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EXECUTIVE SUMMARY

Introduction

This report examines alternative concepts for provision of tactical traffic
separation services in low altitude en route airspace. In this context the term
“tactical™ implies that action is required only when aircraft come into conflict,
and that otherwise aircraft are free to select flight paths without traffic
control restraints. A further characteristic of the concepts considered is that
they do not require time-critical decision making by a human controller on the
ground. This implies that most decisions are made by pilots or by computer
algorithms. Because of the dependence of this type of control system upon
electronic data acquisition and electronic data processing, the mode of flight
which results has been designated Electronic Flight Rules or EFR.

The potential benefits to be derived from an EFR system include the following:

The greatest growth in the demand for traffic separation services during
instrument meteorological conditions (IMC) is expected to come from general
aviation aircraft. Since EFR appears especially well suited for general
aviation operations, EFR may absorb much of the expected growth in IFR system

loading.

EFR is an automated system which may be much less expensive on a "per aircraft”
basis than the current IFR system.

EFR may eliminate delays associated with waiting for IFR clearance.

By eliminating the need for filing an IFR flight plan, the workload of
the Flight Service Station workforce may be decreased.

EFR may permit direct routing and optimum climb profiles with associated fuel
savings.

EFR may enhance the safety of general aviation operations by allowing general
aviation aircraft which do not fly IFR to select altitude and routes which

avoid terrain and weather hazards.

An EFR system would have several characteristics which are quite distinct
from those of the Automatic Traffic Advisory and Resolution Service (ATARS).
ATARS is primarily a back—-up to conventional IFR. It commands aircraft to
maneuver by specifying only the direction of a climb or turn and uses a very short
look-ahead time. It does not anticipate return to course after conflict
resolution.

ix
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Development of a ground-independent surveillance/communication technique
would be required to extend EFR service into mountainous western regions and
very low altitudes remote from ground radar sites. However, currently no set
of techniques has been identified which appear capable of supporting such
service at desired performance levels.and cost.

Tactical control techniques for EFR appear suitable for traffic densities
that occur in enroute airspace today. The density at which the rate of EFR
interactions would become unacceptable would appear to be at least twice the
density that has been observed in the busiest en route sectors at peak conditions.
Even using 1990 traffic forecasts at peak conditions including all the traffic
(which is predominantly VFR), critical densities only occur within 10 to 20 miles
of a few busy traffic hubs. The exposure of itinerant aircraft to such densities
will be so brief that no operational diffictulties should result.

Computer algorithms used for EFR control should utilize a cost function
structure and issue instructions in terms of specified headings and altitudes.

Such a logic has been demonstrated for single pair encounters.

Areas for Further Investigation

This study has indicated that at least one avenue is open for the development
of an EFR system which satisfies a set of basic feasibility requirements. Further
discussion of the EFR concept within the aviation community is required to verify
that this set of requirements or some modified set provides a sound basis for
proceding with EFR concept development. For both currently indentified and future
EFR configurations, further investigation of the actual level of benefits and the
problems of interfacing with other elements of the National Airspace System should
be pursued.

X1






1.0 INTRODUCTION

Under the sponsorship of the Federal Aviation Administration, the M.I.T.
Lincoln Laboratory has recently completed the first phase of a program
entitled Alternative Separation Concepts. The objective of this program was
to evaluate a range of tactical control concepts for accomplishing the task of
separating air traffic in low altitude en route airspace. In this context the
term tactical implies that the system controls aircraft flight paths only
while the aircraft are in conflict. A further characteristic of the concepts
considered is that they do not require labor-intensive decision making by a
human controller on the ground. This implies that most decisions are made by
pilots or by computer algorithms. Because of the dependence of this type of
control system upon electronic data acquisition and electronic data
processing, the mode of flight which results has been designated Electronic
Flight Rules, or EFR. This work began with a broad look at the ways in which
EFR flight could be accomplished. The work first focused upon the
implications of generic classes of systems (e.g. centralized vs distributed)
and identified the feasibility issues raised by the choice of the fundamental
system structure. Because many critical system issues cannot be understood
without considering specific design features, a more detailed look at design
alternatives was sometimes required. An attempt was made to focus the
detailed analysis upon concept alternatives which appeared most promising in
terms of the fundamental system structure.

1.1 Background

Today's ailr traffic control (ATC) system offers two principal modes of
flight: Visual Flight Rules (VFR) and Instrument Flight Rules (IFR). Under
VFR, aircraft maintain separation from each other using the principle of
"see-and-avoid” which is based upon visual detection and evaluation of
conflicting traffic. VFR offers unparalleled flexibility and ease of
operation to aircraft. But it is restricted to periods of adequate visibility
(visual meteorlogical conditions or VMC) and suffers from limitations which
make it unacceptable to certain classes of users.

The IFR system assigns the basic responsibility for separation to an ATC
controller who utilizes radar and/or pilot position reports to effect
separation regardless of weather. In order to properly perform this function,
the IFR controller requires that aircraft obtain approved flight plans before
each flight. Such flight plans must normally follow established airways for
which surveillance, communication, and control sector coordination can be
assured. Under normal conditions aircraft are required to comply with all
controller instructions and to refrain from any course changes which are not
approved by the controller.



As the traffic loading upon the IFR system increases, the delays,
constraints, and per-aircraft control costs tend to increase also. One
response to this siftuation is to attempt to increase IFR system productivity
(primarily through {investment in automation). But the rate at which
productivity can be| increased is limited both by the inherent nature of
IFR control and by the time required to develop automation tools and
integrate them into|the existing system. In effect a race develops
between productivity improvement and traffic growth. The total number of IFR
en route operations|is forecast (Ref. 1) to grow by a factor of 1.7 between
now and 1989. Approximately half of this growth will be attributable to
general aviation aircraft., In this context, an approach which complements
that of productivity improvement is to define an alternative mode of flight
into which some portion of this traffic growth can be diverted. EFR is such an
alternative mode.

system avoids most of the human controller labor
IFR system, it would be a less expensive wmode of IMC

the controller team required for manual control of
significant in comparison to their total operating cost.
eans by which the portion of total ATC expenses allocated
e decreased. Realization of such benefits is of course,
n of an EFR system which does not make IFR control more

Because the EF
associated with the
flight., The cost o
smaller aircraft is
EFR could provide a
to such users could
contingent upon desi
difficult.

may be derived by flying EFR in preference to VFR. The
nefit is increased confidence in separation from other
efit is that aircraft are able to fly at safer altitudes
ther. When operating VFR a pilot cannot enter airspace
weather which reduces visibility below VFR minimums.

er he may be forced to proceed in poor visibility at low
s the pilot the freedom to select the safest altitude and
straints of maintaining VMC (or obtaining an IFR

Safety benefits
most direct safety b
traffic. Another be
above terrain and we
containing clouds or
Under an overcast la
altitudes. EFR allo
route without the co
clearance),

Finally, a portilon of the delay and indirect routing which is encountered
in IFR operations today is occasioned by communications delays and the need to
limit workload for the human controller. Aircraft which fly VFR seldom
encounter delays or constraints due to the presence of traffic, even though
traffic densities generally are greater under VMC. An EFR mode of flight
would attempt to restpre to the pilot flying in IMC the same freedom and
convenience he experipnces when flying in VMC.




2,0 FEASIBILITY CONSIDERATIONS

The feasibility of any air traffic control technique is dependent upon a
number of general considerations which are not entirely technical, but which
involve questions of policy, law, regulation, and the expectations of the
various elements of the aviation community. In this section some general
characteristics are given which all EFR concepts should strive to meet in
order to be implementable.

2.1 Preservation of IFR Safety

Both during the period of initial implementation and after complete
implementation, it should be possible for aircraft which so desire to operate
in IMC at a level of safety which is at least as safe as IFR today. This
requirement is based upon precedents and policy statements which indicate that
at least for passenger—carrying aircraft, neither pilots, passengers, owners,
nor members of the U.S. Congress will accept a lower level of safety than
currently exists. Over the past few decades there has been a trend toward
expansion of positive control airspace (airspace in which only controlled
aircraft are permitted) whenever safety problems have arisen in connection
with mixed IFR/VFR operations. One reason for this trend is the perceived
lower level of safety associated with visual flight rules., EFR systems should
not exhibit a level of safety which would justify its widespread displacement
by positive control (IFR-only) airspace. It should also be noted that as a
practical matter stronger arguments must be presented for introduction of a
new type of ATC service than for retention of traditional practices. In this
regard it is not clear that an EFR system which offered only a VFR level of
safety could win acceptance, even in airspace where mixed VFR/IFR operations
are currently allowed. Furthermore, allowing lower performance separation
assurance to be applied within IMC would result in a net decrease in IFR level
of safety, even though the level of safety in any given encounter did not
decrease below that of VFR.

2.2 Evolutionary Implementation

Aircraft without special EFR avionics®*should be allowed to continue IMC
operations in the airspace in which EFR service 1is offered. This requirement
addresses the fact that some conceivable EFR systems are incompatible with

*An altitude~reporting ATC beacon transponder is not viewed as "special EFR
avionics", and may, in some EFR configurations, be required for all IMC
operations (both IFR and EFR).
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3.0 SEPARATION ASSURANCE SYSTEM ELEMENTS

In discussing alternative system architectures it is helpful to divide a
separation assurance system into distinct elements and subsystems. Figure 3.1
does this by defining the following system elements:

Data Acquisition System. This system gathers data concerning the
aircraft to be controlled and ‘the circumstances of the conflict. That part of
the system which determines aircraft positions and velocities is referred to
as the surveillance system. In addition to surveillance data, there are other
types of information (such as aircraft intent) which may be acquired through
communications. A variety of electronic surveillance techniques have been
demonstrated or proposed for air traffic control and collision avoidance
applications. Although most of these techniques are attempting to measure the
same variables, they differ widely in reliability, accuracy, avionics
complexity, and region of usefulness. All of these factors must be weighed
in evaluating applicability of techniques to EFR.

Data Base. The information upon which control decisions will be made is
accunulated in one or more data bases.

Decision-maker. A decision-maker is an entity which examines a
particular data base and determines a control action which will resolve a
conflict. The EFR decision-maker may be either a human being (pilot) or a
computer,

Communication Links. Communications links allow data to be transferred
from one element to another.,. They also allow control actions to be
transmitted. from a decision-maker to an aircraft. In defining a communication
link it is important to note which pieces of data are transferrable by the
link,

Aircraft. These are the elements whose motion is to be controlled by
executing control actions.

