
Submitted to DISCEX-II

Extending the DARPA Off-Line Intrusion Detection Evaluations

Joshua W. Haines, Lee M. Rossey, and Richard P. Lippmann
Lincoln Laboratory, Massachusetts Institute of Techonology

244 Wood Street
Lexington, Massachusetts 02420-9108

{jhaines,lee,rpl}@sst.ll.mit.edu

Abstract

The 1998 and 1999 DARPA off-line intrusion
detection evaluations assessed the performance of
intrusion detection systems using realistic background
traffic and many examples of realistic attacks. This paper
discusses three extensions to these evaluations. First, the
Lincoln Adaptable Real-time Information Assurance
Testbed (LARIAT) has been developed to simplify
intrusion detection development and evaluation. LARIAT
allows researchers and operational users to rapidly
configure and run real-time intrusion detection and
correlation tests with robust background traffic and
attacks in their laboratories. Second, “Scenario
Datasets” have been crafted to provide examples of
multiple component attack scenarios instead of the atomic
attacks as found in past evaluations. Third, extensive
analysis of the 1999 evaluation data and results has
provided understanding of many attacks, their
manifestations, and the features used to detect them. This
analysis will be used to develop models of attacks,
intrusion detection systems, and intrusion detection
system alerts. Successful models could reduce the need
for expensive experimentation, allow proof-of-concept
analysis and simulations, and form the foundation of a
theory of intrusion detection.

1. Introduction

The 1998 and 1999 DARPA off-line intrusion

detection evaluations provided intrusion detection
researchers with many examples of attacks and normal
traffic. They also provided DARPA program managers
and researchers with a thorough assessment of research
intrusion detection system performance [1,2,5,13]. Eight
research sites submitted host and network-based intrusion
detections systems for evaluation. Off-line datasets
supported the evaluation, and contained extensive
examples of normal and attack traffic run on a realistic

testbed network. This data includes network traces,
Solaris BSM and Windows NT auditing logs, other log
files, and file system information. It allows researchers to
easily and quickly perform many identical trial runs with
different intrusion detection techniques. More than 160
sites have downloaded the data from these evaluations to
test and develop intrusion detection systems [6]. Section 2
of this paper reviews the design, results, and limitations of
these evaluations.

Recent advances in intrusion detection technology
require that the 1998 and 1999 evaluations be extended to
more fully test new detection systems and techniques. In
addition, the two completed evaluations can form the
basis of new modeling and simulation efforts that can
reduce the need for expensive experimentation. Three
current efforts are planned and/or in progress to extend
the earlier evaluations.

First, the Lincoln Adaptable Real-time Information
Assurance Testbed (LARIAT) is a collection of software
and tools that can be distributed to developers to provide
an easily configurable real-time testbed for intrusion
detection development and testing. LARIAT allows
developers to simulate a wide range of operating
environments by producing realistic background traffic on
testbeds in their own labs. Attacks can be scripted and
inserted into this traffic at pre-defined times. Researchers
can test and train real-time detection techniques and can
also run and re-run tests with varied background traffic
and attacks without having to wait for a new off-line
dataset to be published. LARIAT has been under
development for roughly one year and is described in
section 3.

Second, two short, focused datasets containing attack
scenarios have been created and distributed. In each, a
novice adversary attacks a naively defended network.
These attacks and realistic background traffic were run on
a network testbed that modeled the naively defended
network. Network traces from the “Internal” and “DMZ”
networks, and Solaris BSM host auditing data contain
evidence of all of the phases of these attack scenarios.

This work was sponsored by DARPA under Air Force Contract F19628-95-C-0002. Opinions, interpretations, conclusions,
and recommendations are those of the authors and are not necessarily endorsed by the United States Air Force.

Submitted to DISCEX-II

 2

Labeling is provided in terms of textual descriptions,
individual packets or Solaris BSM records, and alerts
based on the IETF standard Intrusion Detection Message
Exchange Format (IDMEF) [11]. These datasets are
described in section 4.

Third, the 1999 Evaluation supported several major
analyses that can be the basis for new modeling and
simulation efforts. Initially, accurate labeling of the
attacks in the data established evaluation “truth”. Then,
participants and evaluators analyzed initial evaluation

results to agree on the scoring truth and to determine why
attacks were missed and what caused false alarms. Also,
participants and evaluators analyzed detection rates, false
alarm rates, and identification scoring results in detail for
presentation to the research community and to DARPA.
These extensive efforts provide understanding of many
attacks, their manifestations, and features used to detect
attacks. They also show the importance of using realistic
and detailed adversary models, such as those described in
[7,8]. Planned modeling and simulation efforts are based
on these evaluation results and are described in section 5.

2. Review of the 1999 evaluation

The DARPA 1998 and 1999 Intrusion Detection

Evaluations consisted of comprehensive technical
evaluations of research intrusion detection systems
[1,2,5,13]. These evaluations had two main objectives:
to evaluate the performance of DARPA-funded intrusion
detection technology; and to support the reseachers
developing that technology. Intrusion detection systems
were evaluated for detection accuracy by providing both
realistic background traffic and attacks to allow
measurement of false alarm and attack detection rates.
The evaluation assisted research and development by
providing extensive examples of realistic background
traffic based on observations made at an operational site
in 1998. Usage patterns of a wide variety of common
services were modeled and these models were the basis
for the synthesis of realistic user-sessions using real

services and protocols. Synthetic users surfed the web,
sent, read, and replied to email, transferred files with FTP,
logged into hosts with Telnet and SSH, edited documents,
and edited and compiled code. Many examples of a wide
range of attacks were also provided. These evaluations
were not designed to evaluate complete, deployable
intrusion detection systems or commercial systems, but
rather to evaluate the accuracy of alternate technical
approaches.

