output device is designed to
recelve & byte of data and then produce an interrupt when it is ready to
receive the next byte. The interrupt handler must therefore be designed to
output subsequent bytes until the entire message has been sent. It then wakes
the output task., The output task must initlate the transfer by sending the
first byte and then suspend and walt to be awakened by the interrupt handler.
It may be assured that the wakeup was from the interrupt handler if the
handler sends a "signal” byte message to the task before waking it. The task,
on being awakened, checks the queue from the interrupt handler and possibly
other input queues to determine the source of the wakeup.

A-16

APPENDIX B

"¢" To 280 Assembly Optimization

1.0 INTRODUCTION

purpose of this appendix is to provide a brief cuideline for

(=]
AR pFRAL s [SR] el adh T & W YrYaLss P e

generating and optimizing the Z80 assembly language output of Vandata's "C"
compiler and translator. The reader is assumed to be familiar with the C
programming language and with Z80 assembly language. In addition, the reader
is assumed to be familiar with the use of Vandata's compller under the RSX-11M
operating system,

1,1 Procedure

The C source to be optimized should be compiled as usual and thoroughly
tested before the optimization procedure is started. When this has been done,
the first step in optimizing is to generate the Z80 assembly language from the
C source code. This 1s accomplished using the indirect command file
CZ80A.CMD, which goes through all the phases of the compiler to the point

whare the aoh:u.p code !\m‘: becu generataﬂ and then 'lnwn‘rnﬂ f"\n Prnnn?nrnr to

convert asharp to Z80 assembly. The output assembly language file has the
file name extension .ASM.

The next step is to use PIP to copy the .ASM file to a file with .Z80 as
an extension., All subsequent modifications are dome to the ,Z80 file. This
step is done for several reasons: first, it leaves the original assembly
language source intact for comparisons to the edited version; second, it
provides a way to know if the assembly source has been optimized; and third,
it provides some safety in preventing the deletion of the hand—optimized file
i1f, for example, the CZ80A.CMD command file 1s invoked again.

_ The .Z80 file 1is then edited and when the optimizations required are
accomplished, the AZ80.CMD command file is invoked to assemble the file and

genierate the relocatable ubjeCu file, (If = 1iﬂt1"g file is desired in

addition, use AZS8OW.CMD.) Again, the modified object should be thoroughly
tested. When this‘is done, the .ASM file may be deleted since it can be
regenerated easily from the C source and is no longer useful.

1.2 Optimization Guidelines

The primary reason in the AID application for optimizing the C code is to
increase the speed of execution. Appropriate optimization can usually gain a -
factor of two in execution speed but much consideration must be given to what
parts should be optimized and how in order to obtain the benefits, Efforts in
improving the original G algorithm will often result in higher performance
than hand optimizing a poor algorithm.

1.2.1 Tuning the C Source

In addition to the proper choice of algorithm, there are a number of
considerations at the C source level that will aid in the subsequent
optimization of the Z80. First, the C source should be divided into
relatively small and simple modules in order to make the optimization editing
more tractable and easier to follow. A two-page C source file may be eight or
more pages long when translated to assembly language and because of the nature
of the compilation process, the generated assembly code will not necessarily
follow the C source line for line, especially with deeply imbedded logical
structures. On the other hand, it may not help much to optimize procedures
which are too small because the overhead in calling and returning from such
routines could account for a large part of the time spent in them.

Secondly, one must give some consideration to the variables in the
routine. As far as possible all variables should be declared as characters
(1 byte) and local variables should be declared static. Static variables are
casier to locate and eliminate the relatively long indexed stack instructions,
but using static local variables will render a subroutine nonrecursive,

Thirdly, care should be used in selecting arithmetic operations. For
example, multiplication always calls the library multiplication routine,
whereas left shifts are encoded in-line with add instructions. Thus, if
multiplication by a power of two is needed, use the left shift operator

instead.

, There are a number of other ways to help “tune" to C source for later
optimization. For example, the ordering of statements affects the way in
which the compiler generates its output. Such congiderations, however, are
too specific to discuss here, and can be learned through experience.