Note that the pilot may be considered to be associated with either the
decision—maker or the aircraft depending upon whether or not the pilot

determines the control instructions to be used in resolution.

The diagram of Fig. 3.1 is most appropriate when a single decision-maker
makes control decisions for all aircraft in a conflict. Such a system is
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said to be centralized*. Another approach is a system in which
decision-making responsibility is distributed between more than one
decision-maker. For example, in Fig. 3.2 the basic system elements are
duplicated in each aircraft and the control actions for each aircraft are
determined independently. A system of this type is said to employ autonomous
conflict resolution, i.e., resolution with no provision for coordination of
decision-making between the aircraft involved. The alternative to autonomous
resolution. is coordinated resolution which can be accomplished even when more

than one decision-maker is involved by providing a appropriate communication
link between decision—makers (see Fig. 3.3).

*Note that this definition of the term “centralized” need not imply a
ground-based decision-maker. For example, one aircraft in a conflict could be
designated as the control authority for the duration of a conflict.



4.0 REQUIRED CONCEPT

CHARACTERISTICS
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Experience with autonomous resolution in other applications has provided
numerous examples of resolution failures related to the shortcomings cited
above. Cases are on record in which visual separation failed because pilots
disagreed upon appropriate actions and failed to recover (e.g., Carmel, New
York, in which both aircraft climbed). Records of maritime accidents contain
numerous incidents of so-called "radar-assisted collisions” in which ships
collided despite attempts of both to respond to radar display information.
The importance attached to coordination in the current IFR systems is evident
in the care exercised to prevent "split control” in which conflicts arise
between aircraft which are under the control of different controllers. It
should also be noted that great effort has been expended in the design of
collision avoidance systems to ensure that resolution is coordinated. While
autonomous resolution may provide safety levels which are acceptable for some
private aircraft, the mixing of such operations with normal IFR traffic is
expected to be unacceptable. Hence, the non-exclusion principle could provide
an obstacle to system implementation.

b. Control Efficiency. Separation requirements and resolution lead times
must be greater for conflicts which are not coordinated. A separation buffer
must be allowed in order to detect threat maneuvers which create hazards.
Additional time is required in order to allow iteration to compatible
resolution maneuvers when the initial choice of maneuvers is incompatible.
Furthermore, in coordinated systems it is usually possible to resolve
conflicts by altering the flight path of only one aircraft. 1In autonomous
systems it is not possible to coordinate this type of resolution. Hence in
many cases both aircraft will maneuver when only one maneuver was actually
necessarye.

Certain difficulties arise if aircraft elect to employ different
resolution planes (e.g., if one aircraft decides to utilize horizontal
separation while the other elects to utilize vertical separation). Normally
an aircraft is free to maneuver in one plane if separation is guaranteed in
the other. However, with autonomous resolution, maneuvers in the "free” plane
may cancel the resolution attempt of the threat aircraft. Hence the freedom
of aircraft to execute course changes necessary for navigation in one plane
while resolving in the other may be curtailed. For instance, an aircraft
would not be able to descend to avoid traffic while simultaneously turning to
a new heading. Such a set of maneuvers could be incompatible with efforts of
the traffic to descend in accordance with his flight plan while turning to
maintain separation.

c. Induced Workload. Autonomous systems in which decision-making is
performed manually (by pilots) require a high level of pilot vigilance. In
some cases a pilot must understand how a conflict developed in order to make
proper resolution decisions. Any aircraft in the vicinity which may maneuver
in such a way as to precipitate an immediate conflict must be monitored.
After a resolution action is chosen, careful monitoring is required to make
sure that actions taken by the traffic are compatible. This is in contrast




to coordinated systems
agreed upon, monitoring
of the traffic, and is

Another workload-r

with cockpit display of

(Ref. 3, page 2-131) wh
path of traffic, may be

surrounding aircraft.
such indications.

d. Conclusions

Coordination is re

required level of safet
to increase control eff
of safety.

4,2 Equipage Cons

in which, once the control actions of each aircraft are
serves merely as an optional check upon the compliance
not fundamentally necessary for resolution success.

elated issue has emerged from simulation experiments
traffic information in terminal area applications

ich indicate that "route lines” indicating the intended
necessary to avoid undue pilot apprehension concerning
An autonomous system would have to function without

quired in IFR/EFR conflicts in order to achieve the
iy« Coordination is desirable in all conflicts in order
iciency, reduce pilot workload, and improve the level

iderations

Some conceivable E

electronic equipment be
In this con

detection.
beacon transponders wit

equipment is almost cer
Systems w
basis of EFR unless air

implemented.

operations are prohibit

evolutionary implementa
provide EFR pilots with

airspace, and likewise
aircraft into account i
they may select resolut

courses with nearby VFR

Thus it is conclud

special equipment in or
surveillance may, howev

equipage.

4.3 Information R

FR surveillance techniques would require that special
carried on board aircraft in order to allow their
text "special equipment” does not include ATC radar

h encoding altimeters since IMC operations without such
tain to be extremely unusual by the time EFR could be
hich require special equipage cannot be used as the
space is defined within which normally—-equipped IMC
ed. Hence, such systems violate the requirements for
tion (Section 2.2). Such systems are also unable to
traffic advisories on unequipped VFR aircraft in the
are unable to take the presence of unequipped VFR

n the selection of conflict resolution options. Hence
ion options which place EFR aircraft on collision
aircraft.

ed that an implementable EFR system can not require
der to allow collection of surveillance data. EFR
er, be based upon ATC radar beacon transponder

equirements

In today's air tra
information is provided
surveillance, and radio

ffic control system a considerable amount of
to the controller via the flight plan, radar

contact with pilots. Some of this information is

10




seldom used in the control process, yet is critical to safe control on
occasion. A separation assurance system which is not aware of some of the
limitations under which aircraft operate may issue conflict resolution
instructions with which aircraft cannot comply. Conflict resolution based
upon incomplete information may result in a hazard which is worse than the one
the system was attempting to resolve. Examples of information which may be
relevant to conflict resolution are given in Table 4.1.

Among the possible responses to a lack of information are the following:

- Adopt conservative standards and procedures which allow for
uncertainity (for example, assume every aircraft is heavy and apply
maximum wake vortex clearances).

- Avoid situations in which available information is inadequate (for
example, offer service only at altitudes high enough that terrain is
no factor).

- Accept a higher failure rate or less efficient performance.

4.3.1 Intent Information

a. Usefulness of Intent Information

One of the initial objectives of the Alternative Separation Concepts
program was to investigate the value of various levels of intent information
in tactical separation assurance. Intent information is information
concerning what a pilot wishes to do or has been instructed to do in the
future. Although a surveillance system can determine what an aircraft has
been doing up to the current time, it provides no information about what
control actions will be exerted in the future. Intent information may be
useful in determining the degree of hazard which exists or in selecting the
most efficient resolution option. The usefulness of intent information
depends upon the type of information provided and the accuracy and reliability
of that information.

It has been suggested that intent information could reduce the frequency
of control actions in a tactical system. For purposes of discussion, consider
a system which issues positive commands when some separation standard is
violated, negative commands when separation standards can be maintained by
preventing accelerations, and no commands when there is no imminent danger of
violating separation standards even in the presence of accelerations. In the
absence of intent information it is to be assumed that an unaccelerated
projection of the current motion defines the most likely future trajectory of
the aircraft.

11



TABLE 4.1

INFORMATION WHICH MAY BE USED IN CONFLICT RESOLUTION

Information

Positions (relative)
'Positions (absolute)
Terrain, airspace boundaries,
minimum descent altitudes
Turn rate
Weight class of aircraft
Performance limitations
Flight mode (EFR, VFR,| IFR)
Existence of

Visual acquisition

Declared in—-flight emefrgencies

Formation flight, specfial
operations
Aircraft type

Severe weather or icing

Destination

Application

Compute relative motion variables,
velocities.

Location with respect to terrain, airspace
structure, or airfields.

Use conflict resolution options which are
consistent with flight path constraints.,

Assists in flight path estimation and
prediction.

Set wake turbulence avoidance parameters.

Anticipate maneuver response (minimal climb
response possible for aircraft near

ceiling).

Type of resolution coordination to be
expected.

Allow pilot to transition to visual
avoidance.

Burden of resolution should not fall upon
aircraft with emergency. Coordination
required with ground.

Can affect resolution ability.

Assist visual acquisition. Wake turbulence
awareness.

Limitation in response. Preferred maneuver
options to avoid weather hazards.

Aid in selecting control which minimizes
delay in reaching destination. Coordinate
with control authority at destination (flow
control, ETS, . NOTAMS).

(Continued)
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TABLE 4.1 (Cont')

Information

Waypoint to which proceeding

Equipment failures

Detection of own aircraft by
other aircraft*

Relative position data gathered
by other aircraft#*

Other proximate aircraft
detected by other aircraft*

Resolution option which other
aircraft is executing*

Application

Select control which minimizes delay in
reaching waypoint.

Accommodate degraded mode of operation.
Choose resolution options which
aircraft can readily comply with.

Check upon other aircraft's capability and
whether other aircraft cooperating.

Redundant relative position data allows
comparison, warning when discrepancy.

Detect multiple aircraft situation which may
effect other aircraft's ability to respond.

Coordination, monitoring.

*Information which may be relevant in distributed systems.
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¢c. Conclusions

Since the assumption that aircraft intend to fly without significant
acceleration for .the next minute or two is usually valid in en route airspace,
the use of intent information would seldom alter the efficiency of resolution.
However, in certain cases this information would be useful in selecting
acceptable resolution strategies. For example, when an aircraft is
approaching a point at which a course change 1s required a resolution strategy
which allowed the course change could be utilized.

In view of the limited benefits to be derived from intent information and
the difficulties in making it accurate or reliable enough to be useful, it is
concluded the EFR systems should be designed to function well without intent
information. This does not preclude limited use of intent information of
certain types. For instance, knowledge of destination may be occasionally
helpful in selecting efficient resolution options. This information need be
reported only once (perhaps before the flight begins). It would not impose
any significant communication burden upon pilots and could be part of an "EFR
flight plan” which the pilot filed at his discretion.

If a more highly automated IFR system, such as that being developed under
the AERA program (Ref. 4), were implemented, then all IFR clearances might
reside in computer memory and be available to the EFR system. Some degree of
interaction would be required however to ensure that the clearance was not
altered while the EFR system was relying upon it for separation.