Figure 1 shows the isolated test bed network that
supported the 1999 evaluation. Scripting techniques that
extend the approaches used in [3,4] are used to generate
live background traffic that is similar to traffic that flows
between the inside of one Air Force base and the Internet.
This approach was selected for the evaluation because
hosts can be attacked without degrading operational
systems and because corpora containing background
traffic and attacks can be widely distributed without
security or privacy concerns. A wide variety of
background traffic is generated in the test bed that appears
to have been initiated by hundreds of users, sourced from
tens of hosts, and destined to thousands of hosts. The left
side of Figure 1 represents the inside of the fictional Eyrie
Air Force base and the right side represents the Internet.
Automated attacks were launched against four inside
victim machines (SunOS, Solaris, Linux, and Windows
NT) and the router from both inside and outside hosts.
Not shown in this figure are the Windows NT and UNIX
workstations from which the attacks were launched.
More than 200 instances of 58 different attacks were
embedded in three weeks of training data and two weeks
of test data.

Machines labeled “sniffer”, in Figure 1, capture
packets transmitted over the attached network segment
using tcpdump [18]. In addition, Windows NT audit
events and Solaris BSM audit events are collected from
victim hosts. File system listings and dumps of selected
files are also collected from each of the victims.

The 1999 evaluation focused on measuring the ability
of systems to detect new attacks without first training on
instances of these attacks. Many new attacks were
developed and examples of only a few of these were
provided in training data. Some attacks were launched
from within the Air Force Base network, to simulate the
dangers posed by insider attacks. Inside sniffer data was
provided to researchers to enable detection of these
attacks. Stealthy attacks were included to simulate
sophisticated attackers who can carefully craft attacks to
look like normal traffic [15,16]. Attacks against
Windows NT were included to simulate the increased use
of such systems in operational settings. Occasional attack
and normal traffic sessions were fragmented using
techniques similar to those described in [12]. Two types
of analyses were performed in addition to attack detection
and false alarm analysis. First, participants optionally

INSIDEINSIDE
((Eyrie Eyrie AF Base)AF Base)

SunOS

��
Solaris

�������
��
��
Solaris

�������
��
��

NT

����������

NT

����������
CISCO

ROUTER

AUDIT
DATA

SNIFFER DATAFILE SYSTEM DUMPS

Linux

�����������
INSIDE

SNIFFER
OUTSIDE
SNIFFER

100’S OF
EMULATED PC’S

AND
WORKSTATIONS

1000’S OF
EMULATED

WORKSTATIONS
AND WEB SITES

OUTSIDEOUTSIDE
(Internet) (Internet)

Figure 1 Block diagram of 1999 test bed.

Submitted to DISCEX-II

 3

submitted attack forensic information that could help a
security analyst identify the important characteristics of
the attack and formulate responses. This identification
information included the attack category, the attack name
for old attacks (those seen in training data), the ports or
protocols used, and the IP addresses used by the attacker.
Second, an analysis of misses and high-scoring false
alarms was performed for each system to determine why
systems miss specific attacks and what causes false
alarms.

The evaluation results[1,2] showed that the best
overall performance would have been provided by a
combined intrusion detection system that used both host-
and network-based intrusion detection. Detection
accuracy was poor for new (not previously seen), stealthy,
and Windows NT attacks. Ten of the 58 attack types were
completely missed by all systems. Systems missed
attacks because protocols and TCP services were not
analyzed at all or to the depth required, because signatures
for old attacks did not generalize to new attacks, and
because auditing was not available on all hosts. Promising
capabilities were demonstrated by host-based systems, by
anomaly detection systems, and by a system that performs
forensic analysis on file system data.

The Results of the 1999 evaluation should be
interpreted within the context of the test bed, background
traffic, attacks, and scoring procedures used. The
evaluation used a reasonable, but not exhaustive, set of
attacks with a limited set of actions performed as part of
each attack. It also used a simple network topology, a
non-restrictive security policy, a limited number of victim
machines, probabilistic low-volume background traffic,
simple scoring, and extensive instrumentation to provide
inputs to intrusion detection systems. Future evaluation
efforts could improve in many of these areas including
testing systems in a range of environments with differing
background and attack characteristics.

The off-line evaluation format limited the 1998 and
1999 evaluations to passive intrusion detection systems
that can operate in an off-line mode. The off-line format
is difficult to use with systems that query hosts or other
network components, or with systems that respond by
changing network or host configurations. Queries can
probe the network or request information from an

application or operating system in response to some
possible attack detection. Although not impossible, it is
quite difficult to record all state information that might be
required by a query, and thus produce an off-line data
stream to take the place of a real-time implementation. It
is also difficult to evaluate systems that respond to attacks
by changing host or network configurations since the
effects of changes on the attack or background traffic are
difficult to predict and include in a static, off-line dataset.
The DARPA real-time evaluation [22] responded to some
of these needs but was time consuming to run since
evaluators had to setup and run the evaluation for each
intrusion detection system to be evaluated.

