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Introduction1 
Because any individual digital photograph may contain 
considerable amounts of information, the ability to 
understand and extract scene information is advantageous 
to many communities, including, but not limited to, online 
social networking sites, the intelligence agencies, and 
logistics and analytics corporations dealing with large-scale 
data mining. One category of scene information is geo-
spatial data that can provide the location of people, objects, 
and the originating camera. Sometimes, meta-data 
(including GPS coordinates or annotated landmarks) that 
provides such scene information of digital photos, is, either 
intentionally or unintentionally, excluded, unavailable, or 
not yet ascertained. In such cases, it is up to the human to 
manually annotate the photograph, which can be tedious 
and often impossible given the throughput of a system.  

In the absence of meta-data, depending on the image 
content, how many, how salient, and which features are 
available, and the disparity between training and testing, 
determining a location that corresponds with a scene may 
occur at various refinement levels. It is logical to establish a 
hierarchy of what can and cannot be done. Starting at the 
coarsest level to the finest level, an image can be related to 
a set of geo-coordinates with some degree of confidence. 
For a given test image, the set can be a large collection of 
locations, each of which has a lower probability of being 
correct. Or, the set can consist of a single location that is 
extremely likely to be both precise and accurate. 

Thus, it makes sense to create a framework that assesses an 
image at several degrees of localization potential.  For 
images that may not necessarily provide enough features to 
be discernable from several different locations, we can 
provide candidate locations that have a higher probability 
being co-located. For other images that have distinct 
landmarks that are spatially unique, it is likely that they 
would match one-to-one to singular geo-coordinates. 

Establishing such a framework also makes sense from a 
computational point of view. Because several models 
relating to specific locations can exist, comparing over the 
vast space of all possible images can be infeasible. 
Logically, paring down the search space using coarse geo-
location models with rough spatial descriptors would make 
the problem much more tractable. 

The framework involves complicated training and setup 
procedures in order to promote real-time exploitation. 
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Obviously, for generalization purposes, the required data 
set is an extensive collection of tens of thousands of 
images, with location information, at high-resolution. To 
support the training operations, resources are distributed 
across several compute nodes on Lincoln Laboratory’s 
GRID cloud computing infrastructure. 

The proposed approach relies on several advances in 
computer vision that have been made over the past ten 
years. Specifically, image classification and registration 
techniques form the foundation of our system architecture. 
We modify and improve upon conventional approaches in 
both problem spaces, while fitting them to a proposed 
framework. This framework is presented with results that 
show our program capability that identifies images and 
where they might belong in the world. 

Top-Down Framework 
The three basic levels of geo-registration are depicted in 
Table 1. Each of the levels utilizes three stages in 
processing, shown in Fig. 1. The first takes an input image, 
and extracts relevant features from it. The second stage 
matches the extracted features against a pre-collected 
database. Finally, the third stage assigns an absolute geo-
coordinate or set of geo-coordinates to the matched 
features, and by extension, to the pixels of the input image. 
 

Table 1: Scene Categorization 

Level Result Methodology 

Coarse Candidate Locations 
& Confidence 

Probabilistic 
Classification 

Medium Error radius around 
Geo-coordinates 

Matching 
Localization 

Fine Positioning and 
pointing direction 

3D Georegistration  
& Pose Estimation 

 

 
Figure 1: Stages in Geo-registering an Image 

In geo-registering a single input image, it is simplest to 
conduct a top-down search from coarse classification to fine 
geo-registration. So, the first step, coarse classification, is 
defined as finding the set of potential geo-locations that 
with distributions similar to the input image. Of course, a 
training set of images at large-scale locations must be 
present in order to build the comparison distributions 
beforehand. Each of the set of locations will have an 



associated spatial radius, a prior probability of occurrence, 
and a posterior probability that includes the input image. 
This will enable the medium localization level to find 
images that the input is similar to. If there are enough of 
these images, then geo-registration at the fine level is 
possible. 

Coarse Classification 
Empirical studies have shown that holistic processing of an 
image yields a better understanding of the objects within a 
scene because of the induced context that surround the 
objects. The perception is that knowing a lot about one 
thing is not as good as knowing a little bit about everything. 
The implication in our problem is that training a detector to 
learn a specific landmark will induce false alarms while 
knowledge-based scene classifiers operate much better. 

 
Figure 2: Original image of a bedroom class 

 
Figure 3: Bayes classification and confidence 

Coarse geo-registration begins by using a semi-supervised 
methodology that associates labels to images. There are 
several databases [3] with annotated images relating to the 
image’s content. Each image may contain multiple 
annotations per images, meaning that not all pixels in a 
single image relate to one concept. Using probabilistic 
distribution modeling and Bayesian decision theory, 
specific locations can inherit a certain pixel distribution and 
individual pixels can be related to concepts. 

Fig. 2 and Fig. 3 provide an accurate segmentation, without 
having to manually segment the image. The left figure 
shows the actual classification of items within a scene, 
while the right denotes the confidence of the classification. 
Using the distribution of classified objects with associated 
semantic concepts, it is possible to build a metric that 
recognizes the overall geo-location. So in Fig. 2 and 3 for 
example, for intra-image segmented semantics of 
“CURTAINS”, “BED”, “PLAID”, “CHAIR”, and 
“WALLPAPER” on the left of Fig. 3, “BEDROOM” was 
extracted has a highly probable location. 

Mid-Localization 
Fig. 1 describes the second step after extracting relevant 
features as matching features to a database that is 

descriptive of the spatial location. This is a simple 
procedure, but the implications are that pictures can be 
roughly placed spatially provided that the training set to 
which they are compared are, themselves, understood in a 
geo-spatial sense. This becomes clear in Fig. 4, where 
images have been geo-registered, and an input image 
matches features to the remainder of the graph. Previous 
works [1, 2] describe this matching procedure in detail. 

 
Figure 4: Matched image to a geo-registered image graph 

3-D Geo-Registration 
It is possible to build geometry, given that one knows the 3-
D features that extracted features from an input image relate 
to. Therefore, the final stage in the coarse to fine framework 
is the 3-D pose estimation of an image in a registered 3-D 
space. Using correspondences, it is possible to build a 
projection matrix that describes several parameters that 
include scale, translation, rotation, and camera intrinsic 
estimations. 

 
Figure 5: Geo-registered targets and cameras 
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