4,4 Auxiliary Services

There are a number of services which the ATC system currently provides to
IFR aircraft other than separation from other IFR traffic. Some of these
services provide assistance in airborne emergencies unrelated to the
separation function. Others are provided on a "workload permitting” basis to
enhance flight safety. Duplication of all of these services in an EFR system
may be unnecessary, too expensive, or technically impossible. Thus the value
of each service and the ability of particular EFR configurations to provide
those services should be considered in evaluating EFR alternatives.
Particular auxiliary services are discussed below.

Traffic advisories., Most IFR flight takes place under VMC. In many
cases VFR aircraft operate in the same airspace as the IFR aircraft. Traffic
advisories supplement IFR instructions and assist the IFR pilot in maintaining
safe separation from VFR traffic.

The ability of an EFR system to provide useful traffic advisories depends
critically upon the capabilities of the EFR surveillance system. Typical
considerations are whether or not the EFR surveillance system can measure
threat bearing and whether or not it can detect non-EFR aircraft.
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Emergency Navigatilon. If an IFR aircraft encounters a failure of
navigation equipment (elither avionics or ground navigational aids) the IFR
system can utilize radar to provide the pilot with emergency navigation
instructions. The IFR |system also detects and warns pilots when navigational
errors cause a pilot to deviate from the intended route.

Severe Weather Avolidance. The IFR system has access to pilot reports
and, in some cases, weafther radar information. The system is thus able to
assist aircraft in avoiFing hazardous weather.
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5,0 CONFLICT RESOLUTION

5.1 Decision—-making Alternatives

In Section 4.1 it was determined that EFR systems should provide
coordination of conflict resolution actions. This section considers a further
basic characteristic of the resolution decision-making process: the extent to
which it should be automated.. In the EFR context, manual decision-making
implies decision-making by pilots (since EFR does not delegate time-critical
resolution decisions to any ground-based human controller). Three types of
system concepts will now be discussed. They involve systems in which 1)
decision-making is done entirely manually, 2) decision-making is done manually
within computer-generated constraints, and 3) decision-making is done by
computer. Resolution which involves pilot decision—-making without the
presence of any supervising authority will be termed Unsupervised Pilot
Resolution.

a. Unsupervised Pilot Resolution

Under unsupervised pilot resolution, the resolution strategy to be
employed is arrived at solely by communication between the pilots involved in
the conflict. Because manual decision-making is utilized, this configuration
is highly flexible. Furthermore, communication with a third-party supervisor
is not required. However, there are many design and performance questions
which must be considered:

1. How is the pilot-to-pilot contact affected? Digital
communication may prove inadequate since data entry is slow,
limited in format, and prone to error during periods of stress. In
an experiment with avoidance maneuver coordination for maritime
traffic (Ref. 5) a satisfactory definition of maneuver intention
codes for digital entry could not be found:

“"Some felt that there were not enough codes; others felt that
the list must be short enough to commit to memory. All the
masters said that ships must ultimately go to voice
communications in difficult encounters and, therefore, the
intermediate step of using a code may not work”.

Voice contact appears more suitable for the type of negotiations
required in EFR., But the ability to guarantee a clear voice channel
instantanteously for a number of conflicting pairs may require more
sophisticated communications equipment than is currently available
for civil aviation. '

2. Is the available workload increment adequate for the pilot to
analyze the conflict situation, and communicate with the threat?
Recall that conflict resolution is a time—critical non—-deferable task
and may come at a time of already high cockpit workload.
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controller first checks to make sure that only two aircraft are in conflict.
He then negotiates an agreement which assigns one aircraft responsibility for
maintaining separation from the other. The "passive" aircraft is required to
fly without maneuvering for the duration of the encounter. The pilot has the
option of refusing responsibility for resolution if he is too busy or
otherwise unable to carry out the assignment. Resolution is monitored by
either the controller or an automated CAS which intervenes if the pilot fails
to resolve the conflict . 1In-order to apply this concept to EFR, it is
necessary to envision computer logic taking the place of the human controller.
Note that this EFR mode would possess several safeguards which unsupervised
pilot resolution lacked. Several comments are in order concerning this

resolution mode:

1. If one accepts the fact that conflicts will arise which pilots cannot
or do not wish to resolve themselves, then the supervising logic must
be capable of assuming complete responsibility for resolution. Thus
an algorithmic resolution mode must be designed and integrated into
the operation of the system.

2. The specification of an active aircraft and a passive aircraft is
necessary to avoid incompatible resolution maneuvers or negotiations
of right-of-way. In a manual IFR mode the assignment would be
accomplished by partially releasing one aircraft from ATC clearance
constraints while the other complied with an assigned heading and
altitude. In the EFR mode neither aircraft is initially constrained
and flight plans are unavailable. Hence in order to create a passive
aircraft, the EFR decision-maker must issue "don't maneuver"” commands
to one aircraft. These constraints must be applied in both the
horizontal and vertical maneuver planes unless the supervisor
specifies the dimensions to be used to resolve the conflict. If the
active aircraft does not choose a resolution option which speedily
resolves the conflict (e.g., if he decides to fly an offset parallel
course while slowly overtaking), the passive aircraft may be
constrained for an excessive amount of time.

3. It is difficult without knowledge of intent to anticipate whether or
not multiple aircraft will be involved in the conflict.
Unconstrained traffic in the vicinity may make course changes which
lead to a conflict. Or the "active” aircraft in the resolving pair
may choose a resolution option which brings it closer to a third
aircraft. At this point a rather difficult transition may be
required as the supervisory logic attempts to redefine the
resolution ground rules or to impose logic—-computed multi-aircraft

resolution.
4. As in any system requiring pilot decisions based upon traffic

displays, the requirements for pilot training and more sophisticated
display capabilities may impose burdens upon some potential users.
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5.2 Interaction with VFR Aircraft

Much EFR flight may take place under VMC when VFR aircraft are present in
the airspace. Under such conditions, VFR aircraft will tend to outnumber EFR
aircraft and aircraft traffic densities will usually be greater than those
encountered in IMC., Hence, interactions between VFR and EFR aircraft can
affect the acceptability of the EFR system.

The most fundamental question to be answered is the extent to which the
EFR system assists in the separation of EFR and VFR traffic. It does not
appear reasonable to require the EFR aircraft to undertake unilateral actions
to provide normal EFR separtion from VFR aircraft. One reason for this is
that VFR aircraft may operate in traffic densities which make normal EFR
separation procedures infeasible. Furthermore, since the lead time required
for EFR-type resolution is greater than that required for VFR-type resolution,
unilateral resolution is equivalent to giving right-of-way to all VFR
aircraft. Finally, reliable separation is difficult to achieve without
coordination.

In view of these considerations it appears that EFR system responsibility
for EFR/VFR separation should be strictly limited. The following baseline
proposal is advanced for the specification of VFR/EFR interaction:

1. The EFR system will not guarantee any standard separation between EFR
and VFR aircraft — the ultimate responsibility for separation rests
with the pilots involved.

2, The EFR system will provide traffic advisories on VFR traffic if
surveillance data on VFR traffic is readily obtainable during the
course of EFR operations.

3. In selecting resolution options for separating EFR aircraft from
other EFR or IFR aircraft, the system will consider the known

locations of VFR traffic and will favor options which achieve EFR/EFR
and EFR/IFR separation objectives while avoiding VFR traffic.

4, Collision avoidance instructions will be allowed if the measured

separation between EFR and VFR aircraft deteriorates sufficiently to
violate CAS criteria.

21



5.3 EFR Interface

> With Air Traffic Control

In Section 2,2 it
aircraft should not be
operating. It was alsg
resolution actions was
is convenient to think
decision—makers: the H
Initially, the IFR deci
Looking futher into the
will be a computer, in
software module interfa
issues arise which, eve
Because they involve qu
given technique is nece
section discusses probl

5.3.1 Interf

was suggested that a conventionally-equipped IFR
excluded from airspace in which EFR aircraft are
determined (Section 4.1) that coordination of
necessary in EFR/IFR conflicts. In conceptual terms it
of the coordination as taking place between two

FR decision-maker and the IFR decision-maker.

sion maker is likely to be the human controller.
future, it is possible that the IFR decision maker
which case the EFR/ATC interaction may involve an EFR
cing with an IFR software module. In any event, some
n at the conceptual level, are not easy to resolve,
estions of human performance, actual experience with a
ssary in order to verify its acceptability. This

ems and potential solutions for the EFR/ATC interface.

ace With ATC Controller

The following disc
traffic controller is i
probably the environmen
environment which may p
to reduce controller wo
Yet any responsibilitie
traffic entail some wor
depends upon difference
aircraft, If the respo
decisions based upon th
aircraft, then he must
characteristics of EFR

information when require

of this interface:

If the controller
sector, the workload in

with EFR aircraft.

iolved may be great.
aircraft requires greatg
aircraft since EFR airci
The controller must the

ussion focuses upon a system in which a human air
nvolved in the control of IFR aircraft. This is

t in which EFR would first be implemented and it is an
ersist for some time. One of the objectives of EFR is
rkload by reducing traffic loading upon the IFR system.
s which are assigned to the controller relative to EFR
kload increment. The extent of the workload savings

5 between the workload induced by EFR aircraft and IFR
nsibilities of the controller require him to make
positions, velocities, or characteristics of the EFR
either be constantly aware of the relevant

traffic or must be capable of acquiring the needed

rd. The following considerations affect the viability

=3

ttempts to constantly monitor the EFR aircraft in his
Monitoring the flight of an EFR
>r vigilance than monitoring the flight of an IFR

raft may make unanticipated course changes at any time.
refore anticipate a greater number of contingencies

22




With IFR traffic, a controller normally acts early to avoid the need for
time critical resolution. This allows him to distribute his workload more
evenly over the time available and reduces the likelihood of problems if his
attention is momentarily diverted. EFR conflicts may require operation in a
time critical mode which places severe demands upon controllers.

EFR traffic in adjacent sectors may suddenly enter the controller's
sector. Hence he may be required to monitor EFR aircraft in adjacent sectors
as well as those in his own.

Certain information which a controller normally utilizes in control may
be unavailable for EFR aircraft. For instance, aircraft type, weight class,
destination, and short-term intent may be unavailable.

If a controller ignores the presence of an EFR aircraft until a conflict
arises, he may have difficulty absorbing required information in time to make
an appropriate decision.

