
A Database of Computer Attacks for the Evaluation of Intrusion
Detection Systems

by

Kristopher Kendall

Submitted to the Department of Electrical Engineering and Computer Science in partial
fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering
and Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1999

 Kristopher Kendall, MCMXCVIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper
and electronic copies of this thesis document in whole or in part, and to grant others the

right to do so.

Author ……………………………………………………………………………………...
Department of Electrical Engineering and Computer Science,

May 21, 1999

Certified by…………………………………………………………………………………
Richard Lippmann

Senior Scientist, MIT Lincoln Laboratory
Thesis Supervisor

Accepted by………………………………………………………………………………...
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

*This work was sponsored by the Department of Defense Advanced Research Projects Agency
(DARPA). Opinions, interpretations, conclusions, and recommendations are those of the author
and are not necessarily endorsed by DARPA.

2

A Database of Computer Attacks for the Evaluation of
Intrusion Detection Systems

by
Kristopher Kendall

Submitted to the Department of Electrical Engineering and Computer Science

May 21, 1999

In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

Abstract

The 1998 DARPA intrusion detection evaluation created the first standard corpus for
evaluating computer intrusion detection systems. This corpus was designed to evaluate
both false alarm rates and detection rates of intrusion detection systems using many types
of both known and new attacks embedded in a large amount of normal background
traffic. The corpus was collected from a simulation network that was used to
automatically generate realistic traffic—including attempted attacks.

The focus of this thesis is the attacks that were developed for use in the 1998 DARPA
intrusion detection evaluation. In all, over 300 attacks were included in the 9 weeks of
data collected for the evaluation. These 300 attacks were drawn from 32 different attack
types and 7 different attack scenarios. The attack types covered the different classes of
computer attacks and included older, well-known attacks, newer attacks that have
recently been released to publicly available forums, and some novel attacks developed
specifically for this evaluation.

The development of a high quality corpus for evaluating intrusion detection systems
required not only a variety of attack types, but also required realistic variance in the
methods used by the attacker. The attacks included in the 1998 DARPA intrusion
detection evaluation were developed to provide a reasonable amount of such variance in
attacker methods. Some attacks occur in a single session with all actions occurring in the
clear, while others are broken up into several sessions spread out over a long period of
time with the attacker taking deliberate steps to minimize the chances of detection by a
human administrator or an intrusion detection system. In some attacks, the attacker
breaks into a computer system just for fun, while in others the attacker is interested in
collecting confidential information or causing damage. In addition to providing detailed
descriptions of each attack type, this thesis also describes the methods of stealthiness and
the attack scenarios that were developed to provide a better simulation of realistic
computer attacks.

Thesis Supervisor: Richard Lippmann
Title: Senior Scientist, MIT Lincoln Laboratory

3

Acknowledgments

First, I would like to thank my thesis advisor, Rich Lippmann, for keeping my thesis on

track and for providing me with many valuable ideas and insights. I would also like to

thank Rob Cunningham and Dave Fried for taking the time to read and comment on early

drafts of this thesis. I appreciate the support of Rich, Rob, Dave, Isaac Graf, Seth

Webster, Dan Weber, and Jonathon Korba, and the rest of the intrusion detection

evaluation staff, who made working in this group a fun and highly educational

experience. Finally, I would like to thank Debbie and my parents, whose love and

support fuel all of my endeavors.

4

Contents

Chapter 1 Introduction 8
1.1 1998 DARPA Intrusion Detection System Evaluation..8

1.2 The Development of Attacks for the 1998 DARPA Evaluation..........................10

1.3 Outline of the Thesis..10

Chapter 2 Background 12
2.1 Overview of Computer Attacks...12

2.2 Intrusion Detection Systems..13

2.3 Strategies for Intrusion Detection..15

Chapter 3 Simulation Network 20
3.1 Modeling an Air Force Local Area Network...20

3.2 Simulation Hardware and Network Topology...21

3.3 Simulation Software..23

3.3.1 Virtual Machines...23

3.3.2 Traffic Generation...24

Chapter 4 Exploits 26
4.1 Sources...26

4.2 Age of an Exploit...27

4.3 A Taxonomy for Computer Attacks..28

4.3.1 Privilege Levels...29

4.3.2 Methods of Transition or Exploitation..30

4.3.3 Transitions Between Privilege Levels...31

4.3.4 Actions ..31

4.3.5 Using the Taxonomy to Describe Attacks...34

4.3.6 Examples...35

Chapter 5 Exploits for the 1998 DARPA Evaluation 37

Chapter 6 Denial of Service Attacks 39
6.1 Apache2 R-a-Deny(Temporary/Administrative) ...40

6.2 Back R-a-Deny(Temporary) ..42

5

6.3 Land R-b-Deny(Administrative)..43

6.4 Mailbomb R-a-Deny(Administrative) ...44

6.5 SYN Flood (Neptune) R-a-Deny(Temporary)...45

6.6 Ping Of Death R-b-Deny(Temporary) ...47

6.7 Process Table R-a-Deny(Temporary) ..48

6.8 Smurf R-a-Deny(Temporary) ..51

6.9 Syslogd R-b-Deny(Administrative)...54

6.10 Teardrop R-a-Deny(Temporary)..55

6.11 Udpstorm R-a-Deny(Administrative) ..56

Chapter 7 User to Root Attacks 58
7.1 Eject U-b-S ..60

7.2 Ffbconfig U-b-S...63

7.3 Fdformat U-b-S..64

7.4 Loadmodule U-b-S ..65

7.5 Perl U-b-S..67

7.6 Ps U-b-S...68

7.7 Xterm U-b-S..69

Chapter 8 Remote to User Attacks 70
8.1 Dictionary R-a-U ...70

8.2 Ftp-write R-c-U..74

8.3 Guest R-c-U ...75

8.4 Imap R-b-S...76

8.5 Named R-b-S...77

8.6 Phf R-b-U...78

8.7 Sendmail R-b-S..79

8.8 Xlock R-cs-Intecept(Keystrokes) ..81

8.9 Xsnoop R-c-Intecept(Keystrokes) ...83

Chapter 9 Probes 85
9.1 Ipsweep R-a-Probe(Machines) ..86

9.2 Mscan R-a-Probe(Known Vulnerabilities) ..87

9.3 Nmap R-a-Probe(Services) ..88

9.4 Saint R-a-Probe(Known Vulnerabilities)...90

6

9.5 Satan R-a-Probe(Known Vulnerabilities)..93

Chapter 10 Realistic Intrusion Scenar ios 95
10.1 Attack Scenarios..95

10.1.1 Cracker ..96

10.1.2 Spy...96

10.1.3 Rootkit ...96

10.1.4 Http Tunnel ...97

10.1.5 SNMP Monitoring...98

10.1.6 Multihop..98

10.1.7 Disgruntled/Malicious User ..99

Chapter 11 Stealthiness and Actions 100
11.1 Avoiding Detection of Denial of Service (R-Deny) ..100

11.2 Avoiding Detection of Probes (R-Probe)...101

11.3 Avoiding Detection of User to Root (L-?-S) Attacks..102

11.4 Avoiding Detection of Remote to Local (R-?-L) Attacks.................................106

11.5 Actions...107

Chapter 12 Attack Planning and Data Collection 109
12.1 Planning and Keeping Track of Attacks..109

12.2 Numbers of Attacks...110

12.3 Verification of Attack Success ..111

Chapter 13 Results and Future Work 113
13.1 Results of the 1998 Evaluation..113

13.2 Future Work...116

13.2.1 Inclusion of Windows NT and Other Systems in the Evaluation................116

13.2.2 Better Automation of Attack Planning and Verification.............................116

13.2.3 Improved Stealthy Attacks..117

Appendix A Attack Schedule for Test Dataset 118

7

List of Figures

2-1 Approches to Intrusion Detection……………………………………………. 16

3-1 Simulation Network Topology………………………………………………. 22

4-1 Vulnerability Decreases as Time Passes…………………………………….. 27

4-2 Summary of Possible Types of Actions……………………………………... 32

4-3 A Summary of Possible Attack Descriptions………………………………... 34

5-1 The Attacks Used in the 1998 DARPA Intrusion Detection Evaluation…….. 37

6-1 Summary of Denial of Service Attacks……………………………………… 40

6-2 The Internet is Used to Amplify a Ping Flood and Create a Smurf Attack….. 52

6-3 UDPStorm is Triggered by a Single Spoofed Packet………………………... 57

7-1 Summary of User to Root Attacks…………………………………………… 59

7-2 C Code for the Eject Exploit…………………………………………………. 61

8-1 Summary of Remote to Local Attacks………………………………………. 71

8-2 Plot of Connections to Pop3 Service During a Dictionary Attack…………... 72

8-3 Illustration of Sendmail Attack………………………………………………. 80

9-1 Summary of Probes………………………………………………………….. 85

9-2 Plot of Connections During a Medium Level Saint Scan……………………. 91

9-3 Plot of Connections During a Medium Level Satan Scan…………………… 94

10-1 Attacker Uses Http to Tunnel Through a Firewall…………………………... 98

11-1 Attacker Can Use “at” to Temporally Disassociate the Time of Access and
Time of Attack……………………………………………………………….. 104

11-2 Transcript of a Stealthy Eject Attack………………………………………… 105

12-1 Instances of Non-Scenario Attacks…………………………………………... 111

13-1 Current Intrusion Detection Systems Cannot Find New DoS and Remote to
User Attacks…………………………………………………………………. 114

13-2 Clear vs Stealthy Attack Detection Rates……………………………………. 115

8

Chapter 1

Introduction

1.1 1998 DARPA Intrusion Detection System Evaluation

Heavy reliance on networked computer resources and the increasing connectivity of these

networks has greatly increased the potential damage that can be caused by attacks

launched against computers from remote sources. These attacks are difficult to prevent

with firewalls, security policies, or other mechanisms because system and application

software is changing at a rapid pace, and this rapid pace often leads to software that

contains unknown weaknesses or bugs. Intrusion detection systems are designed to

detect those attacks that inevitably occur despite security precautions. Some intrusion

detection systems detect attacks in real time and can be used to stop an attack in progress.

Others provide after-the-fact information about attacks that can be used to repair damage,

understand the attack mechanism, and reduce the possibility of future attacks of the same

type [43].

Many parties are working on the development of intrusion detection systems,

including universities, commercial software companies, and organizations within the

Department of Defense. As these groups explore different methods and develop various

new systems for intrusion detection, it is clearly advantageous to have a means of

evaluating the success of these systems in detecting attacks. The best environment for

9

testing and evaluation of an intrusion detection system is the actual environment in which

it will be used. However, research groups often do not have access to operational

networks on which to test their systems, and these systems (especially while they are still

in early development) are tested in a simulated environment. The ability to perform

accurate testing and evaluation in a simulated environment requires high-quality data that

is similar to the traffic (including attacks) that one finds on operational networks. In

general, this data is difficult to acquire because it contains private information and reveals

potential vulnerabilities of the networks from which the data is collected. These factors

led to DARPA sponsorship of MIT Lincoln Laboratory’s 1998 intrusion detection

evaluation, which created the first standard corpus for the evaluation of intrusion

detection systems.

The 1998 intrusion detection evaluation was the first of an ongoing series of

yearly evaluations conducted by MIT Lincoln Laboratory under DARPA ITO and Air

Force Research Laboratory sponsorship. These evaluations contribute significantly to the

intrusion detection research field by providing direction for research efforts and

calibration of current technical capabilities. The 1998 evaluation was designed to be

simple, to focus on core technology issues, and to encourage the widest possible

participation by eliminating security and privacy concerns and by providing data types

that are used by the majority of intrusion detection systems. Data for the first evaluation

was made available in the summer of 1998. The evaluation itself occurred towards the

end of the summer. A follow-up meeting for evaluation participants and other interested

parties was held in December 1998 to discuss the results of the evaluation.

10

1.2 The Development of Attacks for the 1998 DARPA
Evaluation

This thesis describes the computer attacks that were included in the 1998 DARPA

intrusion detection evaluation. A large sample of actual computer attacks was needed to

accurately test the performance of intrusion detection systems. These attacks needed to

cover the different classes of attack types. Many of the attacks used in the evaluation

were drawn from public sources, but some novel attacks were developed specifically for

use in this evaluation. In all cases, these attacks had to be adapted to work reliably in the

largely automated simulation network from which the 1998 DARPA evaluation data were

collected. Later sections of this thesis discuss the methods that were developed to create

realistic simulations of computer intrusion scenarios, and the methods that were

developed to vary the degree of attack stealthiness. People who attack computer

networks often have goals beyond simply gaining access to a system. Some attackers

break into computers simply for the challenge, others are interested in collecting

information, and some are motivated by the desire to cause damage. Attackers also vary

in their level of sophistication, and an accurate evaluation of intrusion detection systems

requires testing how well the systems are able to detect attacks from all types of

attackers—from the relative novice who is not aware that an intrusion detection system is

monitoring a network, to the sophisticated, experienced cracker who knows about

intrusion detection systems and takes steps to avoid being caught.

1.3 Outline of the Thesis

Chapter 2 presents background information about computer attacks and intrusion

detection systems. This provides perspective for later discussion on the development of

11

attacks for use in evaluating these systems. The different types of computer attacks and

some of the many intrusion detection strategies that are currently being developed are

discussed.

Chapter 3 describes the simulation network that was used to collect data for the

1998 DARPA intrusion detection evaluation. This network consisted of 11 computers

and one router that, with the aid of software developed for use in the evaluation,

simulated a large network consisting of hundreds of machines, and thousands of users.

Chapters 4, 5, 6, 7, 8, and 9 focus on the different types of attacks that were

developed for use in the evaluation. Chapter 4 presents a taxonomy of computer attacks

that was useful in choosing attack types to include in the evaluation. Chapter 5 is an

introduction to Chapters 6 through 9 which discuss in detail the specific attacks within

each of the four broad categories of attacks included in the evaluation (denial of service

attacks, attacks that give a local user superuser access, attacks that give a remote user

local access, and probes).

Chapters 10 and 11 discuss the attack scenarios and stealthy methods that were

used to create a more realistic simulation of actual computer attacks.

Chapter 12 describes the processes that were used to plan, collect, and verify the

attack instances that were included in the 1998 DARPA intrusion detection evaluation.

Finally, in Chapter 13 the results of the 1998 DARPA intrusion detection

evaluation are summarized and discussed with a focus on the implications of these results

for both the intrusion detection research community, and the Lincoln Laboratory group

that will be conducting future evaluations.

12

Chapter 2

Background

2.1 Overview of Computer Attacks

In its broadest definition, a computer attack is any malicious activity directed at a

computer system or the services it provides. Examples of computer attacks are viruses,

use of a system by an unauthorized individual, denial-of-service by exploitation of a bug

or abuse of a feature, probing of a system to gather information, or a physical attack

against computer hardware. A subset of the possible types of computer attacks were

included in the 1998 DARPA intrusion detection system evaluation, including: (1)

Attacks that allow an intruder to operate on a system with more privileges than are

allowed by the system security policy, (2) Attacks that deny someone else access to some

service that a system provides, or (3) Attempts to probe a system to find potential

weaknesses.

The following paragraphs provide some examples of the many ways that an attacker

can either gain access to a system or deny legitimate access by others.

Social Engineer ing: An attacker can gain access to a system by fooling an authorized

user into providing information that can be used to break into a system. For

example, an attacker can call an individual on the telephone impersonating a network

administrator in an attempt to convince the individual to reveal confidential

13

information (passwords, file names, details about security policies). Or an attacker

can deliver a piece of software to a user of a system which is actually a trojan horse

containing malicious code that gives the attacker system access.

Implementation Bug: Bugs in trusted programs can be exploited by an attacker to gain

unauthorized access to a computer system. Specific examples of implementation

bugs are buffer overflows, race conditions, and mishandled of temporary files.

Abuse of Feature: There are legitimate actions that one can perform that when taken to

the extreme can lead to system failure. Examples include opening hundreds of telnet

connections to a machine to fill its process table, or filling up a mail spool with junk

e-mail.

System Misconfiguration: An attacker can gain access because of an error in the

configuration of a system. For example, the default configuration of some systems

includes a “guest” account that is not protected with a password.

Masquerading: In some cases it is possible to fool a system into giving access by

misrepresenting oneself. An example is sending a TCP packet that has a forged

source address that makes the packet appear to come from a trusted host.

2.2 Intrusion Detection Systems

Intrusion detection systems gather information from a computer or network of computers

and attempt to detect intruders or system abuse. Generally, an intrusion detection system

will notify a human analyst of a possible intrusion and take no further action, but some

newer systems take active steps to stop an intruder at the time of detection [49].

14

Although there are many possible sources of data an intrusion detection system

can use, three types of data were provided to participants in the 1998 Lincoln Laboratory

intrusion detection evaluation. Most intrusion detection systems in existence today use

one or more of these three types of data. The first of these data sources is traffic sent

over the network. All data that is transmitted over an ethernet network is visible to any

machine that is present on the local network segment. Because this data is visible to

every machine on the network, one machine connected to this ethernet can be used to

monitor traffic for all the hosts on the network. During the DARPA evaluation, network

traffic was sniffed using a single machine running the tcpdump program [39] to save the

network traffic. A second source of data for an intrusion detection system is system-level

audit data. Most operating systems offer some level of auditing of operating system

events. The amount of data that is collected could be as limited as logging failed

attempts to log in, or as verbose as logging every system call. Basic Security Module

(BSM) [62] data from a Solaris victim machine was collected and distributed as part of

the DARPA evaluation data. A third source of data distributed to the evaluation

participants was information about file system state. Daily file system dumps were

collected from each of the machines used in the simulation. An intrusion detection

system that examines this file system data can alert an administrator whenever a system

binary file (such as the ps, login, or ls program) is modified. Normal users have no

legitimate reason to alter these files, so a change to a system binary file indicates that the

system has been compromised. Although there are many other potential sources of data

that can be used by an intrusion detection system to find attacks (such as real-time

process lists, logfiles, processor loads, etc.), these three sources (sniffed network traffic,

15

host-level audit files, and file-system state) were provided to participants in the 1998

Lincoln Laboratory DARPA intrusion detection evaluation because they were determined

to be the sources most commonly used by the evaluation participants.

