

Image Localization and Geo-registration

Embedded and High Performance Computing

Karl Ni, <u>karl.ni@ll.mit.edu</u> MIT Lincoln Laboratory

22 September 2011

1951–2011 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government.

- Embedded and High Performance Computing (G102)
 - Karl Ni
 - Katherine Bouman
 - Scott Sawyer
 - Nadya Bliss
- Active Optical Systems (G106)
 - Alexandru Vasile
 - Luke Skelly
 - Peter Cho
- Cornell University
 - Noah Snavely

Common representation enables a variety of exploitation products to work in a shared environment.

OFFLINE

EXPLOITATION

Geo-localization of Imagery and Video

Challenges in Image Localization

SENSORS

DoD/IC Processing Capabilities

State of the Art **Geo-localization**

2 City Blocks², 0.12 miles²: Real-time Platform Capability = < 1 min (SIGMA Program, HPEC 2010)

City-wide, 24 miles²: Parallel Computing Platform Estimated: 52 minutes

USAScale (Land Only) Supercomputing Cluster Estimated: 22 days

Large coverage of geo-spatial locations requires processing intelligently because coverage and precision scales with data.

> 1951-2011 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Hierarchical Geo-localization

- Reduce search space through successive localization
- Confidence metric at each level

- Introduction
- Coarse Classification

- Computational Complexity
 Results
- Medium Localization
- Fine Geo-registration
- Conclusions

Coarse Feature: *GIST*

- The GIST Feature:
 - Naturalness
 - Openness
 - Roughness
 - Expansion
 - Ruggedness
- Scene structure at various levels:
 - Subordinate level
 - Basic level
 - Superordinate level

Spectral templates using windowed Fourier Transform

$$I(x, y, f_x, f_y) = \sum_{x', y'=0}^{N-1} i(x', y') h_r(x' - x, y' - y) e^{-j 2\pi (f_x x' + f_y y')}$$

Coarse Classification

Medium Localization

Fine Geo-registration

- Comparing GIST Features:
 - Possible to do nearest neighbor approaches: computationally expensive
 - O(dNC) time, where N is exceedingly large
- Using Gaussian Mixture Models
 - Model class distributions with a sum of several Gaussian
 - The number of Gaussians per class (P) is considerably smaller than N
 - Complexity proportional to O(dPC), where P is the number of Gaussians

Coarse Computational Loads

- **GIST Feature computation**
 - **Dimensionality d = 960 vector comparisons**
 - Each vector requires windowed FFT
 - Multiple resolutions and windowing
 - Parallel processing of different scales
- Nearest neighbor O(dNC)
 - N = 487, C = 5, d = 960
 - Comparison of 256² x N images x C Classes
- Sparse feature GMM comparison O(dPC)
 - P = ~ 12/class, C = 5, d = 960
 - Reduce computational complexity reduction on average 83.3%, up to 92.3%, depending on data
 - Two areas for parallelization:
 - Gaussian calculations are independent per prototype Distribution value calculations are independent per class

1951-2011

Coarse Coverage Capability and Results

United States

- 474M acres forest land
- 349M acres crop land
- 73M rural residential
- 788M acres range and pasture land

		Training				
	Datasets	Coast	Country	Forest	Mountain	Urban
Testing	Coast	0.870	0.056	0.024	0.102	0.021
	Country	0.132	0.856	0.035	0.060	0.035
	Forest	0.009	0.025	0.905	0.057	0.074
	Mountain	0.057	0.022	0.053	0.901	0.094
	Urban	0.023	0.024	0.042	0.096	0.902

- Training data set: 487 images spread across 5 different classes
- Computation: 0.6 Seconds per image in MATLAB

Coarse Classification

Fine Geo-registration

- Introduction
- **Coarse Classification**
- **Medium Localization** •

- **Computational Complexity** Results
- **Fine Geo-registration**
- **Conclusions**

Medium Features: Conceptual

- FEATURES ARE:
- More suburb-like Larger roads
- **Drier vegetation**
- Shorter houses

- FEATURES ARE: Arches and white buildings
- **Domes and ancient** architecture
- **Older/speckled** materials (higher frequency image content)

- Windows of a certain type
- Types of buildings are there

Choice of features requires looking at multiple semantic concepts defined by entities and attributes *inside* of images

• Face detection and recognition: mostly done

• Generic object detector: not so much

1. Chair, 2. Table, 3. Road, 4. Road, 5. Table, 6. Car, 7. Keyboard People can't be flying or walking on billboards

- Let's say you have 10 very good detectors (~%5 FA rate)
- Still have a large image to classify at different scales/orientations and 10 x 0.05 FA rate for ~40% FA rate!
- These classifiers don't know anything about their surroundings!