The assignment of ATC control authority is determined by dividing the
airspace into control sectors. Special procedures are utilized to coordinate
separation between IFR aircraft which cross or fly near sector boundaries.
But EFR aircraft are assumed to fly without regard to such boundaries. Hence,
an EFR aircraft may encounter an IFR aircraft at a location at which control
actions affect two or three different control sectors. The complexity of the
coordination process is then greatly increased.

a. Interface Concept Involving IFR Priority

It is obvious from the above discussion that the nature of the EFR/IFR
interface requires careful definition if it is to function acceptably. Two
possible concepts for the definition of this interface will now be discussed.
The first is based upon a "right of way” designation. In this concept, the
IFR controller informs the EFR decision-maker of the flight path which the IFR
aircraft will follow. The EFR decision—maker must then accept this path as a
"given" condition in the EFR decision-making process. In this way each
decision maker issues instructions only to those aircraft under his direct
control. The IFR controller can thus almost ignore the presence of EFR
aircraft since all IFR aircraft have "right-of-way". Some consequences of
this approach are as follows:

1. The IFR controller must formulate his instructions in a manner which
can be transmitted to the EFR decision-maker. This may imply digital

entry of instructions and use of a limited repertoire of
instructions.

2. Such instructions must be formulated and executed in a way which
allows future flight paths of IFR aircraft to be predicted with
sufficient accuracy for making EFR decisions., Instructions which
allow wide latitude in exactly how they are to be executed may be
unacceptable.
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6.0 SURVEILLANCE TECHNIQUES

In tactical control systems, separation assurance is dependent upon the
determination of the relative positions of aircraft. That portion of the data
acquisition system concerned with this function is called the surveillance
system. A wide variety of electronic surveillance techniques have been
applied or proposed for use in air traffic control and collision avoidance.
The list includes ATCRBS, DABS, Active BCAS, Passive BCAS, ICAS and GPS-based
systems. In some cases the choice of surveillance technique determines
fundamental properties of the system design and establishes definite
limitations on performance. Anyone familiar with the dialogue surrounding
ATC-related research and development over the past decade probably realizes
that often a system is advocated on the basis of its excellent rating with
respect to one performance criterion without due consideration of its possible
weakness with respect to other equally critical criteria. Most conceivable
techniques have certain commendable features, but it may well be that few are
free of "fatal flaws". In order to be seriously considered for EFR
application, a surveillance technique should be able to meet all critical
concerns. The following section discusses the range of considerations which
must apply in evaluating EFR surveillance system characteristics. Section 6.2
then discusses the promise of some particular approaches to surveillance.

6.1 Surveillance Evaluation Criteria

6.1.1 Completeness of Data

A number of independent relative motion variables must be measured to
completely determine the three-dimensional relative positions and velocities
of a pair of aircraft. Some types of surveillance techniques do not determine
a complete set of horizontal plane variables — they are capable of measuring
the range to traffic, but not its bearing. Such incompleteness will obviously
lower the achievable level of performance of the EFR system. The following
effects may be observed:

- Altitude separation must be used 1n order to resolve conflicts since
horizontal resolution without bearing information is inefficient or

unreliable.

- The inability to completely determine horizontal position can lead to
vertical resolution maneuvers when, in reality, the existing horizontal
miss distance is adequate. This results in an overall increase in the
system alarm rate (see Appendix A).

- Traffic advisories which assist visual acquisition of traffic by
telling the pilot where to look cannot be provided. Such advisories
are useful since EFR may be used frequently in VMC when VFR traffic is
present.
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In some cases failure can occur without the knowledge of decision—makers.
This can result in reliance upon a data base which fails to reflect the true
conflict situation. This type of problem is of greatest concern in
air-derived systems in which automatic self-testing features are more
difficult to incorporate and in which complete system checkout may occur only
at periodic maintenance intervals.

Back-up capability refers to the capability of a system during periods of
equipment failure to continue to provide for the safe movement of aircraft by
alternate means. These alternate means need not be as efficient as the normal
means, but they should assure separation with high confidence. In order to
provide back-up services it may be necessary for the EFR system to maintain
critical data bases in duplicate or to incorporate independent back-up
components in the system design.

6.1.5 Equipage Requirements

It appears 1lnevitable that aircraft must carry some type of electronic
equipment in order for EFR surveillance to be carried out. Conventional
equipment, such as beacon transponders with altitude reporting capability,
will be carried on most IMC flights before EFR is implemented. If EFR
surveillance can be carried out using this equipment, then EFR services would
be readily available to most potential users without requiring purchase of a
second surveillance unit.

Some air-derived surveillance schemes would require aircraft to carry
special EFR avionics in order to be detected. Unless assisted by ground-based
radars, an EFR aircraft using such a system would be unable to detect the
presence of a normally-equipped IFR aircraft. Coordinated resolution yielding
the required level of safety would then be impossible. Hence EFR resolution
based upon such surveillance schemes could be used only in regions in which
normally—equipped IFR flight were prohibited. Because this would violate the
non—exclusion principal (Section 2.2) this is not considered feasible as the
principal mode of EFR operation. It might be a feasible mode for limited
regions of airspace, especially if EFR equipage became widespread or if
equipage with the required equipment became standard for other ATC purposes.

6.1.6 Coverage

Continuous surveillance coverage 1s highly desirable for the utility of
an EFR system. It allows completion of the en route portion of the flight
without the need for transitioning to any other separation mode. It also
decreases the potential for blundering into regions where service cannot be
provided. When surveillance is dependent upon ground-based sensors, there are
coverage limitations due to terrain obstruction and range from the sensor. In
order to achieve essentially continuous coverage with radar-based
surveillance, a minimum service altitude must be defined. Further discussion
of this point is contained in Section 6.2.2 and Appendix B.
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It is quite possible that an EFR information display could utilize a
device selected for general data link readout. Hence the users decision to
purchase the device will be influenced by all the varied benefits associated
with the data link, as well as its EFR application. Other multiple-~use
displays may be present. Digital weather radars are now readily available on
the market. For many the $5000-$20,000 price is justified by the added
safety. Most of these weather radar displays could be made to serve other
functions (data link or EFR). Thus the incremental cost of adding the
capability for EFR information display to an aircraft can be quite low as long
as EFR requires no special display capabilities which make it impossible to
utilize multi-function devices.

In summary, the incremental cost of EFR avionics must be kept low to
attract EFR users in numbers which will guarantee benefits to the total

system. Readout devices with multiple uses show promise for providing maximum
benefits for minimum cost.

6.2 Surveillance Techniques - Preliminary Evaluation

The principal surveillance techniques which might serve as an initial
basis for EFR surveillance have been subjected to a preliminary evaluation in
order to identify relative strengths and weaknesses and to define critical
feasibility issues for more detailed study. Due to the equipage
considerations expressed in Section 4.2, the most promising class of
surveillance techniques for the near term are those which utilize components
(sensors or transponders) of the ATC radar beacon surveillance network. Hence
surveillance techniques based upon ATCRBS, DABS, or BCAS components were-
examined first.

6.2.1 Air Traffic Control Radar Beacon System (ATCRBS)

The ATCRBS is the principal means of providing radar separation between
controlled alrcraft in the current air traffic control system. Approximately
300 sensors are now deployed to provide coverage in the continental United
States. Use of existing ATCRBS sensors for EFR purposes might avoid the delay
and expense associated with the purchase and deployment of new surveillance
equipment. However, the ATCRBS system was not designed to support the type of
automation which EFR employs, and hence its use in this application can be
questioned. The following paragraphs outline the principal issues involved.

a. False Tracks

False targets due to reflections from objects near the sensor site can
create false tracks. In severe cases as many as 10 percent of the active
ATCRBS tracks are false, (Ref. 7). Such tracks may create problems with
sign-in (such as the aircraft identity being assigned to the wrong track).
These tracks can also result in false alarms. Sites with severe false track
problems may be unable to support EFR service. Special ATCRBS processing
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algorithms to eliminate false tracks have been demonstrated. These algorithms
can be quite effective when adapted to the particular site at which they are
used. The use of ATCRBS from unmodified sites in support of EFR is
questionable.
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TRACKING ERROR STANDARD DEVIATION, o3 (ki)
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Fig. 6.1. Steady-state Kalman tracking errors (random acceleration with
standard deviation o, = 4ft/sec?).
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TABLE 6.1

Nominal Beacon Sensor Characteristics

Sensor Type Azimuth Range Update
Error Error Interval
[€5) o)
ATCRBS - Terminal (ASR) 0.2° 380 ft. 4 sec.
ATCRBS ~ Enroute (ARSR) 0.1° 380 ft. 10 sec.
DABS (Terminal) 0.04° 40 ff. | 4 sec.
DABS (Enroute) - 0.04° 40 ft. 5 sece.
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f. Conclusions on ATCRBS Surveillance Quality

EFR surveillance would be inferior in regions where only ATCRBS/ARSR
coverage exists. EFR service is more readily achieved within ASR coverage,
but some modification of reply processing software will be required. the need
to upgrade equipment to support EFR brings into question the idea that
ATCRBS-based EFR could readily utilize existing ATCRBS coverage. This study
has not determined precisely the degradation in EFR performance with range due
to increasing position measurement errors. However, it is likely that either
service limitations will be imposed which make it difficult to obtain
continuous radar service in en route airspace, or that the quality of service
offered will degrade significantly in areas which are distant from ASR sites.

6.2.2 Discrete Address Beacon System (DABS)

The Discrete Address Beacon System (DABS) was designed to support
automated tactical air traffic control services and is an obvious candidate
to provide surveillance and communication functions for EFR. DABS
includes an integral discrete—address digital data link which provides message
delivery with high confidence. Most aircraft which are candidates for EFR
service will already possess a DABS transponder and may possess some type of
data link display device. Hence there are excellent prospects for holding the
incremental avionics cost of EFR service to a low level. Performance issues
surrounding the DABS system alternative are discussed below.

a. Surveillance Quality

The nominal position measurement accuracy of DABS (see Table 6.1) is
significantly better than that of ATCRBS, especially in the critical azimuth
coordinate. At 120 nmi range the cross-range error (one sigma) is only 500
ft. This value appears acceptable for separation assurance since the aircraft
densities at longer ranges (and higher altitudes) is not great.

b. Coverage

DABS sensor coverage is limited to airspace within line-of-sight of
sensor sites. Deployment of DABS sensors is scheduled to begin in the
1980's., A critical question is the number of DABS sensors which must be
deployed before sufficient coverage exists for meaningful EFR service. An
analysis of radar coverage is presented in Appendix B. This analysis
concludes that a network of approximately 80 properly sited DABS sensors could
provide essentially continuous EFR surveillance coverage down to 6000 ft in
the Eastern CONUS and Southern California. Coverage in the remainder of the
CONUS is unavoidably discontinuous due to terrain obstruction and greater
distances between sensor sites. It is estimated that the potential continuous
coverage is sufficient to cover more than 75% of all en route traffic.