After the three types of data were collected and aggregated, the data was

distributed to participants via CD-ROM. Once participants obtained this data, each group

used its particular intrusion detection system to the find intrusions and abuses that were

inserted into the collected traffic. Although the 1998 DARPA evaluation tested only the

ability to find attacks offline, some intrusion detection systems can evaluate data in real-

time, allowing administrators (or the system itself) to take defensive action against the

intruder.

2.3 Strategies for Intrusion Detection

The different approaches that have been pursued to develop intrusion detection systems

are described in many papers, including [3][44][63]. Figure 2-1 shows four major

approaches to intrusion detection and the different characteristics of these approaches.

The lower part of this figure shows approaches that detect only known attacks, while the

upper part shows approaches that detect novel attacks. Simpler approaches are shown on

the left and approaches that are both computationally more complex and have greater

memory requirements are shown towards the right.

16

The most common approach to intrusion detection, denoted as “signature

verification” is shown on the bottom of Figure 2-1. Signature verification schemes look

for an invariant sequence of events that match a known type of attack. For example, a

signature verification system that is looking for a Ping Of Death denial-of-service attack

(an oversize ping packet that causes some machines to reboot) would have a simple rule

that says “any ping packet of length greater than 64 kilobytes is an attack.” Attack

signatures can be devised that detect attempts to exploit many possible system

vulnerabilities, but a large drawback of this strategy is that it is difficult to establish rules

that identify novel types of attacks. The Network Security Monitor (NSM) was an early

signature-based intrusion detection system that found attacks by searching for keywords

in network traffic captured using a sniffer. Early versions of the NSM [29][28] were the

foundation of many government and commercial intrusion detection systems, including

Figure 2-1: Approaches to Intrusion Detection

17

NetRanger [23] and NID [41]. Signature verification systems are popular because one

sniffer can monitor traffic to many workstations and the computation required to

reconstruct network sessions and search for keywords is not excessive. In practice, these

systems can have high false-alarm rates (e.g. 100’s of false-alarms per day) because it is

often difficult to select keywords by hand that successfully detect real attacks without

creating false alarms for normal traffic. In addition, signature verification schemes must

be updated frequently to detect new attacks as they are discovered. Recent research on

systems which rely on signature verification includes BRO [47] and NSTAT [38].

The approaches shown in the upper half of Figure 2-1 can be used to find novel

attacks. This capability is essential to protect critical hosts because new attacks and

attack variants are constantly being developed.

Anomaly detection, shown in the upper right of Figure 2-1, is one of the most

frequently suggested approaches to detect novel new attacks. Anomaly detection

schemes construct statistical models of the typical behavior of a system and issue

warnings when they observe actions that deviate significantly from those models.

NIDES was one of the first statistical-based anomaly detection systems used to detect

unusual user [36] and unusual program [1] behavior. The statistical component of

NIDES forms a model of a user, system, or network activity during an initial training

phase. After training, anomalies are detected and flagged as attacks. Of course,

anomalous behavior does not always signal that an attack is taking place, so anomaly

detection systems need to be carefully tuned to avoid high false alarm rates. This level of

tuning is only possible if normal user or system activity is stable over time and does not

overlap with attacker activity. A user with very regular habits will be easy to model, and

18

any intruder attempting to masquerade as such a user would likely exhibit behavior that

deviated significantly from the user’s normal activity. The actions of a system

administrator, however, might be more irregular and harder to distinguish from the

actions of an attacker. In addition, a hacker may be able to slowly change the

characteristics that an anomaly detection system considers “normal” by deviating only

slightly from normal behavior over a long period of time. After the anomaly detection

system had been trained to consider more actions “normal” the attacker could mount an

attack and avoid detection. A second disadvantage of anomaly detection schemes is the

large computation and memory resources required to maintain the statistical model.

Recent research on anomaly detection includes the development of EMERALD [46],

which combines statistical anomaly detection from NIDES with signature verification.

Specification-based intrusion detection [39] is a second approach that can be used

to detect new attacks. It detects attacks that make improper use of system or application

programs. This approach involves first writing security specifications that describe the

normal intended behavior of programs. Host-based audit records are then monitored to

detect behavior that violates the security specifications. This approach was applied to 15

UNIX system programs and successfully found many attacks [39]. Specification-based

intrusion detection has the potential to provide very low false alarm rates and detect a

wide range of attacks including many forms of malicious code such as trojan horses,

viruses, attacks that take advantage of race conditions, and attacks that take advantage of

improperly synchronized distributed programs. Unfortunately, it is difficult to apply

because security specifications must be written for all monitored programs. This is

difficult because system and application programs are constantly updated. Specification-

19

based intrusion detection is thus best applied to a small number of critical user or system

programs that might be considered prime targets for an attack.

The final strategy shown in Figure 2-1 is bottleneck verification. The bottleneck

verification approach applies to situations where there are only a few, well defined ways

to transition between two groups of states. One example of such a well-defined transition

is transitions from a normal user to superuser within a shell. If an individual is in the user

state, the only way to legally gain root privileges is by using the su command and

entering the root password. Thus, if a bottleneck verification system can detect a shell

being launched, determine the permissions of the new shell, and detect the successful use

of the su command to gain root access (or, more importantly, the lack of a successful su

command), then illegal transitions from normal user to root user can be detected—even if

the transition is being made through some novel method that did not exist when the

bottleneck verification system was created [65].

20

Chapter 3

Simulation Network

The goal of the 1998 DARPA Intrusion Detection System Evaluation was to collect and

distribute the first standard corpus for evaluation of intrusion detection systems. This

corpus was designed to evaluate both false alarm rates and detection rates of intrusion

detection systems using many types of both known and novel attacks embedded in a large

amount of normal background traffic. One roadblock that has discouraged the creation of

such a corpus is the reluctance of companies and government agencies to release data

collected from operational computer networks. Data collected from an operational

computer network is optimal for the evaluation of intrusion detection systems, but this

data may contain personal or sensitive information that could not be released to the many

parties who conduct intrusion detection research. For this reason, all data in the 1998

DARPA Intrusion Detection System evaluation was synthesized and recorded on a

network which simulated an operational network connected to the Internet [25][42].

3.1 Modeling an Air Force Local Area Network

The goal of the simulation network (or simnet) was to accurately simulate the network

traffic of a Local Area Network that one might find at a United States Air Force facility.

Automatically generated traffic used more than 20 network services, including dns,

finger, ftp, http, ident, ping, pop, smtp, snmp, telnet, time, and X. In order to accurately

21

model the features of an Air Force network, statistics were measured from months of

actual network traffic that was collected from more than fifty Air Force computer

networks. Traffic statistics for automatically generated traffic matched average Air Force

statistics. The content of email, ftp, web sites, and files was similar to actual documents.

Content was generated using open-source documentation or statistical reconstruction

from a large set of unclassified documents that preserved both unigram word frequencies

and also the frequency of two-word sequences. Generating the data from public sources

allowed the data to be distributed without security or privacy concerns.

The 32 different types of attacks that were inserted in the data collected on the

simulation network represent attacks that one would expect to see on an Air Force

network comprised mostly of UNIX workstations. These attacks were chosen to

represent a mixture of different categories of computer attacks, and to provide a mix of

older, more recent, and even some novel attacks. In some cases, transcripts of actual Air

Force intrusions were used to develop attack scenarios. When such transcripts were not

available, attacks were chosen from publicly known attacks and accounts of intrusions on

civilian computer systems. Later sections of this thesis describe the attacks in detail.

3.2 Simulation Hardware and Network Topology

The simulation network consisted of two Ethernet network segments connected to each

other through a router. A diagram of the network topology is shown in Figure 3-1. The

router is located in the top center of this picture and is labeled “CISCO”. Everything to

the left of the router in the figure is considered the “outside” of the network and

everything to the right of the router is the “ inside” of the simulation network. The inside

network is connected to one interface of the router and consists of all the computers that

22

are part of the fabricated “eyrie.af.mil” domain. The computers that model the rest of the

Internet are connected to the external interface of the router.

The simulation network included eleven computers. The outside of the network

contains a traffic generator (for both background traffic and automated attacks), a web

server, a sniffer/recorder, and two machines used for non-automated attack generation.

The inside of the network (eyrie.af.mil) consisted of a background traffic generator, a

sniffer/recorder, a Solaris 2.5 victim, a SunOS 4.1.4 victim, a Linux 4.2 victim and a

Linux 5.0 victim that could dynamically change IP addresses. Although two computers

(one inside, one outside) generated all of the background traffic in the simulation, a

modification to the operating system of these computers enabled them to act as hundreds

of “virtual” machines [26]. The same modification was made to the outside web server

so this machine could mimic thousands of web servers. The modification to the

operating system that created these virtual machines will be discussed in the next section.

Figure 3-1: Simulation Network Topology

23

3.3 Simulation Software

The hardware for the simulation network consists of only eleven machines and one

router. Custom software allows this simple network to model the interaction of

thousands of clients and servers. Without such software the simulation network would

consist of hundreds of computers and the evaluation would be impractical in terms of

both the cost and time required to maintain the network hardware.

3.3.1 Vir tual Machines

The two traffic generators on the simulation network were configured with a modification

to the Linux kernel provided by the Air Force Research Laboratory [26]. The IP

swapping kernel allows each process that is started on the traffic generator to specify

which IP address should be used as the source address for all network traffic generated by

that process. At the time of invocation of a new process, an entry is added to a table

(called the IP swap table) that maps process id to IP address. Whenever a network packet

is generated, the kernel checks the process id of the process that generated the packet and

uses the entry in the IP swap table as the source address of the new packet. The modified

kernel was an important step in creating the illusion of a virtual machine, but there are

several other modifications that support the creation of a single host that can act as many

hosts. Daemons that provide network services—including telnetd, ftpd, and login—

display banners that identify the machine they are running on. These daemons were

modified to give different identification information depending on the destination IP

address specified in the request.

24

3.3.2 Traffic Generation

Automatic traffic regeneration was used to create automated network sessions containing

both artificial normal traffic and attacks that appear to be generated by humans working

on a system. The traffic regeneration mechanism was designed to be:

• Automatic, requiring no human intervention.

• Reproducible; when repeated, sessions produce identical results.

• Robust, so it can run for long periods without human supervision.

As suggested in [48], the expect language was used to automate interaction between a

system and a user, allowing autonomous sessions to be run as if a user were typing at a

keyboard. Unfortunately, expect cannot be used to automate the interaction between a

user and a graphical environment (such as X Windows), so any sessions that required

interaction with a graphical user interface were run by human actors during the

simulation. Because the amount of interaction included in the simulation was so large,

creating a separate expect script for each session would have been unwieldy. For this

reason, an expect program called the “ regenerator” (for “ traffic regenerator”) was written

that reads information about a particular session from a specially formatted “exs” file.

Each “exs” file contains a header and a body. Within the header is information about

what time to start a session, the IP address of the local machine, the IP address of the

remote machine, and a list of prompts we expect to see during this session. The body of

the “exs” file contains one or more prompt-response pairs. For each prompt-response

pair the regenerator first waits for the prompt indicated, pauses an indicated amount of

time, and then types the command. Each session within the simulation is represented by a

single “exs” script. To simulate a day of traffic, a day of “exs” scripts can be collected

25

and passed to the regenerator which then runs all of the sessions. If an error occurs in

generating or collecting this traffic, the traffic collection can be repeated by rerunning the

regenerator with the same “exs” scripts. The regenerator satisfies the need for automatic,

reproducible, and robust traffic generation.

26

Chapter 4

Exploits

A large sample of actual computer attacks is needed to test an intrusion detection system.

These attacks should cover the different classes of attack types and contain exploits for

both newly discovered as well as older well-known vulnerabilities. An attack instance

might consist of several phases. For example, an attacker might copy a program onto a

system, run this program that exploits a system vulnerability to gain root privileges, and

then use this root privilege to install a backdoor into the system for later access. This

chapter provides some background on the different types of computer exploits, including

a taxonomy that can be used to organize these exploits into meaningful groups.

4.1 Sources

Many of the exploits developed for the 1998 DARPA evaluation were drawn from ideas

or implementations available from public sources on the Internet. Rootshell [50] is a

web-site dedicated to collecting computer exploits and has a sizeable archive of attacks

for many popular operating systems. The “Bugtraq” mailing list also frequently hosts

“exploit code”—ostensibly released for the purpose of testing one’s own system for

vulnerability—when a new vulnerability is discussed. A searchable archive of the

Bugtraq mailing list can be found on the Internet at http://www.geek-girl.com. Other

exploits were created from information released by computer security groups such as

27

CERT [22] and ISS X-force [35] that frequently release information about new

vulnerabilities. Additional sources of information about system vulnerabilities and

possible exploits were vendor-initiated bulletins posted by operating system vendors like

Sun Microsystems and Redhat Software. These bulletins are released to customers to

encourage them to download patches that eliminate a new vulnerability.

New and novel exploits were also created specifically for the purpose of the

evaluation. These new exploits are useful for determining how well an intrusion

detection system works against novel attacks that were not publicly known at the time the

intrusion detection system was developed.

4.2 Age of an Exploit

Each new exploit has a period of time during which it is most dangerous. Figure 4-1 is a

simplified illustration of the various phases of a newly discovered exploit. The vertical

axis of the figure shows vulnerability to attack and the horizontal axis represents time.

As time progresses, more people are made aware of the vulnerability and patch their

Figure 4-1: Vulnerability Decreases as Time Passes

Figure 4-1: Vulnerability to a Newly Discovered Attack Decreases with Time

28

systems to make them resistant to the exploit. Even after news of a particular

vulnerability has become widespread, some systems might not be patched. Some

computer systems with less-experienced administrators go years without having widely-

known security holes fixed. Some of these older attacks were included in the set of

attacks used for the 1998 DARPA evaluation. Intrusion detection systems were generally

able to find these older, well-known attacks.

4.3 A Taxonomy for Computer Attacks

A taxonomy for classifying computer attacks was used to choose exploits for the

evaluation. A good taxonomy makes it possible to classify attacks into groups that share

common properties. Once these groups have been identified, the job of adequately

testing an intrusion detection system becomes easier because instead of developing every

possible attack we can choose a representative subset from each group. The taxonomy

presented here was originally presented in [64]. The features of this taxonomy are:

• Each attack can be reliably placed in one category.

• All possible intrusions have a place in the taxonomy

• The taxonomy can be extended in the future.

This taxonomy was created for the express purpose of testing and evaluating intrusion

detection systems. Within the taxonomy, each attack can be categorized as one of the

following:

• A user performs some action at one level of privilege

• A user makes an unauthorized transition from a lower privilege level to a higher

privilege level.

29

• A user stays at the same privilege level, but performs some action at a higher level

of privilege.

The taxonomy requires a way of describing each privilege level, a way to describe

transitions, and a way of categorizing actions. These three requirements are presented in

the following sections.

4.3.1 Privilege Levels

The taxonomy defines an approach to ranking levels of privilege. The privilege

categories that are applied within this thesis are:

R Remote network access

L Local network access

U User access

S Root/Super-user access

P Physical Access to Host

Having privilege at the “Remote network access” level refers to having, via an

interconnected network of systems, minimal network access to a target system. “Local

network access” represents the ability to read from and write to the local network that the

target machine uses. “User access” refers to the ability to run normal user commands on

a system. “Root/Superuser access” gives a user total software control of a system.

“Physical Access to Host” allows the operator to physically manipulate characteristics of

the system (i.e. remove disk drives, insert floppy disks, turn the system off). This list

only represents a subset of all possible access levels, but these were the most useful

categories for describing the attacks in the 1998 DARPA intrusion detection evaluation.

30

4.3.2 Methods of Transition or Exploitation

An attacker needs to exploit some failure of a security framework in order to perform an

attack. The five methods of transition that were explored for the 1998 DARPA

evaluation and the single letters (m,a,b,c,s) used to represent the methods were:

m) Masquerading: In some cases it is possible to fool a system into giving access by

misrepresenting oneself. Examples of masquerading include using a stolen

username/password or sending a TCP packet with a forged source address.

a) Abuse of Feature: There are legitimate actions that one can perform, or is even

expected to perform, that when taken to the extreme can lead to system failure.

Example include filling up a disk partition with user files or starting hundreds of

telnet connections to a host to fill its process table.

b) Implementation Bug: A bug in a trusted program might allow an attack to proceed.

Specific examples include buffer overflows and race conditions.

c) System Misconfiguration: An attacker can exploit errors in security policy

configuration that allows the attacker to operate at a higher level of privilege than

intended.

s) Social Engineer ing: An attacker may be able to coerce a human operator of a

computer system into giving the attacker access.

An individual attack may use more than one of these methods. For example, a bug in the

implementation of the TCP stack on some systems makes it possible to crash the system

by sending it a carefully constructed malformed TCP packet. This packet may also have

31

the source address forged so as to avoid identification of the attacker. Such an attack

would be exploiting both masquerading and an implementation bug, and it would be

possible to detect the intrusion by noting either of these features.

4.3.3 Transitions Between Pr ivilege Levels

To show a transition between two privilege levels the strings for the two levels are

written adjacent to one another with the method of transition between them. Two

examples are shown in the following table:

Examples:

Attack String Description

Format U-b-S User exploits a bug in the
format program to become
root/superuser

Ftp-write R-c-U A user with remote network
access exploits a badly
configured anonymous ftp
server to gain local user
access

4.3.4 Actions

There are many actions that can occur as part of a computer attack. Within the

taxonomy, actions are represented with a string that represents a category, and a

specification string that describes the specific action taken. For example, the string

Probe(Users), represents some action taken by an attacker to gather information about

the users of a system. The following paragraphs describe the five categories of actions

that were used to describe the actions taken during the 1998 DARPA intrusion detection

evaluation.