Additionally, the 1999 evaluation primarily
supported intrusion detection systems that detect atomic
attack actions using raw event streams as input. Currently,
correlation and fusion systems are being developed that
operate at a higher level and use the outputs from low-
level intrusion detection systems as input. These systems
attempt to recognize related events to find attack
scenarios, increase understanding of individual activity, or
reduce the number of false alarms. The 1999 evaluation
datasets can support some correlation systems that
attempt to better identify atomic attack instances or
reduce false alarm rates using one or more lower-level
detectors. However, correlation systems that recognize
multiple component attack scenarios with one or more
detection alert streams will need datasets containing
realistically written, multiple-component attack scenarios.

Many other lessons were learned from the 1999
evaluation. It is expensive and time consuming to setup
and run background traffic and attacks for days and
weeks. Attacks fail and machines crash, often for reasons
that are difficult to predict and avoid. Verifying that an
attack ran successfully, cleaning up after it, and scoring
putative detection alerts was much more complex than
expected. Better automation of background traffic
generation and attack launch coordination can help, along
with automated network and host initialization, attack
verification and cleanup, and integrated scoring software.

3. LARIAT

Submitted to DISCEX-II

 4

The Lincoln Adaptable Real-Time Information
Assurance Testbed, LARIAT, overcomes many of the
limitations of the 1998 and 1999 off-line evaluations by
giving users and developers a framework in which to
perform real-time tests of intrusion detection systems and
other information assurance tools in their own
laboratories. LARIAT provides an easily configured test
environment for intrusion detection systems that query
hosts and networks or that invoke responses. LARIAT
abstracts the underlying complexity of traffic generation,
to allow users to quickly and easily perform test runs at a
wide range of traffic rates. It also allows users to
customize traffic load and content, add or remove hosts,
and even integrate LARIAT into an existing testbed
network. This section describes how a LARIAT test run
proceeds and how LARIAT can be configured.

LARIAT provides easily configured versions of the
background traffic generation and attack scripting
software used in the 1999 Evaluation and a graphical user
interface (GUI) for configuration and control. Figure 2
shows the base LARIAT network. Similar to the 1999
evaluation testbed, the left side of the figure simulates the
external Internet while the right side simulates the Intranet
being protected and against which attacks are launched.
The network director is a Java applet that can be run from
within a web browser of any host on the network. It

controls the testbed and allows the user to setup test runs
via the GUI. The traffic generators run Red Hat Linux
and a special version of the Linux kernel that allows one
traffic generator to look like many hosts on the internal
network, and the other to look like many hosts around the
Internet [19,22]. Background traffic sessions are sourced
from and destined to both virtual hosts and real victim
hosts that the user places on the network and configures
into the generation software. The Root DNS & Web
machine serves as the root Domain Name Service (DNS)
server for the testbed and mirrors web content from
thousands of real websites. It uses the same Linux kernel.
Content can be retrieved via an existing Internet
connection if desired. Attacks are launched from the
attacker. The attacker’s IP address can be selected at
attack time from IP addresses used by the traffic
generator. The victims shown are Solaris 2.8 (x86),
Linux, and Windows 2000 as these are the platforms for
which attacks have thus far been incorporated, however
any platform could be added as a victim. The network
director allows the user to add new victim hosts to the
background traffic as necessary so that normal use traffic
impinges on machines being attacked. Additional traffic
generators, on additional subnets, with more virtual hosts,
can be added to model more complex operating
environments.

Attacker,
Root DNS

& web
RedHat 6.2

Traffic
Generator
RedHat 6.2

External Internal

Traffic
Generator
RedHat 6.2

Victim(s)
Solaris 2.8 (x86),
RedHat 7.0,or

others

Firewall

Dynamic IP Network
Director
&Victim

Windows 2000,
or other

56 external
hosts

> 2500
external

hosts (web)

26 internal
hosts

Figure 2 LARIAT network diagram. Victim hosts and Traffic
Generators can be added as needed.

Submitted to DISCEX-II

 5

Each test run consists of a few steps, displayed on the
LARIAT GUI main panel in Figure 3. To start a test run,
the user selects a profile for the background traffic. A
profile defines the operating environment to be simulated
on the testbed. These profiles can be modified with
respect to the content and distribution of services, attacks,
and attack-launch times. Profiles can be saved and loaded
by the GUI for later use. Figure 4 shows a screen capture
of the GUI panel that allows background traffic
modification. The upper part of the panel shows the
aggregate traffic to be generated, including the start and
end times, a global rate modifier, and profiles of the

arrival rates of the user sessions of each traffic type. The
traffic profile graph gives the expected number of session
arrivals (y-axis) for each 15-minute interval throughout a
24-hour day (x-axis). The lower part of Figure 4 shows
how the user specifies the amount of FTP traffic to be
generated, with the profile for FTP traffic on a similar
graph (plotted by itself). User sessions for each traffic
type are similar to those in the 1999 evaluation data.
Arrival rate and distribution of sessions of each type can
be adjusted to specify aggregate content of background
traffic. This allows testing of an intrusion detection
system in a range of operating environments or testing of
system throughput with high traffic rates. The user can
also select and schedule attacks that will be used during a
test run. Attacks are scripted; some configurable details,

such as the victim host or username involved, can be
modified via the GUI.