The impact of man~made obstacles upon ATC radar coverage at low elevation
angles has not been fully characterized for existing radar sites., Diffraction
of aircraft replies by obstacles can lead to abnormally large azimuth errors
for aircraft within line-of-sight This problem can be addressed by using more
conservative separation standards for traffic flying near obstacles or by
utilizing data from adjacent unobstructed sensors. Proper siting of sensors
is also important in this regard.
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derived bearing information in conjunction with Active BCAS-type information.
It was concluded (see Appendix A) that use of small antennas for
angle-of-arrival measurement would support the issuance of traffic advisories,
but that the accuracy of such measurements would be insufficient for use in
alarm filtering or horizontal resolution. Use of bearing information in
combination with exchanged heading and airspeed has greater performance
potential. But such a technique would be more expensive, more vulnerable to
equipment failure, and would be applicable only to conflicts between
fully-equipped EFR aircraft. Hence it was concluded that an EFR system based
upon Active BCAS surveillance techniques would utilize bearing data only for
the issuance of traffic advisories. This limits the quality of service (see
Section 6.1.1).

d. Avionics Expense

The unit cost of Active BCAS is expected to be between $10,000 and
$20,000. It is generally assumed that only airline transports and larger
general aviation aircraft would be able to invest in such equipment. The cost
for a BCAS suitable for EFR support would probably be greater due to more
stringent performance requirements and the need for more sophisticated data
link capabilities. The expense of such a unit is not beyond reason, but it is
great enough to discourage many potential EFR users.

6.3 Summary of Surveillance Alternatives

It has been shown that general feasibility and implementability )
considerations (Sections 4.2 and 6.1) indicate that for the foreseeable future
the most promising surveillance techniques for EFR service are those which are
based upon equipage with air traffic control radar beacon transponders. Three
alternatives within this class of techniques were examined. They involved use
of ATCRBS, DABS, and Active BCAS surveillance techniques. Problems of
surveillance quality and data link reliability were identified in the use of
ATCRBS surveillance. Avionics cost and traffic density limitations were
associated with use of Active BCAS techniques. The principal question
concerning use of DABS is the time period required for deployment of a number
of sensors to provide sufficient coverage. On the basis of performance and
avionics cost, the DABS system is the most promising of the three alternatives
considered.

35



7.0 TRAFFIC ENVIRONMENT

Many aspects of |[the air traffic environment can affect the performance
level of the EFR system and influence the relative attractiveness of system
alternatives. In this section attention is focused upon one of the primary
traffic environment parameters —traffic density. An attempt has been made to
provide a general model of traffic distributions which is sufficient for the
initial assessment of EFR viability. In the discussion which follows, the
term aircraft density refers to the expected number of aircraft per square
nautical mile including all altitudes. The term co—altitude aircraft density
is used to mean the expected number of aircraft per square nautical mile which
are near enough to a specified aircraft altitude to require separation

assurance actions by the EFR system.

7.1 Traffic Densilty Distribution

The area of the CONUS is about 3 million nmi2. The peak airborne count
is currently about 20000 aircraft which corresponds to an average aircraft
density of 0.007 aircraft per nmi2 over the whole country. In fact, most of
the country has a density that is lower than this amount while some areas near
the airports of major cities have peak aircraft densities that are twenty
times the national average. The high aircraft density near such centers falls
off rapidly as the distance from the center increases. A model that has been
found to give a good fit to available data assumes that aircraft density
associated with a given [traffic center decreases exponentially with distance

(see Appendix C) i.e.,

p(r) =p, exp (-r/R) (7.1)
where
P, = peak density
r = distance from center
R = characteristic decay distance

A typical characterfistic decay distance, R, (at which point the density
is only 1l/e of its maximhm value) is about 20 nmi. It should be mentioned
that analysis of data collected by the Transportable Measurements Facility
(TMF) shows that the peak density of aircraft is not inside the TCA, but
outside, near general aviation airports along the edge of and under the floor
of the TCA. Because the|majority of aircraft are VFR, the peak densities of
IFR aircraft are considerably lower than the total peak aircraft density. The
density of IFR aircraft én route is very low by comparison to the VFR density
near terminal areas. Typical peak airborne counts in IFR enroute sectors are
under 15 aircraft (a dengity of about 0.002 controlled aircraft/nmiZ in a

control sector 80 nmi ac OSS.)

Since traffic is nofl uniformly distributed in altitude, the co—altitude
aircraft density depends |upon the altitude of interest. On the basis of
filed flight plans and detailed traffic models, it appears that the bulk of
the enroute aircraft population is at low altitude with the peak co—altitude
aircraft density occurring around 5000 feet. For typical altitude
distributions the peak co~altitude aircraft density (using *1000 feet as the
co—altitude band) is about one—~fifth of the aircraft density for aircraft at

all altitudes.
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Because the EFR service will treat IFR, VFR, and EFR aircraft differently
(see section 5.2) the distribution of traffic among these three flight
categories must be considered. Previous traffic model predictions are useful
if one assumes that the introduction of EFR service does not significantly
increase the total number of aircraft. The question then centers upon the
number of aircraft designated IFR and VFR in the traffic model which would
choose to fly EFR if given the opportunity. It is expected that only a small
number of aircraft which would otherwise be unequipped for IMC operations
would choose to fly EFR under IMC. The bulk of the EFR traffic would then
consist of general aviation aircraft which would otherwise fly IFR under IMC.

Currently about 23% of en route instrument operations are attributable to
general aviation (Ref. 8). General aviation aircraft handled under en
route IFR are expected to grow at an annual rate of 7.2% from 1977 to 1989 as
compared to a growth rate of only 2.3% for air carriers (Ref. 1). Thus
more than 50% of the predicted growth in instrument operations will be
attributable to general aviationl, Without EFR, general aviation should
account for more than one-third of the total number of IFR aircraft handled in

1990.

Weather conditions have an obvious impact upon the composition of air
traffic. Under IMC, all traffic must operate IFR and the exclusion of
non—-qualified aircraft results in decreased traffic densities. Under VMC,
peak densities occur and VFR traffic is typically assumed to account for
two—thirds to three-fourths of the total traffic. Hence less than one-third
of the peak traffic density contributes to the issuance of resolution

instructions by the EFR system.

7.2 Terminal Interface Considerations

As aircraft approach a traffic hub the number of conflicts which arise in
purely tactical control will increase. At the same time, it becomes necessary
to begin sequencing aircraft along a common path which leads to the runway in

Thus at some point prior to landing, traffic can no longer be considered

use.
Some

random, but begins to exhibit structure and to follow a time schedule.
control process must provide metering and provide protection from disruption by
other aircraft in the area. Under VMC at non-tower airports the structure is
provided by a traffic pattern, and the individual pilots provide

1At the beginning of the time period involved the fractional growth due to
general aviation is 0.23 x ,072 = ,0166 and the fractional growth due to air
carrier operations is 0.77 x .023 = .0177. Hence general aviation initially
accounts for 0.0166/(0.0166 + 0.0177) = 48% of the traffic growth. This

fraction increases with time.
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spacing. At tower airports the structure is provided
who must be contacted before passing inside a 5 nmi
radius and 3000 ft. altlitude of the airport. Under IMC the structure is
provided by the appropriiate sector controller or approach controller. Around
major terminals a Terminal Control Area (TCA) has been established to provide
positive-controlled air?pace that eliminates uncontrolled traffic which might
otherwise interrupt the|metered flow to the terminals. The requirement for
some area of structure dround every terminal, large or small, means that there
must always be an EFR service boundary between the en route airspace and the
terminal. At that boundary a control transition is required which is
analogous to the transitlion which occurs today when a VFR aircraft enters a
TCA or a Terminal Radar Bervice Area (TRSA). That boundary could take several
forms. The boundary could be a floor at a specified altitude. In order to
descend below that floor|an aircraft would have to transition to VFR or else
obtain an IFR clearance.| The boundary could take the form of an extended
airport traffic area (extended to include the area required for an instrument
approach). A clearance would be required to enter the extended area under

IMC.

their own metering and
by the tower controller

7.3 Conflict Rates

Tactical resolution |of aircraft conflicts becomes infeasible when the

In the limit, the need for

percentage of time in con
constant conflict resolut
But before that limit is
multiple aircraft conflic
system evaluation, it wil
to be in conflict more th
conflict is one minute, t
could be allowed.
that encounters with some
traffic advisories and hen

For aircraft which any

In comf

flict becomes too great.
ion prevents accomplishment of flight objectives.
reached, problems may develop with resolution of

ts or with pilot workload level. For purposes of EFR
I be assumed that it is unacceptable for an aircraft
an 10% of the time. If the average duration of a

is means that no more than 6 conflicts per hour
uting the conflict rate it should be kept in mind
aircraft (e.g., VFR aircraft) may require only

ce may not qualify as a full conflict.

e not previously constrained by air traffic control,

a reasonable prediction off conflict rate can be derived from a random
encounter model. The confllict rate for a single aircraft is then given by the
product of the width of the horizontal conflict area, the average relative
speed, and the co-altitude| aircraft density. For a horizontal conflict area
of width 6 miles (3 nmi separation radius) and an average relative speed of
180 knots the conflict rate for aircraft flying at the average en route
aircraft density* (.007 aifrcraft/nmi2) would be no greater than approximately
1.5 conflicts per hour. The maximum acceptable co-altitude aircraft density
(for 6 conflicts per hour)| would be about 0.005 aircraft/nmiz. If this
co-altitude aircraft density is allowed at the most crowded altitude, then the
maximum total aircraft density would be 0.025 aircraft/nmi2, If resolution is
not required relative to VFR aircraft (which constitute 2/3 of the traffic),
then the maximum total dengity is about 0.075 aircraft/nmi2, TMF traffic
tapes collected in 1976 at|Los Angeles, Washington, Philadelphia, and Boston
(Ref. 9) indicate that denfities this high occurred only within 10 nmi of the

r .007 aircraft/nmiZ or .007 ¢+ 5 = 0.0014

*A density of approximately
t the densest altitude.

co~altitude aircraft/mmil 3

d
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busiest terminals. Because the traffic falls off exponentially the density
near the terminal could double and still permit EFR operations at a relatively

short radial distance away.