32

Probes are actions taken by an attacker to gather information about one or more

machine. Probes are represented within the taxonomy by the category label of “Probe” .

The specific types of probes used in the DARPA evaluation were: (1) Probing a network

to see how many and what types of machines are on that network (Probe(Machines)),

(2) Probing a system to see what services the system supports (Probe(Services)), and (3)

Probing a system to find out information about user accounts on that system

(Probe(Users)).

Category Specific Type Description

Probe Probe(Machines)
Determine types and numbers of machines on a
network

Probe(Services)
Determine the services a particular system
supports

Probe(Users)
Determine the names or other information about
users with accounts on a given system

Deny Deny(Temporary)
Temporary Denial of Service with automatic
recovery

Deny(Administrative)
Denial of Service requiring administrative
intervention

Deny(Permanent)
Permanent alteration of a system such that a
particular service is no longer available

Intercept Intercept(Files) Intercept files on a system
Intercept(Network) Intercept traffic on a network
Intercept(Keystrokes) Intercept keystrokes pressed by a user

Alter Alter(Data) Alteration of stored data

Alter(Intrusion-Traces)
Removal of hint of an intrusion, such as entries
in log files

Use Use(Recreational)
Use of the system for enjoyment, such as playing
games or bragging on IRC

Use(Intrusion-Related)
Use of the system as a staging area/entry point
for future attacks

Figure 4-2: Summary of Possible Types of Actions.

33

Denial of service attacks are attempts to interrupt or degrade a service that a

system provides. These attacks are represented within the taxonomy by the category

label “Deny” . The classes of denial of service attacks used in the DARPA evaluation

were: (1) Temporary denial of service with automatic recovery (Deny(Temporary)), (2)

Denial of service requiring administrative action for recovery (Deny(Administrative)),

and (3) Permanent denial of service with total system reconstruction required for

recovery (Deny(Permanent)).

Another category of attacker actions is the interception of data. Interception of

data is represented within the taxonomy by the category label “ Intercept” . The types of

data interception actions used in the 1998 DARPA evaluation were: (1)

Interception/Reading of files on a file system (Intercept(Files)), and (2) Interception of

packets on a network (Intercept(Network)).

An additional category of action is the alteration or creation of data on a system or

network. Actions that involve data alteration or creation are represented with the

category label “Alter” . The types of data alteration used in the 1998 DARPA evaluation

were: (1) Alteration of data stored on a system, such as a password file or any other file

(Alter (Data)), and (2) Removal of hints of an intrusion, such as entries in log files

(Alter (Intrusion-Traces)).

The final category of attacker action described in the taxonomy is “use” of a

system. Any use of the system that does not fall into the categories described above can

be placed in the category represented by the category label “Use” . The specific ways in

which an attacker might use a system that were included in the 1998 DARPA evaluation

were: (1) Use of the system by the intruder for enjoyment or recreational purposes such

34

as playing games or bragging on IRC (Use(Recreational)), and (2) Use of a system as a

staging ground or entry point for attacks on other systems ((Use(Intrusion-Related)).

The action categories and specifications described in the previous paragraphs are

summarized in Table 4-2. Each row of this table represents a specific type of action

within a category. These specific actions have been grouped according to the categories

presented above. The first column of the table is the action category, the second column

is the string that represents the action in the taxonomy, and the third column in each row

is a description of that particular type of action.

4.3.5 Using the Taxonomy to Descr ibe Attacks

Figure 4-3 gives an overview of the approach the taxonomy uses for the classification of

attacks. Each attack classified by this taxonomy is represented as a short alpha-numeric

string. The sub-strings in this description are the bold strings from the previous three

1. Initial Privilege Level 2. Method of Transition

Figure 4-3: A Summary of Possible Attack Descriptions

Remote Network
Local Network
User Access
Superuser Access
Physical Access

masquerading
abuse feature
implementation bug
misconfiguration
social engineering

Probe(…)
Deny(…)
Intercept(…)
Alter (…)
Use(…)

Remote Network
Local Network
User Access
Superuser Access

3a.
New
Level

3b.
Action

35

sections. The initial privilege level is indicated by R, L , U, S, or P as defined in section

4.3.1, the actions are indicated by any of the strings presented in section 4.3.4, and the

method of exploitation is indicated by m, a, b, c, or s as defined in section 4.3.2.

In order to describe an attack, select the privilege level that the attacker had

before the attack occurred, from the possible choices of Remote Network, Local

Network, Local User, Superuser/Root, and Physical Access. Next, select the method of

exploitation, if the method is known. If the method is unknown, then a question mark

(“?”) is used to indicate the method of exploitation. The possible choices are

masquerading, abuse of feature, implementation bug, misconfiguration, or social

engineering. Finally, either indicate the level of privilege the attacker gained as a result

of the exploit (again with R, L , U, S, or P) or the actions the user performed at the

current level of privilege. The taxonomy presented in [64] has additional features that are

not discussed here, but the material presented in the section provides a subset of the

taxonomy that is useful for the purpose of discussing the attacks in the 1998 DARPA

intrusion detection evaluation.

4.3.6 Examples

The following table presents three examples that show the correct formatting of

the alphanumeric string that specifies an action being performed at a specific privilege

level. In a SYN flood (or neptune) attack the attacker sends a stream of SYN packets to a

port on a target machine. For a short period of time after these packets have been sent,

other users are unable to access the network services provided by that port. In the second

example a user runs the crack program to decrypt the password file of a machine that has

been compromised. In the third example, the attacker uses the Ffbconfig attack to make a

36

transition from Local User privilege to Root/Superuser privilege, and then uses this new

privilege level to alter the password file on the victim system.

Examples:

Attack String Description
SYN flood R-a-Deny(temporary) A user with remote network

access temporarily denies
service

Cracking passwords U-Use(Intrusion) A user with a local account
runs a program which
attempts to decrypt entries
in the password file.

ffbconfig U-b-S-Alter(Files) An attacker with a local
account uses a bug in the
Ffbconfig program to gain
root access and alter files.

37

Chapter 5

Exploits for the 1998 DARPA Evaluation

Figure 5-1 shows the 32 different exploits that were used in the 1998 DARPA intrusion

detection evaluation. This table presents the attacks broken up into categories of type and

Figure 5-1: The Attacks Used in the 1998 DARPA Intrusion Detection Evaluation

Solaris SunOS Linux
Denial Of
Service
(R-Deny)

Apache2
Back
Mailbomb
Neptune
Ping Of Death
Process Table
Smurf
Syslogd
UDP Storm

Apache2
Back
Land
Mailbomb
Neptune
Ping of death
Process Table
Smurf
UDP Storm

Apache2
back
Mailbomb
Neptune
Ping of death
Process Table
Smurf
Teardrop
UDP Storm

Remote to User
(R-?-U)

dictionary
ftp-write
guest
phf
xlock
xsnoop

dictionary
ftp-write
guest
phf
xlock
xsnoop

dictionary
ftp-write
guest
imap
named
phf
sendmail
xlock
xsnoop

User to Super-
user
(U-?-S)

eject
ffbconfig
fdformat
ps

loadmodule
ps

perl
xterm

Surveillance/
Probing
(R-Probe)

ip sweep
mscan
nmap
saint
satan

ip sweep
mscan
nmap
saint
satan

ip sweep
mscan
nmap
saint
satan

38

vulnerable operating system. The four type categories represent groupings of the

possible attack types listed in the taxonomy. These four groups are: Denial of Service

(R-?-Deny), Remote to Local User (R-?-U), Local User to Super-user (U-?-S), and

Probes (R-?-Probe). The three columns of the table divide the exploits by target

platform. Some attacks are listed in more than one column. The Smurf attack, for

example, is listed three times—in the Solaris column, the SunOS column, and the Linux

column—because all three operating systems are vulnerable to the Smurf attack. The

next four chapters present detailed descriptions of each class of attack, and the individual

attacks from that class that were included in the 1998 DARPA intrusion detection

evaluation

39

Chapter 6

Denial of Service Attacks

A denial of service attack is an attack in which the attacker makes some computing or

memory resource too busy or too full to handle legitimate requests, or denies legitimate

users access to a machine. There are many varieties of denial of service (or DoS) attacks.

Some DoS attacks (like a mailbomb, neptune, or smurf attack) abuse a perfectly

legitimate feature. Others (teardrop, Ping of Death) create malformed packets that

confuse the TCP/IP stack of the machine that is trying to reconstruct the packet. Still

others (apache2, back, syslogd) take advantage of bugs in a particular network daemon.

Figure 6-1 provides an overview of the denial of service attacks used in the 1998 DARPA

intrusion detection evaluation. Each row represents a single type of attack. The six

columns show the attack name, a list of the services that the attack exploits, the platforms

that are vulnerable to the attack, the type of mechanism that is exploited by the attack

(implementation bug, abuse of feature, masquerading, or misconfiguration), a

generalization of the amount of time the attack took to implement, and a summary of the

effect of the attack. The following sections describe in detail each of the Denial of

Service attacks that were included in the 1998 DARPA intrusion detection evaluation.

40

6.1 Apache2 R-a-Deny(Temporary/Administrative)

Descr iption

The Apache2 attack is a denial of service attack against an apache web server where a

client sends a request with many http headers. If the server receives many of these

requests it will slow down, and may eventually crash [4].

Name Service Vulnerable
Platforms

Mechanism Time to
Implement

Effect

Apache2 http Any Apache Abuse Short Crash httpd

Back http Any Apache Abuse/Bug Short Slow server response

Land N/A SunOS Bug Short Freeze machine

Mailbomb smtp All Abuse Short Annoyance

SYN Flood Any TCP All Abuse Short
Deny service on one

or more ports for
minutes

Ping of Death icmp None Bug Short None

Process Table Any TCP All Abuse Moderate Deny new processes

Smurf icmp All Abuse
Moderate/

Long
Network Slowdown

Syslogd
syslog Solaris Bug Short Kill Syslogd

Teardrop N/A Linux Bug Short Reboot machine

Udpstorm
echo/

chargen
All Abuse Short Network Slowdown

Figure 6-1: Summary of Denial of Service Attacks

41

Simulation Details

This exploit was adapted from C code originally posted to the bugtraq mailing list. A C-

shell wrapper was also created which executes the apache2 C program in a loop until the

server being attacked is no longer responsive.

As soon as the attack was launched the load average (as reported by the “ top”

program) of the victim server jumped to 5 or more. As more and more requests were

submitted to the web server the memory usage and load average of the victim continued

to climb until eventually the httpd daemon ran out of memory and crashed. At this point

the server no longer responded to http requests and the httpd daemon needed to be

restarted by the superuser for service to be restored.

Attack Signature

Every http request submitted as part of this exploit contains many http headers. Although

the exact number and value of these headers could be varied by an attacker, the particular

version of the exploit which was used in the 1998 DARPA evaluation sent http GET

requests with the header “User-Agent: sioux\r\n" repeated 10000 times in each request.

The actual content of the header is not important for the exploit—the exploit is only

dependent on the fact that http request contains many headers. A typical http request

contains twenty or fewer headers, so the 10000 headers used by this exploit are quite

anomalous.

42

6.2 Back R-a-Deny(Temporary)

Descr iption

In this denial of service attack against the Apache web server, an attacker submits

requests with URL’s containing many frontslashes. As the server tries to process these

requests it will slow down and becomes unable to process other requests [55].

Simulation Details

The Back attack was implemented as a C shell script that used the Netcat [31] tool to

generate network traffic. This shell script was adapted from a script originally posted to

the Bugtraq mailing list. Although the number of frontslashes in the URL sent by the

shell script could be varied, the number of frontslashes that was determined to be optimal

for denial of service against Apache running on Linux 4.2 was between six and seven

thousand.

The Back attack causes instances of the httpd process on the victim to consume excessive

CPU time. This consumption of the CPU slows down all the system’s activities,

including responses to network requests. The system recovers automatically when the

attack stops.

Attack Signature

An intrusion detection system looking for the Back attack needs to know that requests for

documents with more than some number of frontslashes in the URL should be considered

an attack. Certainly, a request with 100 frontslashes in the URL would be highly

irregular on most systems. This threshold could be varied to find the desired balance

between detection rate and false alarm rate.

43

6.3 Land R-b-Deny(Administrative)

Descr iption

The Land attack is a denial of service attack that is effective against some older TCP/IP

implementations. The only vulnerable platform used in the 1998 DARPA evaluation was

SunOS 4.1. The Land attack occurs when an attacker sends a spoofed SYN packet in

which the source address is the same as the destination address [17].

Simulation Details

The land exploit program used in the DARPA evaluation was adapted from a C

implementation found at http://www.rootshell.com. The exploit is quite simple and the

code could easily be rewritten in any language with access to the TCP sockets interface.

The code sends a single SYN packet with the source address spoofed to be the same as

the destination address.

Within the simulation, this exploit was run against a Sun SPARC WorkStation running

SunOS version 4.1. When a TCP SYN packet with an identical source and destination

address was received by this host, the system completely locked up. In order to restore

service, the machine had to be physically turned off and on again.

Attack Signature

The Land attack is recognizable because IP packets with identical source and destination

addresses should never exist on a properly working network.

44

6.4 Mailbomb R-a-Deny(Administrative)

Descr iption

A Mailbomb is an attack in which the attacker sends many messages to a server,

overflowing that server’s mail queue and possible causing system failure.

Simulation Details

This exploit was implemented as a perl program that constructed mail messages and

connected to the SMTP port of the victim machine directly. The Mailbomb perl program

accepted as parameters the e-mail addresses of victims as well as the number of e-mail

messages to send.

Although the Mailbomb exploit was used several times throughout the simulation with

different parameters, a typical attack would send 10,000 one kilobyte messages (10

megabytes of total data) to a single user. This volume of messages was not enough to

adversely effect the performance of the server or cause system failure. As implemented,

this attack was more of a nuisance for a particular user than a real threat to the overall

security of a server.

Attack Signature

An intrusion detection system that is looking for a mailbomb attack can look for

thousands of mail messages coming from or sent to a particular user within a short period

of time. This identification is a somewhat subjective process. Each site might have a

different definition of how many e-mail messages can be sent by one user or to one user

before the messages are considered to be part of a mailbomb.

45

6.5 SYN Flood (Neptune) R-a-Deny(Temporary)

Descr iption

A SYN Flood is a denial of service attack to which every TCP/IP implementation is

vulnerable (to some degree). Each half-open TCP connection made to a machine causes

the “ tcpd” server to add a record to the data structure that stores information describing

all pending connections. This data structure is of finite size, and it can be made to

overflow by intentionally creating too many partially-open connections. The half-open

connections data structure on the victim server system will eventually fill and the system

will be unable to accept any new incoming connections until the table is emptied out.

Normally there is a timeout associated with a pending connection, so the half-open

connections will eventually expire and the victim server system will recover. However,

the attacking system can simply continue sending IP-spoofed packets requesting new

connections faster than the victim system can expire the pending connections. In some

cases, the system may exhaust memory, crash, or be rendered otherwise inoperative [13].

Simulation Details

The neptune exploit code used in the simulation was compiled from C code originally

posted to the bugtraq archive. The neptune program allows the user to specify a victim

host, the source address to use in the spoofed packets, the number of packets to send, and

the ports to hit on the victim machine (including an “ infinity” option that would attack all

ports).

The neptune exploit was effective against all three of the victim machines used in the

simulation. Every TCP/IP implementation is vulnerable to this attack to a varying degree

depending on the size of the data structure used to store incoming connections and the

46

timeout value associated with half-open connections. As a point of reference, sending

twenty SYN packets to a port on a Solaris 2.6 system will cause that port to drop

incoming requests for approximately ten minutes. During the simulation, a neptune

attack which sent 20 SYN packets to every port from 1 to 1024 of the Solaris server once

every ten minutes was able block incoming connections to any of these ports for more

than an hour.

Attack Signature

A neptune attack can be distinguished from normal network traffic by looking for a

number of simultaneous SYN packets destined for a particular machine that are coming

from an unreachable host. A host-based intrusion detection system can monitor the size

of the tcpd connection data structure and alert a user if this data structure nears its size

limit.

47

6.6 Ping Of Death R-b-Deny(Temporary)

Descr iption

The Ping of Death is a denial of service attack that affects many older operating systems.

Although the adverse effects of a Ping of Death could not be duplicated on any victim

systems used in the 1998 DARPA evaluation, it has been widely reported that some

systems will react in an unpredictable fashion when receiving oversized IP packets.

Possible reactions include crashing, freezing, and rebooting [14].

Simulation Details

Several implementations of the Ping of Death exploit can be found at

http://www.rootshell.com as well as many other sources on the web. This exploit is

popular because early versions of the ping program distributed with Microsoft

Windows95 would allow the user to create oversize ping packets simply by specifying a

parameter at the command line (i.e. ping –l 65510). Thus, many users could potentially

exploit this bug without even making the effort to download and compile a program.

The Ping of Death attack affected none of the victim systems used in the evaluation. The

attack was included as an example of an attempted known attack that fails to have an

effect.

Attack Signature

An attempted Ping of Death can be identified by noting the size of all ICMP packets and

flagging those that are longer than 64000 bytes.

48

6.7 Process Table R-a-Deny(Temporary)

Descr iption

The Process Table attack is a novel denial-of-service attack that was specifically created

for this evaluation. The Process Table attack can be waged against numerous network

services on a variety of different UNIX systems. The attack is launched against network

services which fork() or otherwise allocate a new process for each incoming TCP/IP

connection. Although the standard UNIX operating system places limits on the number

of processes that any one user may launch, there are no limits on the number of processes

that the superuser can create, other than the hard limits imposed by the operating system.

Since incoming TCP/IP connections are usually handled by servers that run as root, it is

possible to completely fill a target machine’s process table with multiple instantiations of

network servers. Properly executed, this attack prevents any other command from being

executed on the target machine.