1.2.2 Optimizing the Z80 Assembly Language

Once the assembly code has been generated, care must be given to what
sections should be modified. Obvious candidates for optimization are loops
and code inside loops, arithmetic expressions, array indexing expressions,
complex logical tests, and procedure calls. The following discussions are
intended as general considerations and cannot cover all the possible means of

optimization.

1.2.2.1 Arithmetic Expressions

One of the specifications of C is that in arithmetic expressions, all
8-bit quantities are converted to 16-bit quantities and 16-bit arithmetic is
. performed, even if all the quantities are 8 bits. On an 8-bit machine like
the Z80, the overhead involved in doing l6-bit arithmetic is considerable,
and can be eliminated if it is not necessary. Here is a typical example.

-

)

C -Source Z~80 OUTPUT OPTIMIZED 2Z-80

char na, nb ; ' 1D H,20H LD A,(na.) =
nb = 32 -mna ; LD A,(na.) LD B,A

LD E,A LD A, 20H

ADD A SUB. B

SBC A 1D (nb.),-A. -

LD D,A 10 - sec (@ 4 MHz)

LD A,L

SUB E

b L,A

LD A,H

SBC- D

LD H,A

LD AL

LD ('ﬂbo), A

20 sec (@ & MHz)

Multiplicatien. and division by powers of two should be done by adding
and shifting instead -of the calls to the C library functions. Here is a

typical example.

C Source Z-88 OQutput Optimized Z80
setups {(x,y,nb,nl) LB'“ L, {IX+0AH) 1D A,{IX+0AH)
int %,y 3 - H, (IX+0BH) SRL A
char nb,nl ; - PUSH HL LD (h.),A
LD HL,02H- 10 msec
static char n ; PUSH HIL -
n=nl/2 ; . CALL ¢.idiv
POP HL
LD A,L
LD (n.) A

30 + iisec (not including time in c.idiv)

(Note that even though nl was declared a character argument, C always passes
argument values as 16~bit integers).

atd
etic expression coding, and

There are many other ways of iImproving arith
some experience 1s needed to be able to understand why the compiler sometimes
generates very obscure code and to be able to optimize the coding
appropriately. Needless to say, a primary consideration in modifying such
code is that the result should be the same as in the unmodified version. Here
is another example where the compiler must perform unnecessary operations to
perform 16-bit logic where only 8-bit is required. It also shows how regilster
usage may be improved. .

C Source

fidefine MASKO 0x70
fdefine MASK1l OxFO
f#define WHITE OxF0

extern char ccolor.;
stbyt()

static char scolor ;

if (CéOJ.Ol.’!:: = WHITE) -

scolor = ccolor

colorg ((~(écolor &
MASKO)) & MASK1);

+353%

Z80 COUTPUT

CALL c.ent(
LD A, {ccolor.)
CF Of0OH

JR - Z,.35
LD A, (ceolor.)
LD (.74),A
LD A, (ccolor.)
LD C,A
ADD A

SBC . A

LD B,A

b L,C
LD . H;B

1D A,L
AND-- 70H

L LA

LD A,H
AND 00 -
LD - H,A

LD AL
CPL--

LD L,A
LD - A,H
CPL -

LD H,A

LD = AL
AND - OFOH
LD - L,A -
LD - 4,H

AND 00

LD - H,A
CALL colorg
JP. c.Tetl

OPTIMIZED

CALL c.ento
LD A, (ccolor.)
CP OFOH

JR z, .35
LD.(.74), A
AND 70H

CPL

AND OFOH

1D L,A

LD H,0- -

CALL colorg .
JP c.retd -

17 sec (not including
calls)

44 ysec (not including calls)

1.2.2,2 Loops

Loops are an obvious area for optimization.

If

it is known that a loop

index will always be less than 128, it should be declared as a character
Even when declared as a character some time can be
saved In incrementing and checking the loop index as the following example

rather than an integer.

demonstrates:

B4

C Source Z80 OQUTPUT OPTIMIZED Z80
static char 1, nb ; SUB A SUB A

LD (.34),A LD (.34),A
for (i=0; i<nb; i++) .55:LD HL, nb. .55: LD HL, nb.
{body of loop!?t LD A,(.34) CP (HL)

CP (HL) JP P,.75

JP P,.75 (body of loop)

(body of loop) LD A,(.34)

LD A,(.34) INC A

ADD OlH LD (.34),A

LD (.34),A JP .55

JP .55 .75:

VLLL L - Sl

Whila in this nvnm})le
optimization that can
inside of a loop that

be performed.

y 4 usec per iteration is saved, it shows one type of

If the above loop was executed 100 times
executed 1000 times, a total 4/10 second could be saved.