 “Network Discovery” is a placeholder for future
functionality in which LARIAT will be able to “discover”
the hosts, users and capabilities of the network into which
it is installed, rather than having to be user-configured.
For example, basic reachability checks could verify which
network services are allowed from and to the configured
traffic generators.

During the “Initialize Network” stage, the control
software initializes the network and hosts by removing
artifacts from previous runs (e.g., hung user sessions and

processes) and initializing logging mechanisms. Hosts
involved in background traffic are also initialized to
ensure a common starting point for each run. During the
“Distribute Configuration” stage, the network director
sends the user-specified profiles to each traffic generator.
Then during the “Pre-Conditions” stage, the traffic
generators synthesize scripts for each background traffic
session. These scripts use a custom extension to the
Expect scripting language that was developed for the
1998 and 1999 evaluations. It allows fine-grained control
of how long simulated human users wait between entering
commands in interactive sessions and how long it takes to
type commands using probabilistic inter-character delays.
Attack scripts and these background traffic scripts are
scheduled to run at the appropriate times by a batch script

Figure 4 The LARIAT GUI profile-
editing panel. Here the user can modify
the background traffic profile.

Figure 3 The LARIAT GUI's main control
panel. Here the user can view the status of a
test run.

Submitted to DISCEX-II

 6

on each traffic generator and the attacker. Finally, the
test run is started.

During the run the user can view the progress of
background traffic and attacks in real-time via the GUI.
Upon completion of the run, or a specified interval after
each attack, special scripts verify that attacks ran
successfully by scanning attacker logs and searching for
evidence of the attack on the victim host. After the run,
cleanup scripts, specific to each attack, remove evidence
of that attack run, resetting any changes made by the
attack script. Hosts involved in background traffic are
also re-initialized. Hung user sessions are killed, as in the
earlier “Initialization” phase, to ensure that test runs start
from common system state, even if a test run is
terminated before completing.

In future versions, the network director will also
collect alerts from the intrusion detection system being
tested. The network director will then perform first-order
“scoring”, denoting alerts as “hits” or “false alarms” and
presenting them to the user via the GUI. This alert
classification process will be a guide for further analysis
by the user or researcher.

LARIAT provides many ways to configure the
background traffic and attack generation for each run or
test environment. Beyond adjusting traffic rate, profile,
and start/stop times by service, the user can add or
remove zones. Zones can correspond to Internet domains
or sub-domains and contain real and virtual hosts to be
sources and destinations of traffic sessions. Two zones
are configured by default. Zones can be supported with
additional traffic generators. Real and virtual hosts can
also be added to existing zones. Taffic generators are
supplied with information about each zone and the hosts
within them. To integrate new hosts, scripts are provided
to configure the new hosts with the system state (users,
passwords, files, directories) required for the background
traffic destined to the host. Alternatively, for some
services, it is possible to update the traffic generation
software with the existing system state of new hosts.
Users, via the network director GUI, tell the background
traffic generators how much and what types of traffic
from that zone are to be destined to other zones. Thus,

real victim hosts can be added or removed and
background traffic can be configured to impinge on the
new hosts, or LARIAT can be integrated into an existing
testbed. LARIAT can also archive all background traffic
scripts from an entire run to replay them at a later time.

LARIAT currently generates traditional UNIX
background traffic sessions (FTP, Telnet, Web-Surfing,
SMTP mail traffic, PoP, etc.) and some sessions to and
from Windows NT hosts (Telnet, FTP, Mail, Web-
surfing), similar to those described in Section 7 of [13].
New services and traffic are being developed to match a
wider variety of current operating environments. A set of
attacks is provided with the tool, some of which are
specific to the victim hardware and software. Typically
attacks need to be selected for specific victims and
network configurations. Attacks can be scripted in
LARIAT’s Expect-based scripting language or can be
automated by incorporating the attack in its native form
(perl, shell script, binary, etc.) and running it via an
automatically generated wrapper script. Attacks can also
be launched manually, if desired.

4. Scenario datasets

The 1999 Evaluation showed that it is difficult to

design and create a single large dataset to satisfy the
needs of many intrusion detection researchers. Such a
dataset needs to have many examples of a wide range of
attacks; the 1998 and 1999 evaluation datasets used this
approach. Shorter datasets that focus on one particular
type of attack are easier to develop and can be more
useful to a researcher. For example, a four-hour test run
could focus on a User-to-Root attack and provide many
examples of that attack, or could focus on the Nmap [21]
network-probing tool and provide examples of all of the
command-line options of that tool. These datasets would
provide many examples of individual attack components
for lower-level intrusion detection research. A short,
focused data set could also address the needs of intrusion
correlation researchers by focusing on a single attack
scenario, and providing all of the steps of the scenario.