An example of a service that is vulnerable to this attack is the finger service. On most

computers, finger is launched by inetd. The authors of inetd placed several checks into

the program’s source code that must be bypassed in order to initiate a successful process

attack. In a typical implementation (specifics will vary depending on the actual UNIX

version used), if inetd receives more than 40 connections to a particular service within 1

minute, that service is disabled for 10 minutes. The purpose of these checks was not to

protect the server against a process table attack, but to protect the server against buggy

code that might create many connections in rapid-fire sequence. To launch a successful

process table attack against a computer running inetd and finger, the following sequence

may be followed: 1. Open a connection to the target’s finger port. 2. Wait for 4 seconds.

49

3. Repeat steps 1-2. This attack has been attempted against a variety of network services

on a variety of operating systems. It is believed that the imap and sendmail servers are

vulnerable. Most imap server software contains no checks for rapid-fire connections.

Thus, it is possible to shut down a computer by opening multiple connections to the imap

server in rapid succession. With sendmail the situation is reversed. Normally, sendmail

will not accept connections after the system load has jumped above a predefined level.

Thus, to initiate a successful sendmail attack it is necessary to open the connections very

slowly, so that the process table keeps growing in size while the system load remains

more or less constant [6].

Simulation Details

The version of this exploit used in the simulation was implemented as a perl script that

would open connections to a port every n seconds, where the port and the number of

seconds n are specified as run-time parameters. The connections were maintained until a

user terminated the script.

The number of connections that must be opened before denial of service is accomplished

depends on the size of the process table in the operating system of the victim machine.

By using the Process Table attack on the fingerd port as described above, the process

table of a Solaris server was exhausted after opening approximately 200 connections (at a

rate of one connection every four seconds it took about 14 minutes before the process

table was full). After the process table was full, no new process could be launched on the

victim machine until the attack was terminated by the attacking program or an

administrator manually killed the connections initiated by the attacking script (which is

quite difficult to do without launching a new process).

50

Attack Signature

Because this attack consists of abuse of a perfectly legal action, an intrusion detection

system that is trying to detect a process table attack will need to use somewhat subjective

criteria for identifying the attack. The only clue that such an attack is occurring is an

“unusually” large number of connections active on a particular port. Unfortunately

“unusual” is different for every host, but for most machines, hundreds of connections to

the finger port would certainly constitute unusual behavior.

51

6.8 Smurf R-a-Deny(Temporary)

Descr iption

In the "smurf" attack, attackers use ICMP echo request packets directed to IP broadcast

addresses from remote locations to create a denial-of-service attack. There are three

parties in these attacks: the attacker, the intermediary, and the victim (note that the

intermediary can also be a victim) [18]. The attacker sends ICMP “echo request” packets

to the broadcast address (xxx.xxx.xxx.255) of many subnets with the source address

spoofed to be that of the intended victim. Any machines that are listening on these

subnets will respond by sending ICMP “echo reply” packets to the victim. The smurf

attack is effective because the attacker is able to use broadcast addresses to amplify what

would otherwise be a rather innocuous ping flood. In the best case (from an attacker’s

point of view), the attacker can flood a victim with a volume of packets 255 times as

great in magnitude as the attacker would be able to achieve without such amplification.

This amplification effect is illustrated by Figure 6-2. The attacking machine (located on

the left of the figure) sends a single spoofed packet to the broadcast address of some

network, and every machine that is located on that network responds by sending a packet

to the victim machine. Because there can be as many as 255 machines on an ethernet

segment, the attacker can use this amplification to generate a flood of ping packets 255

times as great in size (in the best case) as would otherwise be possible. This figure is a

simplification of the smurf attack. In an actual attack, the attacker sends a stream of icmp

“ECHO” requests to the broadcast address of many subnets, resulting in a large,

continuous stream of “ECHO” replies that flood the victim.

52

Simulation Details

Because the simulation network for the 1998 DARPA evaluation has a flat network

topology with only two physical subnets, the smurf attack as described above could not

be implemented on the simulation network. For this reason, the “smurfsim” program was

developed to recreate the observable effects of a smurf attack. Smurfsim uses the raw

socket API to construct ICMP packets with forged source addresses. Smurfsim takes as

parameters the IP address of the victim, the number of packets to send, the average

percentage of hosts on a subnet that are alive, and a comma-separated list of subnets. The

program then randomly constructs a list of hosts that are alive on each of the subnets in

the comma-separated list and starts sending “echo reply” packets to the victim, that have

been spoofed to look like they originating from the hosts in the list. This behavior is

Figure 6-2: The Internet is Used to Amplify a Ping Flood and Create a Smurf Attack

53

exactly what would occur if an attacker had performed an actual Smurf attack in which

“echo request” packets (with the source address spoofed to be that of the victim machine)

were sent to the broadcast address of each subnet given in the parameter list.

Several different simulated Smurf attacks were included in the evaluation data. In the

most extreme case, the smurfsim program was used to simulate a smurf attack that

generated traffic from 100 subnets for a period of one hour. During this period of time

the entire simulation network was unresponsive and other network sessions (such as

normal users trying to send e-mail, etc) would time out before they could be completed.

In all, this particular attack instance generated over two gigabytes of network packets.

Attack Signature

The Smurf attack can be identified by an intrusion detection system that notices that there

are a large number of “echo replies” being sent to a particular victim machine from many

different places, but no “echo requests” originating from the victim machine.

54

6.9 Syslogd R-b-Deny(Administrative)

Descr iption

The Syslogd exploit is a denial of service attack that allows an attacker to remotely kill

the syslogd service on a Solaris server. When Solaris syslogd receives an external

message it attempts to do a DNS lookup on the source IP address. If this IP address

doesn’t match a valid DNS record, then syslogd will crash with a Segmentation Fault

[54].

Simulation Details

The Syslogd exploit used in the 1998 DARPA evaluation was a C program that was

originally posted to the Bugtraq mailing list. This code was compiled to create an exploit

program that was used to remotely cause the syslogd program to crash on a Solaris 2.5

server. Once syslogd has crashed it must be manually restarted by an administrator for

the logging service to be restored.

Attack Signature

The one way to reliably recognize this attack with a network-monitoring intrusion

detection system is to notice a packet destined for the syslog port that contains an

unreachable source address. Of course, it may not be realistic for an intrusion detection

system to check every packet destined for the syslog port to see whether or not the source

address is resolvable. If no remote system logging is expected to occur on a particular

network, any external syslog messages appearing on this network is likely to be an attack.

Finally, a host-based intrusion detection system could be configured to notice the syslog

process die because of a segmentation fault.

55

6.10 Teardrop R-a-Deny(Temporary)

Descr iption

The teardrop exploit is a denial of service attack that exploits a flaw in the

implementation of older TCP/IP stacks. Some implementations of the IP fragmentation

re-assembly code on these platforms does not properly handle overlapping IP fragments

[17].

Simulation Details

The teardrop name is derived from a widely available C program that exploits this

vulnerability. This exploit code can be found at http://www.rootshell.com and in the

Bugtraq archives. Although many systems are rumored to be vulnerable to the teardrop

attack, of the systems used in the DARPA evaluation, only the Redhat Linux 4.2 systems

were vulnerable. The teardrop attack would cause these machines to reboot.

Attack Signature

An intrusion detection system can find this attack by looking for two specially

fragmented IP datagrams. The first datagram is a 0 offset fragment with a payload of size

N, with the MF bit on (the data content of the packet is irrelevant). The second datagram

is the last fragment (MF == 0), with a positive offset greater than N and with a payload of

size less than N [5].

56

6.11 Udpstorm R-a-Deny(Administrative)

Descr iption

A Udpstorm attack is a denial of service attack that causes network congestion and

slowdown. When a connection is established between two UDP services, each of which

produces output, these two services can produce a very high number of packets that can

lead to a denial of service on the machine(s) where the services are offered. Anyone with

network connectivity can launch an attack; no account access is needed. For example, by

connecting a host’s chargen service to the echo service on the same or another machine,

all affected machines may be effectively taken out of service because of the excessively

high number of packets produced. An illustration of such an attack is presented in Figure

6-2. The figure demonstrates how an attacker is able to create a never-ending stream of

packets between the echo ports of two victims by sending a single spoofed packet. First,

the attacker forges a single packet that has been spoofed to look like it is coming from the

echo port on the first victim machine and sends it to the second victim. The echo service

blindly responds to any request it receives by simply echoing the data of the request back

to the machine and port that sent the echo request, so when the victim receives this

spoofed packet it sends a response to the echo port of the second victim. This second

victim responds in like kind, and the loop of traffic continues until it is stopped by

intervention from an external source [10].

Simulation Details

Code that exploits this vulnerability was posted to the bugtraq mailing list. This program

sends a single spoofed UDP packet to a host. This single spoofed packet is able to create

a never-ending stream of data being sent from the echo port of one machine to the echo

57

port of another. This loop created network congestion and slowdown that would continue

until the inetd daemon was restarted on one of two victim machines.

Attack Signature

This attack can be identified in two ways. First, the single packet that initiates the attack

can be recognized because it is a packet originating from outside the network that has

been spoofed to appear as if it is coming from a machine inside the network. Second,

once the loop of network traffic has been initiated, an intrusion detection system that can

see network traffic on the inside of the network can note that traffic is being sent from the

chargen or echo port of one machine to the chargen or echo port of another.

Figure 6-3: UDPStorm is Tr iggered by a Single Spoofed Packet

58

Chapter 7

User to Root Attacks

User to Root exploits are a class of exploit in which the attacker starts out with access to

a normal user account on the system (perhaps gained by sniffing passwords, a dictionary

attack, or social engineering) and is able to exploit some vulnerability to gain root access

to the system.

There are several different types of User to Root attacks. The most common is

the buffer overflow attack. Buffer overflows occur when a program copies too much data

into a static buffer without checking to make sure that the data will fit. For example, if a

program expects the user to input the user’s first name, the programmer must decide how

many characters that first name buffer will require. Assume the program allocates 20

characters for the first name buffer. Now, suppose the user's first name has 35 characters.

The last 15 characters will overflow the name buffer. When this overflow occurs, the last

15 characters are placed on the stack, overwriting the next set of instructions that was to

be executed. By carefully manipulating the data that overflows onto the stack, an

attacker can cause arbitrary commands to be executed by the operating system. Despite

the fact that programmers can eliminate this problem through careful programming

techniques, some common utilities are susceptible to buffer overflow attacks [2].

Another class of User to Root attack exploits programs that make assumptions about the

environment in which they are running. A good example of such an attack is the

59

loadmodule attack, which is discussed below. Other User to Root attacks take advantage

of programs that are not careful about the way they manage temporary files. Finally,

some User to Root vulnerabilities exist because of an exploitable race condition in the

actions of a single program, or two or more programs running simultaneously [27].

Although careful programming could eliminate all of these vulnerabilities, bugs like these

are present in every major version of UNIX and Microsoft Windows available today.

Figure 7-1 summarizes the User to Root attacks used in the 1998 DARPA evaluation.

Note from this table that all of the User to Root attacks can be run from any interactive

user session (such as by sitting at the console, or interacting through telnet or rlogin), and

that all of the attacks spawn a new shell with root privileges. The following sections

describe each of the User to Root attacks that was used in the 1998 DARPA intrusion

detection evaluation in greater detail.

Name Service Vulnerable
Platforms

Mechanism Time to
Implement

Effect

Eject
Any user
session

Solaris Buffer Overflow Medium Root Shell

Ffbconfig
Any user
session

Solaris Buffer Overflow Medium Root Shell

Fdformat
Any user
session

Solaris Buffer Overflow Medium Root Shell

Loadmodule
Any user
session

SunOS
Poor Environment

Sanitation
Short Root Shell

Perl
Any user
session

Linux
Poor Environment

Sanitation
Short Root Shell

Ps
Any user
session

Solaris
Poor Temp File
Management

Short Root Shell

Xterm
Any user
session

Linux Buffer Overflow Short Root Shell

Figure 7-1: Summary of User to Root Attacks

60

7.1 Eject U-b-S

Descr iption

The Eject attack exploits a buffer overflow is the “eject” binary distributed with Solaris

2.5. In Solaris 2.5, removable media devices that do not have an eject button or

removable media devices that are managed by Volume Management use the eject

program. Due to insufficient bounds checking on arguments in the volume management

library, libvolmgt.so.1, it is possible to overwrite the internal stack space of the eject

program. If exploited, this vulnerability can be used to gain root access on attacked

systems[60].

Simulation Details

A truncated version of the eject exploit that was used in the 1998 evaluation is shown in

Figure 7-2. This exploit was originally posted to the bugtraq mailing list. The exploit

script, once compiled, can be run in a command line session on a Solaris server to spawn

a shell that ran with root privileges.

Attack Signature

There are several ways that an intrusion detection system might identify this attack.

Assuming an attacker already has access to an account on the victim machine and is

running the exploit as part of a remote session, a network-based system can look at the

contents of the telnet or rlogin session the attacker is using and notice one of several

features.

First, assuming that an attacker transmits the C code to the victim machine

unencrypted, the intrusion detection system could look for specific features of the source

code. For example, an intrusion detection system could look for the string “Jumping to

61

address” on line 45 of the source code or the line “execl (‘ /bin/eject’ ; ‘eject’ , & buf(char

*) 0);” from line 47.

Even if the attacker encrypts the source code, the attack leaves a distinct

signature. A segment of the transcript from an actual instantiation of this attack that was

used in the simulation is shown below:

Figure 7-2: C code for the Eject Exploit

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/types.h>
4 #include <unistd.h>
5
6 #define BUF_LENGTH 264
7 #define EXTRA 36
8 #define STACK_OFFSET 8
9 #define SPARC_NOP 0xc013a61c
10 u_char sparc_shellcode[] =”

…

17 “ ;
18
19 u_long get_sp(void)
20 {
21 __asm__("mov %sp,%i0 \n");
22 }
23
24 void main(int argc, char *argv[])
25 {
26 char buf[BUF_LENGTH + EXTRA + 8];
27 long targ_addr;
28 u_long *long_p;
29 u_char *char_p;
30 int i, code_length = strlen(sparc_shellcode),dso=0;
31
32 if(argc > 1) dso=atoi(argv[1]);
33
34 long_p =(u_long *) buf ;
35 targ_addr = get_sp() - STACK_OFFSET - dso;
36
37 for (i = 0; i < (BUF_LENGTH - code_length) / sizeof(u_long); i++)
38 *long_p++ = SPARC_NOP;

…

43 for (i = 0; i < EXTRA / sizeof(u_long); i++)
44 *long_p++ =targ_addr;
45 pr intf(" Jumping to address 0x%lx B[%d] E[%d] SO[%d]\n" ,
46 targ_addr,BUF_LENGTH,EXTRA,STACK_OFFSET);
47 execl(" /bin/eject" , " eject" , & buf,(char *) 0);
48 perror("execl failed");
49 }

Unique Strings that can
be Used to Identify an
Eject Attack

62

pascal> /tmp/162562
Jumping to address 0xeffff6a0 B[364] E[400] SO[704]
#

An intrusion detection system that saw only these three lines has several clues that an

attack has taken place. First, the user’s prompt has changed from “pascal>” to “#”

without running the su command. Second, the string “Jumping to address” is again

printed. Of course, a careful attacker would remove this line from the source code, but

simply looking for the string “Jumping to address” would catch the less careful attacker.

Finally, a host-based intrusion detection system could catch an eject attack either by

noticing the invocation of the eject program with a large argument, or by performing

bottleneck verification [43] on the transition from normal user to root user and noticing

that the user did not make a legal user to root transition.

63

7.2 Ffbconfig U-b-S

Descr iption

The Ffbconfig attack exploits a buffer overflow is the “ ffbconfig” program distributed

with Solaris 2.5. The ffbconfig program configures the Creator Fast Frame Buffer (FFB)

Graphics Accelerator, which is part of the FFB Configuration Software Package,

SUNWffbcf. This software is used when the FFB Graphics accelerator card is installed.

Due to insufficient bounds checking on arguments, it is possible to overwrite the internal

stack space of the ffbconfig program [61].

Simulation Details

This attack is very similar to the eject attack described above. Once again, C code to

exploit this vulnerability was posted on the Bugtraq mailing list.

Attack Signature

The means by which an intrusion detection system can identify the ffbconfig attack are

similar to those described above for the Eject exploit. An attacker who is exploiting this

vulnerability must first transfer the code for the exploit (either C code to be compiled, or

pre-compiled code) onto the victim machine, and then run the exploit. As with the eject

exploit, there are strings within the source code of the ffbconfig exploit script which

identify the attack to a network or host based intrusion detection system. A host-based

intrusion detection system can perform bottleneck verification or look for the invocation

of the command “ /usr/sbin/ffbconfig/” with an oversized argument for the “ -dev”

parameter.

64

7.3 Fdformat U-b-S

Descr iption

The Fdformat attack exploits a buffer overflow is the “ fdformat” program distributed

with Solaris 2.5. The fdformat program formats diskettes and PCMCIA memory cards.

The program also uses the same volume management library, libvolmgt.so.1, and is

exposed to the same vulnerability as the eject program [60].

Simulation Details

Exploit code for this vulnerability was posted to the Rootshell Website [53] in March,

1997. The exploit code was used unmodified for the DARPA evaluation.

Attack Signature

Methods for identifying this attack are nearly identical to those described for the eject and

ffbconfig attacks.

65

7.4 Loadmodule U-b-S

Descr iption

The Loadmodule attack is a User to Root attack against SunOS 4.1 systems that use the

xnews window system. The loadmodule program within SunOS 4.1.x is used by the

xnews window system server to load two dynamically loadable kernel drivers into the

currently running system and to create special devices in the /dev directory to use those

modules. Because of a bug in the way the loadmodule program sanitizes its environment,

unauthorized users can gain root access on the local machine [8].

Simulation Details

The code for the loadmodule exploit script is widely available on the internet. This code

is usually in the form of a shell script—it does not need to be compiled before it is run.

The steps of the attack are quite simple:

1. Change the value of the internal field separator (or IFS) variable to a slash.
2. Add “ .” To the front of the PATH variable
3. Copy “ /bin/sh” to “ ./bin”
4. Execute “ /usr/openwin/bin/loadmodule a” .