In a real-time program, such a savings could be cruclal,

1.2.2.3

Normally, the code generated fo

&

ogical and

r tests 1s quite compact, but it is not

unusual to encounter jumps to jumps, unnecessary register manipulations, and

other time wasting instructions,.
gtack is compared to -l.

Here 1s an example where an integer on the

Z80 OUTPUT Improved Optimized
LD A, (IX4H04) LD A,(lX*O4) LD A,{(IX+04)
CP OFFH CP OFFH INC A
JR NZ, .2 JR N2, .l1 JR NZ, .11
LD A,(IX+05) LD A,(IX+05) LD A,(IX4+05)
CP OFFH CP OFFH INC A
iy H JR NZ, .1l JR NZ, .ll Jr NZ, .11
(body) {body) (body)
.11: (continue) .11 continue 11: continue

The above "optimized” version could be £
expected to be -1 more often than not.

urther improved if the integer was
It is left to the interested reader

to find the improvement.

1.2.2.4 Other Areas of Optimlzation

There are a number of other areas where code optimization can be applied.
For example, the compiler does not do an optimum job at allocating and using
registers. Many such cases are obvious, but in complex expressions, it may

require considerable thought and effort to improve the code, How much effort

ghould be applied to extract as much as possible from code optimization must

be answered from the overall programming effort.

1.2.3 Warnings, Bugs, and Disclaimers

' There is one known bug in the Vandata Z80 assembler which must be
mentioned - it does not flag some relative addresses properly to the linker.
In particular, this means that one should not use the CASE statement in the C
source of routines to be optimized because the CASE statement generates a
table of addresses. When this table goes through the Z80 assembler and the
linker, only the address offsets get generated in the actual code, which
causes the program to jump to the wrong place.

B-6

APPENDIX C

Aural Alerting for Phase I AID System

The AID alerting system ig based primarily upon the guidelines for TCAS
alerting developed in simulation at the Boeing Commercial Airplane Company.
Sounds employed in the alerting system are stored in digital form in 48K of
RAM, Both voice and non~volce sounds are employed. The user—processor single
board computer contains logic which determines when to annunclate each aural
alert message.

Aural alerting phrases are listed in Table C-1. Definitions of the
gsiren, C-chord and chime are provided in Fig. C-1. These sounds are identical

to those used in the Boeing simulatiom.

Figures C-2 and C-3 define the voice alerting messages which correspond
to each of the possible IVSI commands., In the event of both up~sense and

down-sense limit rate advisories, the aural messages for each will be
concatenated with a short pause.

Figure C-4 provides a flowchart of the logic used for resolution
advisory alert processing., This logic is called once per scan.

Figure C-5 provides a flowchart of the logic used for controlling alerts
associated with traffic advisories., This logilc 1s entered once per scan per
target. It is entered after resolution advisory alert processing has been

completed.

Figure C-6 provides a high-level flowchart of the loglic used to determine
whether or not a particular target received from the CAS logic should be
selected for possible display.

Figure C-7 provides a high-level flowchart of the logic used to determine
if a selected target can be displayed on—screen or, if it 1s off-screen,
whether to use an off-gcreen symbol or to simply delete the target.

Some principal design characteristics of this alerting system are:

1. The siren is annunciated once at the beginning of a sequence of RA
indications on the IVSI.

2. After the siren, a voice message which corresponds to the types of
RA's present is repeated continuously until manually cancelled by the

Crew.

3, After cancellation, the voice alert message {unaccompanied by the
siren) will sound once each time the state of the IVSI changes. Only

the RA-sense which has changed is annunclated.

4. A C-chord is sounded when a target transitions to prethreat {amber)
status from a lower priority status. However, this alert is
suppressed if an uncancelled aural alert for an RA is being

annunclated.

c-1

BRI L N —

TABLE C-1.
Aural Alerting Phrases Available in Phase I AID System

(Note: Some of these phrases are not employed in the Phase I AID system,
but have been provided to facilitate future modifications.)