We use context in order inference about an image

Medium Features: Holistic Learned Features

• Feed noise + entire image into a sparse representation

Automatic feature learning has been submitted to ICASSP 2012

Advantages:

- Won't need to segment every image
- Will offer context information about surroundings and noise
- Massively parallel per class

Coarse Classification

Fine Geo-registration

Medium Feature Matching: Distribution Analysis

Coarse Classification

eature Matching & Association

Automatic feature learning has been submitted to ICASSP 2012

1951–2011 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Medium Feature Matching: Distribution Analysis

Coarse Classification

FeatureMatching &ExtractionAssociation

Automatic feature learning has been submitted to ICASSP 2012

World Model

RAMEWORK

Localization Algorithms

Processing

Setup

Exploitation

Medium Computational Complexity

- Within Class Representation
 - 1400 images per dataset
 - Reduced resolution to 192 x 128
 - Currently use 8x8 features
 - Potential features ~ 28 million per data set
 - Optimization → # features = 29 average filters (depending on thresholds)
 - Linear programming: single pass is $O(dCN^2)$, where $N = \sim 1400$, C = 4 classes, d = 64 dimensions
- Exploitation:
 - Comparisons are O(dCP), where P ~ 29 features
 - Less than a 30 seconds classification time (4 classes)
 - Coverage of cities: entire cities
 - Vienna
 - Dubrovnik
 - Lubbock
 - Portions of Cambridge (MIT-Kendall)

Coarse Classification

Ground Imagery, Video

Aerial Imagery, Vide

Results

Coarse Classification

- Introduction
- Coarse Classification
- Medium Localization
- Fine Geo-registration

- Computational Complexity
- Results
- Conclusions

Fine Feature: SIFT

• Scale/rotation invariant features are extracted and stored as vectors

Coarse Classification

- SIFT at a glance:
 - Stands for: Scale Invariant
 Feature Transform
 - Scale Invariance: Convolve Gaussian kernel at different scale factors
 - Rotation Invariance: Bin gradient of local areas and build histogram

1951–2011 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Fine Feature Matching: Approx. Nearest Neighbor

 Point cloud consists of averaged SIFT features at refined locations

 Match to 2-D Features to 3-D Point Cloud

$$X_{match,i} = \underset{F_j}{\operatorname{argmin}} \|f_i^{(T)} - F_j\|^2 \qquad \frac{d_1}{d_2} > th$$
$$d_1, d_2 = \underset{F_{j,1}, F_{j,2}}{\min} \|f_i^{(T)} - F_j\|^2 \qquad \frac{d_2}{d_2} > th$$

• X is the matched feature position, d₁, d₂, are the feature distances, F is the representative feature

Known 3-D Model

Coarse Classification

SIFT Features

Setup

Fine Computational Complexity

- Each data set in the graph was run on 64 cores at a time using an MPI implementation
- Each SIFT extraction is done on one core
- Each image-image match is done on one core
 - 3D Reconstruction stage done in serial on one node

Coarse Classification

- Building 3D structure from known coordinates and matches is negligible in this framework
- Majority of image geo-localization results can be processed in under or around a minute
- Matching for larger data sets is more difficult

Exploitation

Manipulate Fused Data Mode

Overall Coverage and Complexity

- Coarse localization:
 - Classification rate: best detection rate at 92.1%
 - Reduce search space by relative terrain classification
 - Classification confidence given by probabilistic GMM
 - GMM reduction in computation over state of the art (nearest neighbor) by N/C
- Medium localization:
 - Demonstrated object classification per image: 79.2%
 - Localization passes in wholistic view of image to avoid supervision time
 - Massively parallel model building and training
- Fine geo-registration
 - Demonstrated accuracy to within 4.7 meters
 - Feature matching and geo-registration in under a 1 minute per point cloud

• Placing overall framework onto a 3-D world representation model is advantageous in data exploitation

 Geo-registration is feasibly done in a hierarchical manner, and determined via successive search-space reduction

• There are various techniques that enable good registration in a timely fashion for classification and localization

Questions?