When the loadmodule shell script (which is setuid root by default) executes, it attempts to

run the command “exec(‘ /bin/a’);” . Since the IFS variable has been changed to “ /” the

string “ /bin/a” is parsed into two tokens, and the loadmodule script attempts to run the

first—“bin” . Since the attacker has conveniently put a copy of “ /bin/sh” in the current

directory and named it “bin” , the loadmodule script (which is running as root) will exec

“ ./bin”—giving the attacker a shell with root privileges.

Attack Signature

This attack can be identified either by performing bottleneck verification with a host-

based intrusion detection system, or by keyword spotting with a network based intrusion

66

detection system. A simple rule could say that any session which contained the strings

“set $IFS=’ \/’ ” and “ loadmodule” in close proximity was probably a loadmodule attack.

Of course, an attacker could quite easily hide from such a simple rule. Detailed

discussion of such methods for hiding is presented in Chapter 11.

67

7.5 Per l U-b-S

Descr iption

The Perl attack is a User to Root attack that exploits a bug in some Perl implementations.

Suidperl is a version of Perl that supports saved set-user-ID and set-group-ID scripts. In

early versions of suidperl the interpreter does not properly relinquish its root privileges

when changing its effective user and group IDs. On a system that has the suidperl, or

sperl, program installed and supports saved set-user-ID and saved set-group-ID, anyone

with access to an account on the system can gain root access [12].

Simulation Details

A perl script that uses this vulnerability to gain root access was made publicly available

in August 1996 [51]. The code is only two lines long, and can easily be executed from

the command-line. Once this perl script has run, the user will be presented with a new

shell that is running with root privileges.

Attack Signature

The methods by which an intrusion detection system could identify a perl exploit attempt

are identical to those described above for the loadmodule attack. A host-based intrusion

detection system could notice that a root shell was spawned without a legal user to root

transition, or a network-based intrusion detection system could look the strings “$>=0;

$<=0;” or “exec (‘ /bin/sh’);” , which have little valid use except in an exploit attempt.

68

7.6 Ps U-b-S

Descr iption

The Ps attack takes advantage of a race condition in the version of “ps” distributed with

Solaris 2.5 and allows an attacker to execute arbitrary code with root privilege. This race

condition can only be exploited to gain root access if the user has access to the temporary

files. Access to temporary files may be obtained if the permissions on the /tmp and

/var/tmp directories are set incorrectly. Any users logged in to the system can gain

unauthorized root privileges by exploiting this race condition [9].

Simulation Details

This exploit is possible because of a combination of the ps program not carefully

managing temporary files and a buffer overflow. A shell script that builds a carefully

constructed temporary file, creates a C-file, compiles the code and executes the exploit

was found at Rootshell.com [52]. Once an attacker has transfers this shell script onto a

Solaris victim machine and runs it, a root shell will be spawned for the attacker.

Attack Signature

Methods for finding this attack are essentially the same as the methods for finding the

eject, ffbconfig, or fdformat attacks.

69

7.7 Xterm U-b-S

Descr iption

The Xterm attack exploits a buffer overflow in the Xaw library distributed with Redhat

Linux 5.0 (as well as other operating systems not used in the simulation) and allows an

attacker to execute arbitrary instructions with root privilege. Problems exist in both the

xterm program and the Xaw library that allow user supplied data to cause buffer

overflows in both the xterm program and any program that uses the Xaw library. These

buffer overflows are associated with the processing of data related to the inputMethod

and preeditType resources (for both xterm and Xaw) and the *Keymap resources (for

xterm). Exploiting these buffer overflows with xterm when it is installed setuid-root or

with any setuid-root program that uses the Xaw library can allow an unprivileged user to

gain root access to the system [21].

Simulation Details

C source code that exploits this vulnerability on Redhat Linux 5.0 systems was found at

the Rootshell website [56]. Once again, an attacker can compile this C code, and when

the resulting program is run the attacker is given a shell running with root privileges.

Attack Signature

Methods for finding this attack are essentially the same as the methods for finding the

eject, ffbconfig, or fdformat attacks.

70

Chapter 8

Remote to User Attacks

A Remote to User attack occurs when an attacker who has the ability to send packets to a

machine over a network—but who does not have an account on that machine—exploits

some vulnerability to gain local access as a user of that machine. There are many

possible ways an attacker can gain unauthorized access to a local account on a machine.

Some of the attacks discussed within this section exploit buffer overflows in network

server software (imap, named, sendmail). The Dictionary, Ftp-Write, Guest and Xsnoop

attacks all attempt to exploit weak or misconfigured system security policies. The Xlock

attack involves social engineering—in order for the attack to be successful the attacker

must successfully spoof a human operator into supplying their password to a screensaver

that is actually a trojan horse. Figure 8-1 summarizes the characteristics of the Remote to

User attacks that were included in the 1998 DARPA intrusion detection evaluation. The

following sections provide details of each of these attacks.

8.1 Dictionary R-a-U

Descr iption

The Dictionary attack is a Remote to Local User attack in which an attacker tries to gain

access to some machine by making repeated guesses at possible usernames and

passwords.

71

Users typically do not choose good passwords, so an attacker who knows the

username of a particular user (or the names of all users) will attempt to gain access to this

user’s account by making guesses at possible passwords. Dictionary guessing can be

done with many services; telnet, ftp, pop, rlogin, and imap are the most prominent

services that support authentication using usernames and passwords. Figure 8-2 is a plot

of the connections made to the pop3 port of a victim machine during a dictionary attack

that is using the pop service to check for valid login/password combinations. The

horizontal axis of this plot represents time in minutes, and each line segment in the plot is

a single connection to the pop3 service. Lines representing succesive sessions are

Name Service Vulnerable
Platforms

Mechanism Time to
Implement

Effect

Dictionary
telnet,

rlogin, pop,
imap, ftp

All
Abuse of Feature Medium User-level access

Ftp-write ftp
All

Misconfiguration Short User-level access

Guest
telnet,
rlogin

All
Misconfiguration Short User-level access

Imap imap
Linux

Bug Short Root Shell

Named dns
Linux

Bug Short Root Shell

Phf http
All

Bug Short
Execute commands as

user http

Sendmail smtp
Linux

Bug Long
Execute commands as

root

Xlock X
All

Misconfiguration Medium
Spoof user to obtain

password

Xsnoop X
All

Misconfiguration Short
Monitor Keystrokes

remotely

Figure 8-1: Summary of Remote to Local Attacks

72

displaced vertically slightly and wrap around (in this figure at roughly 1.5 minutes). The

length of the lines represents the length of the pop sessions. Lines begin with a greater-

than sign “>” and end with a less-than sign “<” , and thus form an “x” for short sessions.

In all, this example dictionary attack consists of 40 attempts to log in, with a 4 second

delay between each attempt.

Simulation Details

A perl script that performed automated password guessing on a variety of services was

developed specifically for use in our evaluation. The “Netguess” perl script could take in

a file of possible username/password combinations, or create guesses for the password

based on simple permutations of the username. Within the simulation, this script was

used to perform between 10 and 100 login attempts on the telnet, ftp, and pop services.

Figure 8-2: Plot of Connections to Pop3 Service Dur ing a Dictionary Attack

73

When the script was successful in gaining access to the system, it would immediately quit

and report success.

Attack Signature

An intrusion detection system that finds attempted dictionary attacks needs to know the

session protocol of every service that provides username/password authentication. For a

given service, the intrusion detection system must be able to recognize and record failed

login attempts. Once this functionality is available, detecting dictionary attacks is a

matter of setting a detection threshold based on the number of failed login attempts

within a given period of time.

74

8.2 Ftp-wr ite R-c-U

Descr iption

The Ftp-write attack is a Remote to Local User attack that takes advantage of a common

anonymous ftp misconfiguration. The anonymous ftp root directory and its

subdirectories should not be owned by the ftp account or be in the same group as the ftp

account. If any of these directories are owned by ftp or are in the same group as the ftp

account and are not write protected, an intruder will be able to add files (such as an rhosts

file) and eventually gain local access to the system [7].

Simulation Details

This attack was implemented as an expect script which was created explicitly for use in

the simulation. This expect script anonymously logged in to the ftp service on the victim

machine, created a “ .rhosts” file with the string “+ +” in it within the ftp home directory,

disconnected from the ftp server, used rlogin to connect back to the server as user “ ftp” ,

and finally performed some actions on the victim machine. Creating a “ .rhosts” file in

the ftp home directory with the entry “+ +” in it allows any user from any machine to

rlogin to the victim as user “ ftp” .

Attack Signature

An intrusion detection system can monitor for this attack by watching all anonymous ftp

sessions and assuring that no files are created in the ftp root directory.

75

8.3 Guest R-c-U

Descr iption

The Guest attack is a variant of the Dictionary attack described in Section 8.1. On badly

configured systems, guest accounts are often left with no password or with an easy to

guess password. Because most operating systems ship with the guest account activated

by default, this is one of the first and simplest vulnerabilities an attacker will attempt to

exploit [27].

Simulation Details

The Guest attack is a simplified version of the Dictionary attack discussed earlier in this

chapter. The same “Netguess” perl script that was used to simulate a Dictionary attack

was used to simulate the Guest attack—the only difference between the implementation

of the two attacks was the command-line options that were passed to the Netguess

program. Whereas the Dictionary attack would try up to a hundred user names and

thousands of username/password combinations, the Guest attack would make only a

couple of login attempts, using combinations such as “guest/<none>”, “guest/guest” ,

“anonymous/<none>” and “anonymous/anonymous”.

Attack Signature

Because the Guest attack is essentially a subset of the Dictionary attack, the methods for

finding the two attacks are basically the same. An intrusion detection system that is

looking for a Dictionary attack already should need only minor tuning in order to find

attempts to log in to the guest account.

76

8.4 Imap R-b-S

Descr iption

The Imap attack exploits a buffer overflow in the Imap server of Redhat Linux 4.2 that

allows remote attackers to execute arbitrary instructions with root privileges. The Imap

server must be run with root privileges so it can access mail folders and undertake some

file manipulation on behalf of the user logging in. After login, these privileges are

discarded. However, a buffer overflow bug exists in the authentication code of the login

transaction, and this bug can be exploited to gain root access on the server. By sending

carefully crafted text to a system running a vulnerable version of the Imap server, remote

users can cause a buffer overflow and execute arbitrary instructions with root privileges

[16].

Simulation Details

The Imap attack used in the 1998 DARPA intrusion detection evaluation was part of the

Impack 1.03 attack toolkit [34]. This toolkit contained precompiled binary programs for

the Linux platform that would scan for vulnerable machines, as well as send the

necessary message to exploit the buffer overflow and gain access to a root shell. The

Impack contained detailed instructions on how to use these precompiled programs and

took very little skill to use. The release of the Impack made this vulnerability especially

dangerous, as any user with a Linux machine and the ability to follow instructions could

use this attack to remotely gain root access to any vulnerable hosts.

Attack Signature

The Imap attack can be identified by an intrusion detection system that has been

programmed to monitor network traffic for oversized Imap authentication strings.

77

8.5 Named R-b-S

Descr iption

The Named attack exploits a buffer overflow in BIND version 4.9 releases prior to BIND

4.9.7 and BIND 8 releases prior to 8.1.2. An improperly or maliciously formatted inverse

query on a TCP stream destined for the named service can crash the named server or

allow an attacker to gain root privileges [19].

Simulation Details

The version of the Named exploit used in the simulation was adapted from a C program

originally posted to the Bugtraq mailing list. This program, once compiled, would

connect to the named port on a victim machine and overflow a buffer of the named server

with instructions that would send an xterm running with root privilege back to the

attacker’s X console. Because this attack involved interaction with X, all of the Named

attacks included in the simulation were run by human actors.

Attack Signature

The Named attack can be identified by watching DNS inverse query requests for

messages that are longer than the 4096 byte buffer allocated for these requests within the

“named” server.

78

8.6 Phf R-b-U

Descr iption

The Phf attack abuses a badly written CGI script to execute commands with the privilege

level of the http server. Any CGI program which relies on the CGI function

escape_shell_cmd() to prevent exploitation of shell-based library calls may be vulnerable

to attack. In particular, this vulnerability is manifested by the "phf" program that is

distributed with the example code for the Apache web server [11].

Simulation Details

The Phf attack is quite simple to implement because it requires only the ability to connect

to a network socket and issue an http request. Within the simulation, the Netcat [31]

program was used to generate this http request. Although this vulnerability allows an

attacker to run any command on the server, the command used throughout the simulation

was “ /bin/cat /etc/passwd”. Using the Phf attack with this command reveals the contents

of the victim system’s password file to users with no account on the victim machine.

Attack Signature

To find the Phf attack, an intrusion detection system can monitor http requests watching

for invocations of the phf command with arguments that specify commands to be run.

Examples of commands that an attacker might attempt to execute by exploiting the phf

exploit are: cat /etc/passwd, id, whoami, or xterm.

79

8.7 Sendmail R-b-S

Descr iption

The Sendmail attack exploits a buffer overflow in version 8.8.3 of sendmail and allows a

remote attacker to execute commands with superuser privileges. By sending a carefully

crafted email message to a system running a vulnerable version of sendmail, intruders can

force sendmail to execute arbitrary commands with root privilege [15].

Simulation Details

Although this vulnerability was widely known about at the time of the evaluation, no

code that exploited this vulnerability had been posted to public forums such as Bugtraq,

or Rootshell.com. A significant period of time (one person working for more than two

weeks) was spent developing the first known implementation of this exploit explicitly for

use in the evaluation. The implementation consists of a carefully constructed mail

message which, when sent to the victim machine with a vulnerable version of sendmail,

adds a new entry with root privilege to the end of the password file on the victim system.

Once this new entry has been added, the attacker can log into the machine as this new

user and execute commands as a root user. Figure 8-3 provides an illustration of an

instantiation of the Sendmail attack as it was implemented in the simulation. In step 1 of

this illustration, the attacker sends a carefully crafted e-mail message to the victim

machine. In step 2, the sendmail daemon starts to process this message, overflows one of

its buffers, and executes the attacker’s inserted commands that create a new entry in the

password file. In step 3, the attacker comes back to the victim machine and uses the new

password file entry to gain root access to the victim machine and perform some malicious

actions.

80

Attack Signature

The Sendmail attack overflows a buffer in the MIME decoding routine of the sendmail

program. In order for an intrusion detection system to identify a Sendmail attack it must

monitor all incoming mail traffic and check for messages that contain a MIME header

line that is inappropriately large.

Figure 8-3: I llustration of the Sendmail Attack.

81

8.8 Xlock R-cs-Intecept(Keystrokes)

Descr iption

In the Xlock attack, a remote attacker gains local access by fooling a legitimate user who

has left their X console unprotected, into revealing their password. An attacker can

display a modified version of the xlock program on the display of a user who has left

their X display open (as would happen after typing “xhost +”), hoping to convince the

user sitting at that console to type in their password. If the user sitting at the machine

being attacked actually types their password into the trojan version of xlock the password

will be sent back to the attacker.

Simulation Details

This attack was created specifically for use in the evaluation. A special version of the

xlock program was created by making small modifications to the publicly available

source code for the xlock program. The standard version of xlock will not display on a

remote display, and does not save or output the password that the user enters. A modified

version of xlock was created that allows the attacker to display the screen saver on a

remote display and returns the password entered by the victim. Because of the required

interaction with the X server, the Xlock attack was always run by a human actor.

Attack Signature

Two factors make this attack quite difficult for an intrusion detection system to identify.

First, this attack is a spoofing attack that does not abuse a bug in the system, but relies on

assumptions by the person who is currently using the system. Second, this attack is

embedded in the X protocol, and an intrusion detection system that is trying to identify

this attack must understand and parse these X communications in order to identify the

82

Xlock attack. One non-optimal way of dealing with these difficulties, is to program an

intrusion detection system to identify as suspicious any X traffic that is originating from

an unknown machine that is destined for a machine being monitored.

83

8.9 Xsnoop R-c-Intercept(Keystrokes)

Descr iption

In the Xsnoop attack, an attacker watches the keystrokes processed by an unprotected X

server to try to gain information that can be used gain local access the victim system. An

attacker can monitor keystrokes on the X server of a user who has left their X display

open. A log of keystrokes is useful to an attacker because it might contain confidential

information, or information that can be used to gain access to the system such as the

username and password of the user being monitored.

Simulation Details

The Xsnoop program used in the simulation was adapted from C code originally posted

to the Bugtraq mailing list. The Xsnoop program runs locally on the attacker’s machine.

The program connects to the victim’s X Server and requests to be notified of all X

KeyPress Events. If the attacker has permission to make this request (as would happen if

the victim had typed “xhost +” , or if the victim’s X Server is configured to allow

connections from all hosts by default) the Xsnoop program will be sent all KeyPress

events that occur on the victim X Server. The Xsnoop program then uses the KeyPress

events to provide the attacker with a view of all the keystrokes the victim. Because this

attack required interaction with the X Server, it was always run by a human actor.

Attack Signature

An network based intrusion detection system can identify the Xsnoop attack by parsing

the X protocol information in packets destined for remote X clients and noting that X

KeyPress events are being transmitted to a remote machine. Because the Xsnoop attack

results from bad security policy (leaving an X Server unsecured) and not simply a bug,

84

the presence of these packets alone does not signify that an attack is taking place. The

intrusion detection system must know whether the security policy of the machine being

monitored allows unauthenticated X connections from anywhere.