YOICE
ABORT
ALERT
ALTITUDE
CAUTION
CLEAR
CLIMB
DESCEND
DESCENT
DON'T
FEET
FIVE
HUNDRED
LIMIT
MAINTAIN
ONE

PER MINUTE
TCAS
TEST
THOUSAND
TRAFFIC
TWO
WARNING

c-2

NON-VOICE

Beep
Buzz
C~chord
Chime
Chirp
Pause

Siren

FREQUENCY (Hz)

FREQUENCY {Hz)

INTENSITY (dB)

1,000

(s) Warning (siren)

:10 0] of
{660 Hz)

ooof N

400}

(330 Hz)
200 -

1,000

800 - {750 Hz) ‘ -+ —

600 [~ {500 Hz) L

400 [~

200 t+-

L]

100
{¢) Advisory {Frequency: 475Hz} (chime) e 60-ms rise

V2N
—— 1.8-sec decay
soH
40
200
0

| ! |] | L1 | I I]
0 01 02 03 04 05 06 07 08 09 10 11 12

TIME {sec)

Fig. C-1. Alerting sounds.

I

pt=

For
<

12

13 .

14

15 -

16

VOICE MESSAGE

LIMIT CLIMB
LIMIT CLIMB
LIMIT CLIMS.
DON'T DESCENb

DESCENT :

DESCENT -

MAINTAIN CLIMB
MAINTAIN CLIMB
MAINTAIN CLIMB
MATINTAIN DESCENT

MAINTAIN DESCENT

MAINTAIN DESCENT

mra 'y

TCAS ABORT

[ar]

=

10

et

CAS/IVSI LAMPS

9

0

[}
-

——

8

0

—

7

0

-

—

6

0

—

[

5

0

-

e

A

0

o
o
o

T

32
00

00

o
[

—

Fig. C-2. Voice Messages For Resolution Advisory Alerts,

NO

ANY 1VSI

LIGHT ON

YES
SIREN=0

SIREN=0

?

YES
CWRED= 1

SIREN =1;
ANNUNCIATE
S8IREN; CWREDP=1

%

?

ivel YES

ANNUNCIATE BOTH
UP-SENSE AND
DOWN-SENSE
IV8I RA

CHANGED
?

NO

ANNUNCIATE BOTH
UP-SENSE AND
DOWN-SENSE
CHANGES

SIREN= 0 If siren has not sounded for
this RA sequence; otherwise, SIREN=1.

CWRED= O If red C/W light is off;
otherwise, CWRED= 1, Light can be
cancelied manually or by software.

Fig. C-4. Resoiution Advisory alert processing.

AATA=0

AATA=0

?

YES
CWRED=1

?

SOUND

C-CHORD || AATA=1
CWYEL= 1 -

NOTE:
Loglc Is entered once for sach active target. AATA=0
if target has not been annunciated; otherwise AATA=1.
Threat aural alerts serve to annunciate all threats and
pre-threats on.display at the time the threat appears.
CWYEL=1 If amber Caution/Warning light Is to be lit.

Fig. C~8. Traffic advisory alert proceshlng.

ENTER Thia logic is calted once per scan for
‘ each target recelved from the GAS legic.

A hard limit on the number of targets to be

YES displayed can be set as any number O to B.
YES
Time of activation is stored to
allow 8-second time-out.
NO
YES ACTIVATE
T"FLE" - — ™ DISPLAY
NO
YES DISPLAY YES J
ACTIVE
?/
NO NO
Note: Continuous mode
means that display
is always “active”.
YES
V NO __~EXTENDED
CRITERIA
YES
NO
YES '
NO ALT LT YES SELECT
1200 FT = TARGET
?
>

Fig. C-6. Target selection logic.

c-8

Thie logic ls entered once per scan
for each target selected by the target
selection loglc.

TARGET
ON~8CREEN

YES

THREAT OR AUTOSCALE COMPUTE
PRETHREAT OPTION NEW SCALE
?

USE | USE
OFF-8CREEN ON-S8CREEN
8YMBOL 8YMBOL

r

Fig. C=7. On-screen display loglc.