Submitted to DISCEX-II

 7

Two recently created scenario datasets address the
needs of mid-level correlation systems. Each includes
several hours of background traffic and a complete attack
scenario. Attacks and background traffic were run on the
same testbed used in the 1999 evaluation, but with the
addition of a commercial-off-the-shelf firewall and de-
militarized zone (DMZ) network separating the Internal
and Internet networks and a Solaris 2.7 victim host. The
adversary, adversary’s goal, defender and defender
capabilities are modeled by selecting the attack actions
and network defenses employed. In both datasets, a
novice adversary attacks a naively defended network with
the goal of installing the mstream [10] Distributed Denial
of Service (DDoS) software and launching a DDoS attack
against another military target. The firewall was
configured to allow many services, modeling the naive
defender, while the adversary carried out fairly blatant
attack actions, modeling the novice attacker. Datasets
were created with input from Sandia National
Laboratories and intrusion detection and correlation
researchers.

In the first dataset, LLS_DDOS_1.0, the attack is
almost entirely scripted and happens in several phases.
Figure 5 summarizes the network traffic generated by the
attacker’s actions. First, a sweep of every IP address at
the fictitious Eyrie Air Force Base discovers hosts. Live
hosts are probed for the Solaris Admin Suite (sadmind) by
attempting to connect to this RPC managed service.
Hosts running this service are attacked using the sadmind
exploit, a buffer-overflow yielding remote root-level
access [9]. For the attack to succeed, the attacker must
specify the correct stack pointer, which can vary from
architecture to architecture. The adversary has verified,
with independent testing, three stack pointers as
possibilities, and the script tries each pointer on all
potential victims. The attack attempts to create a root-

level user on the victim. Success is verified with a Telnet
to the victim. Three hosts are compromised. With this
access, the script uses Telnet and FTP to install an
mstream DDoS attack client on each victim and the
mstream server on one victim. At a later point, the
attacker manually logs into the mstream server and
launches the DDoS attack.

The second dataset, LLS_DDOS_2.0.2, is stealthier
than LLS_DDOS_1.0 and is also almost entirely scripted.
It conducts the initial scan using the DNS HINFO query.
If an administrator has put operating system information
into the HINFO records, these queries can indicate which
hosts are Solaris. The attack then directs the sadmind
probe at only those hosts that are reported to be Solaris.
This version of the scenario initially compromises only
one host at the base from the Internet, and then launches
all subsequent break-in attempts via a script from that
host, rather than performing all actions from the remote
host.

Network traces from outside the network gateway
and from the internal network are provided. Solaris BSM
auditing streams are provided from two of the three
primary victim hosts: mill.eyrie.af.mil (Solaris 2.7) and
pascal.eyrie.af.mil (Solaris 2.5.1). Table 1 shows these
data streams and indicates what attack evidence exists in
each. It is described in more detail in section 6. Three
types of truth labeling are provided. High-level labeling
is a paragraph describing each attack phase. Low-level
labeling specifies all packets or audit records from
sessions that correspond to the attack and helps
researchers find evidence left by these attacks. Mid-level
labeling contains IDMEF-style [11] XML alerts for each
network session and for each “exec” BSM audit record
that was related to the attack. Mid-level labeling shows
the alerts that one possible intrusion detection system

Figure 5 A plot of network traffic generated by LLS_DDOS_1.0 attack
scenarios. Gray marks or lines indicate traffic, the X-axis gives the notional time
at which it occurred and the Y-axis gives the type of traffic.

Port-Scan
using “ping”
option of
sadmind
exploit binary

Launch DDoS Attack

Install Mstream
DDoS master and
agents when
break-in succeeds

TCP-1024
.
.
.
.

TCP-Telnet
TCP-FTP

TCP-FTPDATA
.
.

TCP-1

UDP-9325
UDP-7983

UDP-SUNRPC
UDP-Sadmind

ICMP

Timeline

N
et

w
or

k
T

ra
ff

ic
 T

yp
e IPSweep

Attempt three break-ins
per host, each with a
different stack pointer
Verify success with a
telnet to each host

Mstream DDoS agents
“register” with master

Submitted to DISCEX-II

 8

might produce. This data and labeling is posted on a
password protected website for use by researchers [6].

5. Modeling and simulation

1999 Evaluation results and analysis provided
understanding of how and where evidence of exploits is
manifest in data streams used by intrusion detection
systems. Further, the evaluation provided understanding
of how intrusion detection systems work in terms of input
features and the type of analysis they perform. This
section presents a “Feature-Analysis” model for modeling
attacks and intrusion detection systems. Attack modeling
is discussed in Section 5.1 and intrusion detection system
modeling is described in Section 5.2. These models could
be a basis for proof-of-concept and probabilistic
experiments that could help reduce the need for costly
experimentation and foster rapid advances in the areas of
intrusion detection and information assurance. Several
specific applications for these models are described in
Section 5.3.