85

Chapter 9

Probes

In recent years, a growing number of programs have been distributed that can

automatically scan a network of computers to gather information or find known

vulnerabilities [27]. These network probes are quite useful to an attacker who is staging a

future attack. An attacker with a map of which machines and services are available on a

network can use this information to look for weak points. Some of these scanning tools

(satan, saint, mscan) enable even a very unskilled attacker to very quickly check

hundreds or thousands of machines on a network for known vulnerabilities. Figure 9-1

provides a summary of the probes that are discussed in the remainder of this chapter. The

Name Service Vulnerable
Platforms

Mechanism Time to
Implement

Effect

Ipsweep ICMP All Abuse of Feature Short
Finds active
machines

Mscan many All Abuse of Feature Short
Looks for known

vulnerabilities

Nmap many All Abuse of Feature Short
Finds active ports

on a machine

Saint many All Abuse of Feature Short
Looks for known

vulnerabilities

Satan many All Abuse of Feature Short
Looks for known

vulnerabilities

Figure 9-1: Summary of Probes

86

following sections describe in detail each of the probes that was used in the 1998

DARPA intrusion detection evaluation.

9.1 Ipsweep R-a-Probe(Machines)

Background

An Ipsweep attack is a surveillance sweep to determine which hosts are listening on a

network. This information is useful to an attacker in staging attacks and searching for

vulnerable machines.

Simulation Details

There are many methods an attacker can use to perform an Ipsweep attack. The most

common method—and the method used within the simulation—is to send ICMP Ping

packets to every possible address within a subnet and wait to see which machines

respond. The Ipsweep probes in the simulation were not stealthy—the sweeps were

performed linearly, quickly and from a single source.

Attack Signature

An intrusion detection system looking for the simple Ipsweep used in the simulation can

look for many Ping packets, destined for every possible machine on a network, all

coming from the same source.

87

9.2 Mscan R-a-Probe(Known Vulnerabilities)

Descr iption

Mscan is a probing tool that uses both DNS zone transfers and/or brute force scanning of

IP addresses to locate machines, and test them for vulnerabilities [20].

Simulation Details

The Mscan program used in the simulation was compiled from source code found at [57].

Mscan was easy to run and has several command line options for specifying the number

of machines to scan and which vulnerabilities to look for. Within the simulation, mscan

was used to scan the entire eyrie.af.mil domain for the following vulnerabilities: statd,

imap, pop, IRIX machines that have accounts with no passwords, bind, various cgi-bin

vulnerabilities, NFS, and open X servers.

Attack Signature

The signature of this attack will vary depending on which vulnerabilities are being

scanned for and how many machines are being scanned. In general, an intrusion

detection system can find an Mscan attack by looking for connections from a single

outside machine to the ports listed above on one or more machines within a short period

of time.

88

9.3 Nmap R-a-Probe(Services)

Descr iption

Nmap is a general-purpose tool for performing network scans. Nmap supports many

different types of portscans—options include SYN, FIN and ACK scanning with both

TCP and UDP, as well as ICMP (Ping) scanning [45]. The Nmap program also allows a

user to specify which ports to scan, how much time to wait between each port, and

whether the ports should be scanned sequentially or in a random order.

Simulation Details

At the time of the evaluation, Nmap was the most complete publicly available scanning

tool. During the simulation, Nmap was used to perform portscans on between one and

ten computers using SYN scanning, FIN scanning, and UDP scanning of victim

machines. Both sequential and random scans were performed in the simulation, and the

timeout between packets was varied to be anywhere from one second to six minutes. The

number of ports scanned on each machine was varied between three and one thousand.

Attack Signature

The signature of a portscan using the Nmap tool varies widely depending on the mode of

operation selected. Despite this variance of modes, all portscans share some common

features. A portscan can be recognized by noting that network packets (whether via TCP

or UDP, or via only FIN packets or only SYN packets) have been sent to several (or

more) ports on a victim or group of victims within some window of time. Two factors

complicate the identification of portscans. First, a portscan can happen very slowly. An

attacker who is patient could probe one port per day. Current intrusion detection systems

do not keep enough state to recognize a portscan happening over such a long period of

89

time. With the amount of network traffic sent over a typical network, keeping enough

active state within the intrusion detection system to recognize one connection per day for

one hundred days as a one hundred day long portscan is simply not practical. Second, the

connections don’ t necessarily all have to come from the same host. A group can perform

a coordinated scan with each member scanning only a subset of machines or ports. By

combining these methods, a group could perform a “ low/slow” portscan that would be

very hard to recognize.

90

9.4 Saint R-a-Probe(Known Vulnerabilities)

Descr iption

SAINT is the Security Administrator’s Integrated Network Tool. In its simplest mode, it

gathers as much information about remote hosts and networks as possible by examining

such network services as finger, NFS, NIS, ftp and tftp, rexd, statd, and other services.

The information gathered includes the presence of various network information services

as well as potential security flaws. These flaws include incorrectly setup or configured

network services, well-known bugs in system or network utilities, and poor policy

decisions. Although SAINT is not intended for use as an attack tool, it does provide

security information that is quite useful to an attacker [58].

Simulation Details

SAINT is distributed as a collection of perl and C programs and is known to run on

Solaris, Linux, and Irix systems. Within the simulation, the Saint program was run from

a Linux traffic generator and was used to probe several victim machines for

vulnerabilities. SAINT’s behavior is controlled by a configuration file which allows the

user to specify several parameters. The most important parameters are the list of

machines to scan, and how heavily to scan these machine (light, normal, or heavy). In

light mode, SAINT will probe the victim for dns and rpc vulnerabilities and will look for

unsecured NFS mount points. In normal mode SAINT will also check for vulnerabilities

in fingerd, rusersd, and bootd, and will perform a portscan on several tcp (70, 80,ftp,

telnet, smtp, nntp, uucp) and udp (dns, 177) ports. Heavy mode is the same as normal

mode except that many more ports are scanned.

91

Attack Signature

A Saint scan of a network leaves a distinct signature that will vary depending on the level

of scanning being performed. The Saint program performs each scan in a nearly

deterministic fashion. To identify a Saint scan, an intrusion detection system needs to be

able to recognize the distinct set of network traffic the scan creates. Figure 9-2 is a plot

that provides a graphical view of this signature. The horizontal axis of this plot

represents time in minutes, and the different services probed are presented along the

vertical axis. The names of the services are shown on the left side of this plot, and

connections for each service are plotted within each named region. The numbers after

the service names are the number of separate tcp connections or of udp or icmp packets.

Names ending in “ /i” indicate that packets use the icmp protocol and names ending in

“ /u” indicate that packets use the udp protocol. All other services use the tcp protocol.

Figure 9-2: Plot of Connections Dur ing a Medium Level Saint Scan

92

Each line segment represents a connection to a service. This plot shows the unique

signature of a medium level Saint scan. Because this signature does not change

significantly across multiple instantiations of the Saint attack, an intrusion detection

system that has been trained to recognize the pattern of connections shown in Figure 9-2

will probably detect other Saint attacks.

93

9.5 Satan R-a-Probe(Known Vulnerabilities)

Descr iption

SATAN is an early predecessor of the SAINT scanning program described in the last

section. While SAINT and SATAN are quite similar in purpose and design, the

particular vulnerabilities that each tools checks for are slightly different [24].

Simulation Details

Like SAINT, SATAN is distributed as a collection of perl and C programs that can be run

either from within a web browser or from the UNIX command prompt. SATAN supports

three levels of scanning: light, normal, and heavy. The vulnerabilities that SATAN

checks for in heavy mode are:

• NFS export to unprivileged programs
• NFS export via portmapper
• NIS password file access
• REXD access
• tftp file access
• remote shell access
• unrestricted NFS export
• unrestricted X Server access
• write-able ftp home directory
• several Sendmail vulnerabilities
• several ftp vulnerabilities

Scans in light and normal mode simply check for smaller subsets of these vulnerabilities.

Attack Signature

A SATAN scan of a network can be recognized by the consistent pattern of network

traffic the program creates. The checks for the vulnerabilities listed above are always

performed in the same order.

94

Figure 9-3 shows a plot of the services probed during an example medium level

Satan scan. The horizontal axis of this plot represents time in seconds and the various

services that are probed are presented on the vertical axis. Each line segment in the plot

represents a single connection to a service. Every medium level Satan scan will have a

signature very similar to that shown in Figure 9-3.

Figure 9-3: Plot of Connections Dur ing a Medium Level Satan Scan

95

Chapter 10

Realistic Intrusion Scenar ios

An attack against a computer system can consist of several phases. An attacker might run

several probes against a system looking for weaknesses, then use information gained

from these probes to exploit some security vulnerability and gain access to the system.

Later an attacker can use this access to install a backdoor in the system, or plant a “ logic

bomb” in some program that causes damage at some point in the future. The actions of a

single intruder might be spread out over the course of weeks or even months. Some

attackers make no attempt to hide their intrusions from systems administrators while

others are very careful to cover their tracks. In order to accurately test an intrusion

detection system’s effectiveness in finding real attackers, it was necessary to not only

develop a database of realistic exploits and probes, but to combine these exploits and

probes with probable attacker actions and realistic goals to generate complete attack

scenarios. This chapter describes how these various parameters of attacker behavior were

varied to create a realistic simulation of the wide variety of attacker behavior that is

manifested by actual intrusions.

10.1 Attack Scenar ios

Most of the attacks that were included in the evaluation consist of a single session, or a

few sessions that all occur within some short period of time. In the real world, an

96

attacker often has a goal in mind, and sometimes this goal cannot be achieved in a single

session. Several complex scenarios were added to the collected data in an attempt to

create a better simulation of real attacker behavior. Each scenario consists of a planned

sequence of sessions (sometimes over the course of a week or more) that represent the

actions of a single individual in pursuit of a goal. The following subsections describe

each scenario in detail.

10.1.1 Cracker

The default scenario that occurred in 95% of sessions is that a curious cracker was trying

to gain access to a machine just to prove that it could be done. Usually these crackers are

simply trying to break into as many machines as they can, and may install a backdoor or

download the password file in order to guarantee that they can access the machine again.

Crackers are represented as individuals of different skill levels, some perform all of their

actions in the clear, while others are aware that an intrusion detection system is present

and take actions to avoid detection.

10.1.2 Spy

The spy is an information collector who comes back to a compromised machine several

times to collect information. A spy might be looking for confidential data files or reading

user’s personal mail. A spy will take steps to minimize the possibility of detection.

10.1.3 Rootkit

The rootkit scenario could be viewed as an extension of the default Cracker scenario.

97

 A rootkit is a collection of programs that are intended to help a hacker maintain access to

a machine once it has been compromised. A typical rootkit consists of a sniffer, versions

of login, su, and other programs with backdoors which allow for access, and new

versions of ps, netstat, and ls that hide the fact that a sniffer is running and hide files in

certain directories. Once the rootkit has been installed, the attacker comes back several

times to download the sniffer logs.

10.1.4 Http Tunnel

The Http Tunnel scenario was originally developed as a method of defeating a firewall

and for continuing to access a system while minimizing the chance of detection. The http

tunnelling tools used in this scenario were developed specifically for use in this

evaluation. Figure 10-1 provides an overview of this scenario. Assuming that a hacker is

able to penetrate a firewall once (perhaps by sending an email with the executable content

of the client in it or by dialing into a modem) a server program can be installed that

masquerades as a normal user browsing web pages. Once this server has been installed,

the hacker can issue requests to execute commands or transfer files with interaction

happening in web traffic between the server and the hacker. For the simulation, the data

was exchanged through cookies that rode along with a web request. This general method

is very flexible however, and the data could have been tunneled using any cryptographic

or steganographic technique. Tunneling through http was chosen with hopes that the

large amount of http traffic most networks see in a typical day would obscure the actions

of the attacker.

98

10.1.5 SNMP Monitor ing

An attacker who has guessed the SNMP community password of a router will then be

able to monitor the traffic levels on that router, and may be able to issue commands to the

router to change default routes or allow connections from a previously forbidden host or

network.

10.1.6 Multihop

Some intrusion detection systems monitor traffic immediately outside of a router and

only see traffic going into or coming out of that network. The multihop scenario was

designed to test whether these systems could find attacks where an attacker first breaks

into one inside machine, and then uses this inside machine for further attacks on the rest

Figure 10-1: Attacker Uses Http to Tunnel Through a Firewall

99

of the machines on the network. This would be a very effective means of launching a

Denial of Service attack undetected, as an intrusion detection system which sits just

outside the network being monitored would not see a Denial of Service attack that

originated from the internal network.

10.1.7 Disgruntled/Malicious User

These sessions simulate an attacker who is not interested in collecting information from a

system or gaining access to a system, but is simply interested in doing damage. This is a

common threat in operational computer networks [32]. Within the simulation, one

malicious user re-formatted the primary disk partition of a victim machine.

100

Chapter 11

Stealthiness and Actions

In addition to varying the methods and intentions of the simulated attackers, attention was

given to the extent to which attackers tried to hide their actions from either an individual

who is monitoring the system, or an intrusion detection system. There are several ways

that attackers can reduce their chances of being detected by the administrator of a

network. Skilled attackers might try to cover their tracks by editing system logs or

resetting the modification date on files that they replaced or modified. These actions are

generally intended to reduce the chance of detection by a human administrator. Attackers

may also be aware that an intrusion detection system is monitoring a network, and may

try to hide from the intrusion detection system as well. Methods for being stealthy vary

depending on the type of attack.

11.1 Avoiding Detection of Denial of Service (R-Deny)

Denial of Service attacks are difficult to make stealthy. One method an attacker can use

to hide a denial of service attack is to gain the cooperation of a large group and break up

the attack so pieces of it are coming from several different sources. Another method an

attacker can use is to send thousands of packets with different spoofed source-addresses.

Sending these spoofed packets will not make identifying the attack any harder, but they

will make it more difficult to track down and stop the attacker because the victim has no

101

way of knowing which of the thousands of addresses the actual attack is coming from.

Both of these methods do not make the attack any harder to detect, but simply reduce the

chances that the attacker will be caught. No stealthy denial of service attacks were

included in the 1998 DARPA intrusion detection evaluation.

11.2 Avoiding Detection of Probes (R-Probe)

Several methods can be used either to hide the fact that a probe is occurring, or obscure

the identity of the party who is performing the probe. The following paragraphs describe

methods of increasing stealth that were used in the probes included in the 1998 DARPA

intrusion detection evaluation.

Scan Slowly and Randomly: If an attacker wants to hide the fact a probe is occurring,

the probe can be configured to occur slowly and probe ports or machines in a non-

linear order. An intrusion detection system will have a very hard time identifying one

stray connection per hour to a random port as a port sweep initiated by an attacker.

Probe With Half-Open or Other Unlogged Connections: Another method of scanning

stealthily is to probe with half-open connections. A connection for which the three-

way TCP handshake is never completed will not be logged by the operating system.

There are several tools available that will perform this type of half-open (FIN)

scanning of a network.

Use an Intermediate Machine to Obscure the Real Source of the Scan: One way

attackers can hide their identity is to use an ftp bounce probe. Some ftp servers will

allow anyone to tell them to send data to a particular port on a particular machine. An

attacker can look at the response the ftp server gives from such a request and ascertain

whether that port is listening on the victim machine. The portscan will appear to be

102

coming from an anonymous ftp server, and this simple step may be enough to assure

that the party who is really doing the scanning is never identified.

11.3 Avoiding Detection of User to Root (L -?-S) Attacks

There are many ways that User to Root attacks can be made stealthy. The following

paragraphs discuss each of the methods that were used to make a number of the User to

Root attacks in the 1998 DARPA intrusion detection evaluation stealthy.

Keyword Hiding: Some intrusion detection systems that attempt to detect illegal User to

Root transitions rely on keyword spotting to detect intruders. For example, if the

system observes the text of the C source code for the publicly available Eject exploit in

a telnet or rlogin session, it will flag this session as being suspicious. By uuencoding

or Mime encoding the text of the code before sending it over the network connection,

an attacker would avoid detection by such a system.

Output Hiding: It is possible to identify attacks by looking that the output that is

displayed on the terminal when the exploit is run. An attacker can avoid detection via

this mechanism by sending all the output of commands that are run to a file and

encoding (again with some method like ROT13, uuencode, or gzip) the file before

displaying or transferring it.

Command Hiding: A system might also look for an attacker to run some command that

only the superuser should be able to run, such as displaying the contents of the shadow

password file. The invocation of a command that the attacker wishes to hide from

someone who is looking for certain suspicious commands or actions can be obfuscated

by using glob constructs and character replacement. Instead of typing the command

“cat /etc/passwd”, the attacker can issue the command “ /[r,s,t,b]?[l,w,n,m]/[c,d]?t

103

/?t[c,d,e]/*a?s*” . When the shell tries to interpret this input string it will do

replacement of the glob characters and find that the only valid match for this string is

“ /bin/cat /etc/passwd”.

Delayed Attack: An attacker can also avoid detection (or at least reduce the chances of

identification), by separating the time of exploit from the initial time of access. This

can be accomplished by submitting a job to the “at” or “cron” daemon which will run

the attack at some later time. An attacker can log in as a normal user (which would not

be noticed by an intrusion detection system) and submit a shell script to the “at”

daemon which would execute any actions that the attacker desired three weeks (or six

months, or five years!) after the attacker initially logged into the system. Figure 11-1

provides a graphical illustration of a delayed attack scenario. This scenario is similar

to one that was used in the evaluation. First, at time segment 1 in the figure, the

attacker uses a sniffed password to log into the victim machine as a normal user. This

action will not be noticed by an intrusion detection system. Before logging out, the

attacker submits a job to the cron or at daemon that performs a User to Root exploit

and some malicious actions at some point in the future. At time segment 2 in the

figure, the submitted script is run and the exploit occurs. Later, at time segment 3 the

attacker can come back and log into the machine as a normal user to collect the output

from the commands run during the second segment, again without being noticed. The

only step in this process that is easily detectable by an intrusion detection system is

step 2 when the actual exploit occurs. However, during this time segment the attacker

is not logged in to the system. In order to successfully identify this attack, an intrusion

104

detection system would need to correlate the earlier session to the malicious actions

that occur when the attacker is not logged in.

Figure 11-2 is a transcript from an actual stealthy eject attack used in the

simulation. This attack session contains the keyword hiding, output hiding, and

command hiding techniques discussed above. Lines 10 through 16 contain the output of

the attacker transferring the exploit files to the victim system. The files have been

uuencoded to help avoid detection of the attack by a system that is looking for keywords

that might be located in the text of the exploit files.