Itinerant aircraft which proceed directly from en route airspace into the
airport control area will spend only a small amount of EFR flight time at
these higher densities. Hence a more meaningful way to describe the conflict
situation might be in terms of conflicts per operation. Consider the case of
an aircraft which approaches a traffic hub for which the density follows the
exponential form of equation 7.1. Assume a constant approach rate.
Integration of the conflict rate shows that the expected number of conflicts
which will have occurred by the time the aircraft is r miles from the hub

center is:

2nVry,Rp,

no. of conflicts = exp (-r/R)

where
n = fraction of aircraft which are co—altitude
V = average relative speed between aircraft
r, = protected radius which defines a conflict
R = characteristic decay distance
Po = aircraft density
U = speed of approach of aircraft of interest

By setting r equal to the range at which the aircraft transitions from
EFR to terminal or airport control, this equation becomes the number -of EFR
conflicts per operation. Using typical 1995 L.A. Basin parameters (n = 0.20,
V = 160 Kt, p, = 0.20 ac/omi2, R = 15 nmi, r = 15 nmi, U = 120 knots) the
expected number of conflicts per operation is 1.8 for a 3 nmi separation
standard and 0.6 for a 1.0 nmi separation standard. Hence it appears that the
EFR aircraft would be able to complete the flight without an excessive number
of EFR conflicts, even if conflict resolution were required relative to all

other aircraft.

7.4 Summary

On the basis of general traffic envirounment models and system performance
goals, it appears that traffic densities which threaten the viability of EFR
operations occur only within 10 to 20 miles of the busiest traffic hubs.
Itinerant EFR aircraft which enter such traffic hubs in order to transition do
not remain in high density regions for a length of time which is operationally

significant.
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8.0 EFR RESOLUTION VIA COMPUTER LOGIC

In order to investigate the feasibility of EFR configurations which use
computer logic for the control of aircraft, a control algorithm structure was
devised and studied via fast-time simulation. Because primary separation
e efficiency and reliability than back-up separation
assurance, the EFR algorithms differ in several ways from collision avoidance
algorithms. The principal features of the algorithm are discussed below.
More details on the logic are provided in Appendix D.

assurance requires mor

8.1 Resolution Lead Time

Collision avoidanfe systems are usually designed to wait as long as
possible (approximately 25 seconds before collision) before initiating a
resolution. The EFR logic initiates resolution earlier (60 to 90 seconds
before a potential collision could occur). This extra time allows smaller
course changes and more gentle maneuvers to be utilized. It may also allow
the logic to alter the |path of only one conflicting aircraft rather than both.
Additional lead time ig also critical for effective monitoring of compliance
and for providing time [for a second set of resolution instructions to be

issued should the first| set prove inadequate.

8.2 Specified Heading/Altitude Assignments

EFR resolution is accomplished by assigning specific headings and/or
altitudes to aircraft. |This allows use of minimally disruptive command
magnitudes and prevents|excessive turns which are counterproductive in
terms of generating separation. It also enables the EFR system to predict the
future paths of aircraft and it allows other control authorities (e.g., human
controllers) to anticipate the path which the aircraft will follow. Specified
heading/altitude assignEents assist in the resolution of multiple-aircraft

encounters (a three—airc¢raft encounter can be resolved by assigning three
distinct altitudes). Specified heading and altitude assignments also enable
safer operation near airspace and service boundaries (instructions can be
selected which are less|likely to precipitate a blunder into prohibited

airspace).

8.3 Separation Stgndards

Because of the accuyracy of mcst EFR surveillance systems, the fast
reaction times of automated system logic, and the presence of improved traffic
advisory services, conventional IFR radar separation standards may prove
overly conservative for EFR purposes. But it is likely that conventional
standards will be adopteld for the initial introduction of EFR and that they
will be reduced only after satisfactory initial experience with the system.
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A question which arises with regard to separation standards concerns the
separation required for wake vortex clearance. If the EFR data base does not
include aircraft weight class, then a conservative interpretation of wake
vortex clearance requirements could impose large separation requirements upon

the EFR systemn.

8.4 Discrete Resolution Options

Only a finite number of discrete heading/altitude assignments are
allowed. For heading, possible assignments correspond to heading changes of
0°, *30°, and *60° from the heading at which the aircraft is initially flying.
(See Fig. 8.1). The five heading options for each aircraft produce 25
possible horizontal command sets for each pair of aircraft.

In the vertical dimension, five possible altitude assignments are
possible (see Fig. 8.2) corresponding to 0, *500 and *1000 feet altitude
changes from the current aircraft altitude, rounded off to the nearest 500
foot value. The five possible command set options for each aircraft produces
25 possible command set options per aircraft pair for vertical resolution.

Except for unusual situations, it is inefficient to maneuver one aircraft
horizontally and one vertically. When this is done, an additional negative
command must be issued to each aircraft to prevent pilot initiated maneuvers
from canceling the effects of the positive commands. Thus the initial
resolution choices involve either strictly horizontal or strictly vertical
resolution. This results in a total of 50 possible commands sets (25

horizontal and 25 vertical).

8.5 Cost Function Structure

In order to select the best resolution option from the 50 options
available, the test-bed logic examined each option and computed a cost for

This cost is the sum of a number of cost terms, each of which reflects
The option with lowest

each. 2oL =
some independent aspect of a command set desirability.

cost is selected for issuance.

The cost term algorithmic structure offers a number of advantages which
are desirable in a system which seeks to provide primary separation assurance.
Such a system is required to take a number of factors into account in
selecting control actions. For example, it may evaluate not only separation
from the principal threat, but terrain clearance, the probability of secondary
conflict, violations of airspace structures, penetration of coverage
boundaries, etc. The proper evaluation of many of these factors requires
specification of proposed trajectories. The use of discrete resolution

options makes this possible.
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The total cost computed is independent of the order in which the cost
terms are evaluated. This is in contrast to "tree structure " algorithms in
which the order of tests is critical to the final resolution.

There are two general classes of cost terms: those which are related to
safety and those which are related to control efficiency. The relative
influence of each term is determined by the maximum value it is allowed to
assume, Terms which consider safety are allowed to assume substantially
greater magnitudes than the efficiency terms. Thus, no significant amount of
safety can be forfeited in an attempt to attain greater control efficiency.
But when, as is usually the case, several safe options exist for resolution,

the most efficient will tend to be chosen.

8.6 Simulation of the EFR Cost Function Logic Concept

The performance of the EFR logic concept was examined by running
approximately one hundred encounters in fast time simulation using a variety
of encounter geometries. Although this limited testing is insufficient to
draw any final conclusions concerning the viability of the concept, the
results obtained were encouraging as the following observations indicate:

1. The logic appeared to make "reasonable” command choices in all
situations ~ it was not prone to totally irrational or unjustifiable

errors.

In most encounters there were several command sets which achieved the
safety goals (i.e., which drove the computed risk of insufficient
separation to zero). The final choice of command set was usually
based upon control efficiency considerations (e.g., minimizing

deviation from flight path).

2,

3. In many cases only one aircraft was maneuvered to resolve the
encounter,

4, The system performed well over a wide range of detection threshold
parameters - basic changes in the logic structure were not required

to accommodate parameter changes. (Warning time and separation
standards were varied in the simulations).

5. Recovery encounters (i.e., encounters with the same aircraft which

occur upon return to course) were largely eliminated due to
anticipation of such situations in the command selection process.
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9.0 SUMMARY OF RESULTS

defined a concept known as Electronic Flight Rules which
tactical traffic separation services in IMC without the
ance to pre—filed flight plans and without the need for
n-making by a human controller. Such a mode of flight
system by reducing the loading upon the IFR system.
primarily by providing greater freedom and convenience

This report has
involves provision of
requirement for adher
time-critical decisio
would benefit the ATC
would benefit pilots
when operating in IMC;

It

he air traffic enviromment indicates that EFR tactical

Examination of tl
feasible en route for both current and anticipated

control techniques are
traffic densities.

Two fundamental requirements have been identified which EFR systems must
meet in order to be considered promising for implementation. The first is
that the introduction |of EFR flight should not prevent aircraft which so
desire from being able to fly in IMC at a level of safety which is at least as
high as that of IFR today. The second is that conventionally-equipped
aircraft should be allpwed to continue IMC operations in the airspace in which

EFR service is offered,

requirements have significant implications when
implementing the EFR concept are considered. They

of resolution actions between aircraft is required.
They also imply that configurations which do not require special avionics
onboard aircraft are desired. For the foreseeable future, this tends to favor
the use of surveillance techniques which utilize ATC beacon transponders.

These fundamental
particular options for
imply that coordinatioy

n

n of decision—-making responsibility between pilots and
computer logic was considered. In general, decision—making by computer logic
is preferred in terms gf reliability, pilot workload, avionics simplicity, and
feasibility of meeting |coordination/interface requirements. However,
opportunities for pilot inputs should be considered in any concept in order to

enhance control efficiency.

The proper divisig
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APPENDIX A

UTILITY OF AIR-DERIVED SURVEILLANCE DATA FOR
HORIZONTAL CONFLICT RESOLUTION

A.1 INTRODUCTION

This appendix provides an evaluation of the ability of air-derived data
to support horizontal conflict resolution decisions. The problem is
considered from the view of providing EFR resolution with current IFR
separation standards. Thresholds appropriate to lower standards approaching
those assoclated with collision avoidance are included for completeness.

The horizontal resolution of air traffic conflicts requires information
about the relative horizontal position and velocity of one aircraft with
respect to the other. The question under consideration is whether the
required information can be obtained from measurements made on board the
aircraft in conflict. Measurements of the range and altitude components of
relative position and velocity are assumed to be available, as they are common
to existing and proposed air-derived systems. Measurements of the components
of relative position and velocity in the bearing direction are generally more
difficult to obtain. Two techniques considered here are: 1) bearing
measurement through angle-of-arrival determination using a multi-stub antenna
and 2) exchange of airspeed and heading data from onboard flight instruments.