5.1 Attack models

Feature-Analysis modeling for attacks requires an
understanding of the evidence left by an attack. This
enables one to delimit the capabilities required by an
intrusion detection system to detect that attack. For
example, Table 1 shows data streams that must be
analyzed to find each action of the attack scenario used in
Lincoln Scenario Dataset LLS_DDOS_1.0. Ten attacker
actions that summarize the attack scenario are given, each
listed on a separate line of the table. Each square of the
grid shows a binary analysis of whether that action left
evidence in the data stream. For example, detection of the
IPsweep using Solaris BSM data might prove difficult,

but the Network traces contain sufficient evidence for
detection. Subdividing the cells of the table could yield a
more realistic analysis, called “Feature-Analysis”
modeling in this paper. For example, a TCPdump data
stream could be subdivided to indicate what data and
understanding must be retrieved from the network data to
detect the attack. The breakdown could be by the traffic
type (ARP, ICMP, UDP[DNS, Syslog, ...], TCP[telnet,
http, ftp, …], etc.) and the type of analysis performed (IP
packet header fields, TCP header fields, TCP Session,
etc.). For example, to best detect the IPsweep, the
intrusion detection system needs to look at one or more
ICMP packets within the network data stream.

5.2 Intrusion detection system models

Feature-Analysis modeling of intrusion detection
systems requires an understanding of how these systems
work. A thorough understanding of the input data
streams, features, detection algorithms, and output helps
in understanding what evidence must exist for an
intrusion detection system to detect an attack and helps
define the content of the resulting alert.

Table 2 shows a Feature-Analysis model for
Network-IDS-1, a fictitious, network based intrusion
detection system. The columns denote the data feature
input, and the rows give the level of analysis performed
by the intrusion detection system. As shown, “Network-
IDS-1” extracts and analyzes ICMP traffic, TCP/IP
headers (for common services), TCP/IP session setup (for
common services), and the content of HTTP sessions.
This detection system should be able to detect attacks
where evidence manifests itself in ICMP packets, TCP/IP
header fields and handshake, and in HTTP session
content.

This model in Figure 2 is certainly not complete or
ideal. Service and protocol categories could be
subdivided; for example, different types of ICMP packets
or DNS queries could be listed. Also, more specific
analysis techniques can be listed and more details of the
analysis could be provided. For modeling purposes, real-
time queries for information can be considered “data
streams” and a similar model of those sources of input
data can be created. The features extracted and analysis
techniques applied can be represented with the added
notion of the timing of the query(s) required for detection.
The Features and Analyses should represent the actual
intrusion detection system under consideration as much as
possible. Feature-Analysis models cannot be static; they
must be updated as more is learned about attacks and as
new intrusion detection techniques are developed. Rows
or columns must be added or sub-divided for each new
analysis technique or feature to maintain the realism of
the model. Table 1 Data streams that contain evidence of

each attacker action in LLS_DDoS_1.0.

YESYESYESYESLaunch DDoS

YESYESProbe sadmind, 8 non-Solaris hosts

YESYESYESYESDDoS

YESYESYESInstall/Run client on pascal

YESYESYESInstall/Run master/client on mill

YESYESYESBreakin via sadmindex, host pascal

YESYESYESBreakin via sadmindex, host mill

YESYESYESProbe for sadmind, Host pascal

YESYESYESProbe for sadmind, Host mill

YESYESIPSweep

YESYESYESYESLaunch DDoS

YESYESProbe sadmind, 8 non-Solaris hosts

YESYESYESYESDDoS

YESYESYESInstall/Run client on pascal

YESYESYESInstall/Run master/client on mill

YESYESYESBreakin via sadmindex, host pascal

YESYESYESBreakin via sadmindex, host mill

YESYESYESProbe for sadmind, Host pascal

YESYESYESProbe for sadmind, Host mill

YESYESIPSweep

Ins
ide

 T
CPd

um
p

Outs
ide

 T
CPd

um
p

Mill
So

lar
is B

SM
Pas

cal
 So

lar
is B

SM

Where the Exploit is Manifest

Submitted to DISCEX-II

 9

The Feature-Analysis technique can be extended to
model Solaris-BSM based intrusion detection systems by
altering the row/column heading to match the features and
analysis techniques of that data source. For example, the
columns would list the programs analyzed (inetd, named,
httpd, tcsh, etc.) and/or the type of record analyzed (exec,
open/close, etc.) The rows would list analysis techniques
specific to BSM-based detection (user profiling, program-
profiling, etc.)

As described earlier, Feature-Analysis modeling can
also apply to attacks. For each attack action and stream of
data to be considered, a table similar to Table 2 can be
created. The X-axis could show the ways in which
evidence of that attack manifests itself and the Y-axis
could show the types of analysis that might detect an
attack. Each cell of Table 1 could be replaced with a
complete breakdown similar to that of Table 2.

5.3 Uses of models

Feature-Analysis models of computer attacks and
intrusion detection systems could be used as a basis for
modeling and simulation efforts that could promote rapid
advances in intrusion detection. The following four
research efforts based on modeling and simulation could
help address current research needs and advance intrusion
detection and correlation research:

1. Predict attack detection coverage and alert

content. Models of attacks and intrusion
detection systems could be analyzed to see where
they overlap to determine which attacks can be
detected. This comparison is a basis for proof-
of-concept and probabilistic analyses to assess
attack coverage of intrusion detection systems.
For example, one or more attacks could be
compared to the model of Network-IDS-1 shown

in Table 2. The model would give a “first-order”
idea of which attacks Network-IDS-1 can be
expected to detect. A similar rule-based
characterization and evaluation of detection
systems is proposed by [20]. An alert content
model, based on expert knowledge of the
detection system and content of alerts resulting
from different attacks, could be added to
postulate alert content in response to various
modeled attacks. The costly process of actually
developing the attacks, creating background
traffic, and developing a deployable detection
system could be used more sparingly to verify
results of the model-based analysis.