Figure 11-1: Attacker Can Use “ at” to Temporally Disassociate the Time of Access and Time of
Attack

105

In lines 34 through 54 the attacker has already gained root access and is now

performing some malicious actions. The attacker uses both command hiding with glob

constructs and output hiding using both uuencode and gzip. For example, on line 46 the

1 UNIX(r) System V Release 4.0 (pascal)
2
3 login: alie
4 Password:
5 Last login: Thu Jul 30 09:15:04 from 135.8.60.182
6 Sun Microsystems Inc. SunOS 5.5 Generic November 1995
7 pascal>
8 pascal> which gcc
9 /bin/gcc

10 pascal> uudecode
11 begin 644 /tmp/16256.c
12 M("‘@("\J"B‘@("!3;VQA<FES(#(N-2XQ("T@=&AI<R!E>’!L;VET960@=V%S
13 M(&-O;7!I;&5D(&]N(%-O;&%R:7,R+C0@86YD(’1E<W1E9"!O;@H@("‘@,BXU
14 ‘
15 end
16 <FILE TRANSFER TRUCATED FOR EXAMPLE>

17 pascal>
18
19 pascal> /bin/gcc -o /tmp/162562 /tmp/16256.c
20 pascal> which gcc
21 /bin/gcc
22 pascal> /bin/gcc -o /tmp/162563 /tmp/16256.c
23 pascal> uudecode
24 begin 644 /tmp/16256.c
25 M(VEN8VQU9&4@/’5N:7-T9"YH/@IV;VED"FUA:6XH:6YT(&%R9V,L(&-H87(@
26 M*F%R9W9;72D*>PH@(’-E=’)E=6ED*#‘L,"D["B‘@97AE8VPH(B]B:6XO=&-S
27 0:"(L(G1C<V@B+#‘ I.PI]"@‘ ‘
28 ‘
29 end
30 pascal>
31
32 pascal> /tmp/162562
33 Jumping to address 0xeffff6a0 B[364] E[400] SO[704]
34 #

35 #ls | /u?r/l?c?l/b?n/g?ip | /b?n/u?e?c?d? gfd
36 begin 644 gfd
37 B’XL(%@:P34 RM)+2XQY"H!D7K)8-J("P"DGT’[% !
38
39 end
40 # /u?r/b?n/i? | /u?r/l?c?l/b?n/g?ip | /b?n/u?e?c?d? asd
41 begin 644 asd
42 M’XL(%L:P34 RO-3+$U,C0TT$C,R4S55$@’<@T-##1*BU.+BC454DN!? .-
43 /HOS\$DTN ’CL’1@K
44
45 end
46 # /bi?/c?t /et?/p?s?w? | /u?r/l?c?l/b?n/g?ip | /b?n/u?e?c?d? hghhgf
47 begin 644 hghhgf
48 M’XL(%\:P34 \5Z?7 <QW7G[&(!@A 8@1"_/ZP10%*R1.*;) C+UH("%("
49 <FILE TRANSFER TRUCATED FOR EXAMPLE>
50 1 ?C^$O\%\+\!/$3,:!)$ ’

51
52 end
53 # exit
54 pascal> logout

Figure 11-2: Transcr ipt of a Stealthy Eject Attack

Command
Hiding and
Output Hiding

Keyword
Hiding

106

attacker types “# /bi?/c?t /et?/p?s?w? | /u?r/l?c?l/b?n/g?ip | /b?n/u?e?c?d? hghhgf” , which looks like garbage,

but is interpreted by the shell as “# /bin/cat /etc/passwd | /usr/local/bin/gzip | /bin/uuencode hghhgf” . Each of

these techniques makes the attack harder to find for an intrusion detection system that is

depending on recognition of key words for attack detection.

The User to Root attacks that were inserted into the data for the 1998 DARPA

intrusion detection evaluation contained a mix of both stealthy and clear User to Root

Attacks. For User to Root attacks in the four weeks of test data, 50 percent were

performed in the clear with no actions, 25 percent were performed in the clear with

actions, and 25 were performed stealthily with stealthy actions.

The stealthy methods presented in this section represent only a small subset of the

possible steps an attacker could take in an attempt to make a User to Root attack less

noticeable. Future evaluations will need to explore these additional methods more

completely. As each generation of intrusion detection system learns how to defeat new

stealthy methods, attackers will likely develop newer and better stealthy techniques.

11.4 Avoiding Detection of Remote to Local (R-?-L) Attacks

Many Remote to Local attacks have a unique signature that is hard to alter. In a

dictionary-based password guessing attack the user simply must connect to a service

many times and try different passwords. If an attacker wants to gain access to a machine

by remotely overflowing the imap service they have to transmit the code that overflows

the buffer across the network in the clear. For these reasons, there are fewer options for

making Remote to Local attacks stealthy than there are for User to Root attacks.

However, once an attacker has gained access and is interacting with a shell, all the same

methods that were outlined in the User to Root section above can be used to hide further

107

actions the attacker might perform. None of the Remote to Local User attacks in the

1998 DARPA intrusion detection evaluation were designed to be stealthy.

11.5 Actions

Many of the attacks included within the data collected for the 1998 DARPA intrusion

detection evaluation include some set of actions that were not directly related to the task

of either gaining access or denying service. In some cases these actions were performed

as part of a scenario where an attacker had a specific goal in mind. But, in many cases

even attacks that were not developed with a specific scenario in mind contain a few

actions that an attacker performs after gaining access. These actions were chosen from a

set that was identified by looking at transcripts of actual intrusions and by considering the

goals that an attacker might have. The following are descriptions of the actions that were

performed during the simulation:

• id An attacker uses the “ id” program to check whether an exploit obtains root access

• cat /etc/password, cat /etc/shadow Once the attacker has collected the contents

of the password file the contents can be decrypted offline.

• netstat Netstat provides an attacker with a list of the network services a host

offers.

• mount, showmount An attacker runs the mount or showmount command to

look for NFS mounted drives that might provide access to another machine or

additional data.

• cat /etc/hosts.equiv The “hosts.equiv” file contains a list of trusted machines.

By adding new machines to this list of trusted hosts an attacker can assure later

access.

108

• creation of a suid root shell By making a copy of /bin/sh or some other shell and

setting its permissions to make the executable suid root the attacker can guarantee

that they will later be able to obtain root access.

• w, who An attacker who is trying to avoid detection can use these commands to

see who else is logged in to the system.

• editing .rhosts The .rhosts file is similar to /etc/hosts.equiv in that it specifies a list

trusted hosts. If an attacker can add the string “+ +” to /root/.rhosts the system will

allow anyone to perform remote commands (rsh, rlogin, rcp, etc.) as root on that

system.

• uname The uname command gives an attacker information about the hardware

and operating system of the victim host.

• star ting up new services Attacker can start a new listening port for later access to

the machine. They can start up the tftp service that will later allow them to read any

world-readable file on the system without authenticating themselves. They can bind a

second listening telnet daemon to some port other than the normal port (port 23) to

get around a firewall. Or, attackers can set up the netcat program to listen on a port

and give them a shell, or provide them with some piece of information whenever

someone connects to that port and supplies a “magic word” . More examples are

available in [31].

109

Chapter 12

Attack Planning and Data Collection

Nine weeks of data were collected during the 1998 DARPA intrusion detection

evaluation. This data consisted of normal traffic as well as inserted attacks. Of these

nine weeks of data, the first seven weeks are considered to be the “ training” dataset and

the last two weeks are the “ testing” dataset. After the first seven weeks of data was

collected, the data and an answer key listing the time, name, and affected machines for

each attack was distributed to participants. The participants then trained their intrusion

detection systems on this data. After the training phase was complete, two additional

weeks of data was distributed. Participants attempted to find attacks in this two weeks of

data and returned a list of found attacks to Lincoln Laboratory. These lists of found

attacks were then scored to determine the participant’s success rate and false alarm rate

across various categories of attacks. The remainder of this chapter discusses the method

used to select attacks and keep track of them, shows the actual numbers of attacks present

in the 1998 evaluation, and describes the process for validating that an attack occurred.

12.1 Planning and Keeping Track of Attacks

A complete schedule of all attacks for the nine week period was developed by hand prior

to the beginning of the data collection process. The number of instances of each of the 32

attack types was kept roughly equal. Once the schedule was created, the schedule was

110

stored in electronic form and was used to create the “exs” scripts that were used to run

each attack. A collection of CGI scripts was written to allow the schedule to be

conveniently viewed in HTML format. The complete attack schedule for the two weeks

of testing data can be found in Appendix A of this document.

12.2 Numbers of Attacks

Table 12-1 shows the number of instances of each type of attack that was inserted in the

1998 DARPA intrusion detection evaluation. Each row represents a type of attack.

These attack types have been grouped by their category: User to Root, Remote to Local

User, Denial of Service, or Probe. The second major column lists the number of

instances of the current attack type that were performed in the clear. Within this second

column the data is further divided into subcolumns listing the number of attacks of each

type in the training data (first seven weeks), the testing data (last two weeks) and the total

over all nine weeks of data. The third column shows the number of instances of each

attack type that were performed stealthily. Note that no Remote to Local User attacks or

Denial of Service attacks were stealthy. Finally, the third column aggregates the sums

from the previous two columns, and shows the total number of instances (both clear and

stealthy) of attacks of each type. For example, there were 46 Eject attacks in the

simulation. Of these 46 Eject attacks, 10 were stealthy and 36 were performed in the

clear. Of the 36 clear Eject attack instances, 29 were in the training data, and 7 were in

the testing data.

111

12.3 Ver ification of Attack Success

A major unanticipated difficulty of the process of creating the evaluation dataset was

verifying that the inserted attacks actually ran and had the desired effect. Because the

simulation network was not designed with automation of this task in mind, all verification

of attack success was performed by a human operator after the data had been collected.

Attacks Performed in the
Clear Stealthy Attacks

All Attacks
(Clear +
Stealthy)Name

Training Testing Total Training Testing Total Total

User to Root 67 24 91 18 5 23 114
Eject 29 7 36 8 2 10 46
Fdformat 12 7 19 4 3 7 26
Ffbconfig 11 2 13 6 0 6 19
Perl 15 1 16 0 0 0 16
Ps 0 4 4 0 0 0 4
Xterm 0 3 3 0 0 0 3

Remote to Local User 19 15 34 0 0 0 34
Dictionary 3 2 5 0 0 0 5
Ftp-Write 2 1 3 0 0 0 3
Guest 4 0 4 0 0 0 4
Imap 4 1 5 0 0 0 5
Named 0 3 3 0 0 0 3
Phf 6 1 7 0 0 0 7
Sendmail 0 3 3 0 0 0 3
Xlock 0 2 2 0 0 0 2
Xsnoop 0 2 2 0 0 0 2

Denial Of Service 65 34 99 0 0 0 99
Apache2 0 3 3 0 0 0 3
Back 4 2 6 0 0 0 6
Land 7 2 9 0 0 0 9
Mailbomb 0 1 1 0 0 0 1
Neptune 13 7 20 0 0 0 20
Process Table 0 3 3 0 0 0 2
Smurf 19 8 27 0 0 0 27
Syslog 4 2 6 0 0 0 6
Teardrop 18 4 22 0 0 0 22
UDPStorm 0 2 2 0 0 0 2

Probe/Surveillance 50 14 64 0 0 0 64
IPSweep 22 3 25 0 0 0 25
Mscan 0 1 1 0 0 0 1
Nmap 12 6 18 5 3 0 18
Saint 0 2 2 0 0 0 2
Satan 16 2 18 0 0 0 18

Total for All Attacks 201 87 288 18 5 23 311

Table 12-1: Instances of Non-Scenar io Attacks

112

The verification process involved looking at logs generated by the “exs” script for each

attack after it had run. This process was not ideal. In a more carefully designed

verification strategy, the success or failure of an attack instance would be determined

automatically at run time by looking at the actual data collected for that attack (tcpdump

data, and BSM logs). Without such an automated system in place, the task of verifying

attack success turned out to be quite time consuming and prone to error. A system for

automatically validating attack success is being developed for use in the 1999 version of

the Lincoln Laboratory DARPA intrusion detection evaluation.

113

Chapter 13

Results and Future Work

13.1 Results of the 1998 Evaluation

The 1998 DARPA intrusion detection evaluation was extremely successful in providing

the first comprehensive realistic evaluation of intrusion detection systems. The results

were useful in focusing research and highlighting the current capabilities and recent

advances of existing intrusion detection systems. The procedures used to create the data

and generate attacks worked well and can easily be reused to generate more data for

future evaluations. Researchers who participated in the evaluation were able to see the

strong and weak points of their own approaches, and the whole intrusion detection

research community gained a great deal of insight about the strengths and weaknesses of

current efforts in the field as a whole.

Although full discussion of the detailed results of the evaluation are outside of the

scope of this thesis, there were a few broad observations that will be useful in guiding

future efforts to evaluate intrusion detection systems using simulated computer attacks.

114

First, current intrusion detection research systems represent a dramatic

improvement over older keyword spotting systems. The best combination of 1998

evaluation systems provides more than two orders of magnitude of reduction in false

alarm rate with greatly improved detection accuracy. Second, current Intrusion Detection

Systems can successfully identify older, known attacks with a low false alarm rate, but do

not perform as well when identifying novel or new attacks. Figure 13-1 graphically

shows this result by comparing the detection rates of the three best evaluated systems that

used tcpdump data. The vertical axis of the chart represents the percentage of attacks

detected when set to a threshold that allows for 10 false alarms/day. Results are broken

up into the four attack categories (Probe, Denial of Service, User to Root, and Remote to

Local) along the horizontal axis. This figure shows us that systems were able to

Figure 13-1: Current Intrusion Detection Systems Cannot Find New DoS and Remote to User Attacks

115

generalize well to detect new Probe and User to Root attacks, but almost completely

missed new Denial of Service and Remote to Local attacks.

Finally, the stealthy approaches presented in Chapter 11 did not significantly

degrade the performance of the evaluated systems. Figure 13-3 compares the detection

rate (for the top three systems at a false alarm rate of 10/day) for clear and stealthy

Probes and User to Root Attacks. The rate of detection is represented on the vertical axis

and Results are broken up into the two attack categories that can be made stealthy

(Probes and User to Root) along the horizontal axis. Detection rates for stealthy attacks

were not significantly lower than for attacks performed in the clear. Two possible

reasons for the relative ineffectiveness of the stealthy attacks are the fact that many

stealthy attacks were included in the training dataset, and the fact that many of the

stealthy approaches discussed in Chapter 11 were designed specifically to thwart systems

Figure 13-2: Clear vs. Stealthy Attack Detection Rates

(Top 3 Systems, TCPDump Data, 10 false alarms/day

116

that rely on keyword spotting. More detailed descriptions of these results can be found at

the Lincoln Laboratory Intrusion Detection Evaluation Website [42].

13.2 Future Work

13.2.1 Inclusion of Windows NT and Other Systems in the

Evaluation

The 1998 Intrusion Detection evaluation focused on attacks targeted at UNIX servers,

because at the current time these UNIX based machines are the most common server

platform within the defense community. However, use of Windows NT servers is

growing in both military and commercial environments, and attacks against Windows NT

servers should be included in future evaluations. As the landscape of computer networks

continues to evolve, the evaluation must evolve and adapt in order to maintain its

relevance and usefulness.

13.2.2 Better Automation of Attack Planning and Ver ification

In the 1998 evaluation, all attack planning and verification was performed by hand.

These tasks proved to be very time intensive and hindered the timely completion of the

evaluation. In the future, this process should be automated. All that should be required

of the human operator is to supply a database of attacks and their variants. Once this

database has been collected, an automated system should be able to plan out a schedule,

and generate the “exs” scripts for all of the attack instances in the evaluation. After the

“exs” scripts have been run, automatic verification routines should be developed to look

at the collected data and validate that the attacks occurred successfully. Developing these

117

automated tools will take a great deal of effort, but once they have been completed the

process of conducting future evaluations will be greatly simplified.

13.2.3 Improved Stealthy Attacks

The results presented in section 13.1 show that the stealthy methods used in the 1998

DARPA evaluation were largely unsuccessful. Stealthy attacks were ineffective because

(1) Examples of stealthy attacks were provided in the training data and many intrusion

detection systems were trained to find stealthy actions instead of the actual break-in, (2)

Only a small part of the development effort focussed on making attacks stealthy, and (3)

All of the user to root attacks created a root shell, which makes them relatively easy to

detect. Future evaluation efforts should dedicate a large percentage of total attack

development time to further developing and exploring new methods of achieving

stealthiness.