A.2 ANGLE-OF-ARRIVAL MEASUREMENT

In the absence of bearing information, detected threats have to be
resolved in the vertical dimension. If adequate quality bearing information
were available, it would be possible to resolve detected conflicts with
positive (e.g., "turn 30° right") and negative commands (e.g. "do not turn
left") in the horizontal dimension as well. The advantage of horizontal
negative commands is that they require no course change on the part of the
aircraft and are a desirable alternative to vertical positive commands in
those cases where the horizontal separation is adequate. An advantage of
positive horizontal commands is that multiple encounters can be resolved using
the additional control dimension. The advantages cannot be obtained, however,
if the precision of the measurements is inadequate.

Figure A.l1 defines the mathematical variables which describe the geometry
of an encounter. The critical variable for horizontal resolution is the miss
distance, m. The value of m determines the need for positive or negative
commands. It also determines the magnitude and direction of commands.
Therefore, the critical question relates to how well this distance can be
determined at the time of resolution.
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How accurate does the miss have to be known for resolution? It is
certainly desirable for safety that the miss expected as a result of the
commanded resolution be several times greater than the uncertainty in the
estimate of the miss. This can be accomplished by keeping the uncertainty
small or the commanded miss large. However it is inefficient to make the
commanded miss much greater than the desired separation. At some point it
becomes more desirable to use vertical separation than to use extremely large
horizontal maneuvers just to compensate for uncertainty. At that point the
horizontal resolution option is no longer attractive, In this study an
accuracy of 0.5 nmi, one sigma, in miss distance determination was considered
desirable for horizontal resolution. For this accuracy, a one mile separation
standard is only two sigma while a three mile separation standard would be six

sigma.

The time at which resolution begins is usually based on a modified tau
criterion which is satisfied when

r=r, - i, (1)
where

r, = protected range parameter

T, = modified tau parameter

The bearing rate, 9, is the time rate of change of the angle between the line
of sight to the threat and an inertial reference. For evaluation, one is
interested in the bearing rate at the time of tau detection since this is the
point at which resolution decision-making takes place. This bearing rate is a
function of the range rate and the miss distance, m. Specification of rg,T,,

r and m is sufficient to determine the bearing rate at detection when equation
(1) is satisfied. 1In Fig. A.2 the relationship has been plotted for the case
where 7, = 10 sec and ry, = 3 nmi.

Observe that the curves do not span the entire space.
For a given range rate, there is a limit on the magnitude of the bearing
rate that can exist at the time when the modified tau criteria is satisfied.

The maximum value which the normalized bearing rate, 1,8, can achieve is

one radian (57.3°). Consequently the maximum value of 8 approaches a limit of

1
T, as the range rate gets large.

To be able to detect that the miss is under 3 nmi the sensor would have
to be able to detect that the bearing rate was under 0.3 deg/sec. To
determine the miss to a precision of 0.5 nmi a bearing-rate precision of 0.05
deg/sec is typically required. These levels of precision are not available
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from the class of antennas being considered. Furthermore, the heading rate of
the aircraft is also needed to obtain the true bearing rate measurement.
(Since rotation of the antenna must be distinguished from rotation of the line
of sight).

Possession of bearing information may make possible an additional stage
of conflict filtering. In this application an aircraft which violates a tau
alarm criterion will not require resolution actions unless it also violates
bearing rate criteria. Such additional conflict filtering can reduce the
number of alarms which require resolution. The following example shows how
the curves previously introduced can be used to estimate the effect of bearing
rate errors on conflict filtering capability. For a range rate of -200 knots,
only miss distances less than approximately 5.2 nmi will violate the tau alarm
criterion. If a miss of less than 3.0 nmi is considered a "true" alarm, then
a fraction 3.0/5.2 = 0.577 of the tau alarms will violate the "true” criterion
and a fraction 0.423 will not. Thus 42.3% is the greatest fractional
reduction which bearing filtering could provide in reducing the number of
“"true” alarms. Note however that the bearing rate difference between m=5,2
nmi and m=3.0 nmi is only 0.43 deg/sec. Hence uncertainties in the bearing
rate estimate of greater than 0.43 deg/sec make it impossible to determine
with confidence that any alarm which satisfies the tau criterion has adequate
miss. The margin for error is even less at lower range rates.

The physical reason that the critical bearing rates are so low is that
resolution decisions must take place early at long range. Ground radars can
do better since their antenna aperture is much larger (by a factor of ten or
twenty) and their antenna base is fixed with respect to the ground. In
addition the range measurement, which tends to be more accurate than distance
measured in the azimuth direction, may be more favorably oriented with respect
to the miss. In the airborne case, miss measurement depends entirely upon
angle-of-arrival measurement.

For comparison, the relationship of equation (1) has been plotted for
T,=30 sec and Y = 1.0 nmi in Figure A.3. The bearing rates are generally
increased over the case of interest but not enough to show promise for

practical use,

Figure A.4 plots the relationship im non-dimensional form, which makes
the curves universally valid for all choices of alarm threshold values. For

particular parameter choices, one need only scale the axes by the particular
values of T, and ry, which are of interest. The ordinate has units of 1/T0 and

the abscissa has units of ry/T4.

Alarm Filtering Efficiency

A more comprehensive picture of filtering capabilities in the presence of
errors can be derived from the information contained in the normalized plot.
Define those aircraft with miss distance, m, greater than the protected range
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The angle Y is determined from a combination of exchanged heading and airspeed
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Combining (1) and (2)

m = sin (y - 0)
which is plotted in F
detect that the miss
sensor would have to
degrees. To determin
to 250 knots a beari
of precision is proba
data and is conceivab
degrees or better is
commands to protect e
since both aircraft m
and heading in order

-A.4 CONCLUSIONS

The bearing meas

angle-of-arrival antet
It is sufficient to p1
of heading and airspe¢

but the need for both
avionics makes such a
purposes of this stud

data are limited to ve
are discussed in secti

Reference

), is obtained from angle-of-arrival measurement.

{ry, + v cos (Y - 8)} (3

ig. A.7 for the case of ry = 3 nmi and T = 60 sec. To

is under 3 nmi with closing speeds up to 250 knots the

be able to determine that the angle, Y -0, was under 30

e the miss to a precision of 0.5 nmi at closing speeds up
g precision of about 5 degrees is required. This level
bly achievable from the exchanged heading and airspeed

le from the antenna being considered. A precision of 15
required to permit the use of negative horizontal

xisting horizontal miss. There are operational drawbacks
ust be equipped with accurate readout of both airspeed
for this approach to succeed.

urement accuracies which can be expected from

nnas is not sufficient to support horizontal resolution.
rovide traffic advisory information to pilots. Exchange
>d between aircraft would relax accuracy requirements,
aircraft in a conflict to be equipped with additional
approach unattractive for EFR applications. For

7, EFR systems which rely on air-derived surveillance
»rtical resolution only. Consequences of this limitation
on 6.1.1.

A.1 Rich, P.H., Croo

» WeGs, Sulzer, R.L., and Hill, P.R., Reactions of

Pilots to Warning Systiems for Visual Collision Avoidance, National

Aviation Facilities E
1971.

perimental Center (FAA), FAA-NA-71-54, December

A-12




ANGLE BETWEEN RANGE AND RELATIVE VELOCITY VECTORS (deg)

— AN BOUNDARY OF ALARM REGION =

V (kts)
Fig. A.7. Angle between range and relative velocity vectors

at time modified tau criterion is violated for tau = 60 seconds,
ro = 3.0 nmi.

A-13






APPENDIX B

RADAR COVERAGE

This appendix presents the results of a study of ATC radar coverage. The

principal analysis tool used in the study is a software package which draws
maps of coverage areas at specified flight altitudes. Several simplifying
approximation have been made in deriving these maps. The principal limitation
introduced into the model is the use of a smooth earth model which does not
take the obstructions of terrain or man-made structures into account. Fig.
B.l provides a plot of the coverage altitude at a given range from a sensor
for various values of the elevation cut-off angle. A cut-off angle of 0.25°
is utilized in the maps which follow.

Refinement of this model to account for man-made obstructions would
require data which is currently unavailable for all but a handful of sites.
The effect of obstructions depends upon the location of a sensor upon the
airport surface, the antenna pedestal height, and the current location and
size of buildings. A statistical model of obstructions would be a logical
refinement of this model, but for purpose of the current study this was not

deemed necessary.

Terrain obstruction is highly significant for many sites in the western
United States. But a previous study (Reference B.1l) indicates that few cases
of significant terrain obstruction are encountered east of the Rocky
Mountains. Thus the coverage maps produced will be most accurate for the
East, and will present a quite optimistic upper bound for coverage in the

West.

Radar site locations were obtained from a list of 379 current and
potential ATC radar sites as compiled by the Electromagnetic Compatibility
Analysis Center. The data provided for each site include location (to the
nearest minute of latitude or longitude), height above sea level, and type of

current or proposed radar (ASR or ARSR).

In order to identify sites for a limited EFR radar deployment, each site
was tagged according to the following "traffic priorities™:

Current TCA's

Large Traffic Hubs
Proposed Future TCA's
Medium Traffic Hubs
Small Traffic Hubs
All other sites
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Fig. B.l.| Radar coverage altitude versus range from
sensor. An elevation cut-off angle of 0.25° was
selected for purposes of coverage analysis,




The most extensive coverage level considered involves provision of EFR
service by sensors at all 243 current sites in the data base. Figures B.2
through B.5 provide radar coverage maps at altitudes of 4, 6, 8 and 10
kilofeet above ground level (AGL) for such a sensor network. It can be seen
that fairly continuous coverage over the eastern United States is achieved for
altitudes above approximately 6000 feet. Continuous coverage in southern
California is achieved somewhat below 6000 feet. No large regions of
continuity are evident for the rest of the country until altitudes of 10000
feet are reached. However it should be recalled that these coverage maps are
overly optimistic for the mountainous western areas where terrain blockage has
a significant impact upon coverage. Furthermore altitudes of 10000 feet AGL
in such regions often correspond to altitudes of 15000 feet MSL or greater.
Such flight altitudes are not feasible for most potential EFR aircraft. Hence
it appears that EFR service in the mountainous western regions will be
impractical using current radar sites.

Because the upgrading of sites for provision of EFR service would
probably occur gradually, the coverage provided by smaller numbers of sensors
is of interest. In the case of DABS-based EFR service, it is anticipated that
EFR would have little influence upon the sites selected for DABS deployment.
It is quite possible that the initial deployment of DABS sensors would occur
primarily in air traffic hubs in order to provide DABS data link services in
the terminal area and in areas of high density. Such terminal sensors would
have extensive coverage in en route airspace and could therefore provide EFR
services as well. In order to evaluate the coverage of such a network,
coverage maps were drawn using sensors located at all 132 small, medium, and
large traffic hubs in the data base. It can be seen from Fig. B.6 that at
6000 feet AGL, continuous coverage is provided only along the eastern
seaboard and in the mid-west. At an altitude of 8000 feet AGL (Fig. B.7)
coverage begins to approach continuity over the eastern United States.