2. Plan future evaluations. Feature-Analysis
modeling can help understand what background
traffic and attacks are necessary to fully stress a
particular intrusion detection system.
Background traffic is a necessary part of an
evaluation to prevent trivial detection of attacks
(i.e., everything that happens is an attack) and to
allow measurement of false alarm rates in
different operating environments. For
background traffic to suit these purposes, it must
both be realistic and it must match the detection
algorithm that is being tested. If a network-
based system does not analyze ICMP traffic,
then there is no need to model realistic ICMP
traffic in the background environment.
However, if a detection system keeps statistics
on connections to port 80 of a server, then web
traffic should be included with a realistic arrival
rate that matches the real environment.
Similarily, there is no need to evaluate
performance of an intrusion detection systems
with an attack when none of the evidence of the
attack is analyzed by the system.

XMultiple Packet

Session Actions

XSession Content

XSession Negotiation

XPackets

XXXXXXProtocol “Handshake”

XXXXXXXMultiple Headers

XXXXXXXHeader

XMultiple Packet

Session Actions

XSession Content

XSession Negotiation

XPackets

XXXXXXProtocol “Handshake”

XXXXXXXMultiple Headers

XXXXXXXHeader

Ethe
rne

t
ARP
IC

MP
UDP
DNS
Sysl

og
TCP/IP
Teln

et
HTTP
SSH SMTP
RPC
32

77
3/uNetwork IDS-1

Table 2 One possible characterization of the fictitious "Network-IDS-1"
showing the features extracted and depth of analysis performed.

Submitted to DISCEX-II

 10

3. Synthesize realistic alert streams. Models of
real alert content could be used to synthesize
realistic alert streams for use by researchers
working on correlation and higher-level
detection. These synthetic alert streams would
have the “look and feel” of streams of
operational alerts from real intrusion detection
systems installed in operational environments,
but could be more widely distributed since they
would not contain operationally sensitive
information. To create a synthetic alert stream
like this, an intrusion detection system could be
run on operational data in a secure facility.
Alerts could be collected and statistically
modeled with respect to format and content
including rate and distribution of alert type,
source and destination address, etc. Statistical
models could drive synthesis of alert streams
with similar characteristics.

4. Plan large-scale experiments. Detailed attack
and detection models could support proof-of-
concept experiments analyzing the placement of
intrusion detection technologies and for
synthesis of alert streams to be input for modeled
or real detection and correlation systems. A
large-scale, theatre-wide scenario would consist
of detailed descriptions of the networks and
hosts, the cyber-mission supported by these
assets, realistic adversary(s), attacks, and
scenarios. Event-timelines seen at different parts
of the network or computer system would
support the scenario and could be created by
hand or synthesized by a software simulation.
Events would correspond to background and
adversary attack actions instantiated in synthetic
intrusion detection system alerts, network or
system events, and application and operating
system logs. Modeled intrusion detection and
correlation systems could use one or more of
these event streams as input and could be
“placed” within this framework. Background
traffic and modeled attacks could be “launched”
by replaying or synthesizing those event streams.
One result could be postulated alerts that could
be assessed. This would help understand how
the placement and operation of detection systems
affects overall ability to detect and recognize an
adversary’s attacks at the correlation or higher
level. With sufficiently realistic underlying
models, these simulations could provide
synthetic alert streams as testing input for real
correlation and higher-level cyber-security tools
in limited experiments.

6. Summary

Tools and techniques from the 1999 Evaluation are
being extended in three ways. First, the Lincoln
Adaptable Information Assurance Real-time Testbed,
LARIAT, is a testbed and collection of GUI-based
software tools that allows intrusion detection and
correlation researchers to run configurable, real-time test
runs in their own labs. LARIAT provides mechanisms to
setup and control background traffic generation software
and to configure and launch scripted attacks during a test
run. Second, two “Lincoln Scenario” datasets have been
generated and distributed. These short focused datasets
each contain realistic background traffic and all steps of a
single attack scenario: scanning, probing, break-in,
installation and launching of a Distributed Denial of
Service attack. Network traces and Solaris BSM data
from two hosts are available with three types of labeling.
Finally, the 1999 evaluation provides a basis for modeling
attacks and intrusion detection systems. Feature-Analysis
models are proposed that characterize intrusion detection
systems and attacks with regard to the evidence left by an
attack or the input features extracted and analysis
performed by an intrusion detection system. These
models could support several research efforts including
proof-of-concept and probabilistic simulations of
intrusion detection systems to study intrusion detection
system coverage and alert content. Such simulations
could reduce the need for costly evaluations and can help
design evaluations that best suit the systems being
evaluated. Alerts from operational intrusion detection
systems could be modeled and synthesized to yield
realistic alert streams for researchers. Large-scale
experiments based on these models could help determine
where to place intrusion detection and correlation systems
for best performance. Finally, models and simulations
with sufficient realism could provide streams of synthetic
alerts to be used to support development of detection and
correlation systems.