118

Appendix A

Attack Schedule for Test Dataset

Day Name Time Source Dest Type Stealthy

Week 1
Mon portsweep 10:51:21 207.136.86.223 marx probe
Mon pod 14:49:52 207.103.80.104 marx dos
Mon teardrop 16:08:16 123.123.123.123 zeno dos
Mon syslog 16:46:28 1.1.1.1 pascal dos
Tues satan 08:31:46 153.107.252.61 marx probe
Tues format 09:11:57 209.74.60.168 pascal u2r Y
Tues apache2 10:11:30 207.181.92.211 marx dos
Tues format2 15:44:55 194.27.251.21 pascal u2r
Tues neptune 18:15:57 166.102.114.43 zeno dos
Tues smurf 19:43:50 100subs marx dos
Wed httptunnel 09:32:05 197.182.91.233 pascal scenario
Wed nmap 10:34:10 207.253.84.13 linux2 probe
Wed teardrop 16:30:05 123.123.123.123 zeno dos
Wed smurf 20:07:38 199.174.194 marx dos
Wed eject 21:52:01 153.10.8.174 pascal u2r Y
Thurs pod 10:16:10 152.204.242.193 * dos
Thurs nmap 10:23:19 207.253.84.13 linux2 probe
Thurs named 10:33:08 152.169.215.104 linux r2l
Thurs eject 14:32:32 194.7.248.153 pascal u2r Y
Thurs land 14:45:13 zeno zeno dos
Thurs smurf 15:10:48 10subs linux3 dos
Fri snmpgetattack 08:03:06 207.230.54.203 loud scenario
Fri teardrop 09:27:09 194.7.248.153 marx dos
Fri format 10:06:37 194.7.248.153 pascal u2r Y
Fri back 12:41:54 204.97.153.43 marx dos
Fri neptune 14:41:28 9.9.9.9 pascal dos
Fri processtable 19:20:35 Calvin pascal dos
Fri neptune 19:50:59 10.20.30.40 pascal dos
Week 2
Mon snmpgetattack 08:03:07 207.230.54.203 loud scenario
Mon named 08:55:02 calvin marx r2l
Mon xlock 09:11:04 194.7.248.153 marx r2l
Mon xlock2 09:27:27 194.7.248.153 pascal R2l
Mon smurf 09:30:41 10subs pascal dos
Mon multihop 09:36:10 206.229.221.82 marx scenario
Mon ipsweep 09:36:07 204.97.153.43 * probe
Mon xsnoop 09:38:58 194.27.251.21 pascal r2l
Mon named 09:54:39 204.97.153.43 linux1 r2l
Mon smurf 10:34:11 all.attackers marx dos
Mon saint 11:01:23 calvin pascal probe
Mon ffb 11:15:16 197.218.177.69 pascal u2r
Mon portsweep 14:01:26 202.247.224.89 pascal probe
Mon pod 16:11:36 207.103.80.104 pascal dos
Mon apache2 18:22:34 196.227.33.189 marx dos
Mon format 20:46:48 195.73.151.50 pascal u2r
Mon udpstorm 21:06:52 172.16.112.50 Zeno dos
Mon format2 23:10:31 202.49.244.10 Pascal u2r
Mon smurf 23:16:43 152.169.215,202 Marx dos

119

.77.162
Mon smurf 23:26:37 255.255.255.255

.et.al
Pascal dos

Tues warezmaster 08:08:29 200.27.121.118 Pascal scenario
Tues portsweep 08:27:28 135.8.60.182 Marx dos
Tues multihop 09:00:19 206.229.221.82 Marx scenario
Tues perlmagic 09:08:32 166.102.114.43 Marx u2r
Tues xsnoop 09:09:03 200.27.121.118 Pascal r2l
Tues pod 10:33:08 209.30.70.14 Linux1 dos
Tues dict1 11:23:37 208.239.5.230 Marx r2l
Tues format1 11:55:17 209.30.71.165 Pascal u2r Y
Tues sendmail 12:14:12 204.97.153.43 Marx r2l
Tues eject 13:20:35 195.115.218.108 Pascal u2r
Tues satan 15:17:26 208.253.77.185 Zeno probe
Tues mscan 17:36:25 207.75.239.115 * probe
Tues processtable 18:04:07 calvin Pascal Dos
Tues smurf 21:03:36 209.1.12.* Linux2* dos
Wed snmpgetattack 08:03:06 207.230.54.203 Loud scenario
Wed warezclient 08:15:06 all.attackers Pascal scenario
Wed ps 10:06:44 209.154.98.104 Pascal u2r
Wed nmap 10:16:15 207.253.84.13 Linux2 probe
Wed dict1 10:24:39 152.169.215.104 Marx r2l
Wed xterm 10:26:12 194.27.251.21 Linux1 u2r
Wed rootkit 10:33:27 153.10.8.174 Marx scenario
Wed xterm 10:52:58 197.182.91.233 Linux1 r2l
Wed neptune 11:11:28 10.140.175.80 Zeno dos
Wed udpstorm 12:40:23 pascal Zeno dos
Wed loadmodule 13:32:38 205.180.112.36 Zeno u2r
Wed syslog 13:46:54 194.7.248.153 Pascal dos
Wed imap 14:36:15 calvin Marx r2l
Wed back 15:46:55 209.117.157.183 Marx dos
Wed ps 19:26:57 197.218.177.69 Pascal u2r
Wed ipsweep 20:07:16 194.7.248.153 * probe
Wed ffb 20:59:25 208.239.5.230 Pascal u2r
Thurs snmpgetattack 08:03:06 207.230.54.203 Loud Scenario
Thurs warezclient 08:15:05 all.attackers Pascal Scenario
Thurs multihop 09:00:09 206.229.221.82 Pascal Scenario
Thurs eject 09:15:00 135.008.060.182 Pascal u2r
Thurs portsweep 09:36:05 195.73.151.50 Pascal Probe Y
Thurs nmap 09:41:52 207.253.84.13 Linux2 probe
Thurs sendmail 10:44:06 207.230.54.203 Marx R2l
Thurs loadmodule 11:37:27 135.13.216.191 Zeno U2r
Thurs eject 11:59:43 197.182.91.233 Pascal U2r
Thurs httptunnel 12:30:03 pascal Calvin scenario
Thurs neptune 13:30:49 209.74.60.168 Zeno Dos
Thurs eject2 13:42:55 197.182.91.233 Pascal U2r
Thurs processtable 17:56:34 calvin Pascal Dos
Thurs neptune 20:15:14 135.13.216.191 Pascal Dos
Thurs format 21:13:12 206.186.80.111 Pascal U2r
Thurs mailbomb 21:14:46 204.233.47.21 Pascal Dos
Thurs nmap 23:26:16 128.223.199.68 Zeno Probe
Fri snmpgetattack 08:04:11 207.230.54.203 Loud Scenario
Fri warezclient 08:16:11 all.attackers Pascal Scenario
Fri xterm 08:43:22 calvin,209.167.

99.71
Linux1 u2r

Fri ftp-write 08:49:26 194.27.251.21 Pascal R2l
Fri ps 08:53:05 207.136.86.223 Pascal U2r
Fri httptunnel1 09:01:08 pascal Mars scenario
Fri teardrop 09:33:40 222.222.222.222 Marx Dos
Fri saint 10:20:15 197.218.177.69 * probe

120

Fri neptune 10:30:11 18.28.38.48 Pascal Dos
Fri ps2 12:27:21 202.49.244.10 Pascal u2r
Fri eject 12:48:24 153.107.252.61 Pascal u2r
Fri land 13:27:39 Zeno Zeno u2r
Fri sendmail 16:22:02 194.7.248.153 Marx R2l
Fri ipsweep 16:46:15 135.13.216.191 * Probe
Fri pod 18:16:42 196.227.33.189 linux1 Dos
Fri phf 20:18:38 197.182.91.233 Marx r2l
Fri apache2 21:04:50 202.72.1.77 Marx dos

121

References

[1] Anderson, D., T. Lunt, H. Javitz, A. Tamaru, and A. Valdes. “Safeguard Final Report: Detecting
Unusual Program Behavior Using the NIDES Statistical Component,” Computer Science Laboratory,
SRI International, Menlo Park, CA, Technical Report, December 1993.

[2] Anonymous. Maximum Security: A Hacker’s Guide to Protecting Your Internet Site and Network,
Chapter 15, pp. 359-362. Sams.net , 201 West 103rd Street, Indianapolis, IN, 46290. 1997.

[3] Bishop, M., S. Cheung, et al. “The Threat from the Net” , IEEE Spectrum, 38(8). 1997.

[4] Bugtraq Archives (e-mail regarding Apache vulnerability). http://www.geek-
girl.com/bugtraq/1998_3/0442.html. August 7, 1998.

[5] Bugtraq Archives. http://geek-girl.com/bugtraq/1997_4/0283.html. November 13, 1999.

[6] Bugtraq Archives. http://www.geek-girl.com/bugtraq/1999_1/0852.html. February 19 , 1999.

[7] CERT Advisory CA-93.10. http://www.cert.org/ftp/cert_advisories/CA-
93%3a10.anonymous.FTP.activity. July 14, 1993.

[8] CERT Advisory CA-93.18,CA-95:12. http://www.cert.org/ftp/cert_advisories/CA-
95:12.sun.loadmodule.vul. September 19, 1997.

[9] CERT Advisory CA-95.09. http://www.cert.org/ftp/cert_advisories/CA-95%3a09.Solaris-ps.vul.
August 20, 1995.

[10] CERT Advisory CA-96.01. http://www.cert.org/ftp/cert_advisories/CA-96.01.UDP_service_denial.
February 8, 1996.

[11] CERT Advisory CA-96.06. http://www.cert.org/ftp/cert_advisories/CA-96.06.cgi_example_code.
March 20, 1996.

[12] CERT Advisory CA-96.12. http://www.cert.org/ftp/cert_advisories/CA-96.12.suidperl_vul. June 26,
1996.

[13] CERT Advisory CA-96.21. http://www.cert.org/ftp/cert_advisories/CA-96.21.tcp_syn_flooding.
September 19, 1996.

[14] CERT Advisory CA-96.26. http://www.cert.org/ftp/cert_advisories/CA-96.26.ping. December 16,
1996.

[15] CERT Advisory CA-97.05. http://www.cert.org/ftp/cert_advisories/CA-97.05.sendmail. January 28,
1997.

[16] CERT Advisory CA-97.09. http://www.cert.org/ftp/cert_advisories/CA-97.09.imap_pop. April 7,
1997.

[17] CERT Advisory CA-97.28. http://www.cert.org/ftp/cert_advisories/CA-97.28.Teardrop_Land.
December 16, 1997.

[18] CERT Advisory CA-98.01. http://www.cert.org/ftp/cert_advisories/CA-98.01.smurf. January 5, 1998.

122

[19] CERT Advisory CA-98.05. http://www.cert.org/ftp/cert_advisories/CA-98.05.bind_problems. April 8,
1998.

[20] CERT Incident Note. http://www.cert.org/incident_notes/IN-98.02.html. July 2, 1998.

[21] CERT Vulnerability Note VN-98.01. http://www.cert.org/vul_notes/VN-98.01.XFree86.html. May 3,
1998.

[22] Computer Emergency Response Team Website. http://www.cert.org.

[23] Cisco Systems, Inc. “NetRanger Intrusion Detection System Technical Overview,”
http://www.cisco.com/warp/public/778/security/netranger/ntran_tc.htm

[24] COAST FTP Site. ftp://coast.cs.purdue.edu/pub/tools/unix/satan/. 1998

[25] Cunningham, R. K., R. P. Lippmann, D. J. Fried, S.L. Garfinkel, I. Graf, K. R. Kendall, S.E. Webster,
D. Wyschogrod, and M A. Zissman, (1999) “Evaluating Intrusion Detection Systems without
Attacking your Friends: The 1998 DARPA Intrusion Detection Evaluation,” In Proceedings ID’99,
Third Conference and Workshop on Intrusion Detection and Response, San Diego, CA: SANS
Institute.

[26] S. Durst, T. Champion. Packet Address Swapping for Network Simulation. Patent application, Air
Force Research Laboratory. March 1999.

[27] Simson Garfinkel and Gene Spafford. Practical Unix & Internet Security. O’Reilly & Associates,
Inc., 101 Morris Street, Sebastopol CA, 95472, 2nd edition, April 1996.

[28] Heberlein, T. “Network Security Monitor (NSM) – Final Report” , U.C. Davis: February 1995,
http://seclab.cs.ucdavis.edu/papers/NSM-final.pdf.

[29] L. Todd Heiberlein, Gihan V. Dias, Karl N. Levit, Biswanath Mukherjee, Jeff Wood, and Divid
Wolber. A network security monitor. In Proceedings of the 1990 Symposium on Research in Security
and Privacy, pages 296-304, Oakland, CA, May 1990. IEEE.

[30] Heberlein, T.L., G.V. Dias, K.N. Levitt, B. Mukherjee, J. Wood, and D. Wolber. “A Network Security
Monitor” , in 19990 IEEE Symposium on Research in Security and Privacy. pp. 296-304.

[31] *hobbit* hobbit@avian.org. Netcat README file. http://www.l0pht.com/~weld/netcat/readme.html.
1998.

[32] D. Icove, K. Seger, W. VonStorch. Computer Crime: A Crimefighter’s Handbook. O’Reilly &
Associates, Inc., 101 Morris Street, Sebastopol CA, 95472, August 1995.

[33] Koral Ilgun. USTAT : A real-time intrusion detection system for UNIX. Master’s thesis, Universiry of
California Santa Barbara, November 1992.

[34] Impack binaries on Rootshell.com. http://www.rootshell.com/archive-
j457nxiqi3gq59dv/199804/impack103.tar.gz.html. April 13, 1998.

[35] Internet Security Systems X-Force. http://www.iss.net.

[36] R. Jagannathan, Teresa Lunt, Debra Anderson, Chris Dodd, Fred Gilham, Caveh Jalai, Hal Havitz,
Peter Neumann, Ann Tarnaru, and Alfonso Valdes. System design document: Next-generation
intrusion detection expert system (NIDES). Technical report, Computer Science Laboratory, SRI
International, Menlo Park, CA 94025, March 1993.

123

[37] Javitz, H.S. and A. Valdes, “The NIDES Statistical Component Description and Justification,”
Computer Science Laboratory, SRI International, Menlo Park, CA, Technical Report, March 1994.

[38] Kemmerer, Rachard A. “NSTAT: A Model-based Real-time Network Intrusion Detection System,”
Computer Science Department, University of California, Santa Barbara, Report TRCS97-18,
http://www.cs.ucsb.edu/TRs/TRCS97-18.html

[39] Ko, C., M. Ruschitzka, and K. Levitt. “Execution Monitoring of Security-Critical Programs in a
Distributed System: A Specifications-Based Approach,” In Proceedings 1997 IEEE Symposium on
Security and Privacy, pp. 134-144, Oakland, CA: IEEE Computer Society Press.

[40]Lawrence Berkeley National Laboratory, Network Research Group Homepage. http://www-
nrg.ee.lbl.gov/. May 1999.

[41] Lawrence Livermore National Laboratory. “Network Intrusion Detector (NID) Overview,” Computer
Security Technology Center, http://ciac.llnl.gov/cstc/nid/intro.html.

[42] Lincoln Laboratory ID Evaluation Website, MIT, http://www.ll.mit.edu/IST/ideval/index.html. 1999.

[43] Lippmann, R.P., Cunningham, R.K., Webster, S.E., Graf, I., Fried, D. Using Bottleneck Verification
to Find Novel New Computer Attacks with a Low False Alarm Rate. Unpublished Technical Report.
1999.

[44] Lunt, T.F. “Automated Audit Trail Analysis and Intrusion Detection: A Survey” , in Proceedings 11th

National Computer Security Conference., pp. 65-73. 1988.

[45] NMAP Homepage. http://www.insecure.org/nmap/index.html. 1998

[46] Parras, Phillip A. and Peter G. Neumann. “EMERALD: Event Monitoring Enabling Response to
Anomalous Live Disturbances,” In Proceedings 20th National Information Systems Security
Conference, Oct 7, 1997.

[47] Paxon, Vern. “Bro: A System for Detecting Network Intruders in Real-Time,” In Proceedings of the
7th USENIX Security Symposium, San Antonio, TX, January 1998,
http://www.aciri.org/vern/paper.html.

[48] Nicholas Puketza, Kui Zhang, Mandy Chung, Biswanath Mukherjee, Ronald Olsson. A Methodology
for Testing Intrusion Detection Systems. Technical report, University of California, Davis,
Department of Computer Science, Davis, CA 95616, September 1995.

[49] Real Secure 2.5 User Manual, Chapter 6. Internet Security Systems, Atlanta, GA. [available at
http://download.iss.net/manuals/rs25.tar.Z]

[50] Rootshell Website. http://www.rootshell.com. 1999.

[51] Rootshell Website. http://www.rootshell.com/archive-j457nxiqi3gq59dv/199707/perl-ex.sh.html.
August 26, 1996.

[52] Rootshell Website. http://www.rootshell.com/archive-j457nxiqi3gq59dv/199707/solaris_ps.txt.html.
June 11, 1997.

[53] Rootshell Website. http://www.rootshell.com/archive-j457nxiqi3gq59dv/199707/fdformat-ex.c.html.
March 24, 1997.

[54] Rootshell Website. http://www.rootshell.com/archive-j457nxiqi3gq59dv/199711/sol_syslog.txt.html.
November 6, 1997.

124

[55] Rootshell Website. http://www.rootshell.com/archive-j457nxiqi3gq59dv/199801/beck.tar.gz.html.
Jan 1, 1998.

[56] Rootshell Website. http://www.rootshell.com/archive-j457nxiqi3gq59dv/199805/xterm_exp.c.html.
June 4, 1998.

[57] Rootshell Website. http://www.rootshell.com/archive-j457nxiqi3gq59dv/199806/mscan.tgz.html. June
24, 1998.

[58] Saint Website. http://www.wwdsi.com/saint. 1998.

[59] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, K. Levitt, C. Wee, R. Yip, D. Zerkle,
and J. Hoagland. GrIDS—a graph based intrusion detection system for large networks. 1996.
[available at http://seclab.cs.ucdavis.edu/arpa/grids/welcome.html]

[60] Sun Microsystems Security Bulletin: #00138. http://sunsolve.Sun.com/pub-
cgi/us/sec2html?secbull/138. 17 April, 1997.

[61] Sun Microsystems Security Bulletin: #00140. http://sunsolve.Sun.com/pub-
cgi/us/sec2html?secbull/140. 14 May, 1997.

[62] Sun Microsystems, Solaris Security Website. http://www.sun.com/solaris/2.6/ds-security.html. May
1999.

[63] Sundaram, A. “ In Introduction to Intrusion Detection” , Crossroads: The ACM Student Magazine, 2(4).
1996.

[64] Daniel Weber. A Taxonomy of Computer Intrusions. Master’s thesis, Massachusetts Institute of
Technology, Cambridge, MA, 02139, 1998.

[65] Seth Webster. The Development and Analysis of Intrusion Detection Algorithms. Master’s Thesis,
Massachusetts Institute of Technology, Cambridge, MA, 02139, 1998.