In order to determine the minimum number of sensors required under
optimal site selection, a radar network was defined by hand selection from
existing sensor sites for maximum coverage without overlap. Approximately 82
sensors were required to provide continuous coverage at 6000 feet AGL over the
eastern United States (east of the 100° meridian). At 10,000 feet only 63
sites are required.

The coverage maps presented so far give a feel for the area coverage, but
an even more important question is the fraction of traffic which is covered by
a given network. Since sensors tend to be located in areas where traffic is
densest, the fraction of traffic covered tends to be greater than the fraction
of continental airspace covered. Using 1974 data on en route operations, it
is estimated that the eastern United States region covered contains
approximately 70 per cent of the national en route traffic and. that southern
California contains about 6 percent. Hence a radar network can serve
approximately 76 percent of the potential EFR aircraft even if it is unable to
provide service in mountainous Western regions.

Reference

B.l1 S.I. Krich, "DABS Coverage", ATC-75, M.I.T. Lincoln Laboratory, 16 August
1977.
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APPENDIX C

TRAFFIC ENVIRONMENT ANALYSIS

This appendix provides additional data which supplements the traffic
environment analysis discussed in section 7.0.

Characteristics of Air Traffic

An understanding of the traffic environment within which an EFR system
would operate was pursued in several ways. Traffic data and traffic models
from previous studies were reviewed. To provide more detailed data a set of
routines were written which produced traffic "snapshots” based upon data
recorded by the Transportable Measurement Facility (TMF) at various field
sites. Each snapshot contained all available information on each tracked
aircraft at a specific instant. Traffic characteristics were analyzed by
selecting a large number of tracks and tabulating the distributions of certain
track variables. Among the characteristics tabulated were traffic density,
ground speeds, altitudes, and altitude rates. Examples of the data output are
shown in Figures C.l through C.7. Figure C,1 is a scatter plot of altitude
versus ground speed for 10 different snapshots. An interesting aspect of
this plot is the clear speed separation of jet traffic and reciprocating
traffic above 7000 feet. The greatest density is at, low altitude and low
airspeed. Fig. C.2 is a scatter plot of altitude rate versus ground speed.
Again there is a clear separation into two speed classes with the greater
number at slow speed. The low speed group shows altitude rates that are
generally less than 15 fps. The higher speed aircraft show greater altitude
rates associated with their higher performance capability. The ratio of
altitude rate to ground speed shows that aircraft flight path angles are
generally under 6 degrees. Fig. C.3 is a scatter plot of altitude vs.
altitude rate. Again it can be seen that the majority of the traffic is at
low altitude. A large fraction of the aircraft are climbing and descending

at typical rates less than 15 fps.

Observed Densities at Los Angeles

Figure C.4 is a geographic plot of the time-averaged aircraft density
observed in square blocks of airspace which measure 5 nmi on a side. The
outline approximates the boundary of the Los Angeles TCA at 3000 feet. Los
Angeles International Airport lies between the two TCA segments. It can be
seen the highest aircraft densities lie outside the TCA: It is generally
observed that peak densities occur near busy general aviation airports
situated along the edge and under the floor of the TCA. The majority of these
aircraft are operating VFR. In Fig. C.4 the highest densities are along the
southern border of the TCA with peaks near Compton and Long Beach Airports.
The density can be seen to fall off rapidly with distance away from the peak

areas.
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[-r/R] (C.1)
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APPENDIX D

DESCRIPTION OF AN EFR CONTROL ALGORITHM

The decision-making process can be divided into the following areas:
detection, resolution, monitoring, and termination. Detection involves the
decision that some type of resolution instructions should be issued.
Resolution involves the initial selection of resolution instructions.
Monitoring involves the monitoring of the progress of resolution and the
altering, if necessary, of the instructions. Termination involves the
decision that control instructions are no longer required. Each of these
functional areas is discussed in further detail in the following sections.

D.1 Detection

The goal of the detection logic is to initiate resolution in sufficient
time for success, but to avoid, insofar as possible, initiating resolution
when separation standards will not be violated. Because future flight paths
of aircraft are uncertain, the actual lead times provided by a given detection
logic vary from encounter to encounter. In a system such as EFR, longer lead
times are desired for purposes of resolution efficiency. It is not necessary
to provide this extended lead time under worst case threat accelerations since
such accelerations occur with a frequency small enough to have little impact
upon average system efficiency. However, worst case accelerations will have a
significant impact upon the system safety level if they cannot be
accommodated. With these factors in mind, the detection region for the EFR
algorithm was "shaped" to meet two lead time threshold requirements. In the
event of unaccelerated flight (the expected situation) the detection logic
provides a lead time of T seconds (before violation of separation standards
can occur). In the event of worst case acceleration, the detection criteria
provides a lead time of T; seconds (where 77 < 73). The nominal values of
these parameters used in simulation studies were 17 = 40 seconds and 1) = 60
seconds. The shape of the resulting horizontal detection region is portrayed

in Figure D.1l.

The alarm rate which results from these criteria is roughly proportional
to the width of the alarm region. Hence the alarm rate is dependent primarily
upon r,, T1, and the assumed acceleration capability of the aircraft. The T2
parameter provides additional resolution time in the nominal (unaccelerated)
encounter while contributing little to the total alarm rate.

Vertical detection relied upon a test which determined: 1) if aircraft
altitude separation is currently less than parameter z,, 2) if existing
altitude rates will result in altitude separation less than z, within time Ty,
or 3) if changes in altitude rates of *1000 fpm for either aircraft could
result in an altitude separation of less than z, within time Tg.
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Return-to—-Course Provisions. The EFR algorithm shall maneuver aircraft
only to the extent necessary to achieve desired separation standards. In many
cases it 1is possible to relax constraints upon aircraft as the encounter
progresses toward a successful conclusion. This relaxation minimizes the
required deviation from course. In actual systems the desirability of this
relaxation must be considered in light of the potential additional workload
which would result from altering instructions. In the test algorithm, the
logic modifies horizontal commands when it is possible to allow aircraft to
return to their original (pre-resolution) headings. The simulated aircraft
return to their original headings as soon as it is allowed.

D.2 Resolution

As discussed in section 8.0, the choice of the discrete resolution option
to be issued is dependent upon the cost function evaluation. The cost
associated with each option is the sum of a number of independent cost terms.
The cost term approach to algorithmic design yields a logic structure in which
each term evaluation is performed by a separate, independent cost term module.
The number of cost terms required depends upon the number of independent
considerations which the logic must take into account in order to select the
proper resolution option. No significance is attached to the absolute value
of cost terms — their values are used only to establish the relative
desirability of the command options. The following paragraphs discuss the
manner in which specific cost terms were implemented.

a. Separation Hazard Term (Horizontal). The expected separation
at closest approach which would result from implementing the option under
consideration is determined. An error variance for this separation is derived
by assuming linear propagation through time of a normally-distributed velocity
error. The probability, PF, that the separation at closest approach will be
less than some minimum safe distance AMDMIN is then computed. AMDMIN, the
minimum distance which assumes separation, was assigned a value of 1500 feet.
The value of the cost term is then defined as:

1 = 1000 PF

It should be noted that the resolution option with the greatest projected
separation is not necessarily the option which is safest since safety is also
influenced by the error in the expected separation. The size of the
uncertainty depends upon the time required to reach closest approach. A
further refinement might allow the error to depend upon the orientation of the
closest approach separation relative to the radar line-of-sight (to account
for the non—isotropic nature of radar tracking).

b. Separation Standard Term (Horizontal). This term is intended
to penalize options for which the issued instructions are insufficient to
achieve the desired separation standard. Let the expected separation at
closest approach be CPA. The value of the term is then:
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c. Control Cost

Term (Horizontal).

o, CPA > r,
4 + 6 r,/CPA, CPA < r,

This control term penalizes

options according t
from following desi
Since such costs ac
a sum of the costs
function of two var

The first vari

o the extent to which they are expected to prevent aircraft
red flight paths or to intrude upon normal flight conduct.

crue independently to each aircraft, the final cost term is
to the individual aircraft. The cost term is defined as a

iables which must be computed for each aircraft.

able is related to the required deviation from projected

flight path. The p
current heading, sp
path of the aircraf

deviation it require
computing the pro jec

the aircraft positi
resolution.
dividing by the air

and lateral deviatio

A second variab

flight path may not

aircraft wishes to m

instructions. From

events which occur at random.

This di

ojected flight path (based upon continued flight at

%ed, and altitude rate) represents the most likely intended
. A resolution option is penalized according to the

s from this trajectory. The deviation is derived by first
ted distance at the time commands will terminate between

n without resolution and the aircraft position with

stance is then converted into seconds of flight, ty, by
raft speed (see Fig. D.2). MNote that both longitudinal

n contribute to this time.

[e

le is required to account for the fact that the projected
be the desired one. This is especially significant if an
Eke a course change which is precluded by resolution

he vantage point of the algorithm, course changes are
The longer an aircraft is constrained, the

greater is the expected deviation of the projected course from the course

actually desired.

The expected deviation (in seconds of flight) can be

written as a function of the length of time an aircraft is kept under control,

t2.

By making the cost term increase with ty, a resolution option which

requires no deviation from projected course (e.g., which involves only a

"don't turn” instruct

disruption it might

The portion of

ion) will still be penalized according to the expected
cause.

the control cost term for an aircraft can now be defined

as a function of the wariables tg (deviation from projected course) and to

(time under control).
these two variables,

In order to provide flexibility in the weighting of
the expression defining the cost term is written as a

general quadratic in {7 and ty:

cost

ap + ajty + ax(t)? + agtyty + a4(tp)2 + asty
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Fig. D.2. Definition of deviation from course.
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The term a, can be set to a non-zero value in order to reflect a cost
incurred due to workload involved in reading any command. This would allow a
"no command” option to be included as a possibility in the evaluation.

Figure D.3 is|a plot of the cost contours for the cost term function
utilized in the simulation of the EFR logic. Note that at a typical operating
point, (tj,tp) = (20, 75), 50 seconds of additional control time is equal in
cost to approximately 18 additional seconds of deviation time.
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Fig. D.3. Contours of control cost.
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