7. Acknowledgements

We would like to thank Cathy McCollum, DARPA,
and the Air Force for supporting these efforts. We would
also like to thank Sandia National Laboratories,
researchers from Honeywell, UCSB, and SRI, and
participants in the May 2000 Evaluation Re-Think
meeting for their contributions to the scenario datasets
and for their extensive analysis efforts that are the basis
for attack and intrusion detection system modeling.
Finally, we would like to thank Scott Lewandowski for
providing extensive comments on drafts of this paper and
Dave Fried, Steve Goulet and Oliver Dain for their work
on the testbeds.

Submitted to DISCEX-II

 11

8. References

1. R. Lippmann, J. Haines, D. Fried, J. Korba, K. Das, “The

1999 DARPA off-line intrusion detection evaluation,”
Computer Networks, 34, 2000, 579-595.

2. R. P. Lippmann and J. Haines “Analysis and Results of the
1999 DARPA Off-Line Intrusion Detection Evaluation” in
Recent Advances in Intrusion Detection, Third International
Workshop, RAID 2000 Toulouse, France, October 2000,
Proceedings. H. Debar, L. Me and S. F. Wu, (Eds.) Springer
Verlag. Lectures in Computer Science Vol. 1907, 2000, pp.
162-182.

3. N. Puketza, K. Zhang, M. Chung, B. Mukherjee, and R. A.
Olsson, “A methodology for testing intrusion detection
systems,” IEEE Transactions on Software Engineering, 22,
1996, pp. 719-729.

4. N. Puketza, M. Chung, R. A. Olsson, and B. Mukherjee, “A
Software Platform for Testing Intrusion Detection Systems,”
IEEE Software, September/October, 1997, pp 43-51.

5. Richard P. Lippmann, David J. Fried, Isaac Graf, Joshua
W. Haines, Kristopher R. Kendall, David McClung, Dan
Weber, Seth E. Webster, Dan Wyschogrod, Robert K.
Cunningham, and Marc A. Zissman, “Evaluating Intrusion
Detection Systems: the 1998 DARPA Off-Line Intrusion
Detection Evaluation”, in Proceedings of the 2000 DARPA
Information Survivability Conference and Exposition
(DISCEX), Vol. 2, January 2000, IEEE Press.

6. A public web site at
http://www.ll.mit.edu/IST/ideval/index.html contains
information on the 1998 and 1999 evaluations. Follow
instructions on this web site or send email to the authors (rpl
or jhaines@sst.ll.mit.edu) to obtain access to a password-
protected site with complete up-to-date information on these
evaluations and results.

7. B. Wood and R. Duggan, “Red-Teaming of Advanced
Information Assurance Concepts,” Proceedings of DARPA
Information Survivability Conference and Exposition, Hilton
Head, SC, Jan. 25-27, 2000

8. G. Schudel and B. Wood, “Modeling Behavior of the
Cyber-Terrorist,” submitted for consideration by the 2000
IEEE Symposium on Security and Privacy.

9. Solaris sadmind vulnerability:
http://www.securityfocus.com/frames/?content=/vdb/bottom.
html%3Fvid%3D866

10. Mstream DDoS tool:
http://www.securityfocus.com/archive/82/57690

11. http://www.ietf.org/html.charters/idwg-charter.html
12. T. H. Ptacek and T. N. Newsham, “Insertion, Evasion, and

Denial of Service: Eluding Network Intrusion Detection”,
Secure Networks, Inc. Report, January 1998.

13. J. Haines, R. Lippmann, D. Fried, J. Korba, and K. Das,
“Design and Procedures of the 1999 DARPA Off-Line
Intrusion Detection Evaluation”, MIT Lincoln Laboratory
Technical Report, In Press, December 2000.

14. J. Korba, “Windows NT Attacks for the Evaluation of
Intrusion Detection Systems”, S.M. Thesis, MIT Department
of Electrical Engineering and Computer Science, June 2000.

15. K. Das, “The Development of Stealthy Attacks to Evaluate
Intrusion Detection Systems”, S.M. Thesis, MIT Department
of Electrical Engineering and Computer Science, June 2000.

16. R. P. Lippmann and R. K. Cunningham, “Guide to Creating
Stealthy Attacks for the 1999 DARPA Off-Line Intrusion
Detection Evaluation”, MIT Lincoln Laboratory Project
Report IDDE-1, June 1999.

17. K. Kendall, “A Database of Computer Attacks for the
Evaluation of Intrusion Detection Systems”, S.M. Thesis,
MIT Department of Electrical Engineering and Computer
Science, June 1999.

18. The Lawrence Berkeley National Laboratory Network
Research Group provides tcpdump at http://www-
nrg.ee.lbl.gov/.

19. Skaion Corporation: terry@skaion.com or
steve@skaion.com.

20. D. Alessandri, “Using Rule-Based Activity Descriptions to
Evaluate Intrusion Detection Systems,” in Recent Advances
in Intrusion Detection, Third International Workshop, RAID
2000 Toulouse, France, October 2000, Proceedings. H.
Debar, L. Me and S. F. Wu, (Eds.) Springer Verlag. Lectures
in Computer Science Vol. 1907, 2000, pp. 183-196.

21. http://www.nmap.org
22. R. Durst, T. Champion, B. Witten, E. Miller, and L.

Spagnuolo, “Testing and evaluating computer
intrusion detection systems”, Communications of the
ACM, 42(7), pp. 53-61 (1999)

